1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 
59 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
60 {
61 	SDMA0_REGISTER_OFFSET,
62 	SDMA1_REGISTER_OFFSET
63 };
64 
65 static const u32 golden_settings_tonga_a11[] =
66 {
67 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
68 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
69 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
70 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
71 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
72 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
73 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
74 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
75 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
76 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
77 };
78 
79 static const u32 tonga_mgcg_cgcg_init[] =
80 {
81 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
82 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
83 };
84 
85 static const u32 golden_settings_fiji_a10[] =
86 {
87 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
89 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
90 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
92 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
93 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
94 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
95 };
96 
97 static const u32 fiji_mgcg_cgcg_init[] =
98 {
99 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
100 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
101 };
102 
103 static const u32 cz_golden_settings_a11[] =
104 {
105 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
106 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
107 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
108 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
109 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
110 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
111 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
112 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
113 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
114 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
115 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
116 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
117 };
118 
119 static const u32 cz_mgcg_cgcg_init[] =
120 {
121 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
122 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
123 };
124 
125 /*
126  * sDMA - System DMA
127  * Starting with CIK, the GPU has new asynchronous
128  * DMA engines.  These engines are used for compute
129  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
130  * and each one supports 1 ring buffer used for gfx
131  * and 2 queues used for compute.
132  *
133  * The programming model is very similar to the CP
134  * (ring buffer, IBs, etc.), but sDMA has it's own
135  * packet format that is different from the PM4 format
136  * used by the CP. sDMA supports copying data, writing
137  * embedded data, solid fills, and a number of other
138  * things.  It also has support for tiling/detiling of
139  * buffers.
140  */
141 
142 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
143 {
144 	switch (adev->asic_type) {
145 	case CHIP_FIJI:
146 		amdgpu_program_register_sequence(adev,
147 						 fiji_mgcg_cgcg_init,
148 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
149 		amdgpu_program_register_sequence(adev,
150 						 golden_settings_fiji_a10,
151 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
152 		break;
153 	case CHIP_TONGA:
154 		amdgpu_program_register_sequence(adev,
155 						 tonga_mgcg_cgcg_init,
156 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
157 		amdgpu_program_register_sequence(adev,
158 						 golden_settings_tonga_a11,
159 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
160 		break;
161 	case CHIP_CARRIZO:
162 		amdgpu_program_register_sequence(adev,
163 						 cz_mgcg_cgcg_init,
164 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
165 		amdgpu_program_register_sequence(adev,
166 						 cz_golden_settings_a11,
167 						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
168 		break;
169 	default:
170 		break;
171 	}
172 }
173 
174 /**
175  * sdma_v3_0_init_microcode - load ucode images from disk
176  *
177  * @adev: amdgpu_device pointer
178  *
179  * Use the firmware interface to load the ucode images into
180  * the driver (not loaded into hw).
181  * Returns 0 on success, error on failure.
182  */
183 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
184 {
185 	const char *chip_name;
186 	char fw_name[30];
187 	int err, i;
188 	struct amdgpu_firmware_info *info = NULL;
189 	const struct common_firmware_header *header = NULL;
190 	const struct sdma_firmware_header_v1_0 *hdr;
191 
192 	DRM_DEBUG("\n");
193 
194 	switch (adev->asic_type) {
195 	case CHIP_TONGA:
196 		chip_name = "tonga";
197 		break;
198 	case CHIP_FIJI:
199 		chip_name = "fiji";
200 		break;
201 	case CHIP_CARRIZO:
202 		chip_name = "carrizo";
203 		break;
204 	default: BUG();
205 	}
206 
207 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
208 		if (i == 0)
209 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
210 		else
211 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
212 		err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
213 		if (err)
214 			goto out;
215 		err = amdgpu_ucode_validate(adev->sdma[i].fw);
216 		if (err)
217 			goto out;
218 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
219 		adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
220 		adev->sdma[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
221 
222 		if (adev->firmware.smu_load) {
223 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
224 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
225 			info->fw = adev->sdma[i].fw;
226 			header = (const struct common_firmware_header *)info->fw->data;
227 			adev->firmware.fw_size +=
228 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
229 		}
230 	}
231 out:
232 	if (err) {
233 		printk(KERN_ERR
234 		       "sdma_v3_0: Failed to load firmware \"%s\"\n",
235 		       fw_name);
236 		for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
237 			release_firmware(adev->sdma[i].fw);
238 			adev->sdma[i].fw = NULL;
239 		}
240 	}
241 	return err;
242 }
243 
244 /**
245  * sdma_v3_0_ring_get_rptr - get the current read pointer
246  *
247  * @ring: amdgpu ring pointer
248  *
249  * Get the current rptr from the hardware (VI+).
250  */
251 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
252 {
253 	u32 rptr;
254 
255 	/* XXX check if swapping is necessary on BE */
256 	rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
257 
258 	return rptr;
259 }
260 
261 /**
262  * sdma_v3_0_ring_get_wptr - get the current write pointer
263  *
264  * @ring: amdgpu ring pointer
265  *
266  * Get the current wptr from the hardware (VI+).
267  */
268 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
269 {
270 	struct amdgpu_device *adev = ring->adev;
271 	u32 wptr;
272 
273 	if (ring->use_doorbell) {
274 		/* XXX check if swapping is necessary on BE */
275 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
276 	} else {
277 		int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
278 
279 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
280 	}
281 
282 	return wptr;
283 }
284 
285 /**
286  * sdma_v3_0_ring_set_wptr - commit the write pointer
287  *
288  * @ring: amdgpu ring pointer
289  *
290  * Write the wptr back to the hardware (VI+).
291  */
292 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
293 {
294 	struct amdgpu_device *adev = ring->adev;
295 
296 	if (ring->use_doorbell) {
297 		/* XXX check if swapping is necessary on BE */
298 		adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
299 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
300 	} else {
301 		int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
302 
303 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
304 	}
305 }
306 
307 /**
308  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
309  *
310  * @ring: amdgpu ring pointer
311  * @ib: IB object to schedule
312  *
313  * Schedule an IB in the DMA ring (VI).
314  */
315 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
316 				   struct amdgpu_ib *ib)
317 {
318 	u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
319 	u32 next_rptr = ring->wptr + 5;
320 
321 	while ((next_rptr & 7) != 2)
322 		next_rptr++;
323 	next_rptr += 6;
324 
325 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
326 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
327 	amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
328 	amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
329 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
330 	amdgpu_ring_write(ring, next_rptr);
331 
332 	/* IB packet must end on a 8 DW boundary */
333 	while ((ring->wptr & 7) != 2)
334 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
335 
336 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
337 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
338 	/* base must be 32 byte aligned */
339 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
340 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
341 	amdgpu_ring_write(ring, ib->length_dw);
342 	amdgpu_ring_write(ring, 0);
343 	amdgpu_ring_write(ring, 0);
344 
345 }
346 
347 /**
348  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
349  *
350  * @ring: amdgpu ring pointer
351  *
352  * Emit an hdp flush packet on the requested DMA ring.
353  */
354 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
355 {
356 	u32 ref_and_mask = 0;
357 
358 	if (ring == &ring->adev->sdma[0].ring)
359 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
360 	else
361 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
362 
363 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
364 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
365 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
366 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
367 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
368 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
369 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
370 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
371 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
372 }
373 
374 /**
375  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
376  *
377  * @ring: amdgpu ring pointer
378  * @fence: amdgpu fence object
379  *
380  * Add a DMA fence packet to the ring to write
381  * the fence seq number and DMA trap packet to generate
382  * an interrupt if needed (VI).
383  */
384 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
385 				      unsigned flags)
386 {
387 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
388 	/* write the fence */
389 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
390 	amdgpu_ring_write(ring, lower_32_bits(addr));
391 	amdgpu_ring_write(ring, upper_32_bits(addr));
392 	amdgpu_ring_write(ring, lower_32_bits(seq));
393 
394 	/* optionally write high bits as well */
395 	if (write64bit) {
396 		addr += 4;
397 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
398 		amdgpu_ring_write(ring, lower_32_bits(addr));
399 		amdgpu_ring_write(ring, upper_32_bits(addr));
400 		amdgpu_ring_write(ring, upper_32_bits(seq));
401 	}
402 
403 	/* generate an interrupt */
404 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
405 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
406 }
407 
408 
409 /**
410  * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
411  *
412  * @ring: amdgpu_ring structure holding ring information
413  * @semaphore: amdgpu semaphore object
414  * @emit_wait: wait or signal semaphore
415  *
416  * Add a DMA semaphore packet to the ring wait on or signal
417  * other rings (VI).
418  */
419 static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
420 					  struct amdgpu_semaphore *semaphore,
421 					  bool emit_wait)
422 {
423 	u64 addr = semaphore->gpu_addr;
424 	u32 sig = emit_wait ? 0 : 1;
425 
426 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
427 			  SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
428 	amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
429 	amdgpu_ring_write(ring, upper_32_bits(addr));
430 
431 	return true;
432 }
433 
434 /**
435  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
436  *
437  * @adev: amdgpu_device pointer
438  *
439  * Stop the gfx async dma ring buffers (VI).
440  */
441 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
442 {
443 	struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
444 	struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
445 	u32 rb_cntl, ib_cntl;
446 	int i;
447 
448 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
449 	    (adev->mman.buffer_funcs_ring == sdma1))
450 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
451 
452 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
453 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
454 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
455 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
456 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
457 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
458 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
459 	}
460 	sdma0->ready = false;
461 	sdma1->ready = false;
462 }
463 
464 /**
465  * sdma_v3_0_rlc_stop - stop the compute async dma engines
466  *
467  * @adev: amdgpu_device pointer
468  *
469  * Stop the compute async dma queues (VI).
470  */
471 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
472 {
473 	/* XXX todo */
474 }
475 
476 /**
477  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
478  *
479  * @adev: amdgpu_device pointer
480  * @enable: enable/disable the DMA MEs context switch.
481  *
482  * Halt or unhalt the async dma engines context switch (VI).
483  */
484 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
485 {
486 	u32 f32_cntl;
487 	int i;
488 
489 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
490 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
491 		if (enable)
492 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
493 					AUTO_CTXSW_ENABLE, 1);
494 		else
495 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
496 					AUTO_CTXSW_ENABLE, 0);
497 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
498 	}
499 }
500 
501 /**
502  * sdma_v3_0_enable - stop the async dma engines
503  *
504  * @adev: amdgpu_device pointer
505  * @enable: enable/disable the DMA MEs.
506  *
507  * Halt or unhalt the async dma engines (VI).
508  */
509 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
510 {
511 	u32 f32_cntl;
512 	int i;
513 
514 	if (enable == false) {
515 		sdma_v3_0_gfx_stop(adev);
516 		sdma_v3_0_rlc_stop(adev);
517 	}
518 
519 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
520 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
521 		if (enable)
522 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
523 		else
524 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
525 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
526 	}
527 }
528 
529 /**
530  * sdma_v3_0_gfx_resume - setup and start the async dma engines
531  *
532  * @adev: amdgpu_device pointer
533  *
534  * Set up the gfx DMA ring buffers and enable them (VI).
535  * Returns 0 for success, error for failure.
536  */
537 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
538 {
539 	struct amdgpu_ring *ring;
540 	u32 rb_cntl, ib_cntl;
541 	u32 rb_bufsz;
542 	u32 wb_offset;
543 	u32 doorbell;
544 	int i, j, r;
545 
546 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
547 		ring = &adev->sdma[i].ring;
548 		wb_offset = (ring->rptr_offs * 4);
549 
550 		mutex_lock(&adev->srbm_mutex);
551 		for (j = 0; j < 16; j++) {
552 			vi_srbm_select(adev, 0, 0, 0, j);
553 			/* SDMA GFX */
554 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
555 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
556 		}
557 		vi_srbm_select(adev, 0, 0, 0, 0);
558 		mutex_unlock(&adev->srbm_mutex);
559 
560 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
561 
562 		/* Set ring buffer size in dwords */
563 		rb_bufsz = order_base_2(ring->ring_size / 4);
564 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
565 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
566 #ifdef __BIG_ENDIAN
567 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
568 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
569 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
570 #endif
571 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
572 
573 		/* Initialize the ring buffer's read and write pointers */
574 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
575 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
576 
577 		/* set the wb address whether it's enabled or not */
578 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
579 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
580 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
581 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
582 
583 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
584 
585 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
586 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
587 
588 		ring->wptr = 0;
589 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
590 
591 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
592 
593 		if (ring->use_doorbell) {
594 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
595 						 OFFSET, ring->doorbell_index);
596 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
597 		} else {
598 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
599 		}
600 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
601 
602 		/* enable DMA RB */
603 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
604 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
605 
606 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
607 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
608 #ifdef __BIG_ENDIAN
609 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
610 #endif
611 		/* enable DMA IBs */
612 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
613 
614 		ring->ready = true;
615 
616 		r = amdgpu_ring_test_ring(ring);
617 		if (r) {
618 			ring->ready = false;
619 			return r;
620 		}
621 
622 		if (adev->mman.buffer_funcs_ring == ring)
623 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * sdma_v3_0_rlc_resume - setup and start the async dma engines
631  *
632  * @adev: amdgpu_device pointer
633  *
634  * Set up the compute DMA queues and enable them (VI).
635  * Returns 0 for success, error for failure.
636  */
637 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
638 {
639 	/* XXX todo */
640 	return 0;
641 }
642 
643 /**
644  * sdma_v3_0_load_microcode - load the sDMA ME ucode
645  *
646  * @adev: amdgpu_device pointer
647  *
648  * Loads the sDMA0/1 ucode.
649  * Returns 0 for success, -EINVAL if the ucode is not available.
650  */
651 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
652 {
653 	const struct sdma_firmware_header_v1_0 *hdr;
654 	const __le32 *fw_data;
655 	u32 fw_size;
656 	int i, j;
657 
658 	if (!adev->sdma[0].fw || !adev->sdma[1].fw)
659 		return -EINVAL;
660 
661 	/* halt the MEs */
662 	sdma_v3_0_enable(adev, false);
663 
664 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
665 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
666 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
667 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
668 		fw_data = (const __le32 *)
669 			(adev->sdma[i].fw->data +
670 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
671 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
672 		for (j = 0; j < fw_size; j++)
673 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
674 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
675 	}
676 
677 	return 0;
678 }
679 
680 /**
681  * sdma_v3_0_start - setup and start the async dma engines
682  *
683  * @adev: amdgpu_device pointer
684  *
685  * Set up the DMA engines and enable them (VI).
686  * Returns 0 for success, error for failure.
687  */
688 static int sdma_v3_0_start(struct amdgpu_device *adev)
689 {
690 	int r;
691 
692 	if (!adev->firmware.smu_load) {
693 		r = sdma_v3_0_load_microcode(adev);
694 		if (r)
695 			return r;
696 	} else {
697 		r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
698 						AMDGPU_UCODE_ID_SDMA0);
699 		if (r)
700 			return -EINVAL;
701 		r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
702 						AMDGPU_UCODE_ID_SDMA1);
703 		if (r)
704 			return -EINVAL;
705 	}
706 
707 	/* unhalt the MEs */
708 	sdma_v3_0_enable(adev, true);
709 	/* enable sdma ring preemption */
710 	sdma_v3_0_ctx_switch_enable(adev, true);
711 
712 	/* start the gfx rings and rlc compute queues */
713 	r = sdma_v3_0_gfx_resume(adev);
714 	if (r)
715 		return r;
716 	r = sdma_v3_0_rlc_resume(adev);
717 	if (r)
718 		return r;
719 
720 	return 0;
721 }
722 
723 /**
724  * sdma_v3_0_ring_test_ring - simple async dma engine test
725  *
726  * @ring: amdgpu_ring structure holding ring information
727  *
728  * Test the DMA engine by writing using it to write an
729  * value to memory. (VI).
730  * Returns 0 for success, error for failure.
731  */
732 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
733 {
734 	struct amdgpu_device *adev = ring->adev;
735 	unsigned i;
736 	unsigned index;
737 	int r;
738 	u32 tmp;
739 	u64 gpu_addr;
740 
741 	r = amdgpu_wb_get(adev, &index);
742 	if (r) {
743 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
744 		return r;
745 	}
746 
747 	gpu_addr = adev->wb.gpu_addr + (index * 4);
748 	tmp = 0xCAFEDEAD;
749 	adev->wb.wb[index] = cpu_to_le32(tmp);
750 
751 	r = amdgpu_ring_lock(ring, 5);
752 	if (r) {
753 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
754 		amdgpu_wb_free(adev, index);
755 		return r;
756 	}
757 
758 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
759 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
760 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
761 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
762 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
763 	amdgpu_ring_write(ring, 0xDEADBEEF);
764 	amdgpu_ring_unlock_commit(ring);
765 
766 	for (i = 0; i < adev->usec_timeout; i++) {
767 		tmp = le32_to_cpu(adev->wb.wb[index]);
768 		if (tmp == 0xDEADBEEF)
769 			break;
770 		DRM_UDELAY(1);
771 	}
772 
773 	if (i < adev->usec_timeout) {
774 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
775 	} else {
776 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
777 			  ring->idx, tmp);
778 		r = -EINVAL;
779 	}
780 	amdgpu_wb_free(adev, index);
781 
782 	return r;
783 }
784 
785 /**
786  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
787  *
788  * @ring: amdgpu_ring structure holding ring information
789  *
790  * Test a simple IB in the DMA ring (VI).
791  * Returns 0 on success, error on failure.
792  */
793 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
794 {
795 	struct amdgpu_device *adev = ring->adev;
796 	struct amdgpu_ib ib;
797 	struct fence *f = NULL;
798 	unsigned i;
799 	unsigned index;
800 	int r;
801 	u32 tmp = 0;
802 	u64 gpu_addr;
803 
804 	r = amdgpu_wb_get(adev, &index);
805 	if (r) {
806 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
807 		return r;
808 	}
809 
810 	gpu_addr = adev->wb.gpu_addr + (index * 4);
811 	tmp = 0xCAFEDEAD;
812 	adev->wb.wb[index] = cpu_to_le32(tmp);
813 	memset(&ib, 0, sizeof(ib));
814 	r = amdgpu_ib_get(ring, NULL, 256, &ib);
815 	if (r) {
816 		DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
817 		goto err0;
818 	}
819 
820 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
821 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
822 	ib.ptr[1] = lower_32_bits(gpu_addr);
823 	ib.ptr[2] = upper_32_bits(gpu_addr);
824 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
825 	ib.ptr[4] = 0xDEADBEEF;
826 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
827 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
828 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
829 	ib.length_dw = 8;
830 
831 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
832 						 AMDGPU_FENCE_OWNER_UNDEFINED,
833 						 &f);
834 	if (r)
835 		goto err1;
836 
837 	r = fence_wait(f, false);
838 	if (r) {
839 		DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
840 		goto err1;
841 	}
842 	for (i = 0; i < adev->usec_timeout; i++) {
843 		tmp = le32_to_cpu(adev->wb.wb[index]);
844 		if (tmp == 0xDEADBEEF)
845 			break;
846 		DRM_UDELAY(1);
847 	}
848 	if (i < adev->usec_timeout) {
849 		DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
850 			 ring->idx, i);
851 		goto err1;
852 	} else {
853 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
854 		r = -EINVAL;
855 	}
856 err1:
857 	fence_put(f);
858 	amdgpu_ib_free(adev, &ib);
859 err0:
860 	amdgpu_wb_free(adev, index);
861 	return r;
862 }
863 
864 /**
865  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
866  *
867  * @ib: indirect buffer to fill with commands
868  * @pe: addr of the page entry
869  * @src: src addr to copy from
870  * @count: number of page entries to update
871  *
872  * Update PTEs by copying them from the GART using sDMA (CIK).
873  */
874 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
875 				  uint64_t pe, uint64_t src,
876 				  unsigned count)
877 {
878 	while (count) {
879 		unsigned bytes = count * 8;
880 		if (bytes > 0x1FFFF8)
881 			bytes = 0x1FFFF8;
882 
883 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
884 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
885 		ib->ptr[ib->length_dw++] = bytes;
886 		ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
887 		ib->ptr[ib->length_dw++] = lower_32_bits(src);
888 		ib->ptr[ib->length_dw++] = upper_32_bits(src);
889 		ib->ptr[ib->length_dw++] = lower_32_bits(pe);
890 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
891 
892 		pe += bytes;
893 		src += bytes;
894 		count -= bytes / 8;
895 	}
896 }
897 
898 /**
899  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
900  *
901  * @ib: indirect buffer to fill with commands
902  * @pe: addr of the page entry
903  * @addr: dst addr to write into pe
904  * @count: number of page entries to update
905  * @incr: increase next addr by incr bytes
906  * @flags: access flags
907  *
908  * Update PTEs by writing them manually using sDMA (CIK).
909  */
910 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
911 				   uint64_t pe,
912 				   uint64_t addr, unsigned count,
913 				   uint32_t incr, uint32_t flags)
914 {
915 	uint64_t value;
916 	unsigned ndw;
917 
918 	while (count) {
919 		ndw = count * 2;
920 		if (ndw > 0xFFFFE)
921 			ndw = 0xFFFFE;
922 
923 		/* for non-physically contiguous pages (system) */
924 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
925 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
926 		ib->ptr[ib->length_dw++] = pe;
927 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
928 		ib->ptr[ib->length_dw++] = ndw;
929 		for (; ndw > 0; ndw -= 2, --count, pe += 8) {
930 			if (flags & AMDGPU_PTE_SYSTEM) {
931 				value = amdgpu_vm_map_gart(ib->ring->adev, addr);
932 				value &= 0xFFFFFFFFFFFFF000ULL;
933 			} else if (flags & AMDGPU_PTE_VALID) {
934 				value = addr;
935 			} else {
936 				value = 0;
937 			}
938 			addr += incr;
939 			value |= flags;
940 			ib->ptr[ib->length_dw++] = value;
941 			ib->ptr[ib->length_dw++] = upper_32_bits(value);
942 		}
943 	}
944 }
945 
946 /**
947  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
948  *
949  * @ib: indirect buffer to fill with commands
950  * @pe: addr of the page entry
951  * @addr: dst addr to write into pe
952  * @count: number of page entries to update
953  * @incr: increase next addr by incr bytes
954  * @flags: access flags
955  *
956  * Update the page tables using sDMA (CIK).
957  */
958 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
959 				     uint64_t pe,
960 				     uint64_t addr, unsigned count,
961 				     uint32_t incr, uint32_t flags)
962 {
963 	uint64_t value;
964 	unsigned ndw;
965 
966 	while (count) {
967 		ndw = count;
968 		if (ndw > 0x7FFFF)
969 			ndw = 0x7FFFF;
970 
971 		if (flags & AMDGPU_PTE_VALID)
972 			value = addr;
973 		else
974 			value = 0;
975 
976 		/* for physically contiguous pages (vram) */
977 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
978 		ib->ptr[ib->length_dw++] = pe; /* dst addr */
979 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
980 		ib->ptr[ib->length_dw++] = flags; /* mask */
981 		ib->ptr[ib->length_dw++] = 0;
982 		ib->ptr[ib->length_dw++] = value; /* value */
983 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
984 		ib->ptr[ib->length_dw++] = incr; /* increment size */
985 		ib->ptr[ib->length_dw++] = 0;
986 		ib->ptr[ib->length_dw++] = ndw; /* number of entries */
987 
988 		pe += ndw * 8;
989 		addr += ndw * incr;
990 		count -= ndw;
991 	}
992 }
993 
994 /**
995  * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
996  *
997  * @ib: indirect buffer to fill with padding
998  *
999  */
1000 static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
1001 {
1002 	while (ib->length_dw & 0x7)
1003 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1004 }
1005 
1006 /**
1007  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1008  *
1009  * @ring: amdgpu_ring pointer
1010  * @vm: amdgpu_vm pointer
1011  *
1012  * Update the page table base and flush the VM TLB
1013  * using sDMA (VI).
1014  */
1015 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1016 					 unsigned vm_id, uint64_t pd_addr)
1017 {
1018 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1019 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1020 	if (vm_id < 8) {
1021 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1022 	} else {
1023 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1024 	}
1025 	amdgpu_ring_write(ring, pd_addr >> 12);
1026 
1027 	/* flush TLB */
1028 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1029 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1030 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1031 	amdgpu_ring_write(ring, 1 << vm_id);
1032 
1033 	/* wait for flush */
1034 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1035 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1036 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1037 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1038 	amdgpu_ring_write(ring, 0);
1039 	amdgpu_ring_write(ring, 0); /* reference */
1040 	amdgpu_ring_write(ring, 0); /* mask */
1041 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1042 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1043 }
1044 
1045 static int sdma_v3_0_early_init(void *handle)
1046 {
1047 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1048 
1049 	sdma_v3_0_set_ring_funcs(adev);
1050 	sdma_v3_0_set_buffer_funcs(adev);
1051 	sdma_v3_0_set_vm_pte_funcs(adev);
1052 	sdma_v3_0_set_irq_funcs(adev);
1053 
1054 	return 0;
1055 }
1056 
1057 static int sdma_v3_0_sw_init(void *handle)
1058 {
1059 	struct amdgpu_ring *ring;
1060 	int r;
1061 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1062 
1063 	/* SDMA trap event */
1064 	r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
1065 	if (r)
1066 		return r;
1067 
1068 	/* SDMA Privileged inst */
1069 	r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
1070 	if (r)
1071 		return r;
1072 
1073 	/* SDMA Privileged inst */
1074 	r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
1075 	if (r)
1076 		return r;
1077 
1078 	r = sdma_v3_0_init_microcode(adev);
1079 	if (r) {
1080 		DRM_ERROR("Failed to load sdma firmware!\n");
1081 		return r;
1082 	}
1083 
1084 	ring = &adev->sdma[0].ring;
1085 	ring->ring_obj = NULL;
1086 	ring->use_doorbell = true;
1087 	ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
1088 
1089 	ring = &adev->sdma[1].ring;
1090 	ring->ring_obj = NULL;
1091 	ring->use_doorbell = true;
1092 	ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
1093 
1094 	ring = &adev->sdma[0].ring;
1095 	sprintf(ring->name, "sdma0");
1096 	r = amdgpu_ring_init(adev, ring, 256 * 1024,
1097 			     SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1098 			     &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
1099 			     AMDGPU_RING_TYPE_SDMA);
1100 	if (r)
1101 		return r;
1102 
1103 	ring = &adev->sdma[1].ring;
1104 	sprintf(ring->name, "sdma1");
1105 	r = amdgpu_ring_init(adev, ring, 256 * 1024,
1106 			     SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1107 			     &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
1108 			     AMDGPU_RING_TYPE_SDMA);
1109 	if (r)
1110 		return r;
1111 
1112 	return r;
1113 }
1114 
1115 static int sdma_v3_0_sw_fini(void *handle)
1116 {
1117 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1118 
1119 	amdgpu_ring_fini(&adev->sdma[0].ring);
1120 	amdgpu_ring_fini(&adev->sdma[1].ring);
1121 
1122 	return 0;
1123 }
1124 
1125 static int sdma_v3_0_hw_init(void *handle)
1126 {
1127 	int r;
1128 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1129 
1130 	sdma_v3_0_init_golden_registers(adev);
1131 
1132 	r = sdma_v3_0_start(adev);
1133 	if (r)
1134 		return r;
1135 
1136 	return r;
1137 }
1138 
1139 static int sdma_v3_0_hw_fini(void *handle)
1140 {
1141 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1142 
1143 	sdma_v3_0_ctx_switch_enable(adev, false);
1144 	sdma_v3_0_enable(adev, false);
1145 
1146 	return 0;
1147 }
1148 
1149 static int sdma_v3_0_suspend(void *handle)
1150 {
1151 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1152 
1153 	return sdma_v3_0_hw_fini(adev);
1154 }
1155 
1156 static int sdma_v3_0_resume(void *handle)
1157 {
1158 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1159 
1160 	return sdma_v3_0_hw_init(adev);
1161 }
1162 
1163 static bool sdma_v3_0_is_idle(void *handle)
1164 {
1165 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1166 	u32 tmp = RREG32(mmSRBM_STATUS2);
1167 
1168 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1169 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1170 	    return false;
1171 
1172 	return true;
1173 }
1174 
1175 static int sdma_v3_0_wait_for_idle(void *handle)
1176 {
1177 	unsigned i;
1178 	u32 tmp;
1179 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1180 
1181 	for (i = 0; i < adev->usec_timeout; i++) {
1182 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1183 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1184 
1185 		if (!tmp)
1186 			return 0;
1187 		udelay(1);
1188 	}
1189 	return -ETIMEDOUT;
1190 }
1191 
1192 static void sdma_v3_0_print_status(void *handle)
1193 {
1194 	int i, j;
1195 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1196 
1197 	dev_info(adev->dev, "VI SDMA registers\n");
1198 	dev_info(adev->dev, "  SRBM_STATUS2=0x%08X\n",
1199 		 RREG32(mmSRBM_STATUS2));
1200 	for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
1201 		dev_info(adev->dev, "  SDMA%d_STATUS_REG=0x%08X\n",
1202 			 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1203 		dev_info(adev->dev, "  SDMA%d_F32_CNTL=0x%08X\n",
1204 			 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1205 		dev_info(adev->dev, "  SDMA%d_CNTL=0x%08X\n",
1206 			 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1207 		dev_info(adev->dev, "  SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1208 			 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1209 		dev_info(adev->dev, "  SDMA%d_GFX_IB_CNTL=0x%08X\n",
1210 			 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1211 		dev_info(adev->dev, "  SDMA%d_GFX_RB_CNTL=0x%08X\n",
1212 			 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1213 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR=0x%08X\n",
1214 			 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1215 		dev_info(adev->dev, "  SDMA%d_GFX_RB_WPTR=0x%08X\n",
1216 			 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1217 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1218 			 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1219 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1220 			 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1221 		dev_info(adev->dev, "  SDMA%d_GFX_RB_BASE=0x%08X\n",
1222 			 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1223 		dev_info(adev->dev, "  SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1224 			 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1225 		dev_info(adev->dev, "  SDMA%d_GFX_DOORBELL=0x%08X\n",
1226 			 i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
1227 		mutex_lock(&adev->srbm_mutex);
1228 		for (j = 0; j < 16; j++) {
1229 			vi_srbm_select(adev, 0, 0, 0, j);
1230 			dev_info(adev->dev, "  VM %d:\n", j);
1231 			dev_info(adev->dev, "  SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1232 				 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1233 			dev_info(adev->dev, "  SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1234 				 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1235 		}
1236 		vi_srbm_select(adev, 0, 0, 0, 0);
1237 		mutex_unlock(&adev->srbm_mutex);
1238 	}
1239 }
1240 
1241 static int sdma_v3_0_soft_reset(void *handle)
1242 {
1243 	u32 srbm_soft_reset = 0;
1244 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1245 	u32 tmp = RREG32(mmSRBM_STATUS2);
1246 
1247 	if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1248 		/* sdma0 */
1249 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1250 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1251 		WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1252 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1253 	}
1254 	if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1255 		/* sdma1 */
1256 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1257 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1258 		WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1259 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1260 	}
1261 
1262 	if (srbm_soft_reset) {
1263 		sdma_v3_0_print_status((void *)adev);
1264 
1265 		tmp = RREG32(mmSRBM_SOFT_RESET);
1266 		tmp |= srbm_soft_reset;
1267 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1268 		WREG32(mmSRBM_SOFT_RESET, tmp);
1269 		tmp = RREG32(mmSRBM_SOFT_RESET);
1270 
1271 		udelay(50);
1272 
1273 		tmp &= ~srbm_soft_reset;
1274 		WREG32(mmSRBM_SOFT_RESET, tmp);
1275 		tmp = RREG32(mmSRBM_SOFT_RESET);
1276 
1277 		/* Wait a little for things to settle down */
1278 		udelay(50);
1279 
1280 		sdma_v3_0_print_status((void *)adev);
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1287 					struct amdgpu_irq_src *source,
1288 					unsigned type,
1289 					enum amdgpu_interrupt_state state)
1290 {
1291 	u32 sdma_cntl;
1292 
1293 	switch (type) {
1294 	case AMDGPU_SDMA_IRQ_TRAP0:
1295 		switch (state) {
1296 		case AMDGPU_IRQ_STATE_DISABLE:
1297 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1298 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1299 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1300 			break;
1301 		case AMDGPU_IRQ_STATE_ENABLE:
1302 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1303 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1304 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1305 			break;
1306 		default:
1307 			break;
1308 		}
1309 		break;
1310 	case AMDGPU_SDMA_IRQ_TRAP1:
1311 		switch (state) {
1312 		case AMDGPU_IRQ_STATE_DISABLE:
1313 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1314 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1315 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1316 			break;
1317 		case AMDGPU_IRQ_STATE_ENABLE:
1318 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1319 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1320 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1321 			break;
1322 		default:
1323 			break;
1324 		}
1325 		break;
1326 	default:
1327 		break;
1328 	}
1329 	return 0;
1330 }
1331 
1332 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1333 				      struct amdgpu_irq_src *source,
1334 				      struct amdgpu_iv_entry *entry)
1335 {
1336 	u8 instance_id, queue_id;
1337 
1338 	instance_id = (entry->ring_id & 0x3) >> 0;
1339 	queue_id = (entry->ring_id & 0xc) >> 2;
1340 	DRM_DEBUG("IH: SDMA trap\n");
1341 	switch (instance_id) {
1342 	case 0:
1343 		switch (queue_id) {
1344 		case 0:
1345 			amdgpu_fence_process(&adev->sdma[0].ring);
1346 			break;
1347 		case 1:
1348 			/* XXX compute */
1349 			break;
1350 		case 2:
1351 			/* XXX compute */
1352 			break;
1353 		}
1354 		break;
1355 	case 1:
1356 		switch (queue_id) {
1357 		case 0:
1358 			amdgpu_fence_process(&adev->sdma[1].ring);
1359 			break;
1360 		case 1:
1361 			/* XXX compute */
1362 			break;
1363 		case 2:
1364 			/* XXX compute */
1365 			break;
1366 		}
1367 		break;
1368 	}
1369 	return 0;
1370 }
1371 
1372 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1373 					      struct amdgpu_irq_src *source,
1374 					      struct amdgpu_iv_entry *entry)
1375 {
1376 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1377 	schedule_work(&adev->reset_work);
1378 	return 0;
1379 }
1380 
1381 static int sdma_v3_0_set_clockgating_state(void *handle,
1382 					  enum amd_clockgating_state state)
1383 {
1384 	return 0;
1385 }
1386 
1387 static int sdma_v3_0_set_powergating_state(void *handle,
1388 					  enum amd_powergating_state state)
1389 {
1390 	return 0;
1391 }
1392 
1393 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1394 	.early_init = sdma_v3_0_early_init,
1395 	.late_init = NULL,
1396 	.sw_init = sdma_v3_0_sw_init,
1397 	.sw_fini = sdma_v3_0_sw_fini,
1398 	.hw_init = sdma_v3_0_hw_init,
1399 	.hw_fini = sdma_v3_0_hw_fini,
1400 	.suspend = sdma_v3_0_suspend,
1401 	.resume = sdma_v3_0_resume,
1402 	.is_idle = sdma_v3_0_is_idle,
1403 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1404 	.soft_reset = sdma_v3_0_soft_reset,
1405 	.print_status = sdma_v3_0_print_status,
1406 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1407 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1408 };
1409 
1410 /**
1411  * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
1412  *
1413  * @ring: amdgpu_ring structure holding ring information
1414  *
1415  * Check if the async DMA engine is locked up (VI).
1416  * Returns true if the engine appears to be locked up, false if not.
1417  */
1418 static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
1419 {
1420 
1421 	if (sdma_v3_0_is_idle(ring->adev)) {
1422 		amdgpu_ring_lockup_update(ring);
1423 		return false;
1424 	}
1425 	return amdgpu_ring_test_lockup(ring);
1426 }
1427 
1428 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1429 	.get_rptr = sdma_v3_0_ring_get_rptr,
1430 	.get_wptr = sdma_v3_0_ring_get_wptr,
1431 	.set_wptr = sdma_v3_0_ring_set_wptr,
1432 	.parse_cs = NULL,
1433 	.emit_ib = sdma_v3_0_ring_emit_ib,
1434 	.emit_fence = sdma_v3_0_ring_emit_fence,
1435 	.emit_semaphore = sdma_v3_0_ring_emit_semaphore,
1436 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1437 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1438 	.test_ring = sdma_v3_0_ring_test_ring,
1439 	.test_ib = sdma_v3_0_ring_test_ib,
1440 	.is_lockup = sdma_v3_0_ring_is_lockup,
1441 };
1442 
1443 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1444 {
1445 	adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
1446 	adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
1447 }
1448 
1449 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1450 	.set = sdma_v3_0_set_trap_irq_state,
1451 	.process = sdma_v3_0_process_trap_irq,
1452 };
1453 
1454 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1455 	.process = sdma_v3_0_process_illegal_inst_irq,
1456 };
1457 
1458 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1459 {
1460 	adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1461 	adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1462 	adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1463 }
1464 
1465 /**
1466  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1467  *
1468  * @ring: amdgpu_ring structure holding ring information
1469  * @src_offset: src GPU address
1470  * @dst_offset: dst GPU address
1471  * @byte_count: number of bytes to xfer
1472  *
1473  * Copy GPU buffers using the DMA engine (VI).
1474  * Used by the amdgpu ttm implementation to move pages if
1475  * registered as the asic copy callback.
1476  */
1477 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1478 				       uint64_t src_offset,
1479 				       uint64_t dst_offset,
1480 				       uint32_t byte_count)
1481 {
1482 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1483 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1484 	ib->ptr[ib->length_dw++] = byte_count;
1485 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1486 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1487 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1488 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1489 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1490 }
1491 
1492 /**
1493  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1494  *
1495  * @ring: amdgpu_ring structure holding ring information
1496  * @src_data: value to write to buffer
1497  * @dst_offset: dst GPU address
1498  * @byte_count: number of bytes to xfer
1499  *
1500  * Fill GPU buffers using the DMA engine (VI).
1501  */
1502 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ring *ring,
1503 				       uint32_t src_data,
1504 				       uint64_t dst_offset,
1505 				       uint32_t byte_count)
1506 {
1507 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL));
1508 	amdgpu_ring_write(ring, lower_32_bits(dst_offset));
1509 	amdgpu_ring_write(ring, upper_32_bits(dst_offset));
1510 	amdgpu_ring_write(ring, src_data);
1511 	amdgpu_ring_write(ring, byte_count);
1512 }
1513 
1514 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1515 	.copy_max_bytes = 0x1fffff,
1516 	.copy_num_dw = 7,
1517 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1518 
1519 	.fill_max_bytes = 0x1fffff,
1520 	.fill_num_dw = 5,
1521 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1522 };
1523 
1524 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1525 {
1526 	if (adev->mman.buffer_funcs == NULL) {
1527 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1528 		adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
1529 	}
1530 }
1531 
1532 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1533 	.copy_pte = sdma_v3_0_vm_copy_pte,
1534 	.write_pte = sdma_v3_0_vm_write_pte,
1535 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1536 	.pad_ib = sdma_v3_0_vm_pad_ib,
1537 };
1538 
1539 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1540 {
1541 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1542 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1543 		adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
1544 		adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
1545 	}
1546 }
1547