1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65 
66 
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69 	SDMA0_REGISTER_OFFSET,
70 	SDMA1_REGISTER_OFFSET
71 };
72 
73 static const u32 golden_settings_tonga_a11[] =
74 {
75 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86 
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92 
93 static const u32 golden_settings_fiji_a10[] =
94 {
95 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104 
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110 
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124 
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138 
139 static const u32 cz_golden_settings_a11[] =
140 {
141 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154 
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160 
161 static const u32 stoney_golden_settings_a11[] =
162 {
163 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168 
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173 
174 /*
175  * sDMA - System DMA
176  * Starting with CIK, the GPU has new asynchronous
177  * DMA engines.  These engines are used for compute
178  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
179  * and each one supports 1 ring buffer used for gfx
180  * and 2 queues used for compute.
181  *
182  * The programming model is very similar to the CP
183  * (ring buffer, IBs, etc.), but sDMA has it's own
184  * packet format that is different from the PM4 format
185  * used by the CP. sDMA supports copying data, writing
186  * embedded data, solid fills, and a number of other
187  * things.  It also has support for tiling/detiling of
188  * buffers.
189  */
190 
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193 	switch (adev->asic_type) {
194 	case CHIP_FIJI:
195 		amdgpu_device_program_register_sequence(adev,
196 							fiji_mgcg_cgcg_init,
197 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 		amdgpu_device_program_register_sequence(adev,
199 							golden_settings_fiji_a10,
200 							ARRAY_SIZE(golden_settings_fiji_a10));
201 		break;
202 	case CHIP_TONGA:
203 		amdgpu_device_program_register_sequence(adev,
204 							tonga_mgcg_cgcg_init,
205 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 		amdgpu_device_program_register_sequence(adev,
207 							golden_settings_tonga_a11,
208 							ARRAY_SIZE(golden_settings_tonga_a11));
209 		break;
210 	case CHIP_POLARIS11:
211 	case CHIP_POLARIS12:
212 		amdgpu_device_program_register_sequence(adev,
213 							golden_settings_polaris11_a11,
214 							ARRAY_SIZE(golden_settings_polaris11_a11));
215 		break;
216 	case CHIP_POLARIS10:
217 		amdgpu_device_program_register_sequence(adev,
218 							golden_settings_polaris10_a11,
219 							ARRAY_SIZE(golden_settings_polaris10_a11));
220 		break;
221 	case CHIP_CARRIZO:
222 		amdgpu_device_program_register_sequence(adev,
223 							cz_mgcg_cgcg_init,
224 							ARRAY_SIZE(cz_mgcg_cgcg_init));
225 		amdgpu_device_program_register_sequence(adev,
226 							cz_golden_settings_a11,
227 							ARRAY_SIZE(cz_golden_settings_a11));
228 		break;
229 	case CHIP_STONEY:
230 		amdgpu_device_program_register_sequence(adev,
231 							stoney_mgcg_cgcg_init,
232 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 		amdgpu_device_program_register_sequence(adev,
234 							stoney_golden_settings_a11,
235 							ARRAY_SIZE(stoney_golden_settings_a11));
236 		break;
237 	default:
238 		break;
239 	}
240 }
241 
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244 	int i;
245 	for (i = 0; i < adev->sdma.num_instances; i++) {
246 		release_firmware(adev->sdma.instance[i].fw);
247 		adev->sdma.instance[i].fw = NULL;
248 	}
249 }
250 
251 /**
252  * sdma_v3_0_init_microcode - load ucode images from disk
253  *
254  * @adev: amdgpu_device pointer
255  *
256  * Use the firmware interface to load the ucode images into
257  * the driver (not loaded into hw).
258  * Returns 0 on success, error on failure.
259  */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262 	const char *chip_name;
263 	char fw_name[30];
264 	int err = 0, i;
265 	struct amdgpu_firmware_info *info = NULL;
266 	const struct common_firmware_header *header = NULL;
267 	const struct sdma_firmware_header_v1_0 *hdr;
268 
269 	DRM_DEBUG("\n");
270 
271 	switch (adev->asic_type) {
272 	case CHIP_TONGA:
273 		chip_name = "tonga";
274 		break;
275 	case CHIP_FIJI:
276 		chip_name = "fiji";
277 		break;
278 	case CHIP_POLARIS11:
279 		chip_name = "polaris11";
280 		break;
281 	case CHIP_POLARIS10:
282 		chip_name = "polaris10";
283 		break;
284 	case CHIP_POLARIS12:
285 		chip_name = "polaris12";
286 		break;
287 	case CHIP_CARRIZO:
288 		chip_name = "carrizo";
289 		break;
290 	case CHIP_STONEY:
291 		chip_name = "stoney";
292 		break;
293 	default: BUG();
294 	}
295 
296 	for (i = 0; i < adev->sdma.num_instances; i++) {
297 		if (i == 0)
298 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 		else
300 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 		if (err)
303 			goto out;
304 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 		if (err)
306 			goto out;
307 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 		if (adev->sdma.instance[i].feature_version >= 20)
311 			adev->sdma.instance[i].burst_nop = true;
312 
313 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
314 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 			info->fw = adev->sdma.instance[i].fw;
317 			header = (const struct common_firmware_header *)info->fw->data;
318 			adev->firmware.fw_size +=
319 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 		}
321 	}
322 out:
323 	if (err) {
324 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
325 		for (i = 0; i < adev->sdma.num_instances; i++) {
326 			release_firmware(adev->sdma.instance[i].fw);
327 			adev->sdma.instance[i].fw = NULL;
328 		}
329 	}
330 	return err;
331 }
332 
333 /**
334  * sdma_v3_0_ring_get_rptr - get the current read pointer
335  *
336  * @ring: amdgpu ring pointer
337  *
338  * Get the current rptr from the hardware (VI+).
339  */
340 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
341 {
342 	/* XXX check if swapping is necessary on BE */
343 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
344 }
345 
346 /**
347  * sdma_v3_0_ring_get_wptr - get the current write pointer
348  *
349  * @ring: amdgpu ring pointer
350  *
351  * Get the current wptr from the hardware (VI+).
352  */
353 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355 	struct amdgpu_device *adev = ring->adev;
356 	u32 wptr;
357 
358 	if (ring->use_doorbell || ring->use_pollmem) {
359 		/* XXX check if swapping is necessary on BE */
360 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 	} else {
362 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363 
364 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 	}
366 
367 	return wptr;
368 }
369 
370 /**
371  * sdma_v3_0_ring_set_wptr - commit the write pointer
372  *
373  * @ring: amdgpu ring pointer
374  *
375  * Write the wptr back to the hardware (VI+).
376  */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379 	struct amdgpu_device *adev = ring->adev;
380 
381 	if (ring->use_doorbell) {
382 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
383 		/* XXX check if swapping is necessary on BE */
384 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
385 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
386 	} else if (ring->use_pollmem) {
387 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
388 
389 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
390 	} else {
391 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
392 
393 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
394 	}
395 }
396 
397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398 {
399 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
400 	int i;
401 
402 	for (i = 0; i < count; i++)
403 		if (sdma && sdma->burst_nop && (i == 0))
404 			amdgpu_ring_write(ring, ring->funcs->nop |
405 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406 		else
407 			amdgpu_ring_write(ring, ring->funcs->nop);
408 }
409 
410 /**
411  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412  *
413  * @ring: amdgpu ring pointer
414  * @ib: IB object to schedule
415  *
416  * Schedule an IB in the DMA ring (VI).
417  */
418 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
419 				   struct amdgpu_ib *ib,
420 				   unsigned vmid, bool ctx_switch)
421 {
422 	/* IB packet must end on a 8 DW boundary */
423 	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
424 
425 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
426 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
427 	/* base must be 32 byte aligned */
428 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
429 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
430 	amdgpu_ring_write(ring, ib->length_dw);
431 	amdgpu_ring_write(ring, 0);
432 	amdgpu_ring_write(ring, 0);
433 
434 }
435 
436 /**
437  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
438  *
439  * @ring: amdgpu ring pointer
440  *
441  * Emit an hdp flush packet on the requested DMA ring.
442  */
443 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
444 {
445 	u32 ref_and_mask = 0;
446 
447 	if (ring == &ring->adev->sdma.instance[0].ring)
448 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
449 	else
450 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
451 
452 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
453 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
454 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
455 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
456 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
457 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
458 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
459 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
460 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
461 }
462 
463 /**
464  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
465  *
466  * @ring: amdgpu ring pointer
467  * @fence: amdgpu fence object
468  *
469  * Add a DMA fence packet to the ring to write
470  * the fence seq number and DMA trap packet to generate
471  * an interrupt if needed (VI).
472  */
473 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
474 				      unsigned flags)
475 {
476 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
477 	/* write the fence */
478 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
479 	amdgpu_ring_write(ring, lower_32_bits(addr));
480 	amdgpu_ring_write(ring, upper_32_bits(addr));
481 	amdgpu_ring_write(ring, lower_32_bits(seq));
482 
483 	/* optionally write high bits as well */
484 	if (write64bit) {
485 		addr += 4;
486 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
487 		amdgpu_ring_write(ring, lower_32_bits(addr));
488 		amdgpu_ring_write(ring, upper_32_bits(addr));
489 		amdgpu_ring_write(ring, upper_32_bits(seq));
490 	}
491 
492 	/* generate an interrupt */
493 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
494 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
495 }
496 
497 /**
498  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
499  *
500  * @adev: amdgpu_device pointer
501  *
502  * Stop the gfx async dma ring buffers (VI).
503  */
504 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
505 {
506 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
507 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
508 	u32 rb_cntl, ib_cntl;
509 	int i;
510 
511 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
512 	    (adev->mman.buffer_funcs_ring == sdma1))
513 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
514 
515 	for (i = 0; i < adev->sdma.num_instances; i++) {
516 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
517 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
518 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
519 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
520 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
521 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
522 	}
523 	sdma0->ready = false;
524 	sdma1->ready = false;
525 }
526 
527 /**
528  * sdma_v3_0_rlc_stop - stop the compute async dma engines
529  *
530  * @adev: amdgpu_device pointer
531  *
532  * Stop the compute async dma queues (VI).
533  */
534 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
535 {
536 	/* XXX todo */
537 }
538 
539 /**
540  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
541  *
542  * @adev: amdgpu_device pointer
543  * @enable: enable/disable the DMA MEs context switch.
544  *
545  * Halt or unhalt the async dma engines context switch (VI).
546  */
547 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
548 {
549 	u32 f32_cntl, phase_quantum = 0;
550 	int i;
551 
552 	if (amdgpu_sdma_phase_quantum) {
553 		unsigned value = amdgpu_sdma_phase_quantum;
554 		unsigned unit = 0;
555 
556 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
557 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
558 			value = (value + 1) >> 1;
559 			unit++;
560 		}
561 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
562 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
563 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
564 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
565 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
566 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
567 			WARN_ONCE(1,
568 			"clamping sdma_phase_quantum to %uK clock cycles\n",
569 				  value << unit);
570 		}
571 		phase_quantum =
572 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
573 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
574 	}
575 
576 	for (i = 0; i < adev->sdma.num_instances; i++) {
577 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
578 		if (enable) {
579 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
580 					AUTO_CTXSW_ENABLE, 1);
581 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
582 					ATC_L1_ENABLE, 1);
583 			if (amdgpu_sdma_phase_quantum) {
584 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
585 				       phase_quantum);
586 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
587 				       phase_quantum);
588 			}
589 		} else {
590 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
591 					AUTO_CTXSW_ENABLE, 0);
592 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
593 					ATC_L1_ENABLE, 1);
594 		}
595 
596 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
597 	}
598 }
599 
600 /**
601  * sdma_v3_0_enable - stop the async dma engines
602  *
603  * @adev: amdgpu_device pointer
604  * @enable: enable/disable the DMA MEs.
605  *
606  * Halt or unhalt the async dma engines (VI).
607  */
608 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
609 {
610 	u32 f32_cntl;
611 	int i;
612 
613 	if (!enable) {
614 		sdma_v3_0_gfx_stop(adev);
615 		sdma_v3_0_rlc_stop(adev);
616 	}
617 
618 	for (i = 0; i < adev->sdma.num_instances; i++) {
619 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
620 		if (enable)
621 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
622 		else
623 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
624 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
625 	}
626 }
627 
628 /**
629  * sdma_v3_0_gfx_resume - setup and start the async dma engines
630  *
631  * @adev: amdgpu_device pointer
632  *
633  * Set up the gfx DMA ring buffers and enable them (VI).
634  * Returns 0 for success, error for failure.
635  */
636 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
637 {
638 	struct amdgpu_ring *ring;
639 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
640 	u32 rb_bufsz;
641 	u32 wb_offset;
642 	u32 doorbell;
643 	u64 wptr_gpu_addr;
644 	int i, j, r;
645 
646 	for (i = 0; i < adev->sdma.num_instances; i++) {
647 		ring = &adev->sdma.instance[i].ring;
648 		amdgpu_ring_clear_ring(ring);
649 		wb_offset = (ring->rptr_offs * 4);
650 
651 		mutex_lock(&adev->srbm_mutex);
652 		for (j = 0; j < 16; j++) {
653 			vi_srbm_select(adev, 0, 0, 0, j);
654 			/* SDMA GFX */
655 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
656 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
657 		}
658 		vi_srbm_select(adev, 0, 0, 0, 0);
659 		mutex_unlock(&adev->srbm_mutex);
660 
661 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
662 		       adev->gfx.config.gb_addr_config & 0x70);
663 
664 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
665 
666 		/* Set ring buffer size in dwords */
667 		rb_bufsz = order_base_2(ring->ring_size / 4);
668 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
669 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
670 #ifdef __BIG_ENDIAN
671 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
672 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
673 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
674 #endif
675 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
676 
677 		/* Initialize the ring buffer's read and write pointers */
678 		ring->wptr = 0;
679 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
680 		sdma_v3_0_ring_set_wptr(ring);
681 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
682 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
683 
684 		/* set the wb address whether it's enabled or not */
685 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
686 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
687 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
688 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
689 
690 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
691 
692 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
693 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
694 
695 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
696 
697 		if (ring->use_doorbell) {
698 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
699 						 OFFSET, ring->doorbell_index);
700 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
701 		} else {
702 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
703 		}
704 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
705 
706 		/* setup the wptr shadow polling */
707 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
708 
709 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
710 		       lower_32_bits(wptr_gpu_addr));
711 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
712 		       upper_32_bits(wptr_gpu_addr));
713 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
714 		if (ring->use_pollmem) {
715 			/*wptr polling is not enogh fast, directly clean the wptr register */
716 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
717 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
718 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
719 						       ENABLE, 1);
720 		} else {
721 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
722 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
723 						       ENABLE, 0);
724 		}
725 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
726 
727 		/* enable DMA RB */
728 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
729 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
730 
731 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
732 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
733 #ifdef __BIG_ENDIAN
734 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
735 #endif
736 		/* enable DMA IBs */
737 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
738 
739 		ring->ready = true;
740 	}
741 
742 	/* unhalt the MEs */
743 	sdma_v3_0_enable(adev, true);
744 	/* enable sdma ring preemption */
745 	sdma_v3_0_ctx_switch_enable(adev, true);
746 
747 	for (i = 0; i < adev->sdma.num_instances; i++) {
748 		ring = &adev->sdma.instance[i].ring;
749 		r = amdgpu_ring_test_ring(ring);
750 		if (r) {
751 			ring->ready = false;
752 			return r;
753 		}
754 
755 		if (adev->mman.buffer_funcs_ring == ring)
756 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
757 	}
758 
759 	return 0;
760 }
761 
762 /**
763  * sdma_v3_0_rlc_resume - setup and start the async dma engines
764  *
765  * @adev: amdgpu_device pointer
766  *
767  * Set up the compute DMA queues and enable them (VI).
768  * Returns 0 for success, error for failure.
769  */
770 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
771 {
772 	/* XXX todo */
773 	return 0;
774 }
775 
776 /**
777  * sdma_v3_0_load_microcode - load the sDMA ME ucode
778  *
779  * @adev: amdgpu_device pointer
780  *
781  * Loads the sDMA0/1 ucode.
782  * Returns 0 for success, -EINVAL if the ucode is not available.
783  */
784 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
785 {
786 	const struct sdma_firmware_header_v1_0 *hdr;
787 	const __le32 *fw_data;
788 	u32 fw_size;
789 	int i, j;
790 
791 	/* halt the MEs */
792 	sdma_v3_0_enable(adev, false);
793 
794 	for (i = 0; i < adev->sdma.num_instances; i++) {
795 		if (!adev->sdma.instance[i].fw)
796 			return -EINVAL;
797 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
798 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
799 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
800 		fw_data = (const __le32 *)
801 			(adev->sdma.instance[i].fw->data +
802 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
803 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
804 		for (j = 0; j < fw_size; j++)
805 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
806 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
807 	}
808 
809 	return 0;
810 }
811 
812 /**
813  * sdma_v3_0_start - setup and start the async dma engines
814  *
815  * @adev: amdgpu_device pointer
816  *
817  * Set up the DMA engines and enable them (VI).
818  * Returns 0 for success, error for failure.
819  */
820 static int sdma_v3_0_start(struct amdgpu_device *adev)
821 {
822 	int r;
823 
824 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
825 		r = sdma_v3_0_load_microcode(adev);
826 		if (r)
827 			return r;
828 	}
829 
830 	/* disable sdma engine before programing it */
831 	sdma_v3_0_ctx_switch_enable(adev, false);
832 	sdma_v3_0_enable(adev, false);
833 
834 	/* start the gfx rings and rlc compute queues */
835 	r = sdma_v3_0_gfx_resume(adev);
836 	if (r)
837 		return r;
838 	r = sdma_v3_0_rlc_resume(adev);
839 	if (r)
840 		return r;
841 
842 	return 0;
843 }
844 
845 /**
846  * sdma_v3_0_ring_test_ring - simple async dma engine test
847  *
848  * @ring: amdgpu_ring structure holding ring information
849  *
850  * Test the DMA engine by writing using it to write an
851  * value to memory. (VI).
852  * Returns 0 for success, error for failure.
853  */
854 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
855 {
856 	struct amdgpu_device *adev = ring->adev;
857 	unsigned i;
858 	unsigned index;
859 	int r;
860 	u32 tmp;
861 	u64 gpu_addr;
862 
863 	r = amdgpu_device_wb_get(adev, &index);
864 	if (r) {
865 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
866 		return r;
867 	}
868 
869 	gpu_addr = adev->wb.gpu_addr + (index * 4);
870 	tmp = 0xCAFEDEAD;
871 	adev->wb.wb[index] = cpu_to_le32(tmp);
872 
873 	r = amdgpu_ring_alloc(ring, 5);
874 	if (r) {
875 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
876 		amdgpu_device_wb_free(adev, index);
877 		return r;
878 	}
879 
880 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
881 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
882 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
883 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
884 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
885 	amdgpu_ring_write(ring, 0xDEADBEEF);
886 	amdgpu_ring_commit(ring);
887 
888 	for (i = 0; i < adev->usec_timeout; i++) {
889 		tmp = le32_to_cpu(adev->wb.wb[index]);
890 		if (tmp == 0xDEADBEEF)
891 			break;
892 		DRM_UDELAY(1);
893 	}
894 
895 	if (i < adev->usec_timeout) {
896 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
897 	} else {
898 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
899 			  ring->idx, tmp);
900 		r = -EINVAL;
901 	}
902 	amdgpu_device_wb_free(adev, index);
903 
904 	return r;
905 }
906 
907 /**
908  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
909  *
910  * @ring: amdgpu_ring structure holding ring information
911  *
912  * Test a simple IB in the DMA ring (VI).
913  * Returns 0 on success, error on failure.
914  */
915 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
916 {
917 	struct amdgpu_device *adev = ring->adev;
918 	struct amdgpu_ib ib;
919 	struct dma_fence *f = NULL;
920 	unsigned index;
921 	u32 tmp = 0;
922 	u64 gpu_addr;
923 	long r;
924 
925 	r = amdgpu_device_wb_get(adev, &index);
926 	if (r) {
927 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
928 		return r;
929 	}
930 
931 	gpu_addr = adev->wb.gpu_addr + (index * 4);
932 	tmp = 0xCAFEDEAD;
933 	adev->wb.wb[index] = cpu_to_le32(tmp);
934 	memset(&ib, 0, sizeof(ib));
935 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
936 	if (r) {
937 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
938 		goto err0;
939 	}
940 
941 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
942 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
943 	ib.ptr[1] = lower_32_bits(gpu_addr);
944 	ib.ptr[2] = upper_32_bits(gpu_addr);
945 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
946 	ib.ptr[4] = 0xDEADBEEF;
947 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
948 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
949 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
950 	ib.length_dw = 8;
951 
952 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
953 	if (r)
954 		goto err1;
955 
956 	r = dma_fence_wait_timeout(f, false, timeout);
957 	if (r == 0) {
958 		DRM_ERROR("amdgpu: IB test timed out\n");
959 		r = -ETIMEDOUT;
960 		goto err1;
961 	} else if (r < 0) {
962 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
963 		goto err1;
964 	}
965 	tmp = le32_to_cpu(adev->wb.wb[index]);
966 	if (tmp == 0xDEADBEEF) {
967 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
968 		r = 0;
969 	} else {
970 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
971 		r = -EINVAL;
972 	}
973 err1:
974 	amdgpu_ib_free(adev, &ib, NULL);
975 	dma_fence_put(f);
976 err0:
977 	amdgpu_device_wb_free(adev, index);
978 	return r;
979 }
980 
981 /**
982  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
983  *
984  * @ib: indirect buffer to fill with commands
985  * @pe: addr of the page entry
986  * @src: src addr to copy from
987  * @count: number of page entries to update
988  *
989  * Update PTEs by copying them from the GART using sDMA (CIK).
990  */
991 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
992 				  uint64_t pe, uint64_t src,
993 				  unsigned count)
994 {
995 	unsigned bytes = count * 8;
996 
997 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
998 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
999 	ib->ptr[ib->length_dw++] = bytes;
1000 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1001 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1002 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1003 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1004 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1005 }
1006 
1007 /**
1008  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1009  *
1010  * @ib: indirect buffer to fill with commands
1011  * @pe: addr of the page entry
1012  * @value: dst addr to write into pe
1013  * @count: number of page entries to update
1014  * @incr: increase next addr by incr bytes
1015  *
1016  * Update PTEs by writing them manually using sDMA (CIK).
1017  */
1018 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1019 				   uint64_t value, unsigned count,
1020 				   uint32_t incr)
1021 {
1022 	unsigned ndw = count * 2;
1023 
1024 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1025 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1026 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1027 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1028 	ib->ptr[ib->length_dw++] = ndw;
1029 	for (; ndw > 0; ndw -= 2) {
1030 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1031 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1032 		value += incr;
1033 	}
1034 }
1035 
1036 /**
1037  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1038  *
1039  * @ib: indirect buffer to fill with commands
1040  * @pe: addr of the page entry
1041  * @addr: dst addr to write into pe
1042  * @count: number of page entries to update
1043  * @incr: increase next addr by incr bytes
1044  * @flags: access flags
1045  *
1046  * Update the page tables using sDMA (CIK).
1047  */
1048 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1049 				     uint64_t addr, unsigned count,
1050 				     uint32_t incr, uint64_t flags)
1051 {
1052 	/* for physically contiguous pages (vram) */
1053 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1054 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1055 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1056 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1057 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1058 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1059 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1060 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1061 	ib->ptr[ib->length_dw++] = 0;
1062 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1063 }
1064 
1065 /**
1066  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1067  *
1068  * @ib: indirect buffer to fill with padding
1069  *
1070  */
1071 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1072 {
1073 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1074 	u32 pad_count;
1075 	int i;
1076 
1077 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1078 	for (i = 0; i < pad_count; i++)
1079 		if (sdma && sdma->burst_nop && (i == 0))
1080 			ib->ptr[ib->length_dw++] =
1081 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1082 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1083 		else
1084 			ib->ptr[ib->length_dw++] =
1085 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1086 }
1087 
1088 /**
1089  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1090  *
1091  * @ring: amdgpu_ring pointer
1092  *
1093  * Make sure all previous operations are completed (CIK).
1094  */
1095 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1096 {
1097 	uint32_t seq = ring->fence_drv.sync_seq;
1098 	uint64_t addr = ring->fence_drv.gpu_addr;
1099 
1100 	/* wait for idle */
1101 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1102 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1103 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1104 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1105 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1106 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1107 	amdgpu_ring_write(ring, seq); /* reference */
1108 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1109 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1111 }
1112 
1113 /**
1114  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1115  *
1116  * @ring: amdgpu_ring pointer
1117  * @vm: amdgpu_vm pointer
1118  *
1119  * Update the page table base and flush the VM TLB
1120  * using sDMA (VI).
1121  */
1122 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1123 					 unsigned vmid, uint64_t pd_addr)
1124 {
1125 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1126 
1127 	/* wait for flush */
1128 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1129 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1130 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1131 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1132 	amdgpu_ring_write(ring, 0);
1133 	amdgpu_ring_write(ring, 0); /* reference */
1134 	amdgpu_ring_write(ring, 0); /* mask */
1135 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1136 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1137 }
1138 
1139 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1140 				     uint32_t reg, uint32_t val)
1141 {
1142 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1143 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1144 	amdgpu_ring_write(ring, reg);
1145 	amdgpu_ring_write(ring, val);
1146 }
1147 
1148 static int sdma_v3_0_early_init(void *handle)
1149 {
1150 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1151 
1152 	switch (adev->asic_type) {
1153 	case CHIP_STONEY:
1154 		adev->sdma.num_instances = 1;
1155 		break;
1156 	default:
1157 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1158 		break;
1159 	}
1160 
1161 	sdma_v3_0_set_ring_funcs(adev);
1162 	sdma_v3_0_set_buffer_funcs(adev);
1163 	sdma_v3_0_set_vm_pte_funcs(adev);
1164 	sdma_v3_0_set_irq_funcs(adev);
1165 
1166 	return 0;
1167 }
1168 
1169 static int sdma_v3_0_sw_init(void *handle)
1170 {
1171 	struct amdgpu_ring *ring;
1172 	int r, i;
1173 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1174 
1175 	/* SDMA trap event */
1176 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1177 			      &adev->sdma.trap_irq);
1178 	if (r)
1179 		return r;
1180 
1181 	/* SDMA Privileged inst */
1182 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1183 			      &adev->sdma.illegal_inst_irq);
1184 	if (r)
1185 		return r;
1186 
1187 	/* SDMA Privileged inst */
1188 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1189 			      &adev->sdma.illegal_inst_irq);
1190 	if (r)
1191 		return r;
1192 
1193 	r = sdma_v3_0_init_microcode(adev);
1194 	if (r) {
1195 		DRM_ERROR("Failed to load sdma firmware!\n");
1196 		return r;
1197 	}
1198 
1199 	for (i = 0; i < adev->sdma.num_instances; i++) {
1200 		ring = &adev->sdma.instance[i].ring;
1201 		ring->ring_obj = NULL;
1202 		if (!amdgpu_sriov_vf(adev)) {
1203 			ring->use_doorbell = true;
1204 			ring->doorbell_index = (i == 0) ?
1205 				AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1206 		} else {
1207 			ring->use_pollmem = true;
1208 		}
1209 
1210 		sprintf(ring->name, "sdma%d", i);
1211 		r = amdgpu_ring_init(adev, ring, 1024,
1212 				     &adev->sdma.trap_irq,
1213 				     (i == 0) ?
1214 				     AMDGPU_SDMA_IRQ_TRAP0 :
1215 				     AMDGPU_SDMA_IRQ_TRAP1);
1216 		if (r)
1217 			return r;
1218 	}
1219 
1220 	return r;
1221 }
1222 
1223 static int sdma_v3_0_sw_fini(void *handle)
1224 {
1225 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1226 	int i;
1227 
1228 	for (i = 0; i < adev->sdma.num_instances; i++)
1229 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1230 
1231 	sdma_v3_0_free_microcode(adev);
1232 	return 0;
1233 }
1234 
1235 static int sdma_v3_0_hw_init(void *handle)
1236 {
1237 	int r;
1238 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1239 
1240 	sdma_v3_0_init_golden_registers(adev);
1241 
1242 	r = sdma_v3_0_start(adev);
1243 	if (r)
1244 		return r;
1245 
1246 	return r;
1247 }
1248 
1249 static int sdma_v3_0_hw_fini(void *handle)
1250 {
1251 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1252 
1253 	sdma_v3_0_ctx_switch_enable(adev, false);
1254 	sdma_v3_0_enable(adev, false);
1255 
1256 	return 0;
1257 }
1258 
1259 static int sdma_v3_0_suspend(void *handle)
1260 {
1261 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1262 
1263 	return sdma_v3_0_hw_fini(adev);
1264 }
1265 
1266 static int sdma_v3_0_resume(void *handle)
1267 {
1268 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1269 
1270 	return sdma_v3_0_hw_init(adev);
1271 }
1272 
1273 static bool sdma_v3_0_is_idle(void *handle)
1274 {
1275 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276 	u32 tmp = RREG32(mmSRBM_STATUS2);
1277 
1278 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1279 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1280 	    return false;
1281 
1282 	return true;
1283 }
1284 
1285 static int sdma_v3_0_wait_for_idle(void *handle)
1286 {
1287 	unsigned i;
1288 	u32 tmp;
1289 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290 
1291 	for (i = 0; i < adev->usec_timeout; i++) {
1292 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1293 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1294 
1295 		if (!tmp)
1296 			return 0;
1297 		udelay(1);
1298 	}
1299 	return -ETIMEDOUT;
1300 }
1301 
1302 static bool sdma_v3_0_check_soft_reset(void *handle)
1303 {
1304 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1305 	u32 srbm_soft_reset = 0;
1306 	u32 tmp = RREG32(mmSRBM_STATUS2);
1307 
1308 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1309 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1310 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1311 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1312 	}
1313 
1314 	if (srbm_soft_reset) {
1315 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1316 		return true;
1317 	} else {
1318 		adev->sdma.srbm_soft_reset = 0;
1319 		return false;
1320 	}
1321 }
1322 
1323 static int sdma_v3_0_pre_soft_reset(void *handle)
1324 {
1325 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1326 	u32 srbm_soft_reset = 0;
1327 
1328 	if (!adev->sdma.srbm_soft_reset)
1329 		return 0;
1330 
1331 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1332 
1333 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1334 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1335 		sdma_v3_0_ctx_switch_enable(adev, false);
1336 		sdma_v3_0_enable(adev, false);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 static int sdma_v3_0_post_soft_reset(void *handle)
1343 {
1344 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1345 	u32 srbm_soft_reset = 0;
1346 
1347 	if (!adev->sdma.srbm_soft_reset)
1348 		return 0;
1349 
1350 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1351 
1352 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1353 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1354 		sdma_v3_0_gfx_resume(adev);
1355 		sdma_v3_0_rlc_resume(adev);
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int sdma_v3_0_soft_reset(void *handle)
1362 {
1363 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1364 	u32 srbm_soft_reset = 0;
1365 	u32 tmp;
1366 
1367 	if (!adev->sdma.srbm_soft_reset)
1368 		return 0;
1369 
1370 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1371 
1372 	if (srbm_soft_reset) {
1373 		tmp = RREG32(mmSRBM_SOFT_RESET);
1374 		tmp |= srbm_soft_reset;
1375 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1376 		WREG32(mmSRBM_SOFT_RESET, tmp);
1377 		tmp = RREG32(mmSRBM_SOFT_RESET);
1378 
1379 		udelay(50);
1380 
1381 		tmp &= ~srbm_soft_reset;
1382 		WREG32(mmSRBM_SOFT_RESET, tmp);
1383 		tmp = RREG32(mmSRBM_SOFT_RESET);
1384 
1385 		/* Wait a little for things to settle down */
1386 		udelay(50);
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1393 					struct amdgpu_irq_src *source,
1394 					unsigned type,
1395 					enum amdgpu_interrupt_state state)
1396 {
1397 	u32 sdma_cntl;
1398 
1399 	switch (type) {
1400 	case AMDGPU_SDMA_IRQ_TRAP0:
1401 		switch (state) {
1402 		case AMDGPU_IRQ_STATE_DISABLE:
1403 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1404 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1405 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1406 			break;
1407 		case AMDGPU_IRQ_STATE_ENABLE:
1408 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1409 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1410 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1411 			break;
1412 		default:
1413 			break;
1414 		}
1415 		break;
1416 	case AMDGPU_SDMA_IRQ_TRAP1:
1417 		switch (state) {
1418 		case AMDGPU_IRQ_STATE_DISABLE:
1419 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1420 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1421 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1422 			break;
1423 		case AMDGPU_IRQ_STATE_ENABLE:
1424 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1425 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1426 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1427 			break;
1428 		default:
1429 			break;
1430 		}
1431 		break;
1432 	default:
1433 		break;
1434 	}
1435 	return 0;
1436 }
1437 
1438 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1439 				      struct amdgpu_irq_src *source,
1440 				      struct amdgpu_iv_entry *entry)
1441 {
1442 	u8 instance_id, queue_id;
1443 
1444 	instance_id = (entry->ring_id & 0x3) >> 0;
1445 	queue_id = (entry->ring_id & 0xc) >> 2;
1446 	DRM_DEBUG("IH: SDMA trap\n");
1447 	switch (instance_id) {
1448 	case 0:
1449 		switch (queue_id) {
1450 		case 0:
1451 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1452 			break;
1453 		case 1:
1454 			/* XXX compute */
1455 			break;
1456 		case 2:
1457 			/* XXX compute */
1458 			break;
1459 		}
1460 		break;
1461 	case 1:
1462 		switch (queue_id) {
1463 		case 0:
1464 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1465 			break;
1466 		case 1:
1467 			/* XXX compute */
1468 			break;
1469 		case 2:
1470 			/* XXX compute */
1471 			break;
1472 		}
1473 		break;
1474 	}
1475 	return 0;
1476 }
1477 
1478 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1479 					      struct amdgpu_irq_src *source,
1480 					      struct amdgpu_iv_entry *entry)
1481 {
1482 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1483 	schedule_work(&adev->reset_work);
1484 	return 0;
1485 }
1486 
1487 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1488 		struct amdgpu_device *adev,
1489 		bool enable)
1490 {
1491 	uint32_t temp, data;
1492 	int i;
1493 
1494 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1495 		for (i = 0; i < adev->sdma.num_instances; i++) {
1496 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1497 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1498 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1499 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1500 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1501 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1502 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1503 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1504 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1505 			if (data != temp)
1506 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1507 		}
1508 	} else {
1509 		for (i = 0; i < adev->sdma.num_instances; i++) {
1510 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1511 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1512 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1513 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1514 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1515 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1516 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1517 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1518 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1519 
1520 			if (data != temp)
1521 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1522 		}
1523 	}
1524 }
1525 
1526 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1527 		struct amdgpu_device *adev,
1528 		bool enable)
1529 {
1530 	uint32_t temp, data;
1531 	int i;
1532 
1533 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1534 		for (i = 0; i < adev->sdma.num_instances; i++) {
1535 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1536 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1537 
1538 			if (temp != data)
1539 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1540 		}
1541 	} else {
1542 		for (i = 0; i < adev->sdma.num_instances; i++) {
1543 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1544 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1545 
1546 			if (temp != data)
1547 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1548 		}
1549 	}
1550 }
1551 
1552 static int sdma_v3_0_set_clockgating_state(void *handle,
1553 					  enum amd_clockgating_state state)
1554 {
1555 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1556 
1557 	if (amdgpu_sriov_vf(adev))
1558 		return 0;
1559 
1560 	switch (adev->asic_type) {
1561 	case CHIP_FIJI:
1562 	case CHIP_CARRIZO:
1563 	case CHIP_STONEY:
1564 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1565 				state == AMD_CG_STATE_GATE);
1566 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1567 				state == AMD_CG_STATE_GATE);
1568 		break;
1569 	default:
1570 		break;
1571 	}
1572 	return 0;
1573 }
1574 
1575 static int sdma_v3_0_set_powergating_state(void *handle,
1576 					  enum amd_powergating_state state)
1577 {
1578 	return 0;
1579 }
1580 
1581 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1582 {
1583 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1584 	int data;
1585 
1586 	if (amdgpu_sriov_vf(adev))
1587 		*flags = 0;
1588 
1589 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1590 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1591 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1592 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1593 
1594 	/* AMD_CG_SUPPORT_SDMA_LS */
1595 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1596 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1597 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1598 }
1599 
1600 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1601 	.name = "sdma_v3_0",
1602 	.early_init = sdma_v3_0_early_init,
1603 	.late_init = NULL,
1604 	.sw_init = sdma_v3_0_sw_init,
1605 	.sw_fini = sdma_v3_0_sw_fini,
1606 	.hw_init = sdma_v3_0_hw_init,
1607 	.hw_fini = sdma_v3_0_hw_fini,
1608 	.suspend = sdma_v3_0_suspend,
1609 	.resume = sdma_v3_0_resume,
1610 	.is_idle = sdma_v3_0_is_idle,
1611 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1612 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1613 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1614 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1615 	.soft_reset = sdma_v3_0_soft_reset,
1616 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1617 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1618 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1619 };
1620 
1621 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1622 	.type = AMDGPU_RING_TYPE_SDMA,
1623 	.align_mask = 0xf,
1624 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1625 	.support_64bit_ptrs = false,
1626 	.get_rptr = sdma_v3_0_ring_get_rptr,
1627 	.get_wptr = sdma_v3_0_ring_get_wptr,
1628 	.set_wptr = sdma_v3_0_ring_set_wptr,
1629 	.emit_frame_size =
1630 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1631 		3 + /* hdp invalidate */
1632 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1633 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1634 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1635 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1636 	.emit_ib = sdma_v3_0_ring_emit_ib,
1637 	.emit_fence = sdma_v3_0_ring_emit_fence,
1638 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1639 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1640 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1641 	.test_ring = sdma_v3_0_ring_test_ring,
1642 	.test_ib = sdma_v3_0_ring_test_ib,
1643 	.insert_nop = sdma_v3_0_ring_insert_nop,
1644 	.pad_ib = sdma_v3_0_ring_pad_ib,
1645 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1646 };
1647 
1648 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < adev->sdma.num_instances; i++)
1653 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1654 }
1655 
1656 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1657 	.set = sdma_v3_0_set_trap_irq_state,
1658 	.process = sdma_v3_0_process_trap_irq,
1659 };
1660 
1661 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1662 	.process = sdma_v3_0_process_illegal_inst_irq,
1663 };
1664 
1665 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1666 {
1667 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1668 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1669 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1670 }
1671 
1672 /**
1673  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1674  *
1675  * @ring: amdgpu_ring structure holding ring information
1676  * @src_offset: src GPU address
1677  * @dst_offset: dst GPU address
1678  * @byte_count: number of bytes to xfer
1679  *
1680  * Copy GPU buffers using the DMA engine (VI).
1681  * Used by the amdgpu ttm implementation to move pages if
1682  * registered as the asic copy callback.
1683  */
1684 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1685 				       uint64_t src_offset,
1686 				       uint64_t dst_offset,
1687 				       uint32_t byte_count)
1688 {
1689 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1690 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1691 	ib->ptr[ib->length_dw++] = byte_count;
1692 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1693 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1694 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1695 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1696 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1697 }
1698 
1699 /**
1700  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1701  *
1702  * @ring: amdgpu_ring structure holding ring information
1703  * @src_data: value to write to buffer
1704  * @dst_offset: dst GPU address
1705  * @byte_count: number of bytes to xfer
1706  *
1707  * Fill GPU buffers using the DMA engine (VI).
1708  */
1709 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1710 				       uint32_t src_data,
1711 				       uint64_t dst_offset,
1712 				       uint32_t byte_count)
1713 {
1714 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1715 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1716 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1717 	ib->ptr[ib->length_dw++] = src_data;
1718 	ib->ptr[ib->length_dw++] = byte_count;
1719 }
1720 
1721 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1722 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1723 	.copy_num_dw = 7,
1724 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1725 
1726 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1727 	.fill_num_dw = 5,
1728 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1729 };
1730 
1731 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1732 {
1733 	if (adev->mman.buffer_funcs == NULL) {
1734 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1735 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1736 	}
1737 }
1738 
1739 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1740 	.copy_pte_num_dw = 7,
1741 	.copy_pte = sdma_v3_0_vm_copy_pte,
1742 
1743 	.write_pte = sdma_v3_0_vm_write_pte,
1744 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1745 };
1746 
1747 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1748 {
1749 	unsigned i;
1750 
1751 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1752 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1753 		for (i = 0; i < adev->sdma.num_instances; i++)
1754 			adev->vm_manager.vm_pte_rings[i] =
1755 				&adev->sdma.instance[i].ring;
1756 
1757 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1758 	}
1759 }
1760 
1761 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1762 {
1763 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1764 	.major = 3,
1765 	.minor = 0,
1766 	.rev = 0,
1767 	.funcs = &sdma_v3_0_ip_funcs,
1768 };
1769 
1770 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1771 {
1772 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1773 	.major = 3,
1774 	.minor = 1,
1775 	.rev = 0,
1776 	.funcs = &sdma_v3_0_ip_funcs,
1777 };
1778