1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34 
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 
38 #include "gmc/gmc_8_1_d.h"
39 #include "gmc/gmc_8_1_sh_mask.h"
40 
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44 
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47 
48 #include "tonga_sdma_pkt_open.h"
49 
50 #include "ivsrcid/ivsrcid_vislands30.h"
51 
52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
56 
57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
72 
73 
74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
75 {
76 	SDMA0_REGISTER_OFFSET,
77 	SDMA1_REGISTER_OFFSET
78 };
79 
80 static const u32 golden_settings_tonga_a11[] =
81 {
82 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
83 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
84 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
85 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
86 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
87 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
89 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 };
93 
94 static const u32 tonga_mgcg_cgcg_init[] =
95 {
96 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
97 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
98 };
99 
100 static const u32 golden_settings_fiji_a10[] =
101 {
102 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
103 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
104 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
105 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
106 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
108 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
109 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
110 };
111 
112 static const u32 fiji_mgcg_cgcg_init[] =
113 {
114 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
115 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
116 };
117 
118 static const u32 golden_settings_polaris11_a11[] =
119 {
120 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
121 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
122 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
123 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
124 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
125 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
127 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 };
131 
132 static const u32 golden_settings_polaris10_a11[] =
133 {
134 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
135 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
136 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
137 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
138 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
139 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
141 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
142 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
143 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
144 };
145 
146 static const u32 cz_golden_settings_a11[] =
147 {
148 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
149 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
150 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
151 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
152 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
153 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
155 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
156 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
157 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
158 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
159 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
160 };
161 
162 static const u32 cz_mgcg_cgcg_init[] =
163 {
164 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
165 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
166 };
167 
168 static const u32 stoney_golden_settings_a11[] =
169 {
170 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
171 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
172 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
173 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
174 };
175 
176 static const u32 stoney_mgcg_cgcg_init[] =
177 {
178 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
179 };
180 
181 /*
182  * sDMA - System DMA
183  * Starting with CIK, the GPU has new asynchronous
184  * DMA engines.  These engines are used for compute
185  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
186  * and each one supports 1 ring buffer used for gfx
187  * and 2 queues used for compute.
188  *
189  * The programming model is very similar to the CP
190  * (ring buffer, IBs, etc.), but sDMA has it's own
191  * packet format that is different from the PM4 format
192  * used by the CP. sDMA supports copying data, writing
193  * embedded data, solid fills, and a number of other
194  * things.  It also has support for tiling/detiling of
195  * buffers.
196  */
197 
198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
199 {
200 	switch (adev->asic_type) {
201 	case CHIP_FIJI:
202 		amdgpu_device_program_register_sequence(adev,
203 							fiji_mgcg_cgcg_init,
204 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
205 		amdgpu_device_program_register_sequence(adev,
206 							golden_settings_fiji_a10,
207 							ARRAY_SIZE(golden_settings_fiji_a10));
208 		break;
209 	case CHIP_TONGA:
210 		amdgpu_device_program_register_sequence(adev,
211 							tonga_mgcg_cgcg_init,
212 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
213 		amdgpu_device_program_register_sequence(adev,
214 							golden_settings_tonga_a11,
215 							ARRAY_SIZE(golden_settings_tonga_a11));
216 		break;
217 	case CHIP_POLARIS11:
218 	case CHIP_POLARIS12:
219 	case CHIP_VEGAM:
220 		amdgpu_device_program_register_sequence(adev,
221 							golden_settings_polaris11_a11,
222 							ARRAY_SIZE(golden_settings_polaris11_a11));
223 		break;
224 	case CHIP_POLARIS10:
225 		amdgpu_device_program_register_sequence(adev,
226 							golden_settings_polaris10_a11,
227 							ARRAY_SIZE(golden_settings_polaris10_a11));
228 		break;
229 	case CHIP_CARRIZO:
230 		amdgpu_device_program_register_sequence(adev,
231 							cz_mgcg_cgcg_init,
232 							ARRAY_SIZE(cz_mgcg_cgcg_init));
233 		amdgpu_device_program_register_sequence(adev,
234 							cz_golden_settings_a11,
235 							ARRAY_SIZE(cz_golden_settings_a11));
236 		break;
237 	case CHIP_STONEY:
238 		amdgpu_device_program_register_sequence(adev,
239 							stoney_mgcg_cgcg_init,
240 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
241 		amdgpu_device_program_register_sequence(adev,
242 							stoney_golden_settings_a11,
243 							ARRAY_SIZE(stoney_golden_settings_a11));
244 		break;
245 	default:
246 		break;
247 	}
248 }
249 
250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
251 {
252 	int i;
253 
254 	for (i = 0; i < adev->sdma.num_instances; i++)
255 		amdgpu_ucode_release(&adev->sdma.instance[i].fw);
256 }
257 
258 /**
259  * sdma_v3_0_init_microcode - load ucode images from disk
260  *
261  * @adev: amdgpu_device pointer
262  *
263  * Use the firmware interface to load the ucode images into
264  * the driver (not loaded into hw).
265  * Returns 0 on success, error on failure.
266  */
267 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
268 {
269 	const char *chip_name;
270 	char fw_name[30];
271 	int err = 0, i;
272 	struct amdgpu_firmware_info *info = NULL;
273 	const struct common_firmware_header *header = NULL;
274 	const struct sdma_firmware_header_v1_0 *hdr;
275 
276 	DRM_DEBUG("\n");
277 
278 	switch (adev->asic_type) {
279 	case CHIP_TONGA:
280 		chip_name = "tonga";
281 		break;
282 	case CHIP_FIJI:
283 		chip_name = "fiji";
284 		break;
285 	case CHIP_POLARIS10:
286 		chip_name = "polaris10";
287 		break;
288 	case CHIP_POLARIS11:
289 		chip_name = "polaris11";
290 		break;
291 	case CHIP_POLARIS12:
292 		chip_name = "polaris12";
293 		break;
294 	case CHIP_VEGAM:
295 		chip_name = "vegam";
296 		break;
297 	case CHIP_CARRIZO:
298 		chip_name = "carrizo";
299 		break;
300 	case CHIP_STONEY:
301 		chip_name = "stoney";
302 		break;
303 	default: BUG();
304 	}
305 
306 	for (i = 0; i < adev->sdma.num_instances; i++) {
307 		if (i == 0)
308 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
309 		else
310 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
311 		err = amdgpu_ucode_request(adev, &adev->sdma.instance[i].fw, fw_name);
312 		if (err)
313 			goto out;
314 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
315 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
316 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
317 		if (adev->sdma.instance[i].feature_version >= 20)
318 			adev->sdma.instance[i].burst_nop = true;
319 
320 		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
321 		info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
322 		info->fw = adev->sdma.instance[i].fw;
323 		header = (const struct common_firmware_header *)info->fw->data;
324 		adev->firmware.fw_size +=
325 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
326 
327 	}
328 out:
329 	if (err) {
330 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
331 		for (i = 0; i < adev->sdma.num_instances; i++)
332 			amdgpu_ucode_release(&adev->sdma.instance[i].fw);
333 	}
334 	return err;
335 }
336 
337 /**
338  * sdma_v3_0_ring_get_rptr - get the current read pointer
339  *
340  * @ring: amdgpu ring pointer
341  *
342  * Get the current rptr from the hardware (VI+).
343  */
344 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
345 {
346 	/* XXX check if swapping is necessary on BE */
347 	return *ring->rptr_cpu_addr >> 2;
348 }
349 
350 /**
351  * sdma_v3_0_ring_get_wptr - get the current write pointer
352  *
353  * @ring: amdgpu ring pointer
354  *
355  * Get the current wptr from the hardware (VI+).
356  */
357 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
358 {
359 	struct amdgpu_device *adev = ring->adev;
360 	u32 wptr;
361 
362 	if (ring->use_doorbell || ring->use_pollmem) {
363 		/* XXX check if swapping is necessary on BE */
364 		wptr = *ring->wptr_cpu_addr >> 2;
365 	} else {
366 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
367 	}
368 
369 	return wptr;
370 }
371 
372 /**
373  * sdma_v3_0_ring_set_wptr - commit the write pointer
374  *
375  * @ring: amdgpu ring pointer
376  *
377  * Write the wptr back to the hardware (VI+).
378  */
379 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
380 {
381 	struct amdgpu_device *adev = ring->adev;
382 
383 	if (ring->use_doorbell) {
384 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
385 		/* XXX check if swapping is necessary on BE */
386 		WRITE_ONCE(*wb, ring->wptr << 2);
387 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
388 	} else if (ring->use_pollmem) {
389 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
390 
391 		WRITE_ONCE(*wb, ring->wptr << 2);
392 	} else {
393 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], ring->wptr << 2);
394 	}
395 }
396 
397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398 {
399 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
400 	int i;
401 
402 	for (i = 0; i < count; i++)
403 		if (sdma && sdma->burst_nop && (i == 0))
404 			amdgpu_ring_write(ring, ring->funcs->nop |
405 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406 		else
407 			amdgpu_ring_write(ring, ring->funcs->nop);
408 }
409 
410 /**
411  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412  *
413  * @ring: amdgpu ring pointer
414  * @job: job to retrieve vmid from
415  * @ib: IB object to schedule
416  * @flags: unused
417  *
418  * Schedule an IB in the DMA ring (VI).
419  */
420 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
421 				   struct amdgpu_job *job,
422 				   struct amdgpu_ib *ib,
423 				   uint32_t flags)
424 {
425 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
426 
427 	/* IB packet must end on a 8 DW boundary */
428 	sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
429 
430 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
431 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
432 	/* base must be 32 byte aligned */
433 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
434 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
435 	amdgpu_ring_write(ring, ib->length_dw);
436 	amdgpu_ring_write(ring, 0);
437 	amdgpu_ring_write(ring, 0);
438 
439 }
440 
441 /**
442  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
443  *
444  * @ring: amdgpu ring pointer
445  *
446  * Emit an hdp flush packet on the requested DMA ring.
447  */
448 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
449 {
450 	u32 ref_and_mask = 0;
451 
452 	if (ring->me == 0)
453 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
454 	else
455 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
456 
457 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
458 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
459 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
460 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
461 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
462 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
463 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
464 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
465 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
466 }
467 
468 /**
469  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
470  *
471  * @ring: amdgpu ring pointer
472  * @addr: address
473  * @seq: sequence number
474  * @flags: fence related flags
475  *
476  * Add a DMA fence packet to the ring to write
477  * the fence seq number and DMA trap packet to generate
478  * an interrupt if needed (VI).
479  */
480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 				      unsigned flags)
482 {
483 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 	/* write the fence */
485 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 	amdgpu_ring_write(ring, lower_32_bits(addr));
487 	amdgpu_ring_write(ring, upper_32_bits(addr));
488 	amdgpu_ring_write(ring, lower_32_bits(seq));
489 
490 	/* optionally write high bits as well */
491 	if (write64bit) {
492 		addr += 4;
493 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 		amdgpu_ring_write(ring, lower_32_bits(addr));
495 		amdgpu_ring_write(ring, upper_32_bits(addr));
496 		amdgpu_ring_write(ring, upper_32_bits(seq));
497 	}
498 
499 	/* generate an interrupt */
500 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502 }
503 
504 /**
505  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506  *
507  * @adev: amdgpu_device pointer
508  *
509  * Stop the gfx async dma ring buffers (VI).
510  */
511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512 {
513 	u32 rb_cntl, ib_cntl;
514 	int i;
515 
516 	amdgpu_sdma_unset_buffer_funcs_helper(adev);
517 
518 	for (i = 0; i < adev->sdma.num_instances; i++) {
519 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
520 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
521 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
522 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
523 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
524 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
525 	}
526 }
527 
528 /**
529  * sdma_v3_0_rlc_stop - stop the compute async dma engines
530  *
531  * @adev: amdgpu_device pointer
532  *
533  * Stop the compute async dma queues (VI).
534  */
535 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
536 {
537 	/* XXX todo */
538 }
539 
540 /**
541  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
542  *
543  * @adev: amdgpu_device pointer
544  * @enable: enable/disable the DMA MEs context switch.
545  *
546  * Halt or unhalt the async dma engines context switch (VI).
547  */
548 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
549 {
550 	u32 f32_cntl, phase_quantum = 0;
551 	int i;
552 
553 	if (amdgpu_sdma_phase_quantum) {
554 		unsigned value = amdgpu_sdma_phase_quantum;
555 		unsigned unit = 0;
556 
557 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
558 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
559 			value = (value + 1) >> 1;
560 			unit++;
561 		}
562 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
563 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
564 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
565 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
566 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
567 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
568 			WARN_ONCE(1,
569 			"clamping sdma_phase_quantum to %uK clock cycles\n",
570 				  value << unit);
571 		}
572 		phase_quantum =
573 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
574 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
575 	}
576 
577 	for (i = 0; i < adev->sdma.num_instances; i++) {
578 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
579 		if (enable) {
580 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
581 					AUTO_CTXSW_ENABLE, 1);
582 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
583 					ATC_L1_ENABLE, 1);
584 			if (amdgpu_sdma_phase_quantum) {
585 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
586 				       phase_quantum);
587 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
588 				       phase_quantum);
589 			}
590 		} else {
591 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
592 					AUTO_CTXSW_ENABLE, 0);
593 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
594 					ATC_L1_ENABLE, 1);
595 		}
596 
597 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
598 	}
599 }
600 
601 /**
602  * sdma_v3_0_enable - stop the async dma engines
603  *
604  * @adev: amdgpu_device pointer
605  * @enable: enable/disable the DMA MEs.
606  *
607  * Halt or unhalt the async dma engines (VI).
608  */
609 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
610 {
611 	u32 f32_cntl;
612 	int i;
613 
614 	if (!enable) {
615 		sdma_v3_0_gfx_stop(adev);
616 		sdma_v3_0_rlc_stop(adev);
617 	}
618 
619 	for (i = 0; i < adev->sdma.num_instances; i++) {
620 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
621 		if (enable)
622 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
623 		else
624 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
625 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
626 	}
627 }
628 
629 /**
630  * sdma_v3_0_gfx_resume - setup and start the async dma engines
631  *
632  * @adev: amdgpu_device pointer
633  *
634  * Set up the gfx DMA ring buffers and enable them (VI).
635  * Returns 0 for success, error for failure.
636  */
637 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
638 {
639 	struct amdgpu_ring *ring;
640 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
641 	u32 rb_bufsz;
642 	u32 doorbell;
643 	u64 wptr_gpu_addr;
644 	int i, j, r;
645 
646 	for (i = 0; i < adev->sdma.num_instances; i++) {
647 		ring = &adev->sdma.instance[i].ring;
648 		amdgpu_ring_clear_ring(ring);
649 
650 		mutex_lock(&adev->srbm_mutex);
651 		for (j = 0; j < 16; j++) {
652 			vi_srbm_select(adev, 0, 0, 0, j);
653 			/* SDMA GFX */
654 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
655 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
656 		}
657 		vi_srbm_select(adev, 0, 0, 0, 0);
658 		mutex_unlock(&adev->srbm_mutex);
659 
660 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
661 		       adev->gfx.config.gb_addr_config & 0x70);
662 
663 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
664 
665 		/* Set ring buffer size in dwords */
666 		rb_bufsz = order_base_2(ring->ring_size / 4);
667 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
668 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
669 #ifdef __BIG_ENDIAN
670 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
671 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
672 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
673 #endif
674 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
675 
676 		/* Initialize the ring buffer's read and write pointers */
677 		ring->wptr = 0;
678 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
679 		sdma_v3_0_ring_set_wptr(ring);
680 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
681 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
682 
683 		/* set the wb address whether it's enabled or not */
684 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
685 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
686 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
687 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
688 
689 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
690 
691 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
692 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
693 
694 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
695 
696 		if (ring->use_doorbell) {
697 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
698 						 OFFSET, ring->doorbell_index);
699 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
700 		} else {
701 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
702 		}
703 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
704 
705 		/* setup the wptr shadow polling */
706 		wptr_gpu_addr = ring->wptr_gpu_addr;
707 
708 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
709 		       lower_32_bits(wptr_gpu_addr));
710 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
711 		       upper_32_bits(wptr_gpu_addr));
712 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
713 		if (ring->use_pollmem) {
714 			/*wptr polling is not enogh fast, directly clean the wptr register */
715 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
716 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
717 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
718 						       ENABLE, 1);
719 		} else {
720 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
721 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
722 						       ENABLE, 0);
723 		}
724 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
725 
726 		/* enable DMA RB */
727 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
728 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
729 
730 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
731 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
732 #ifdef __BIG_ENDIAN
733 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
734 #endif
735 		/* enable DMA IBs */
736 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
737 
738 		ring->sched.ready = true;
739 	}
740 
741 	/* unhalt the MEs */
742 	sdma_v3_0_enable(adev, true);
743 	/* enable sdma ring preemption */
744 	sdma_v3_0_ctx_switch_enable(adev, true);
745 
746 	for (i = 0; i < adev->sdma.num_instances; i++) {
747 		ring = &adev->sdma.instance[i].ring;
748 		r = amdgpu_ring_test_helper(ring);
749 		if (r)
750 			return r;
751 
752 		if (adev->mman.buffer_funcs_ring == ring)
753 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
754 	}
755 
756 	return 0;
757 }
758 
759 /**
760  * sdma_v3_0_rlc_resume - setup and start the async dma engines
761  *
762  * @adev: amdgpu_device pointer
763  *
764  * Set up the compute DMA queues and enable them (VI).
765  * Returns 0 for success, error for failure.
766  */
767 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
768 {
769 	/* XXX todo */
770 	return 0;
771 }
772 
773 /**
774  * sdma_v3_0_start - setup and start the async dma engines
775  *
776  * @adev: amdgpu_device pointer
777  *
778  * Set up the DMA engines and enable them (VI).
779  * Returns 0 for success, error for failure.
780  */
781 static int sdma_v3_0_start(struct amdgpu_device *adev)
782 {
783 	int r;
784 
785 	/* disable sdma engine before programing it */
786 	sdma_v3_0_ctx_switch_enable(adev, false);
787 	sdma_v3_0_enable(adev, false);
788 
789 	/* start the gfx rings and rlc compute queues */
790 	r = sdma_v3_0_gfx_resume(adev);
791 	if (r)
792 		return r;
793 	r = sdma_v3_0_rlc_resume(adev);
794 	if (r)
795 		return r;
796 
797 	return 0;
798 }
799 
800 /**
801  * sdma_v3_0_ring_test_ring - simple async dma engine test
802  *
803  * @ring: amdgpu_ring structure holding ring information
804  *
805  * Test the DMA engine by writing using it to write an
806  * value to memory. (VI).
807  * Returns 0 for success, error for failure.
808  */
809 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
810 {
811 	struct amdgpu_device *adev = ring->adev;
812 	unsigned i;
813 	unsigned index;
814 	int r;
815 	u32 tmp;
816 	u64 gpu_addr;
817 
818 	r = amdgpu_device_wb_get(adev, &index);
819 	if (r)
820 		return r;
821 
822 	gpu_addr = adev->wb.gpu_addr + (index * 4);
823 	tmp = 0xCAFEDEAD;
824 	adev->wb.wb[index] = cpu_to_le32(tmp);
825 
826 	r = amdgpu_ring_alloc(ring, 5);
827 	if (r)
828 		goto error_free_wb;
829 
830 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
831 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
832 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
833 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
834 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
835 	amdgpu_ring_write(ring, 0xDEADBEEF);
836 	amdgpu_ring_commit(ring);
837 
838 	for (i = 0; i < adev->usec_timeout; i++) {
839 		tmp = le32_to_cpu(adev->wb.wb[index]);
840 		if (tmp == 0xDEADBEEF)
841 			break;
842 		udelay(1);
843 	}
844 
845 	if (i >= adev->usec_timeout)
846 		r = -ETIMEDOUT;
847 
848 error_free_wb:
849 	amdgpu_device_wb_free(adev, index);
850 	return r;
851 }
852 
853 /**
854  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
855  *
856  * @ring: amdgpu_ring structure holding ring information
857  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
858  *
859  * Test a simple IB in the DMA ring (VI).
860  * Returns 0 on success, error on failure.
861  */
862 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
863 {
864 	struct amdgpu_device *adev = ring->adev;
865 	struct amdgpu_ib ib;
866 	struct dma_fence *f = NULL;
867 	unsigned index;
868 	u32 tmp = 0;
869 	u64 gpu_addr;
870 	long r;
871 
872 	r = amdgpu_device_wb_get(adev, &index);
873 	if (r)
874 		return r;
875 
876 	gpu_addr = adev->wb.gpu_addr + (index * 4);
877 	tmp = 0xCAFEDEAD;
878 	adev->wb.wb[index] = cpu_to_le32(tmp);
879 	memset(&ib, 0, sizeof(ib));
880 	r = amdgpu_ib_get(adev, NULL, 256,
881 					AMDGPU_IB_POOL_DIRECT, &ib);
882 	if (r)
883 		goto err0;
884 
885 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
886 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
887 	ib.ptr[1] = lower_32_bits(gpu_addr);
888 	ib.ptr[2] = upper_32_bits(gpu_addr);
889 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
890 	ib.ptr[4] = 0xDEADBEEF;
891 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
892 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
893 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
894 	ib.length_dw = 8;
895 
896 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
897 	if (r)
898 		goto err1;
899 
900 	r = dma_fence_wait_timeout(f, false, timeout);
901 	if (r == 0) {
902 		r = -ETIMEDOUT;
903 		goto err1;
904 	} else if (r < 0) {
905 		goto err1;
906 	}
907 	tmp = le32_to_cpu(adev->wb.wb[index]);
908 	if (tmp == 0xDEADBEEF)
909 		r = 0;
910 	else
911 		r = -EINVAL;
912 err1:
913 	amdgpu_ib_free(adev, &ib, NULL);
914 	dma_fence_put(f);
915 err0:
916 	amdgpu_device_wb_free(adev, index);
917 	return r;
918 }
919 
920 /**
921  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
922  *
923  * @ib: indirect buffer to fill with commands
924  * @pe: addr of the page entry
925  * @src: src addr to copy from
926  * @count: number of page entries to update
927  *
928  * Update PTEs by copying them from the GART using sDMA (CIK).
929  */
930 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
931 				  uint64_t pe, uint64_t src,
932 				  unsigned count)
933 {
934 	unsigned bytes = count * 8;
935 
936 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
937 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
938 	ib->ptr[ib->length_dw++] = bytes;
939 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
940 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
941 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
942 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
943 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
944 }
945 
946 /**
947  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
948  *
949  * @ib: indirect buffer to fill with commands
950  * @pe: addr of the page entry
951  * @value: dst addr to write into pe
952  * @count: number of page entries to update
953  * @incr: increase next addr by incr bytes
954  *
955  * Update PTEs by writing them manually using sDMA (CIK).
956  */
957 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
958 				   uint64_t value, unsigned count,
959 				   uint32_t incr)
960 {
961 	unsigned ndw = count * 2;
962 
963 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
964 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
965 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
966 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
967 	ib->ptr[ib->length_dw++] = ndw;
968 	for (; ndw > 0; ndw -= 2) {
969 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
970 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
971 		value += incr;
972 	}
973 }
974 
975 /**
976  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
977  *
978  * @ib: indirect buffer to fill with commands
979  * @pe: addr of the page entry
980  * @addr: dst addr to write into pe
981  * @count: number of page entries to update
982  * @incr: increase next addr by incr bytes
983  * @flags: access flags
984  *
985  * Update the page tables using sDMA (CIK).
986  */
987 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
988 				     uint64_t addr, unsigned count,
989 				     uint32_t incr, uint64_t flags)
990 {
991 	/* for physically contiguous pages (vram) */
992 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
993 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
994 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
995 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
996 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
997 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
998 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
999 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1000 	ib->ptr[ib->length_dw++] = 0;
1001 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1002 }
1003 
1004 /**
1005  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1006  *
1007  * @ring: amdgpu_ring structure holding ring information
1008  * @ib: indirect buffer to fill with padding
1009  *
1010  */
1011 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1012 {
1013 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1014 	u32 pad_count;
1015 	int i;
1016 
1017 	pad_count = (-ib->length_dw) & 7;
1018 	for (i = 0; i < pad_count; i++)
1019 		if (sdma && sdma->burst_nop && (i == 0))
1020 			ib->ptr[ib->length_dw++] =
1021 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1022 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1023 		else
1024 			ib->ptr[ib->length_dw++] =
1025 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1026 }
1027 
1028 /**
1029  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1030  *
1031  * @ring: amdgpu_ring pointer
1032  *
1033  * Make sure all previous operations are completed (CIK).
1034  */
1035 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1036 {
1037 	uint32_t seq = ring->fence_drv.sync_seq;
1038 	uint64_t addr = ring->fence_drv.gpu_addr;
1039 
1040 	/* wait for idle */
1041 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1042 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1043 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1044 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1045 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1046 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1047 	amdgpu_ring_write(ring, seq); /* reference */
1048 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1049 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1050 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1051 }
1052 
1053 /**
1054  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1055  *
1056  * @ring: amdgpu_ring pointer
1057  * @vmid: vmid number to use
1058  * @pd_addr: address
1059  *
1060  * Update the page table base and flush the VM TLB
1061  * using sDMA (VI).
1062  */
1063 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1064 					 unsigned vmid, uint64_t pd_addr)
1065 {
1066 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1067 
1068 	/* wait for flush */
1069 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1070 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1071 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1072 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1073 	amdgpu_ring_write(ring, 0);
1074 	amdgpu_ring_write(ring, 0); /* reference */
1075 	amdgpu_ring_write(ring, 0); /* mask */
1076 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1077 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1078 }
1079 
1080 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1081 				     uint32_t reg, uint32_t val)
1082 {
1083 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1084 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1085 	amdgpu_ring_write(ring, reg);
1086 	amdgpu_ring_write(ring, val);
1087 }
1088 
1089 static int sdma_v3_0_early_init(void *handle)
1090 {
1091 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1092 
1093 	switch (adev->asic_type) {
1094 	case CHIP_STONEY:
1095 		adev->sdma.num_instances = 1;
1096 		break;
1097 	default:
1098 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1099 		break;
1100 	}
1101 
1102 	sdma_v3_0_set_ring_funcs(adev);
1103 	sdma_v3_0_set_buffer_funcs(adev);
1104 	sdma_v3_0_set_vm_pte_funcs(adev);
1105 	sdma_v3_0_set_irq_funcs(adev);
1106 
1107 	return 0;
1108 }
1109 
1110 static int sdma_v3_0_sw_init(void *handle)
1111 {
1112 	struct amdgpu_ring *ring;
1113 	int r, i;
1114 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1115 
1116 	/* SDMA trap event */
1117 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1118 			      &adev->sdma.trap_irq);
1119 	if (r)
1120 		return r;
1121 
1122 	/* SDMA Privileged inst */
1123 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1124 			      &adev->sdma.illegal_inst_irq);
1125 	if (r)
1126 		return r;
1127 
1128 	/* SDMA Privileged inst */
1129 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1130 			      &adev->sdma.illegal_inst_irq);
1131 	if (r)
1132 		return r;
1133 
1134 	r = sdma_v3_0_init_microcode(adev);
1135 	if (r) {
1136 		DRM_ERROR("Failed to load sdma firmware!\n");
1137 		return r;
1138 	}
1139 
1140 	for (i = 0; i < adev->sdma.num_instances; i++) {
1141 		ring = &adev->sdma.instance[i].ring;
1142 		ring->ring_obj = NULL;
1143 		if (!amdgpu_sriov_vf(adev)) {
1144 			ring->use_doorbell = true;
1145 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1146 		} else {
1147 			ring->use_pollmem = true;
1148 		}
1149 
1150 		sprintf(ring->name, "sdma%d", i);
1151 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1152 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1153 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1154 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1155 		if (r)
1156 			return r;
1157 	}
1158 
1159 	return r;
1160 }
1161 
1162 static int sdma_v3_0_sw_fini(void *handle)
1163 {
1164 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1165 	int i;
1166 
1167 	for (i = 0; i < adev->sdma.num_instances; i++)
1168 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1169 
1170 	sdma_v3_0_free_microcode(adev);
1171 	return 0;
1172 }
1173 
1174 static int sdma_v3_0_hw_init(void *handle)
1175 {
1176 	int r;
1177 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178 
1179 	sdma_v3_0_init_golden_registers(adev);
1180 
1181 	r = sdma_v3_0_start(adev);
1182 	if (r)
1183 		return r;
1184 
1185 	return r;
1186 }
1187 
1188 static int sdma_v3_0_hw_fini(void *handle)
1189 {
1190 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1191 
1192 	sdma_v3_0_ctx_switch_enable(adev, false);
1193 	sdma_v3_0_enable(adev, false);
1194 
1195 	return 0;
1196 }
1197 
1198 static int sdma_v3_0_suspend(void *handle)
1199 {
1200 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201 
1202 	return sdma_v3_0_hw_fini(adev);
1203 }
1204 
1205 static int sdma_v3_0_resume(void *handle)
1206 {
1207 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1208 
1209 	return sdma_v3_0_hw_init(adev);
1210 }
1211 
1212 static bool sdma_v3_0_is_idle(void *handle)
1213 {
1214 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1215 	u32 tmp = RREG32(mmSRBM_STATUS2);
1216 
1217 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1218 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1219 	    return false;
1220 
1221 	return true;
1222 }
1223 
1224 static int sdma_v3_0_wait_for_idle(void *handle)
1225 {
1226 	unsigned i;
1227 	u32 tmp;
1228 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1229 
1230 	for (i = 0; i < adev->usec_timeout; i++) {
1231 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1232 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1233 
1234 		if (!tmp)
1235 			return 0;
1236 		udelay(1);
1237 	}
1238 	return -ETIMEDOUT;
1239 }
1240 
1241 static bool sdma_v3_0_check_soft_reset(void *handle)
1242 {
1243 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1244 	u32 srbm_soft_reset = 0;
1245 	u32 tmp = RREG32(mmSRBM_STATUS2);
1246 
1247 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1248 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1249 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1250 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1251 	}
1252 
1253 	if (srbm_soft_reset) {
1254 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1255 		return true;
1256 	} else {
1257 		adev->sdma.srbm_soft_reset = 0;
1258 		return false;
1259 	}
1260 }
1261 
1262 static int sdma_v3_0_pre_soft_reset(void *handle)
1263 {
1264 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1265 	u32 srbm_soft_reset = 0;
1266 
1267 	if (!adev->sdma.srbm_soft_reset)
1268 		return 0;
1269 
1270 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1271 
1272 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1273 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1274 		sdma_v3_0_ctx_switch_enable(adev, false);
1275 		sdma_v3_0_enable(adev, false);
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static int sdma_v3_0_post_soft_reset(void *handle)
1282 {
1283 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284 	u32 srbm_soft_reset = 0;
1285 
1286 	if (!adev->sdma.srbm_soft_reset)
1287 		return 0;
1288 
1289 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1290 
1291 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1292 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1293 		sdma_v3_0_gfx_resume(adev);
1294 		sdma_v3_0_rlc_resume(adev);
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 static int sdma_v3_0_soft_reset(void *handle)
1301 {
1302 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1303 	u32 srbm_soft_reset = 0;
1304 	u32 tmp;
1305 
1306 	if (!adev->sdma.srbm_soft_reset)
1307 		return 0;
1308 
1309 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1310 
1311 	if (srbm_soft_reset) {
1312 		tmp = RREG32(mmSRBM_SOFT_RESET);
1313 		tmp |= srbm_soft_reset;
1314 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1315 		WREG32(mmSRBM_SOFT_RESET, tmp);
1316 		tmp = RREG32(mmSRBM_SOFT_RESET);
1317 
1318 		udelay(50);
1319 
1320 		tmp &= ~srbm_soft_reset;
1321 		WREG32(mmSRBM_SOFT_RESET, tmp);
1322 		tmp = RREG32(mmSRBM_SOFT_RESET);
1323 
1324 		/* Wait a little for things to settle down */
1325 		udelay(50);
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1332 					struct amdgpu_irq_src *source,
1333 					unsigned type,
1334 					enum amdgpu_interrupt_state state)
1335 {
1336 	u32 sdma_cntl;
1337 
1338 	switch (type) {
1339 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1340 		switch (state) {
1341 		case AMDGPU_IRQ_STATE_DISABLE:
1342 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1343 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1344 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1345 			break;
1346 		case AMDGPU_IRQ_STATE_ENABLE:
1347 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1348 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1349 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1350 			break;
1351 		default:
1352 			break;
1353 		}
1354 		break;
1355 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1356 		switch (state) {
1357 		case AMDGPU_IRQ_STATE_DISABLE:
1358 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1359 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1360 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1361 			break;
1362 		case AMDGPU_IRQ_STATE_ENABLE:
1363 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1364 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1365 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1366 			break;
1367 		default:
1368 			break;
1369 		}
1370 		break;
1371 	default:
1372 		break;
1373 	}
1374 	return 0;
1375 }
1376 
1377 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1378 				      struct amdgpu_irq_src *source,
1379 				      struct amdgpu_iv_entry *entry)
1380 {
1381 	u8 instance_id, queue_id;
1382 
1383 	instance_id = (entry->ring_id & 0x3) >> 0;
1384 	queue_id = (entry->ring_id & 0xc) >> 2;
1385 	DRM_DEBUG("IH: SDMA trap\n");
1386 	switch (instance_id) {
1387 	case 0:
1388 		switch (queue_id) {
1389 		case 0:
1390 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1391 			break;
1392 		case 1:
1393 			/* XXX compute */
1394 			break;
1395 		case 2:
1396 			/* XXX compute */
1397 			break;
1398 		}
1399 		break;
1400 	case 1:
1401 		switch (queue_id) {
1402 		case 0:
1403 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1404 			break;
1405 		case 1:
1406 			/* XXX compute */
1407 			break;
1408 		case 2:
1409 			/* XXX compute */
1410 			break;
1411 		}
1412 		break;
1413 	}
1414 	return 0;
1415 }
1416 
1417 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1418 					      struct amdgpu_irq_src *source,
1419 					      struct amdgpu_iv_entry *entry)
1420 {
1421 	u8 instance_id, queue_id;
1422 
1423 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1424 	instance_id = (entry->ring_id & 0x3) >> 0;
1425 	queue_id = (entry->ring_id & 0xc) >> 2;
1426 
1427 	if (instance_id <= 1 && queue_id == 0)
1428 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1429 	return 0;
1430 }
1431 
1432 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1433 		struct amdgpu_device *adev,
1434 		bool enable)
1435 {
1436 	uint32_t temp, data;
1437 	int i;
1438 
1439 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1440 		for (i = 0; i < adev->sdma.num_instances; i++) {
1441 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1442 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1443 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1444 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1445 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1446 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1447 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1448 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1449 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1450 			if (data != temp)
1451 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1452 		}
1453 	} else {
1454 		for (i = 0; i < adev->sdma.num_instances; i++) {
1455 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1456 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1457 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1458 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1459 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1460 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1461 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1462 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1463 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1464 
1465 			if (data != temp)
1466 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1467 		}
1468 	}
1469 }
1470 
1471 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1472 		struct amdgpu_device *adev,
1473 		bool enable)
1474 {
1475 	uint32_t temp, data;
1476 	int i;
1477 
1478 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1479 		for (i = 0; i < adev->sdma.num_instances; i++) {
1480 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1481 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1482 
1483 			if (temp != data)
1484 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1485 		}
1486 	} else {
1487 		for (i = 0; i < adev->sdma.num_instances; i++) {
1488 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1489 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1490 
1491 			if (temp != data)
1492 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1493 		}
1494 	}
1495 }
1496 
1497 static int sdma_v3_0_set_clockgating_state(void *handle,
1498 					  enum amd_clockgating_state state)
1499 {
1500 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1501 
1502 	if (amdgpu_sriov_vf(adev))
1503 		return 0;
1504 
1505 	switch (adev->asic_type) {
1506 	case CHIP_FIJI:
1507 	case CHIP_CARRIZO:
1508 	case CHIP_STONEY:
1509 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1510 				state == AMD_CG_STATE_GATE);
1511 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1512 				state == AMD_CG_STATE_GATE);
1513 		break;
1514 	default:
1515 		break;
1516 	}
1517 	return 0;
1518 }
1519 
1520 static int sdma_v3_0_set_powergating_state(void *handle,
1521 					  enum amd_powergating_state state)
1522 {
1523 	return 0;
1524 }
1525 
1526 static void sdma_v3_0_get_clockgating_state(void *handle, u64 *flags)
1527 {
1528 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1529 	int data;
1530 
1531 	if (amdgpu_sriov_vf(adev))
1532 		*flags = 0;
1533 
1534 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1535 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1536 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1537 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1538 
1539 	/* AMD_CG_SUPPORT_SDMA_LS */
1540 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1541 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1542 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1543 }
1544 
1545 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1546 	.name = "sdma_v3_0",
1547 	.early_init = sdma_v3_0_early_init,
1548 	.late_init = NULL,
1549 	.sw_init = sdma_v3_0_sw_init,
1550 	.sw_fini = sdma_v3_0_sw_fini,
1551 	.hw_init = sdma_v3_0_hw_init,
1552 	.hw_fini = sdma_v3_0_hw_fini,
1553 	.suspend = sdma_v3_0_suspend,
1554 	.resume = sdma_v3_0_resume,
1555 	.is_idle = sdma_v3_0_is_idle,
1556 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1557 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1558 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1559 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1560 	.soft_reset = sdma_v3_0_soft_reset,
1561 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1562 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1563 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1564 };
1565 
1566 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1567 	.type = AMDGPU_RING_TYPE_SDMA,
1568 	.align_mask = 0xf,
1569 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1570 	.support_64bit_ptrs = false,
1571 	.secure_submission_supported = true,
1572 	.get_rptr = sdma_v3_0_ring_get_rptr,
1573 	.get_wptr = sdma_v3_0_ring_get_wptr,
1574 	.set_wptr = sdma_v3_0_ring_set_wptr,
1575 	.emit_frame_size =
1576 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1577 		3 + /* hdp invalidate */
1578 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1579 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1580 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1581 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1582 	.emit_ib = sdma_v3_0_ring_emit_ib,
1583 	.emit_fence = sdma_v3_0_ring_emit_fence,
1584 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1585 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1586 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1587 	.test_ring = sdma_v3_0_ring_test_ring,
1588 	.test_ib = sdma_v3_0_ring_test_ib,
1589 	.insert_nop = sdma_v3_0_ring_insert_nop,
1590 	.pad_ib = sdma_v3_0_ring_pad_ib,
1591 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1592 };
1593 
1594 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1595 {
1596 	int i;
1597 
1598 	for (i = 0; i < adev->sdma.num_instances; i++) {
1599 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1600 		adev->sdma.instance[i].ring.me = i;
1601 	}
1602 }
1603 
1604 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1605 	.set = sdma_v3_0_set_trap_irq_state,
1606 	.process = sdma_v3_0_process_trap_irq,
1607 };
1608 
1609 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1610 	.process = sdma_v3_0_process_illegal_inst_irq,
1611 };
1612 
1613 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1614 {
1615 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1616 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1617 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1618 }
1619 
1620 /**
1621  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1622  *
1623  * @ib: indirect buffer to copy to
1624  * @src_offset: src GPU address
1625  * @dst_offset: dst GPU address
1626  * @byte_count: number of bytes to xfer
1627  * @tmz: unused
1628  *
1629  * Copy GPU buffers using the DMA engine (VI).
1630  * Used by the amdgpu ttm implementation to move pages if
1631  * registered as the asic copy callback.
1632  */
1633 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1634 				       uint64_t src_offset,
1635 				       uint64_t dst_offset,
1636 				       uint32_t byte_count,
1637 				       bool tmz)
1638 {
1639 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1640 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1641 	ib->ptr[ib->length_dw++] = byte_count;
1642 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1643 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1644 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1645 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1646 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1647 }
1648 
1649 /**
1650  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1651  *
1652  * @ib: indirect buffer to copy to
1653  * @src_data: value to write to buffer
1654  * @dst_offset: dst GPU address
1655  * @byte_count: number of bytes to xfer
1656  *
1657  * Fill GPU buffers using the DMA engine (VI).
1658  */
1659 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1660 				       uint32_t src_data,
1661 				       uint64_t dst_offset,
1662 				       uint32_t byte_count)
1663 {
1664 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1665 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1666 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1667 	ib->ptr[ib->length_dw++] = src_data;
1668 	ib->ptr[ib->length_dw++] = byte_count;
1669 }
1670 
1671 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1672 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1673 	.copy_num_dw = 7,
1674 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1675 
1676 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1677 	.fill_num_dw = 5,
1678 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1679 };
1680 
1681 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1682 {
1683 	adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1684 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1685 }
1686 
1687 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1688 	.copy_pte_num_dw = 7,
1689 	.copy_pte = sdma_v3_0_vm_copy_pte,
1690 
1691 	.write_pte = sdma_v3_0_vm_write_pte,
1692 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1693 };
1694 
1695 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1696 {
1697 	unsigned i;
1698 
1699 	adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1700 	for (i = 0; i < adev->sdma.num_instances; i++) {
1701 		adev->vm_manager.vm_pte_scheds[i] =
1702 			 &adev->sdma.instance[i].ring.sched;
1703 	}
1704 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1705 }
1706 
1707 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1708 {
1709 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1710 	.major = 3,
1711 	.minor = 0,
1712 	.rev = 0,
1713 	.funcs = &sdma_v3_0_ip_funcs,
1714 };
1715 
1716 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1717 {
1718 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1719 	.major = 3,
1720 	.minor = 1,
1721 	.rev = 0,
1722 	.funcs = &sdma_v3_0_ip_funcs,
1723 };
1724