xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34 
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 
38 #include "gmc/gmc_8_1_d.h"
39 #include "gmc/gmc_8_1_sh_mask.h"
40 
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44 
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47 
48 #include "tonga_sdma_pkt_open.h"
49 
50 #include "ivsrcid/ivsrcid_vislands30.h"
51 
52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
56 
57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
72 
73 
74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
75 {
76 	SDMA0_REGISTER_OFFSET,
77 	SDMA1_REGISTER_OFFSET
78 };
79 
80 static const u32 golden_settings_tonga_a11[] =
81 {
82 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
83 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
84 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
85 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
86 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
87 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
89 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 };
93 
94 static const u32 tonga_mgcg_cgcg_init[] =
95 {
96 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
97 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
98 };
99 
100 static const u32 golden_settings_fiji_a10[] =
101 {
102 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
103 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
104 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
105 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
106 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
108 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
109 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
110 };
111 
112 static const u32 fiji_mgcg_cgcg_init[] =
113 {
114 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
115 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
116 };
117 
118 static const u32 golden_settings_polaris11_a11[] =
119 {
120 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
121 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
122 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
123 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
124 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
125 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
127 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 };
131 
132 static const u32 golden_settings_polaris10_a11[] =
133 {
134 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
135 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
136 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
137 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
138 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
139 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
141 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
142 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
143 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
144 };
145 
146 static const u32 cz_golden_settings_a11[] =
147 {
148 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
149 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
150 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
151 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
152 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
153 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
155 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
156 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
157 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
158 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
159 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
160 };
161 
162 static const u32 cz_mgcg_cgcg_init[] =
163 {
164 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
165 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
166 };
167 
168 static const u32 stoney_golden_settings_a11[] =
169 {
170 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
171 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
172 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
173 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
174 };
175 
176 static const u32 stoney_mgcg_cgcg_init[] =
177 {
178 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
179 };
180 
181 /*
182  * sDMA - System DMA
183  * Starting with CIK, the GPU has new asynchronous
184  * DMA engines.  These engines are used for compute
185  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
186  * and each one supports 1 ring buffer used for gfx
187  * and 2 queues used for compute.
188  *
189  * The programming model is very similar to the CP
190  * (ring buffer, IBs, etc.), but sDMA has it's own
191  * packet format that is different from the PM4 format
192  * used by the CP. sDMA supports copying data, writing
193  * embedded data, solid fills, and a number of other
194  * things.  It also has support for tiling/detiling of
195  * buffers.
196  */
197 
198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
199 {
200 	switch (adev->asic_type) {
201 	case CHIP_FIJI:
202 		amdgpu_device_program_register_sequence(adev,
203 							fiji_mgcg_cgcg_init,
204 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
205 		amdgpu_device_program_register_sequence(adev,
206 							golden_settings_fiji_a10,
207 							ARRAY_SIZE(golden_settings_fiji_a10));
208 		break;
209 	case CHIP_TONGA:
210 		amdgpu_device_program_register_sequence(adev,
211 							tonga_mgcg_cgcg_init,
212 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
213 		amdgpu_device_program_register_sequence(adev,
214 							golden_settings_tonga_a11,
215 							ARRAY_SIZE(golden_settings_tonga_a11));
216 		break;
217 	case CHIP_POLARIS11:
218 	case CHIP_POLARIS12:
219 	case CHIP_VEGAM:
220 		amdgpu_device_program_register_sequence(adev,
221 							golden_settings_polaris11_a11,
222 							ARRAY_SIZE(golden_settings_polaris11_a11));
223 		break;
224 	case CHIP_POLARIS10:
225 		amdgpu_device_program_register_sequence(adev,
226 							golden_settings_polaris10_a11,
227 							ARRAY_SIZE(golden_settings_polaris10_a11));
228 		break;
229 	case CHIP_CARRIZO:
230 		amdgpu_device_program_register_sequence(adev,
231 							cz_mgcg_cgcg_init,
232 							ARRAY_SIZE(cz_mgcg_cgcg_init));
233 		amdgpu_device_program_register_sequence(adev,
234 							cz_golden_settings_a11,
235 							ARRAY_SIZE(cz_golden_settings_a11));
236 		break;
237 	case CHIP_STONEY:
238 		amdgpu_device_program_register_sequence(adev,
239 							stoney_mgcg_cgcg_init,
240 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
241 		amdgpu_device_program_register_sequence(adev,
242 							stoney_golden_settings_a11,
243 							ARRAY_SIZE(stoney_golden_settings_a11));
244 		break;
245 	default:
246 		break;
247 	}
248 }
249 
250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
251 {
252 	int i;
253 	for (i = 0; i < adev->sdma.num_instances; i++) {
254 		release_firmware(adev->sdma.instance[i].fw);
255 		adev->sdma.instance[i].fw = NULL;
256 	}
257 }
258 
259 /**
260  * sdma_v3_0_init_microcode - load ucode images from disk
261  *
262  * @adev: amdgpu_device pointer
263  *
264  * Use the firmware interface to load the ucode images into
265  * the driver (not loaded into hw).
266  * Returns 0 on success, error on failure.
267  */
268 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
269 {
270 	const char *chip_name;
271 	char fw_name[30];
272 	int err = 0, i;
273 	struct amdgpu_firmware_info *info = NULL;
274 	const struct common_firmware_header *header = NULL;
275 	const struct sdma_firmware_header_v1_0 *hdr;
276 
277 	DRM_DEBUG("\n");
278 
279 	switch (adev->asic_type) {
280 	case CHIP_TONGA:
281 		chip_name = "tonga";
282 		break;
283 	case CHIP_FIJI:
284 		chip_name = "fiji";
285 		break;
286 	case CHIP_POLARIS10:
287 		chip_name = "polaris10";
288 		break;
289 	case CHIP_POLARIS11:
290 		chip_name = "polaris11";
291 		break;
292 	case CHIP_POLARIS12:
293 		chip_name = "polaris12";
294 		break;
295 	case CHIP_VEGAM:
296 		chip_name = "vegam";
297 		break;
298 	case CHIP_CARRIZO:
299 		chip_name = "carrizo";
300 		break;
301 	case CHIP_STONEY:
302 		chip_name = "stoney";
303 		break;
304 	default: BUG();
305 	}
306 
307 	for (i = 0; i < adev->sdma.num_instances; i++) {
308 		if (i == 0)
309 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
310 		else
311 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
312 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
313 		if (err)
314 			goto out;
315 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
316 		if (err)
317 			goto out;
318 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
319 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
320 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
321 		if (adev->sdma.instance[i].feature_version >= 20)
322 			adev->sdma.instance[i].burst_nop = true;
323 
324 		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
325 		info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
326 		info->fw = adev->sdma.instance[i].fw;
327 		header = (const struct common_firmware_header *)info->fw->data;
328 		adev->firmware.fw_size +=
329 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
330 
331 	}
332 out:
333 	if (err) {
334 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
335 		for (i = 0; i < adev->sdma.num_instances; i++) {
336 			release_firmware(adev->sdma.instance[i].fw);
337 			adev->sdma.instance[i].fw = NULL;
338 		}
339 	}
340 	return err;
341 }
342 
343 /**
344  * sdma_v3_0_ring_get_rptr - get the current read pointer
345  *
346  * @ring: amdgpu ring pointer
347  *
348  * Get the current rptr from the hardware (VI+).
349  */
350 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
351 {
352 	/* XXX check if swapping is necessary on BE */
353 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
354 }
355 
356 /**
357  * sdma_v3_0_ring_get_wptr - get the current write pointer
358  *
359  * @ring: amdgpu ring pointer
360  *
361  * Get the current wptr from the hardware (VI+).
362  */
363 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
364 {
365 	struct amdgpu_device *adev = ring->adev;
366 	u32 wptr;
367 
368 	if (ring->use_doorbell || ring->use_pollmem) {
369 		/* XXX check if swapping is necessary on BE */
370 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
371 	} else {
372 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
373 	}
374 
375 	return wptr;
376 }
377 
378 /**
379  * sdma_v3_0_ring_set_wptr - commit the write pointer
380  *
381  * @ring: amdgpu ring pointer
382  *
383  * Write the wptr back to the hardware (VI+).
384  */
385 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
386 {
387 	struct amdgpu_device *adev = ring->adev;
388 
389 	if (ring->use_doorbell) {
390 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
391 		/* XXX check if swapping is necessary on BE */
392 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
393 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
394 	} else if (ring->use_pollmem) {
395 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
396 
397 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
398 	} else {
399 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
400 	}
401 }
402 
403 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
404 {
405 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
406 	int i;
407 
408 	for (i = 0; i < count; i++)
409 		if (sdma && sdma->burst_nop && (i == 0))
410 			amdgpu_ring_write(ring, ring->funcs->nop |
411 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
412 		else
413 			amdgpu_ring_write(ring, ring->funcs->nop);
414 }
415 
416 /**
417  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
418  *
419  * @ring: amdgpu ring pointer
420  * @ib: IB object to schedule
421  *
422  * Schedule an IB in the DMA ring (VI).
423  */
424 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
425 				   struct amdgpu_job *job,
426 				   struct amdgpu_ib *ib,
427 				   uint32_t flags)
428 {
429 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
430 
431 	/* IB packet must end on a 8 DW boundary */
432 	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
433 
434 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
435 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
436 	/* base must be 32 byte aligned */
437 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
438 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
439 	amdgpu_ring_write(ring, ib->length_dw);
440 	amdgpu_ring_write(ring, 0);
441 	amdgpu_ring_write(ring, 0);
442 
443 }
444 
445 /**
446  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
447  *
448  * @ring: amdgpu ring pointer
449  *
450  * Emit an hdp flush packet on the requested DMA ring.
451  */
452 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
453 {
454 	u32 ref_and_mask = 0;
455 
456 	if (ring->me == 0)
457 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
458 	else
459 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
460 
461 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
462 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
463 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
464 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
465 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
466 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
467 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
468 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
469 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
470 }
471 
472 /**
473  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
474  *
475  * @ring: amdgpu ring pointer
476  * @fence: amdgpu fence object
477  *
478  * Add a DMA fence packet to the ring to write
479  * the fence seq number and DMA trap packet to generate
480  * an interrupt if needed (VI).
481  */
482 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
483 				      unsigned flags)
484 {
485 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
486 	/* write the fence */
487 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
488 	amdgpu_ring_write(ring, lower_32_bits(addr));
489 	amdgpu_ring_write(ring, upper_32_bits(addr));
490 	amdgpu_ring_write(ring, lower_32_bits(seq));
491 
492 	/* optionally write high bits as well */
493 	if (write64bit) {
494 		addr += 4;
495 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
496 		amdgpu_ring_write(ring, lower_32_bits(addr));
497 		amdgpu_ring_write(ring, upper_32_bits(addr));
498 		amdgpu_ring_write(ring, upper_32_bits(seq));
499 	}
500 
501 	/* generate an interrupt */
502 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
503 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
504 }
505 
506 /**
507  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
508  *
509  * @adev: amdgpu_device pointer
510  *
511  * Stop the gfx async dma ring buffers (VI).
512  */
513 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
514 {
515 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
516 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
517 	u32 rb_cntl, ib_cntl;
518 	int i;
519 
520 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
521 	    (adev->mman.buffer_funcs_ring == sdma1))
522 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
523 
524 	for (i = 0; i < adev->sdma.num_instances; i++) {
525 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
526 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
527 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
528 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
529 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
530 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
531 	}
532 	sdma0->sched.ready = false;
533 	sdma1->sched.ready = false;
534 }
535 
536 /**
537  * sdma_v3_0_rlc_stop - stop the compute async dma engines
538  *
539  * @adev: amdgpu_device pointer
540  *
541  * Stop the compute async dma queues (VI).
542  */
543 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
544 {
545 	/* XXX todo */
546 }
547 
548 /**
549  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
550  *
551  * @adev: amdgpu_device pointer
552  * @enable: enable/disable the DMA MEs context switch.
553  *
554  * Halt or unhalt the async dma engines context switch (VI).
555  */
556 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
557 {
558 	u32 f32_cntl, phase_quantum = 0;
559 	int i;
560 
561 	if (amdgpu_sdma_phase_quantum) {
562 		unsigned value = amdgpu_sdma_phase_quantum;
563 		unsigned unit = 0;
564 
565 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
566 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
567 			value = (value + 1) >> 1;
568 			unit++;
569 		}
570 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
571 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
572 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
573 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
574 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
575 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
576 			WARN_ONCE(1,
577 			"clamping sdma_phase_quantum to %uK clock cycles\n",
578 				  value << unit);
579 		}
580 		phase_quantum =
581 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
582 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
583 	}
584 
585 	for (i = 0; i < adev->sdma.num_instances; i++) {
586 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
587 		if (enable) {
588 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
589 					AUTO_CTXSW_ENABLE, 1);
590 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
591 					ATC_L1_ENABLE, 1);
592 			if (amdgpu_sdma_phase_quantum) {
593 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
594 				       phase_quantum);
595 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
596 				       phase_quantum);
597 			}
598 		} else {
599 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
600 					AUTO_CTXSW_ENABLE, 0);
601 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
602 					ATC_L1_ENABLE, 1);
603 		}
604 
605 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
606 	}
607 }
608 
609 /**
610  * sdma_v3_0_enable - stop the async dma engines
611  *
612  * @adev: amdgpu_device pointer
613  * @enable: enable/disable the DMA MEs.
614  *
615  * Halt or unhalt the async dma engines (VI).
616  */
617 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
618 {
619 	u32 f32_cntl;
620 	int i;
621 
622 	if (!enable) {
623 		sdma_v3_0_gfx_stop(adev);
624 		sdma_v3_0_rlc_stop(adev);
625 	}
626 
627 	for (i = 0; i < adev->sdma.num_instances; i++) {
628 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
629 		if (enable)
630 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
631 		else
632 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
633 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
634 	}
635 }
636 
637 /**
638  * sdma_v3_0_gfx_resume - setup and start the async dma engines
639  *
640  * @adev: amdgpu_device pointer
641  *
642  * Set up the gfx DMA ring buffers and enable them (VI).
643  * Returns 0 for success, error for failure.
644  */
645 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
646 {
647 	struct amdgpu_ring *ring;
648 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
649 	u32 rb_bufsz;
650 	u32 wb_offset;
651 	u32 doorbell;
652 	u64 wptr_gpu_addr;
653 	int i, j, r;
654 
655 	for (i = 0; i < adev->sdma.num_instances; i++) {
656 		ring = &adev->sdma.instance[i].ring;
657 		amdgpu_ring_clear_ring(ring);
658 		wb_offset = (ring->rptr_offs * 4);
659 
660 		mutex_lock(&adev->srbm_mutex);
661 		for (j = 0; j < 16; j++) {
662 			vi_srbm_select(adev, 0, 0, 0, j);
663 			/* SDMA GFX */
664 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
665 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
666 		}
667 		vi_srbm_select(adev, 0, 0, 0, 0);
668 		mutex_unlock(&adev->srbm_mutex);
669 
670 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
671 		       adev->gfx.config.gb_addr_config & 0x70);
672 
673 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
674 
675 		/* Set ring buffer size in dwords */
676 		rb_bufsz = order_base_2(ring->ring_size / 4);
677 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
678 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
679 #ifdef __BIG_ENDIAN
680 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
681 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
682 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
683 #endif
684 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
685 
686 		/* Initialize the ring buffer's read and write pointers */
687 		ring->wptr = 0;
688 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
689 		sdma_v3_0_ring_set_wptr(ring);
690 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
691 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
692 
693 		/* set the wb address whether it's enabled or not */
694 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
695 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
696 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
697 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
698 
699 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
700 
701 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
702 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
703 
704 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
705 
706 		if (ring->use_doorbell) {
707 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
708 						 OFFSET, ring->doorbell_index);
709 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
710 		} else {
711 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
712 		}
713 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
714 
715 		/* setup the wptr shadow polling */
716 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
717 
718 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
719 		       lower_32_bits(wptr_gpu_addr));
720 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
721 		       upper_32_bits(wptr_gpu_addr));
722 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
723 		if (ring->use_pollmem) {
724 			/*wptr polling is not enogh fast, directly clean the wptr register */
725 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
726 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
727 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
728 						       ENABLE, 1);
729 		} else {
730 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
731 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
732 						       ENABLE, 0);
733 		}
734 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
735 
736 		/* enable DMA RB */
737 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
738 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
739 
740 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
741 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
742 #ifdef __BIG_ENDIAN
743 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
744 #endif
745 		/* enable DMA IBs */
746 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
747 
748 		ring->sched.ready = true;
749 	}
750 
751 	/* unhalt the MEs */
752 	sdma_v3_0_enable(adev, true);
753 	/* enable sdma ring preemption */
754 	sdma_v3_0_ctx_switch_enable(adev, true);
755 
756 	for (i = 0; i < adev->sdma.num_instances; i++) {
757 		ring = &adev->sdma.instance[i].ring;
758 		r = amdgpu_ring_test_helper(ring);
759 		if (r)
760 			return r;
761 
762 		if (adev->mman.buffer_funcs_ring == ring)
763 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
764 	}
765 
766 	return 0;
767 }
768 
769 /**
770  * sdma_v3_0_rlc_resume - setup and start the async dma engines
771  *
772  * @adev: amdgpu_device pointer
773  *
774  * Set up the compute DMA queues and enable them (VI).
775  * Returns 0 for success, error for failure.
776  */
777 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
778 {
779 	/* XXX todo */
780 	return 0;
781 }
782 
783 /**
784  * sdma_v3_0_start - setup and start the async dma engines
785  *
786  * @adev: amdgpu_device pointer
787  *
788  * Set up the DMA engines and enable them (VI).
789  * Returns 0 for success, error for failure.
790  */
791 static int sdma_v3_0_start(struct amdgpu_device *adev)
792 {
793 	int r;
794 
795 	/* disable sdma engine before programing it */
796 	sdma_v3_0_ctx_switch_enable(adev, false);
797 	sdma_v3_0_enable(adev, false);
798 
799 	/* start the gfx rings and rlc compute queues */
800 	r = sdma_v3_0_gfx_resume(adev);
801 	if (r)
802 		return r;
803 	r = sdma_v3_0_rlc_resume(adev);
804 	if (r)
805 		return r;
806 
807 	return 0;
808 }
809 
810 /**
811  * sdma_v3_0_ring_test_ring - simple async dma engine test
812  *
813  * @ring: amdgpu_ring structure holding ring information
814  *
815  * Test the DMA engine by writing using it to write an
816  * value to memory. (VI).
817  * Returns 0 for success, error for failure.
818  */
819 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
820 {
821 	struct amdgpu_device *adev = ring->adev;
822 	unsigned i;
823 	unsigned index;
824 	int r;
825 	u32 tmp;
826 	u64 gpu_addr;
827 
828 	r = amdgpu_device_wb_get(adev, &index);
829 	if (r)
830 		return r;
831 
832 	gpu_addr = adev->wb.gpu_addr + (index * 4);
833 	tmp = 0xCAFEDEAD;
834 	adev->wb.wb[index] = cpu_to_le32(tmp);
835 
836 	r = amdgpu_ring_alloc(ring, 5);
837 	if (r)
838 		goto error_free_wb;
839 
840 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
841 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
842 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
843 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
844 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
845 	amdgpu_ring_write(ring, 0xDEADBEEF);
846 	amdgpu_ring_commit(ring);
847 
848 	for (i = 0; i < adev->usec_timeout; i++) {
849 		tmp = le32_to_cpu(adev->wb.wb[index]);
850 		if (tmp == 0xDEADBEEF)
851 			break;
852 		udelay(1);
853 	}
854 
855 	if (i >= adev->usec_timeout)
856 		r = -ETIMEDOUT;
857 
858 error_free_wb:
859 	amdgpu_device_wb_free(adev, index);
860 	return r;
861 }
862 
863 /**
864  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
865  *
866  * @ring: amdgpu_ring structure holding ring information
867  *
868  * Test a simple IB in the DMA ring (VI).
869  * Returns 0 on success, error on failure.
870  */
871 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
872 {
873 	struct amdgpu_device *adev = ring->adev;
874 	struct amdgpu_ib ib;
875 	struct dma_fence *f = NULL;
876 	unsigned index;
877 	u32 tmp = 0;
878 	u64 gpu_addr;
879 	long r;
880 
881 	r = amdgpu_device_wb_get(adev, &index);
882 	if (r)
883 		return r;
884 
885 	gpu_addr = adev->wb.gpu_addr + (index * 4);
886 	tmp = 0xCAFEDEAD;
887 	adev->wb.wb[index] = cpu_to_le32(tmp);
888 	memset(&ib, 0, sizeof(ib));
889 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
890 	if (r)
891 		goto err0;
892 
893 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
894 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
895 	ib.ptr[1] = lower_32_bits(gpu_addr);
896 	ib.ptr[2] = upper_32_bits(gpu_addr);
897 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
898 	ib.ptr[4] = 0xDEADBEEF;
899 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
900 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
901 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
902 	ib.length_dw = 8;
903 
904 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
905 	if (r)
906 		goto err1;
907 
908 	r = dma_fence_wait_timeout(f, false, timeout);
909 	if (r == 0) {
910 		r = -ETIMEDOUT;
911 		goto err1;
912 	} else if (r < 0) {
913 		goto err1;
914 	}
915 	tmp = le32_to_cpu(adev->wb.wb[index]);
916 	if (tmp == 0xDEADBEEF)
917 		r = 0;
918 	else
919 		r = -EINVAL;
920 err1:
921 	amdgpu_ib_free(adev, &ib, NULL);
922 	dma_fence_put(f);
923 err0:
924 	amdgpu_device_wb_free(adev, index);
925 	return r;
926 }
927 
928 /**
929  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
930  *
931  * @ib: indirect buffer to fill with commands
932  * @pe: addr of the page entry
933  * @src: src addr to copy from
934  * @count: number of page entries to update
935  *
936  * Update PTEs by copying them from the GART using sDMA (CIK).
937  */
938 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
939 				  uint64_t pe, uint64_t src,
940 				  unsigned count)
941 {
942 	unsigned bytes = count * 8;
943 
944 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
945 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
946 	ib->ptr[ib->length_dw++] = bytes;
947 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
948 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
949 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
950 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
951 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
952 }
953 
954 /**
955  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
956  *
957  * @ib: indirect buffer to fill with commands
958  * @pe: addr of the page entry
959  * @value: dst addr to write into pe
960  * @count: number of page entries to update
961  * @incr: increase next addr by incr bytes
962  *
963  * Update PTEs by writing them manually using sDMA (CIK).
964  */
965 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
966 				   uint64_t value, unsigned count,
967 				   uint32_t incr)
968 {
969 	unsigned ndw = count * 2;
970 
971 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
972 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
973 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
974 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
975 	ib->ptr[ib->length_dw++] = ndw;
976 	for (; ndw > 0; ndw -= 2) {
977 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
978 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
979 		value += incr;
980 	}
981 }
982 
983 /**
984  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
985  *
986  * @ib: indirect buffer to fill with commands
987  * @pe: addr of the page entry
988  * @addr: dst addr to write into pe
989  * @count: number of page entries to update
990  * @incr: increase next addr by incr bytes
991  * @flags: access flags
992  *
993  * Update the page tables using sDMA (CIK).
994  */
995 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
996 				     uint64_t addr, unsigned count,
997 				     uint32_t incr, uint64_t flags)
998 {
999 	/* for physically contiguous pages (vram) */
1000 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1001 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1002 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1003 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1004 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1005 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1006 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1007 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1008 	ib->ptr[ib->length_dw++] = 0;
1009 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1010 }
1011 
1012 /**
1013  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1014  *
1015  * @ib: indirect buffer to fill with padding
1016  *
1017  */
1018 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1019 {
1020 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1021 	u32 pad_count;
1022 	int i;
1023 
1024 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1025 	for (i = 0; i < pad_count; i++)
1026 		if (sdma && sdma->burst_nop && (i == 0))
1027 			ib->ptr[ib->length_dw++] =
1028 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1029 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1030 		else
1031 			ib->ptr[ib->length_dw++] =
1032 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1033 }
1034 
1035 /**
1036  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1037  *
1038  * @ring: amdgpu_ring pointer
1039  *
1040  * Make sure all previous operations are completed (CIK).
1041  */
1042 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1043 {
1044 	uint32_t seq = ring->fence_drv.sync_seq;
1045 	uint64_t addr = ring->fence_drv.gpu_addr;
1046 
1047 	/* wait for idle */
1048 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1049 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1050 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1051 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1052 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1053 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1054 	amdgpu_ring_write(ring, seq); /* reference */
1055 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1056 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1057 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1058 }
1059 
1060 /**
1061  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1062  *
1063  * @ring: amdgpu_ring pointer
1064  * @vm: amdgpu_vm pointer
1065  *
1066  * Update the page table base and flush the VM TLB
1067  * using sDMA (VI).
1068  */
1069 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1070 					 unsigned vmid, uint64_t pd_addr)
1071 {
1072 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1073 
1074 	/* wait for flush */
1075 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1076 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1077 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1078 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1079 	amdgpu_ring_write(ring, 0);
1080 	amdgpu_ring_write(ring, 0); /* reference */
1081 	amdgpu_ring_write(ring, 0); /* mask */
1082 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1083 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1084 }
1085 
1086 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1087 				     uint32_t reg, uint32_t val)
1088 {
1089 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1090 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1091 	amdgpu_ring_write(ring, reg);
1092 	amdgpu_ring_write(ring, val);
1093 }
1094 
1095 static int sdma_v3_0_early_init(void *handle)
1096 {
1097 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1098 
1099 	switch (adev->asic_type) {
1100 	case CHIP_STONEY:
1101 		adev->sdma.num_instances = 1;
1102 		break;
1103 	default:
1104 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1105 		break;
1106 	}
1107 
1108 	sdma_v3_0_set_ring_funcs(adev);
1109 	sdma_v3_0_set_buffer_funcs(adev);
1110 	sdma_v3_0_set_vm_pte_funcs(adev);
1111 	sdma_v3_0_set_irq_funcs(adev);
1112 
1113 	return 0;
1114 }
1115 
1116 static int sdma_v3_0_sw_init(void *handle)
1117 {
1118 	struct amdgpu_ring *ring;
1119 	int r, i;
1120 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1121 
1122 	/* SDMA trap event */
1123 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1124 			      &adev->sdma.trap_irq);
1125 	if (r)
1126 		return r;
1127 
1128 	/* SDMA Privileged inst */
1129 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1130 			      &adev->sdma.illegal_inst_irq);
1131 	if (r)
1132 		return r;
1133 
1134 	/* SDMA Privileged inst */
1135 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1136 			      &adev->sdma.illegal_inst_irq);
1137 	if (r)
1138 		return r;
1139 
1140 	r = sdma_v3_0_init_microcode(adev);
1141 	if (r) {
1142 		DRM_ERROR("Failed to load sdma firmware!\n");
1143 		return r;
1144 	}
1145 
1146 	for (i = 0; i < adev->sdma.num_instances; i++) {
1147 		ring = &adev->sdma.instance[i].ring;
1148 		ring->ring_obj = NULL;
1149 		if (!amdgpu_sriov_vf(adev)) {
1150 			ring->use_doorbell = true;
1151 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1152 		} else {
1153 			ring->use_pollmem = true;
1154 		}
1155 
1156 		sprintf(ring->name, "sdma%d", i);
1157 		r = amdgpu_ring_init(adev, ring, 1024,
1158 				     &adev->sdma.trap_irq,
1159 				     (i == 0) ?
1160 				     AMDGPU_SDMA_IRQ_INSTANCE0 :
1161 				     AMDGPU_SDMA_IRQ_INSTANCE1);
1162 		if (r)
1163 			return r;
1164 	}
1165 
1166 	return r;
1167 }
1168 
1169 static int sdma_v3_0_sw_fini(void *handle)
1170 {
1171 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1172 	int i;
1173 
1174 	for (i = 0; i < adev->sdma.num_instances; i++)
1175 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1176 
1177 	sdma_v3_0_free_microcode(adev);
1178 	return 0;
1179 }
1180 
1181 static int sdma_v3_0_hw_init(void *handle)
1182 {
1183 	int r;
1184 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1185 
1186 	sdma_v3_0_init_golden_registers(adev);
1187 
1188 	r = sdma_v3_0_start(adev);
1189 	if (r)
1190 		return r;
1191 
1192 	return r;
1193 }
1194 
1195 static int sdma_v3_0_hw_fini(void *handle)
1196 {
1197 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1198 
1199 	sdma_v3_0_ctx_switch_enable(adev, false);
1200 	sdma_v3_0_enable(adev, false);
1201 
1202 	return 0;
1203 }
1204 
1205 static int sdma_v3_0_suspend(void *handle)
1206 {
1207 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1208 
1209 	return sdma_v3_0_hw_fini(adev);
1210 }
1211 
1212 static int sdma_v3_0_resume(void *handle)
1213 {
1214 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1215 
1216 	return sdma_v3_0_hw_init(adev);
1217 }
1218 
1219 static bool sdma_v3_0_is_idle(void *handle)
1220 {
1221 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1222 	u32 tmp = RREG32(mmSRBM_STATUS2);
1223 
1224 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1225 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1226 	    return false;
1227 
1228 	return true;
1229 }
1230 
1231 static int sdma_v3_0_wait_for_idle(void *handle)
1232 {
1233 	unsigned i;
1234 	u32 tmp;
1235 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1236 
1237 	for (i = 0; i < adev->usec_timeout; i++) {
1238 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1239 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1240 
1241 		if (!tmp)
1242 			return 0;
1243 		udelay(1);
1244 	}
1245 	return -ETIMEDOUT;
1246 }
1247 
1248 static bool sdma_v3_0_check_soft_reset(void *handle)
1249 {
1250 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1251 	u32 srbm_soft_reset = 0;
1252 	u32 tmp = RREG32(mmSRBM_STATUS2);
1253 
1254 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1255 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1256 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1257 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1258 	}
1259 
1260 	if (srbm_soft_reset) {
1261 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1262 		return true;
1263 	} else {
1264 		adev->sdma.srbm_soft_reset = 0;
1265 		return false;
1266 	}
1267 }
1268 
1269 static int sdma_v3_0_pre_soft_reset(void *handle)
1270 {
1271 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1272 	u32 srbm_soft_reset = 0;
1273 
1274 	if (!adev->sdma.srbm_soft_reset)
1275 		return 0;
1276 
1277 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1278 
1279 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1280 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1281 		sdma_v3_0_ctx_switch_enable(adev, false);
1282 		sdma_v3_0_enable(adev, false);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int sdma_v3_0_post_soft_reset(void *handle)
1289 {
1290 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1291 	u32 srbm_soft_reset = 0;
1292 
1293 	if (!adev->sdma.srbm_soft_reset)
1294 		return 0;
1295 
1296 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1297 
1298 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1299 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1300 		sdma_v3_0_gfx_resume(adev);
1301 		sdma_v3_0_rlc_resume(adev);
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 static int sdma_v3_0_soft_reset(void *handle)
1308 {
1309 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1310 	u32 srbm_soft_reset = 0;
1311 	u32 tmp;
1312 
1313 	if (!adev->sdma.srbm_soft_reset)
1314 		return 0;
1315 
1316 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1317 
1318 	if (srbm_soft_reset) {
1319 		tmp = RREG32(mmSRBM_SOFT_RESET);
1320 		tmp |= srbm_soft_reset;
1321 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1322 		WREG32(mmSRBM_SOFT_RESET, tmp);
1323 		tmp = RREG32(mmSRBM_SOFT_RESET);
1324 
1325 		udelay(50);
1326 
1327 		tmp &= ~srbm_soft_reset;
1328 		WREG32(mmSRBM_SOFT_RESET, tmp);
1329 		tmp = RREG32(mmSRBM_SOFT_RESET);
1330 
1331 		/* Wait a little for things to settle down */
1332 		udelay(50);
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1339 					struct amdgpu_irq_src *source,
1340 					unsigned type,
1341 					enum amdgpu_interrupt_state state)
1342 {
1343 	u32 sdma_cntl;
1344 
1345 	switch (type) {
1346 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1347 		switch (state) {
1348 		case AMDGPU_IRQ_STATE_DISABLE:
1349 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1350 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1351 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1352 			break;
1353 		case AMDGPU_IRQ_STATE_ENABLE:
1354 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1355 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1356 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1357 			break;
1358 		default:
1359 			break;
1360 		}
1361 		break;
1362 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1363 		switch (state) {
1364 		case AMDGPU_IRQ_STATE_DISABLE:
1365 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1366 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1367 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1368 			break;
1369 		case AMDGPU_IRQ_STATE_ENABLE:
1370 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1371 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1372 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1373 			break;
1374 		default:
1375 			break;
1376 		}
1377 		break;
1378 	default:
1379 		break;
1380 	}
1381 	return 0;
1382 }
1383 
1384 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1385 				      struct amdgpu_irq_src *source,
1386 				      struct amdgpu_iv_entry *entry)
1387 {
1388 	u8 instance_id, queue_id;
1389 
1390 	instance_id = (entry->ring_id & 0x3) >> 0;
1391 	queue_id = (entry->ring_id & 0xc) >> 2;
1392 	DRM_DEBUG("IH: SDMA trap\n");
1393 	switch (instance_id) {
1394 	case 0:
1395 		switch (queue_id) {
1396 		case 0:
1397 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1398 			break;
1399 		case 1:
1400 			/* XXX compute */
1401 			break;
1402 		case 2:
1403 			/* XXX compute */
1404 			break;
1405 		}
1406 		break;
1407 	case 1:
1408 		switch (queue_id) {
1409 		case 0:
1410 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1411 			break;
1412 		case 1:
1413 			/* XXX compute */
1414 			break;
1415 		case 2:
1416 			/* XXX compute */
1417 			break;
1418 		}
1419 		break;
1420 	}
1421 	return 0;
1422 }
1423 
1424 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1425 					      struct amdgpu_irq_src *source,
1426 					      struct amdgpu_iv_entry *entry)
1427 {
1428 	u8 instance_id, queue_id;
1429 
1430 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1431 	instance_id = (entry->ring_id & 0x3) >> 0;
1432 	queue_id = (entry->ring_id & 0xc) >> 2;
1433 
1434 	if (instance_id <= 1 && queue_id == 0)
1435 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1436 	return 0;
1437 }
1438 
1439 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1440 		struct amdgpu_device *adev,
1441 		bool enable)
1442 {
1443 	uint32_t temp, data;
1444 	int i;
1445 
1446 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1447 		for (i = 0; i < adev->sdma.num_instances; i++) {
1448 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1449 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1450 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1451 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1452 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1453 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1454 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1455 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1456 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1457 			if (data != temp)
1458 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1459 		}
1460 	} else {
1461 		for (i = 0; i < adev->sdma.num_instances; i++) {
1462 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1463 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1464 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1465 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1466 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1467 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1468 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1469 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1470 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1471 
1472 			if (data != temp)
1473 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1474 		}
1475 	}
1476 }
1477 
1478 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1479 		struct amdgpu_device *adev,
1480 		bool enable)
1481 {
1482 	uint32_t temp, data;
1483 	int i;
1484 
1485 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1486 		for (i = 0; i < adev->sdma.num_instances; i++) {
1487 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1488 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1489 
1490 			if (temp != data)
1491 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1492 		}
1493 	} else {
1494 		for (i = 0; i < adev->sdma.num_instances; i++) {
1495 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1496 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1497 
1498 			if (temp != data)
1499 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1500 		}
1501 	}
1502 }
1503 
1504 static int sdma_v3_0_set_clockgating_state(void *handle,
1505 					  enum amd_clockgating_state state)
1506 {
1507 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1508 
1509 	if (amdgpu_sriov_vf(adev))
1510 		return 0;
1511 
1512 	switch (adev->asic_type) {
1513 	case CHIP_FIJI:
1514 	case CHIP_CARRIZO:
1515 	case CHIP_STONEY:
1516 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1517 				state == AMD_CG_STATE_GATE);
1518 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1519 				state == AMD_CG_STATE_GATE);
1520 		break;
1521 	default:
1522 		break;
1523 	}
1524 	return 0;
1525 }
1526 
1527 static int sdma_v3_0_set_powergating_state(void *handle,
1528 					  enum amd_powergating_state state)
1529 {
1530 	return 0;
1531 }
1532 
1533 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1534 {
1535 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1536 	int data;
1537 
1538 	if (amdgpu_sriov_vf(adev))
1539 		*flags = 0;
1540 
1541 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1542 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1543 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1544 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1545 
1546 	/* AMD_CG_SUPPORT_SDMA_LS */
1547 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1548 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1549 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1550 }
1551 
1552 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1553 	.name = "sdma_v3_0",
1554 	.early_init = sdma_v3_0_early_init,
1555 	.late_init = NULL,
1556 	.sw_init = sdma_v3_0_sw_init,
1557 	.sw_fini = sdma_v3_0_sw_fini,
1558 	.hw_init = sdma_v3_0_hw_init,
1559 	.hw_fini = sdma_v3_0_hw_fini,
1560 	.suspend = sdma_v3_0_suspend,
1561 	.resume = sdma_v3_0_resume,
1562 	.is_idle = sdma_v3_0_is_idle,
1563 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1564 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1565 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1566 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1567 	.soft_reset = sdma_v3_0_soft_reset,
1568 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1569 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1570 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1571 };
1572 
1573 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1574 	.type = AMDGPU_RING_TYPE_SDMA,
1575 	.align_mask = 0xf,
1576 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1577 	.support_64bit_ptrs = false,
1578 	.get_rptr = sdma_v3_0_ring_get_rptr,
1579 	.get_wptr = sdma_v3_0_ring_get_wptr,
1580 	.set_wptr = sdma_v3_0_ring_set_wptr,
1581 	.emit_frame_size =
1582 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1583 		3 + /* hdp invalidate */
1584 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1585 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1586 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1587 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1588 	.emit_ib = sdma_v3_0_ring_emit_ib,
1589 	.emit_fence = sdma_v3_0_ring_emit_fence,
1590 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1591 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1592 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1593 	.test_ring = sdma_v3_0_ring_test_ring,
1594 	.test_ib = sdma_v3_0_ring_test_ib,
1595 	.insert_nop = sdma_v3_0_ring_insert_nop,
1596 	.pad_ib = sdma_v3_0_ring_pad_ib,
1597 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1598 };
1599 
1600 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1601 {
1602 	int i;
1603 
1604 	for (i = 0; i < adev->sdma.num_instances; i++) {
1605 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1606 		adev->sdma.instance[i].ring.me = i;
1607 	}
1608 }
1609 
1610 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1611 	.set = sdma_v3_0_set_trap_irq_state,
1612 	.process = sdma_v3_0_process_trap_irq,
1613 };
1614 
1615 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1616 	.process = sdma_v3_0_process_illegal_inst_irq,
1617 };
1618 
1619 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1620 {
1621 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1622 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1623 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1624 }
1625 
1626 /**
1627  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1628  *
1629  * @ring: amdgpu_ring structure holding ring information
1630  * @src_offset: src GPU address
1631  * @dst_offset: dst GPU address
1632  * @byte_count: number of bytes to xfer
1633  *
1634  * Copy GPU buffers using the DMA engine (VI).
1635  * Used by the amdgpu ttm implementation to move pages if
1636  * registered as the asic copy callback.
1637  */
1638 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1639 				       uint64_t src_offset,
1640 				       uint64_t dst_offset,
1641 				       uint32_t byte_count)
1642 {
1643 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1644 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1645 	ib->ptr[ib->length_dw++] = byte_count;
1646 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1647 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1648 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1649 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1650 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1651 }
1652 
1653 /**
1654  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1655  *
1656  * @ring: amdgpu_ring structure holding ring information
1657  * @src_data: value to write to buffer
1658  * @dst_offset: dst GPU address
1659  * @byte_count: number of bytes to xfer
1660  *
1661  * Fill GPU buffers using the DMA engine (VI).
1662  */
1663 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1664 				       uint32_t src_data,
1665 				       uint64_t dst_offset,
1666 				       uint32_t byte_count)
1667 {
1668 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1669 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1670 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1671 	ib->ptr[ib->length_dw++] = src_data;
1672 	ib->ptr[ib->length_dw++] = byte_count;
1673 }
1674 
1675 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1676 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1677 	.copy_num_dw = 7,
1678 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1679 
1680 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1681 	.fill_num_dw = 5,
1682 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1683 };
1684 
1685 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1686 {
1687 	adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1688 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1689 }
1690 
1691 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1692 	.copy_pte_num_dw = 7,
1693 	.copy_pte = sdma_v3_0_vm_copy_pte,
1694 
1695 	.write_pte = sdma_v3_0_vm_write_pte,
1696 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1697 };
1698 
1699 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1700 {
1701 	struct drm_gpu_scheduler *sched;
1702 	unsigned i;
1703 
1704 	adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1705 	for (i = 0; i < adev->sdma.num_instances; i++) {
1706 		sched = &adev->sdma.instance[i].ring.sched;
1707 		adev->vm_manager.vm_pte_rqs[i] =
1708 			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1709 	}
1710 	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
1711 }
1712 
1713 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1714 {
1715 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1716 	.major = 3,
1717 	.minor = 0,
1718 	.rev = 0,
1719 	.funcs = &sdma_v3_0_ip_funcs,
1720 };
1721 
1722 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1723 {
1724 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1725 	.major = 3,
1726 	.minor = 1,
1727 	.rev = 0,
1728 	.funcs = &sdma_v3_0_ip_funcs,
1729 };
1730