1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 #include <linux/firmware.h> 25 #include <drm/drmP.h> 26 #include "amdgpu.h" 27 #include "amdgpu_ucode.h" 28 #include "amdgpu_trace.h" 29 #include "vi.h" 30 #include "vid.h" 31 32 #include "oss/oss_3_0_d.h" 33 #include "oss/oss_3_0_sh_mask.h" 34 35 #include "gmc/gmc_8_1_d.h" 36 #include "gmc/gmc_8_1_sh_mask.h" 37 38 #include "gca/gfx_8_0_d.h" 39 #include "gca/gfx_8_0_enum.h" 40 #include "gca/gfx_8_0_sh_mask.h" 41 42 #include "bif/bif_5_0_d.h" 43 #include "bif/bif_5_0_sh_mask.h" 44 45 #include "tonga_sdma_pkt_open.h" 46 47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev); 48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev); 49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev); 50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev); 51 52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin"); 53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin"); 54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin"); 55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin"); 56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin"); 57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin"); 58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin"); 59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin"); 60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin"); 61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin"); 65 66 67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 68 { 69 SDMA0_REGISTER_OFFSET, 70 SDMA1_REGISTER_OFFSET 71 }; 72 73 static const u32 golden_settings_tonga_a11[] = 74 { 75 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 76 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 77 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 78 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 79 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 80 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 81 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 82 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 83 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 84 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 85 }; 86 87 static const u32 tonga_mgcg_cgcg_init[] = 88 { 89 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 90 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 91 }; 92 93 static const u32 golden_settings_fiji_a10[] = 94 { 95 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 96 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 97 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 98 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 99 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 100 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 101 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 102 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 103 }; 104 105 static const u32 fiji_mgcg_cgcg_init[] = 106 { 107 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 108 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 109 }; 110 111 static const u32 golden_settings_polaris11_a11[] = 112 { 113 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 114 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 115 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 116 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 117 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 118 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 119 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 120 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 121 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 122 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 123 }; 124 125 static const u32 golden_settings_polaris10_a11[] = 126 { 127 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 128 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 129 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 130 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 131 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 132 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 133 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 134 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 135 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 136 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 137 }; 138 139 static const u32 cz_golden_settings_a11[] = 140 { 141 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 142 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 143 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 144 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 145 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 146 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 147 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 148 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 149 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100, 150 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800, 151 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100, 152 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100, 153 }; 154 155 static const u32 cz_mgcg_cgcg_init[] = 156 { 157 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 158 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 159 }; 160 161 static const u32 stoney_golden_settings_a11[] = 162 { 163 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 164 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 165 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 166 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 167 }; 168 169 static const u32 stoney_mgcg_cgcg_init[] = 170 { 171 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100, 172 }; 173 174 /* 175 * sDMA - System DMA 176 * Starting with CIK, the GPU has new asynchronous 177 * DMA engines. These engines are used for compute 178 * and gfx. There are two DMA engines (SDMA0, SDMA1) 179 * and each one supports 1 ring buffer used for gfx 180 * and 2 queues used for compute. 181 * 182 * The programming model is very similar to the CP 183 * (ring buffer, IBs, etc.), but sDMA has it's own 184 * packet format that is different from the PM4 format 185 * used by the CP. sDMA supports copying data, writing 186 * embedded data, solid fills, and a number of other 187 * things. It also has support for tiling/detiling of 188 * buffers. 189 */ 190 191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev) 192 { 193 switch (adev->asic_type) { 194 case CHIP_FIJI: 195 amdgpu_program_register_sequence(adev, 196 fiji_mgcg_cgcg_init, 197 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init)); 198 amdgpu_program_register_sequence(adev, 199 golden_settings_fiji_a10, 200 (const u32)ARRAY_SIZE(golden_settings_fiji_a10)); 201 break; 202 case CHIP_TONGA: 203 amdgpu_program_register_sequence(adev, 204 tonga_mgcg_cgcg_init, 205 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init)); 206 amdgpu_program_register_sequence(adev, 207 golden_settings_tonga_a11, 208 (const u32)ARRAY_SIZE(golden_settings_tonga_a11)); 209 break; 210 case CHIP_POLARIS11: 211 case CHIP_POLARIS12: 212 amdgpu_program_register_sequence(adev, 213 golden_settings_polaris11_a11, 214 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11)); 215 break; 216 case CHIP_POLARIS10: 217 amdgpu_program_register_sequence(adev, 218 golden_settings_polaris10_a11, 219 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11)); 220 break; 221 case CHIP_CARRIZO: 222 amdgpu_program_register_sequence(adev, 223 cz_mgcg_cgcg_init, 224 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init)); 225 amdgpu_program_register_sequence(adev, 226 cz_golden_settings_a11, 227 (const u32)ARRAY_SIZE(cz_golden_settings_a11)); 228 break; 229 case CHIP_STONEY: 230 amdgpu_program_register_sequence(adev, 231 stoney_mgcg_cgcg_init, 232 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init)); 233 amdgpu_program_register_sequence(adev, 234 stoney_golden_settings_a11, 235 (const u32)ARRAY_SIZE(stoney_golden_settings_a11)); 236 break; 237 default: 238 break; 239 } 240 } 241 242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev) 243 { 244 int i; 245 for (i = 0; i < adev->sdma.num_instances; i++) { 246 release_firmware(adev->sdma.instance[i].fw); 247 adev->sdma.instance[i].fw = NULL; 248 } 249 } 250 251 /** 252 * sdma_v3_0_init_microcode - load ucode images from disk 253 * 254 * @adev: amdgpu_device pointer 255 * 256 * Use the firmware interface to load the ucode images into 257 * the driver (not loaded into hw). 258 * Returns 0 on success, error on failure. 259 */ 260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev) 261 { 262 const char *chip_name; 263 char fw_name[30]; 264 int err = 0, i; 265 struct amdgpu_firmware_info *info = NULL; 266 const struct common_firmware_header *header = NULL; 267 const struct sdma_firmware_header_v1_0 *hdr; 268 269 DRM_DEBUG("\n"); 270 271 switch (adev->asic_type) { 272 case CHIP_TONGA: 273 chip_name = "tonga"; 274 break; 275 case CHIP_FIJI: 276 chip_name = "fiji"; 277 break; 278 case CHIP_POLARIS11: 279 chip_name = "polaris11"; 280 break; 281 case CHIP_POLARIS10: 282 chip_name = "polaris10"; 283 break; 284 case CHIP_POLARIS12: 285 chip_name = "polaris12"; 286 break; 287 case CHIP_CARRIZO: 288 chip_name = "carrizo"; 289 break; 290 case CHIP_STONEY: 291 chip_name = "stoney"; 292 break; 293 default: BUG(); 294 } 295 296 for (i = 0; i < adev->sdma.num_instances; i++) { 297 if (i == 0) 298 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 299 else 300 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 301 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 302 if (err) 303 goto out; 304 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 305 if (err) 306 goto out; 307 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 308 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 309 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 310 if (adev->sdma.instance[i].feature_version >= 20) 311 adev->sdma.instance[i].burst_nop = true; 312 313 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) { 314 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 315 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 316 info->fw = adev->sdma.instance[i].fw; 317 header = (const struct common_firmware_header *)info->fw->data; 318 adev->firmware.fw_size += 319 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 320 } 321 } 322 out: 323 if (err) { 324 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name); 325 for (i = 0; i < adev->sdma.num_instances; i++) { 326 release_firmware(adev->sdma.instance[i].fw); 327 adev->sdma.instance[i].fw = NULL; 328 } 329 } 330 return err; 331 } 332 333 /** 334 * sdma_v3_0_ring_get_rptr - get the current read pointer 335 * 336 * @ring: amdgpu ring pointer 337 * 338 * Get the current rptr from the hardware (VI+). 339 */ 340 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring) 341 { 342 /* XXX check if swapping is necessary on BE */ 343 return ring->adev->wb.wb[ring->rptr_offs] >> 2; 344 } 345 346 /** 347 * sdma_v3_0_ring_get_wptr - get the current write pointer 348 * 349 * @ring: amdgpu ring pointer 350 * 351 * Get the current wptr from the hardware (VI+). 352 */ 353 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring) 354 { 355 struct amdgpu_device *adev = ring->adev; 356 u32 wptr; 357 358 if (ring->use_doorbell) { 359 /* XXX check if swapping is necessary on BE */ 360 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2; 361 } else { 362 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1; 363 364 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2; 365 } 366 367 return wptr; 368 } 369 370 /** 371 * sdma_v3_0_ring_set_wptr - commit the write pointer 372 * 373 * @ring: amdgpu ring pointer 374 * 375 * Write the wptr back to the hardware (VI+). 376 */ 377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring) 378 { 379 struct amdgpu_device *adev = ring->adev; 380 381 if (ring->use_doorbell) { 382 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs]; 383 384 /* XXX check if swapping is necessary on BE */ 385 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2)); 386 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2); 387 } else { 388 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1; 389 390 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2); 391 } 392 } 393 394 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 395 { 396 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); 397 int i; 398 399 for (i = 0; i < count; i++) 400 if (sdma && sdma->burst_nop && (i == 0)) 401 amdgpu_ring_write(ring, ring->funcs->nop | 402 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 403 else 404 amdgpu_ring_write(ring, ring->funcs->nop); 405 } 406 407 /** 408 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine 409 * 410 * @ring: amdgpu ring pointer 411 * @ib: IB object to schedule 412 * 413 * Schedule an IB in the DMA ring (VI). 414 */ 415 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring, 416 struct amdgpu_ib *ib, 417 unsigned vm_id, bool ctx_switch) 418 { 419 u32 vmid = vm_id & 0xf; 420 421 /* IB packet must end on a 8 DW boundary */ 422 sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8); 423 424 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 425 SDMA_PKT_INDIRECT_HEADER_VMID(vmid)); 426 /* base must be 32 byte aligned */ 427 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 428 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 429 amdgpu_ring_write(ring, ib->length_dw); 430 amdgpu_ring_write(ring, 0); 431 amdgpu_ring_write(ring, 0); 432 433 } 434 435 /** 436 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 437 * 438 * @ring: amdgpu ring pointer 439 * 440 * Emit an hdp flush packet on the requested DMA ring. 441 */ 442 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 443 { 444 u32 ref_and_mask = 0; 445 446 if (ring == &ring->adev->sdma.instance[0].ring) 447 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); 448 else 449 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); 450 451 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 452 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 453 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 454 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 455 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 456 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 457 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 458 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 459 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 460 } 461 462 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring) 463 { 464 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 465 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 466 amdgpu_ring_write(ring, mmHDP_DEBUG0); 467 amdgpu_ring_write(ring, 1); 468 } 469 470 /** 471 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring 472 * 473 * @ring: amdgpu ring pointer 474 * @fence: amdgpu fence object 475 * 476 * Add a DMA fence packet to the ring to write 477 * the fence seq number and DMA trap packet to generate 478 * an interrupt if needed (VI). 479 */ 480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 481 unsigned flags) 482 { 483 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 484 /* write the fence */ 485 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 486 amdgpu_ring_write(ring, lower_32_bits(addr)); 487 amdgpu_ring_write(ring, upper_32_bits(addr)); 488 amdgpu_ring_write(ring, lower_32_bits(seq)); 489 490 /* optionally write high bits as well */ 491 if (write64bit) { 492 addr += 4; 493 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 494 amdgpu_ring_write(ring, lower_32_bits(addr)); 495 amdgpu_ring_write(ring, upper_32_bits(addr)); 496 amdgpu_ring_write(ring, upper_32_bits(seq)); 497 } 498 499 /* generate an interrupt */ 500 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 501 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 502 } 503 504 /** 505 * sdma_v3_0_gfx_stop - stop the gfx async dma engines 506 * 507 * @adev: amdgpu_device pointer 508 * 509 * Stop the gfx async dma ring buffers (VI). 510 */ 511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev) 512 { 513 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 514 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 515 u32 rb_cntl, ib_cntl; 516 int i; 517 518 if ((adev->mman.buffer_funcs_ring == sdma0) || 519 (adev->mman.buffer_funcs_ring == sdma1)) 520 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size); 521 522 for (i = 0; i < adev->sdma.num_instances; i++) { 523 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 524 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 525 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 526 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 527 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 528 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 529 } 530 sdma0->ready = false; 531 sdma1->ready = false; 532 } 533 534 /** 535 * sdma_v3_0_rlc_stop - stop the compute async dma engines 536 * 537 * @adev: amdgpu_device pointer 538 * 539 * Stop the compute async dma queues (VI). 540 */ 541 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev) 542 { 543 /* XXX todo */ 544 } 545 546 /** 547 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch 548 * 549 * @adev: amdgpu_device pointer 550 * @enable: enable/disable the DMA MEs context switch. 551 * 552 * Halt or unhalt the async dma engines context switch (VI). 553 */ 554 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 555 { 556 u32 f32_cntl, phase_quantum = 0; 557 int i; 558 559 if (amdgpu_sdma_phase_quantum) { 560 unsigned value = amdgpu_sdma_phase_quantum; 561 unsigned unit = 0; 562 563 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 564 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 565 value = (value + 1) >> 1; 566 unit++; 567 } 568 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 569 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 570 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 571 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 572 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 573 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 574 WARN_ONCE(1, 575 "clamping sdma_phase_quantum to %uK clock cycles\n", 576 value << unit); 577 } 578 phase_quantum = 579 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 580 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 581 } 582 583 for (i = 0; i < adev->sdma.num_instances; i++) { 584 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); 585 if (enable) { 586 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 587 AUTO_CTXSW_ENABLE, 1); 588 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 589 ATC_L1_ENABLE, 1); 590 if (amdgpu_sdma_phase_quantum) { 591 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i], 592 phase_quantum); 593 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i], 594 phase_quantum); 595 } 596 } else { 597 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 598 AUTO_CTXSW_ENABLE, 0); 599 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 600 ATC_L1_ENABLE, 1); 601 } 602 603 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); 604 } 605 } 606 607 /** 608 * sdma_v3_0_enable - stop the async dma engines 609 * 610 * @adev: amdgpu_device pointer 611 * @enable: enable/disable the DMA MEs. 612 * 613 * Halt or unhalt the async dma engines (VI). 614 */ 615 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable) 616 { 617 u32 f32_cntl; 618 int i; 619 620 if (!enable) { 621 sdma_v3_0_gfx_stop(adev); 622 sdma_v3_0_rlc_stop(adev); 623 } 624 625 for (i = 0; i < adev->sdma.num_instances; i++) { 626 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 627 if (enable) 628 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); 629 else 630 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); 631 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); 632 } 633 } 634 635 /** 636 * sdma_v3_0_gfx_resume - setup and start the async dma engines 637 * 638 * @adev: amdgpu_device pointer 639 * 640 * Set up the gfx DMA ring buffers and enable them (VI). 641 * Returns 0 for success, error for failure. 642 */ 643 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev) 644 { 645 struct amdgpu_ring *ring; 646 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 647 u32 rb_bufsz; 648 u32 wb_offset; 649 u32 doorbell; 650 u64 wptr_gpu_addr; 651 int i, j, r; 652 653 for (i = 0; i < adev->sdma.num_instances; i++) { 654 ring = &adev->sdma.instance[i].ring; 655 amdgpu_ring_clear_ring(ring); 656 wb_offset = (ring->rptr_offs * 4); 657 658 mutex_lock(&adev->srbm_mutex); 659 for (j = 0; j < 16; j++) { 660 vi_srbm_select(adev, 0, 0, 0, j); 661 /* SDMA GFX */ 662 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 663 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 664 } 665 vi_srbm_select(adev, 0, 0, 0, 0); 666 mutex_unlock(&adev->srbm_mutex); 667 668 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], 669 adev->gfx.config.gb_addr_config & 0x70); 670 671 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 672 673 /* Set ring buffer size in dwords */ 674 rb_bufsz = order_base_2(ring->ring_size / 4); 675 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 676 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 677 #ifdef __BIG_ENDIAN 678 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 679 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 680 RPTR_WRITEBACK_SWAP_ENABLE, 1); 681 #endif 682 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 683 684 /* Initialize the ring buffer's read and write pointers */ 685 ring->wptr = 0; 686 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 687 sdma_v3_0_ring_set_wptr(ring); 688 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); 689 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); 690 691 /* set the wb address whether it's enabled or not */ 692 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 693 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 694 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 695 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 696 697 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 698 699 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 700 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 701 702 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]); 703 704 if (ring->use_doorbell) { 705 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, 706 OFFSET, ring->doorbell_index); 707 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); 708 } else { 709 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); 710 } 711 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell); 712 713 /* setup the wptr shadow polling */ 714 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 715 716 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i], 717 lower_32_bits(wptr_gpu_addr)); 718 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i], 719 upper_32_bits(wptr_gpu_addr)); 720 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]); 721 if (amdgpu_sriov_vf(adev)) 722 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1); 723 else 724 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0); 725 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl); 726 727 /* enable DMA RB */ 728 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 729 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 730 731 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 732 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 733 #ifdef __BIG_ENDIAN 734 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 735 #endif 736 /* enable DMA IBs */ 737 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 738 739 ring->ready = true; 740 } 741 742 /* unhalt the MEs */ 743 sdma_v3_0_enable(adev, true); 744 /* enable sdma ring preemption */ 745 sdma_v3_0_ctx_switch_enable(adev, true); 746 747 for (i = 0; i < adev->sdma.num_instances; i++) { 748 ring = &adev->sdma.instance[i].ring; 749 r = amdgpu_ring_test_ring(ring); 750 if (r) { 751 ring->ready = false; 752 return r; 753 } 754 755 if (adev->mman.buffer_funcs_ring == ring) 756 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size); 757 } 758 759 return 0; 760 } 761 762 /** 763 * sdma_v3_0_rlc_resume - setup and start the async dma engines 764 * 765 * @adev: amdgpu_device pointer 766 * 767 * Set up the compute DMA queues and enable them (VI). 768 * Returns 0 for success, error for failure. 769 */ 770 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev) 771 { 772 /* XXX todo */ 773 return 0; 774 } 775 776 /** 777 * sdma_v3_0_load_microcode - load the sDMA ME ucode 778 * 779 * @adev: amdgpu_device pointer 780 * 781 * Loads the sDMA0/1 ucode. 782 * Returns 0 for success, -EINVAL if the ucode is not available. 783 */ 784 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev) 785 { 786 const struct sdma_firmware_header_v1_0 *hdr; 787 const __le32 *fw_data; 788 u32 fw_size; 789 int i, j; 790 791 /* halt the MEs */ 792 sdma_v3_0_enable(adev, false); 793 794 for (i = 0; i < adev->sdma.num_instances; i++) { 795 if (!adev->sdma.instance[i].fw) 796 return -EINVAL; 797 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 798 amdgpu_ucode_print_sdma_hdr(&hdr->header); 799 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 800 fw_data = (const __le32 *) 801 (adev->sdma.instance[i].fw->data + 802 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 803 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0); 804 for (j = 0; j < fw_size; j++) 805 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++)); 806 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version); 807 } 808 809 return 0; 810 } 811 812 /** 813 * sdma_v3_0_start - setup and start the async dma engines 814 * 815 * @adev: amdgpu_device pointer 816 * 817 * Set up the DMA engines and enable them (VI). 818 * Returns 0 for success, error for failure. 819 */ 820 static int sdma_v3_0_start(struct amdgpu_device *adev) 821 { 822 int r; 823 824 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { 825 r = sdma_v3_0_load_microcode(adev); 826 if (r) 827 return r; 828 } 829 830 /* disable sdma engine before programing it */ 831 sdma_v3_0_ctx_switch_enable(adev, false); 832 sdma_v3_0_enable(adev, false); 833 834 /* start the gfx rings and rlc compute queues */ 835 r = sdma_v3_0_gfx_resume(adev); 836 if (r) 837 return r; 838 r = sdma_v3_0_rlc_resume(adev); 839 if (r) 840 return r; 841 842 return 0; 843 } 844 845 /** 846 * sdma_v3_0_ring_test_ring - simple async dma engine test 847 * 848 * @ring: amdgpu_ring structure holding ring information 849 * 850 * Test the DMA engine by writing using it to write an 851 * value to memory. (VI). 852 * Returns 0 for success, error for failure. 853 */ 854 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring) 855 { 856 struct amdgpu_device *adev = ring->adev; 857 unsigned i; 858 unsigned index; 859 int r; 860 u32 tmp; 861 u64 gpu_addr; 862 863 r = amdgpu_wb_get(adev, &index); 864 if (r) { 865 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 866 return r; 867 } 868 869 gpu_addr = adev->wb.gpu_addr + (index * 4); 870 tmp = 0xCAFEDEAD; 871 adev->wb.wb[index] = cpu_to_le32(tmp); 872 873 r = amdgpu_ring_alloc(ring, 5); 874 if (r) { 875 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 876 amdgpu_wb_free(adev, index); 877 return r; 878 } 879 880 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 881 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 882 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 883 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 884 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 885 amdgpu_ring_write(ring, 0xDEADBEEF); 886 amdgpu_ring_commit(ring); 887 888 for (i = 0; i < adev->usec_timeout; i++) { 889 tmp = le32_to_cpu(adev->wb.wb[index]); 890 if (tmp == 0xDEADBEEF) 891 break; 892 DRM_UDELAY(1); 893 } 894 895 if (i < adev->usec_timeout) { 896 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); 897 } else { 898 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n", 899 ring->idx, tmp); 900 r = -EINVAL; 901 } 902 amdgpu_wb_free(adev, index); 903 904 return r; 905 } 906 907 /** 908 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine 909 * 910 * @ring: amdgpu_ring structure holding ring information 911 * 912 * Test a simple IB in the DMA ring (VI). 913 * Returns 0 on success, error on failure. 914 */ 915 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 916 { 917 struct amdgpu_device *adev = ring->adev; 918 struct amdgpu_ib ib; 919 struct dma_fence *f = NULL; 920 unsigned index; 921 u32 tmp = 0; 922 u64 gpu_addr; 923 long r; 924 925 r = amdgpu_wb_get(adev, &index); 926 if (r) { 927 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 928 return r; 929 } 930 931 gpu_addr = adev->wb.gpu_addr + (index * 4); 932 tmp = 0xCAFEDEAD; 933 adev->wb.wb[index] = cpu_to_le32(tmp); 934 memset(&ib, 0, sizeof(ib)); 935 r = amdgpu_ib_get(adev, NULL, 256, &ib); 936 if (r) { 937 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 938 goto err0; 939 } 940 941 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 942 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 943 ib.ptr[1] = lower_32_bits(gpu_addr); 944 ib.ptr[2] = upper_32_bits(gpu_addr); 945 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); 946 ib.ptr[4] = 0xDEADBEEF; 947 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 948 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 949 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 950 ib.length_dw = 8; 951 952 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 953 if (r) 954 goto err1; 955 956 r = dma_fence_wait_timeout(f, false, timeout); 957 if (r == 0) { 958 DRM_ERROR("amdgpu: IB test timed out\n"); 959 r = -ETIMEDOUT; 960 goto err1; 961 } else if (r < 0) { 962 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 963 goto err1; 964 } 965 tmp = le32_to_cpu(adev->wb.wb[index]); 966 if (tmp == 0xDEADBEEF) { 967 DRM_INFO("ib test on ring %d succeeded\n", ring->idx); 968 r = 0; 969 } else { 970 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp); 971 r = -EINVAL; 972 } 973 err1: 974 amdgpu_ib_free(adev, &ib, NULL); 975 dma_fence_put(f); 976 err0: 977 amdgpu_wb_free(adev, index); 978 return r; 979 } 980 981 /** 982 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART 983 * 984 * @ib: indirect buffer to fill with commands 985 * @pe: addr of the page entry 986 * @src: src addr to copy from 987 * @count: number of page entries to update 988 * 989 * Update PTEs by copying them from the GART using sDMA (CIK). 990 */ 991 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib, 992 uint64_t pe, uint64_t src, 993 unsigned count) 994 { 995 unsigned bytes = count * 8; 996 997 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 998 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 999 ib->ptr[ib->length_dw++] = bytes; 1000 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1001 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1002 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1003 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1004 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1005 } 1006 1007 /** 1008 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually 1009 * 1010 * @ib: indirect buffer to fill with commands 1011 * @pe: addr of the page entry 1012 * @value: dst addr to write into pe 1013 * @count: number of page entries to update 1014 * @incr: increase next addr by incr bytes 1015 * 1016 * Update PTEs by writing them manually using sDMA (CIK). 1017 */ 1018 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1019 uint64_t value, unsigned count, 1020 uint32_t incr) 1021 { 1022 unsigned ndw = count * 2; 1023 1024 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1025 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1026 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1027 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1028 ib->ptr[ib->length_dw++] = ndw; 1029 for (; ndw > 0; ndw -= 2) { 1030 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1031 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1032 value += incr; 1033 } 1034 } 1035 1036 /** 1037 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA 1038 * 1039 * @ib: indirect buffer to fill with commands 1040 * @pe: addr of the page entry 1041 * @addr: dst addr to write into pe 1042 * @count: number of page entries to update 1043 * @incr: increase next addr by incr bytes 1044 * @flags: access flags 1045 * 1046 * Update the page tables using sDMA (CIK). 1047 */ 1048 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, 1049 uint64_t addr, unsigned count, 1050 uint32_t incr, uint64_t flags) 1051 { 1052 /* for physically contiguous pages (vram) */ 1053 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); 1054 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1055 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1056 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1057 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1058 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1059 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1060 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1061 ib->ptr[ib->length_dw++] = 0; 1062 ib->ptr[ib->length_dw++] = count; /* number of entries */ 1063 } 1064 1065 /** 1066 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw 1067 * 1068 * @ib: indirect buffer to fill with padding 1069 * 1070 */ 1071 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1072 { 1073 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); 1074 u32 pad_count; 1075 int i; 1076 1077 pad_count = (8 - (ib->length_dw & 0x7)) % 8; 1078 for (i = 0; i < pad_count; i++) 1079 if (sdma && sdma->burst_nop && (i == 0)) 1080 ib->ptr[ib->length_dw++] = 1081 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1082 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1083 else 1084 ib->ptr[ib->length_dw++] = 1085 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1086 } 1087 1088 /** 1089 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline 1090 * 1091 * @ring: amdgpu_ring pointer 1092 * 1093 * Make sure all previous operations are completed (CIK). 1094 */ 1095 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1096 { 1097 uint32_t seq = ring->fence_drv.sync_seq; 1098 uint64_t addr = ring->fence_drv.gpu_addr; 1099 1100 /* wait for idle */ 1101 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1102 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1103 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1104 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1105 amdgpu_ring_write(ring, addr & 0xfffffffc); 1106 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1107 amdgpu_ring_write(ring, seq); /* reference */ 1108 amdgpu_ring_write(ring, 0xfffffff); /* mask */ 1109 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1110 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1111 } 1112 1113 /** 1114 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA 1115 * 1116 * @ring: amdgpu_ring pointer 1117 * @vm: amdgpu_vm pointer 1118 * 1119 * Update the page table base and flush the VM TLB 1120 * using sDMA (VI). 1121 */ 1122 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1123 unsigned vm_id, uint64_t pd_addr) 1124 { 1125 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1126 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1127 if (vm_id < 8) { 1128 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id)); 1129 } else { 1130 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8)); 1131 } 1132 amdgpu_ring_write(ring, pd_addr >> 12); 1133 1134 /* flush TLB */ 1135 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1136 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1137 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST); 1138 amdgpu_ring_write(ring, 1 << vm_id); 1139 1140 /* wait for flush */ 1141 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1142 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1143 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ 1144 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 1145 amdgpu_ring_write(ring, 0); 1146 amdgpu_ring_write(ring, 0); /* reference */ 1147 amdgpu_ring_write(ring, 0); /* mask */ 1148 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1149 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 1150 } 1151 1152 static int sdma_v3_0_early_init(void *handle) 1153 { 1154 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1155 1156 switch (adev->asic_type) { 1157 case CHIP_STONEY: 1158 adev->sdma.num_instances = 1; 1159 break; 1160 default: 1161 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 1162 break; 1163 } 1164 1165 sdma_v3_0_set_ring_funcs(adev); 1166 sdma_v3_0_set_buffer_funcs(adev); 1167 sdma_v3_0_set_vm_pte_funcs(adev); 1168 sdma_v3_0_set_irq_funcs(adev); 1169 1170 return 0; 1171 } 1172 1173 static int sdma_v3_0_sw_init(void *handle) 1174 { 1175 struct amdgpu_ring *ring; 1176 int r, i; 1177 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1178 1179 /* SDMA trap event */ 1180 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224, 1181 &adev->sdma.trap_irq); 1182 if (r) 1183 return r; 1184 1185 /* SDMA Privileged inst */ 1186 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241, 1187 &adev->sdma.illegal_inst_irq); 1188 if (r) 1189 return r; 1190 1191 /* SDMA Privileged inst */ 1192 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247, 1193 &adev->sdma.illegal_inst_irq); 1194 if (r) 1195 return r; 1196 1197 r = sdma_v3_0_init_microcode(adev); 1198 if (r) { 1199 DRM_ERROR("Failed to load sdma firmware!\n"); 1200 return r; 1201 } 1202 1203 for (i = 0; i < adev->sdma.num_instances; i++) { 1204 ring = &adev->sdma.instance[i].ring; 1205 ring->ring_obj = NULL; 1206 ring->use_doorbell = true; 1207 ring->doorbell_index = (i == 0) ? 1208 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1; 1209 1210 sprintf(ring->name, "sdma%d", i); 1211 r = amdgpu_ring_init(adev, ring, 1024, 1212 &adev->sdma.trap_irq, 1213 (i == 0) ? 1214 AMDGPU_SDMA_IRQ_TRAP0 : 1215 AMDGPU_SDMA_IRQ_TRAP1); 1216 if (r) 1217 return r; 1218 } 1219 1220 return r; 1221 } 1222 1223 static int sdma_v3_0_sw_fini(void *handle) 1224 { 1225 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1226 int i; 1227 1228 for (i = 0; i < adev->sdma.num_instances; i++) 1229 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1230 1231 sdma_v3_0_free_microcode(adev); 1232 return 0; 1233 } 1234 1235 static int sdma_v3_0_hw_init(void *handle) 1236 { 1237 int r; 1238 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1239 1240 sdma_v3_0_init_golden_registers(adev); 1241 1242 r = sdma_v3_0_start(adev); 1243 if (r) 1244 return r; 1245 1246 return r; 1247 } 1248 1249 static int sdma_v3_0_hw_fini(void *handle) 1250 { 1251 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1252 1253 sdma_v3_0_ctx_switch_enable(adev, false); 1254 sdma_v3_0_enable(adev, false); 1255 1256 return 0; 1257 } 1258 1259 static int sdma_v3_0_suspend(void *handle) 1260 { 1261 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1262 1263 return sdma_v3_0_hw_fini(adev); 1264 } 1265 1266 static int sdma_v3_0_resume(void *handle) 1267 { 1268 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1269 1270 return sdma_v3_0_hw_init(adev); 1271 } 1272 1273 static bool sdma_v3_0_is_idle(void *handle) 1274 { 1275 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1276 u32 tmp = RREG32(mmSRBM_STATUS2); 1277 1278 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 1279 SRBM_STATUS2__SDMA1_BUSY_MASK)) 1280 return false; 1281 1282 return true; 1283 } 1284 1285 static int sdma_v3_0_wait_for_idle(void *handle) 1286 { 1287 unsigned i; 1288 u32 tmp; 1289 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1290 1291 for (i = 0; i < adev->usec_timeout; i++) { 1292 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 1293 SRBM_STATUS2__SDMA1_BUSY_MASK); 1294 1295 if (!tmp) 1296 return 0; 1297 udelay(1); 1298 } 1299 return -ETIMEDOUT; 1300 } 1301 1302 static bool sdma_v3_0_check_soft_reset(void *handle) 1303 { 1304 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1305 u32 srbm_soft_reset = 0; 1306 u32 tmp = RREG32(mmSRBM_STATUS2); 1307 1308 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) || 1309 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) { 1310 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 1311 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 1312 } 1313 1314 if (srbm_soft_reset) { 1315 adev->sdma.srbm_soft_reset = srbm_soft_reset; 1316 return true; 1317 } else { 1318 adev->sdma.srbm_soft_reset = 0; 1319 return false; 1320 } 1321 } 1322 1323 static int sdma_v3_0_pre_soft_reset(void *handle) 1324 { 1325 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1326 u32 srbm_soft_reset = 0; 1327 1328 if (!adev->sdma.srbm_soft_reset) 1329 return 0; 1330 1331 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1332 1333 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1334 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1335 sdma_v3_0_ctx_switch_enable(adev, false); 1336 sdma_v3_0_enable(adev, false); 1337 } 1338 1339 return 0; 1340 } 1341 1342 static int sdma_v3_0_post_soft_reset(void *handle) 1343 { 1344 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1345 u32 srbm_soft_reset = 0; 1346 1347 if (!adev->sdma.srbm_soft_reset) 1348 return 0; 1349 1350 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1351 1352 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1353 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1354 sdma_v3_0_gfx_resume(adev); 1355 sdma_v3_0_rlc_resume(adev); 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int sdma_v3_0_soft_reset(void *handle) 1362 { 1363 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1364 u32 srbm_soft_reset = 0; 1365 u32 tmp; 1366 1367 if (!adev->sdma.srbm_soft_reset) 1368 return 0; 1369 1370 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1371 1372 if (srbm_soft_reset) { 1373 tmp = RREG32(mmSRBM_SOFT_RESET); 1374 tmp |= srbm_soft_reset; 1375 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1376 WREG32(mmSRBM_SOFT_RESET, tmp); 1377 tmp = RREG32(mmSRBM_SOFT_RESET); 1378 1379 udelay(50); 1380 1381 tmp &= ~srbm_soft_reset; 1382 WREG32(mmSRBM_SOFT_RESET, tmp); 1383 tmp = RREG32(mmSRBM_SOFT_RESET); 1384 1385 /* Wait a little for things to settle down */ 1386 udelay(50); 1387 } 1388 1389 return 0; 1390 } 1391 1392 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev, 1393 struct amdgpu_irq_src *source, 1394 unsigned type, 1395 enum amdgpu_interrupt_state state) 1396 { 1397 u32 sdma_cntl; 1398 1399 switch (type) { 1400 case AMDGPU_SDMA_IRQ_TRAP0: 1401 switch (state) { 1402 case AMDGPU_IRQ_STATE_DISABLE: 1403 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1404 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1405 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1406 break; 1407 case AMDGPU_IRQ_STATE_ENABLE: 1408 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1409 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1410 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1411 break; 1412 default: 1413 break; 1414 } 1415 break; 1416 case AMDGPU_SDMA_IRQ_TRAP1: 1417 switch (state) { 1418 case AMDGPU_IRQ_STATE_DISABLE: 1419 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1420 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1421 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1422 break; 1423 case AMDGPU_IRQ_STATE_ENABLE: 1424 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1425 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1426 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1427 break; 1428 default: 1429 break; 1430 } 1431 break; 1432 default: 1433 break; 1434 } 1435 return 0; 1436 } 1437 1438 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev, 1439 struct amdgpu_irq_src *source, 1440 struct amdgpu_iv_entry *entry) 1441 { 1442 u8 instance_id, queue_id; 1443 1444 instance_id = (entry->ring_id & 0x3) >> 0; 1445 queue_id = (entry->ring_id & 0xc) >> 2; 1446 DRM_DEBUG("IH: SDMA trap\n"); 1447 switch (instance_id) { 1448 case 0: 1449 switch (queue_id) { 1450 case 0: 1451 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1452 break; 1453 case 1: 1454 /* XXX compute */ 1455 break; 1456 case 2: 1457 /* XXX compute */ 1458 break; 1459 } 1460 break; 1461 case 1: 1462 switch (queue_id) { 1463 case 0: 1464 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1465 break; 1466 case 1: 1467 /* XXX compute */ 1468 break; 1469 case 2: 1470 /* XXX compute */ 1471 break; 1472 } 1473 break; 1474 } 1475 return 0; 1476 } 1477 1478 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1479 struct amdgpu_irq_src *source, 1480 struct amdgpu_iv_entry *entry) 1481 { 1482 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1483 schedule_work(&adev->reset_work); 1484 return 0; 1485 } 1486 1487 static void sdma_v3_0_update_sdma_medium_grain_clock_gating( 1488 struct amdgpu_device *adev, 1489 bool enable) 1490 { 1491 uint32_t temp, data; 1492 int i; 1493 1494 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 1495 for (i = 0; i < adev->sdma.num_instances; i++) { 1496 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1497 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1498 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1499 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1500 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1501 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1502 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1503 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1504 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1505 if (data != temp) 1506 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1507 } 1508 } else { 1509 for (i = 0; i < adev->sdma.num_instances; i++) { 1510 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1511 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1512 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1513 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1514 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1515 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1516 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1517 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1518 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK; 1519 1520 if (data != temp) 1521 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1522 } 1523 } 1524 } 1525 1526 static void sdma_v3_0_update_sdma_medium_grain_light_sleep( 1527 struct amdgpu_device *adev, 1528 bool enable) 1529 { 1530 uint32_t temp, data; 1531 int i; 1532 1533 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 1534 for (i = 0; i < adev->sdma.num_instances; i++) { 1535 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1536 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1537 1538 if (temp != data) 1539 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1540 } 1541 } else { 1542 for (i = 0; i < adev->sdma.num_instances; i++) { 1543 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1544 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1545 1546 if (temp != data) 1547 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1548 } 1549 } 1550 } 1551 1552 static int sdma_v3_0_set_clockgating_state(void *handle, 1553 enum amd_clockgating_state state) 1554 { 1555 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1556 1557 if (amdgpu_sriov_vf(adev)) 1558 return 0; 1559 1560 switch (adev->asic_type) { 1561 case CHIP_FIJI: 1562 case CHIP_CARRIZO: 1563 case CHIP_STONEY: 1564 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev, 1565 state == AMD_CG_STATE_GATE); 1566 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev, 1567 state == AMD_CG_STATE_GATE); 1568 break; 1569 default: 1570 break; 1571 } 1572 return 0; 1573 } 1574 1575 static int sdma_v3_0_set_powergating_state(void *handle, 1576 enum amd_powergating_state state) 1577 { 1578 return 0; 1579 } 1580 1581 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags) 1582 { 1583 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1584 int data; 1585 1586 if (amdgpu_sriov_vf(adev)) 1587 *flags = 0; 1588 1589 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1590 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]); 1591 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK)) 1592 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1593 1594 /* AMD_CG_SUPPORT_SDMA_LS */ 1595 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]); 1596 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1597 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1598 } 1599 1600 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = { 1601 .name = "sdma_v3_0", 1602 .early_init = sdma_v3_0_early_init, 1603 .late_init = NULL, 1604 .sw_init = sdma_v3_0_sw_init, 1605 .sw_fini = sdma_v3_0_sw_fini, 1606 .hw_init = sdma_v3_0_hw_init, 1607 .hw_fini = sdma_v3_0_hw_fini, 1608 .suspend = sdma_v3_0_suspend, 1609 .resume = sdma_v3_0_resume, 1610 .is_idle = sdma_v3_0_is_idle, 1611 .wait_for_idle = sdma_v3_0_wait_for_idle, 1612 .check_soft_reset = sdma_v3_0_check_soft_reset, 1613 .pre_soft_reset = sdma_v3_0_pre_soft_reset, 1614 .post_soft_reset = sdma_v3_0_post_soft_reset, 1615 .soft_reset = sdma_v3_0_soft_reset, 1616 .set_clockgating_state = sdma_v3_0_set_clockgating_state, 1617 .set_powergating_state = sdma_v3_0_set_powergating_state, 1618 .get_clockgating_state = sdma_v3_0_get_clockgating_state, 1619 }; 1620 1621 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = { 1622 .type = AMDGPU_RING_TYPE_SDMA, 1623 .align_mask = 0xf, 1624 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1625 .support_64bit_ptrs = false, 1626 .get_rptr = sdma_v3_0_ring_get_rptr, 1627 .get_wptr = sdma_v3_0_ring_get_wptr, 1628 .set_wptr = sdma_v3_0_ring_set_wptr, 1629 .emit_frame_size = 1630 6 + /* sdma_v3_0_ring_emit_hdp_flush */ 1631 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */ 1632 6 + /* sdma_v3_0_ring_emit_pipeline_sync */ 1633 12 + /* sdma_v3_0_ring_emit_vm_flush */ 1634 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */ 1635 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */ 1636 .emit_ib = sdma_v3_0_ring_emit_ib, 1637 .emit_fence = sdma_v3_0_ring_emit_fence, 1638 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync, 1639 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush, 1640 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush, 1641 .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate, 1642 .test_ring = sdma_v3_0_ring_test_ring, 1643 .test_ib = sdma_v3_0_ring_test_ib, 1644 .insert_nop = sdma_v3_0_ring_insert_nop, 1645 .pad_ib = sdma_v3_0_ring_pad_ib, 1646 }; 1647 1648 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev) 1649 { 1650 int i; 1651 1652 for (i = 0; i < adev->sdma.num_instances; i++) 1653 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs; 1654 } 1655 1656 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = { 1657 .set = sdma_v3_0_set_trap_irq_state, 1658 .process = sdma_v3_0_process_trap_irq, 1659 }; 1660 1661 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = { 1662 .process = sdma_v3_0_process_illegal_inst_irq, 1663 }; 1664 1665 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev) 1666 { 1667 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1668 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs; 1669 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs; 1670 } 1671 1672 /** 1673 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine 1674 * 1675 * @ring: amdgpu_ring structure holding ring information 1676 * @src_offset: src GPU address 1677 * @dst_offset: dst GPU address 1678 * @byte_count: number of bytes to xfer 1679 * 1680 * Copy GPU buffers using the DMA engine (VI). 1681 * Used by the amdgpu ttm implementation to move pages if 1682 * registered as the asic copy callback. 1683 */ 1684 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib, 1685 uint64_t src_offset, 1686 uint64_t dst_offset, 1687 uint32_t byte_count) 1688 { 1689 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1690 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1691 ib->ptr[ib->length_dw++] = byte_count; 1692 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1693 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1694 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1695 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1696 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1697 } 1698 1699 /** 1700 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine 1701 * 1702 * @ring: amdgpu_ring structure holding ring information 1703 * @src_data: value to write to buffer 1704 * @dst_offset: dst GPU address 1705 * @byte_count: number of bytes to xfer 1706 * 1707 * Fill GPU buffers using the DMA engine (VI). 1708 */ 1709 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib, 1710 uint32_t src_data, 1711 uint64_t dst_offset, 1712 uint32_t byte_count) 1713 { 1714 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1715 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1716 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1717 ib->ptr[ib->length_dw++] = src_data; 1718 ib->ptr[ib->length_dw++] = byte_count; 1719 } 1720 1721 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = { 1722 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1723 .copy_num_dw = 7, 1724 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer, 1725 1726 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1727 .fill_num_dw = 5, 1728 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer, 1729 }; 1730 1731 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev) 1732 { 1733 if (adev->mman.buffer_funcs == NULL) { 1734 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs; 1735 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1736 } 1737 } 1738 1739 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = { 1740 .copy_pte_num_dw = 7, 1741 .copy_pte = sdma_v3_0_vm_copy_pte, 1742 1743 .write_pte = sdma_v3_0_vm_write_pte, 1744 1745 /* not 0x3fffff due to HW limitation */ 1746 .set_max_nums_pte_pde = 0x3fffe0 >> 3, 1747 .set_pte_pde_num_dw = 10, 1748 .set_pte_pde = sdma_v3_0_vm_set_pte_pde, 1749 }; 1750 1751 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1752 { 1753 unsigned i; 1754 1755 if (adev->vm_manager.vm_pte_funcs == NULL) { 1756 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs; 1757 for (i = 0; i < adev->sdma.num_instances; i++) 1758 adev->vm_manager.vm_pte_rings[i] = 1759 &adev->sdma.instance[i].ring; 1760 1761 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances; 1762 } 1763 } 1764 1765 const struct amdgpu_ip_block_version sdma_v3_0_ip_block = 1766 { 1767 .type = AMD_IP_BLOCK_TYPE_SDMA, 1768 .major = 3, 1769 .minor = 0, 1770 .rev = 0, 1771 .funcs = &sdma_v3_0_ip_funcs, 1772 }; 1773 1774 const struct amdgpu_ip_block_version sdma_v3_1_ip_block = 1775 { 1776 .type = AMD_IP_BLOCK_TYPE_SDMA, 1777 .major = 3, 1778 .minor = 1, 1779 .rev = 0, 1780 .funcs = &sdma_v3_0_ip_funcs, 1781 }; 1782