xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 
60 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
61 {
62 	SDMA0_REGISTER_OFFSET,
63 	SDMA1_REGISTER_OFFSET
64 };
65 
66 static const u32 golden_settings_tonga_a11[] =
67 {
68 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
69 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
70 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
71 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
72 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
73 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
74 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
75 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78 };
79 
80 static const u32 tonga_mgcg_cgcg_init[] =
81 {
82 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
83 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
84 };
85 
86 static const u32 golden_settings_fiji_a10[] =
87 {
88 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
89 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
93 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
94 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
95 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
96 };
97 
98 static const u32 fiji_mgcg_cgcg_init[] =
99 {
100 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
101 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
102 };
103 
104 static const u32 cz_golden_settings_a11[] =
105 {
106 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
108 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
109 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
110 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
111 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
112 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
113 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
114 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
115 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
116 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
117 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
118 };
119 
120 static const u32 cz_mgcg_cgcg_init[] =
121 {
122 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
123 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
124 };
125 
126 static const u32 stoney_golden_settings_a11[] =
127 {
128 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
129 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
130 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
131 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
132 };
133 
134 static const u32 stoney_mgcg_cgcg_init[] =
135 {
136 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
137 };
138 
139 /*
140  * sDMA - System DMA
141  * Starting with CIK, the GPU has new asynchronous
142  * DMA engines.  These engines are used for compute
143  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
144  * and each one supports 1 ring buffer used for gfx
145  * and 2 queues used for compute.
146  *
147  * The programming model is very similar to the CP
148  * (ring buffer, IBs, etc.), but sDMA has it's own
149  * packet format that is different from the PM4 format
150  * used by the CP. sDMA supports copying data, writing
151  * embedded data, solid fills, and a number of other
152  * things.  It also has support for tiling/detiling of
153  * buffers.
154  */
155 
156 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
157 {
158 	switch (adev->asic_type) {
159 	case CHIP_FIJI:
160 		amdgpu_program_register_sequence(adev,
161 						 fiji_mgcg_cgcg_init,
162 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
163 		amdgpu_program_register_sequence(adev,
164 						 golden_settings_fiji_a10,
165 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
166 		break;
167 	case CHIP_TONGA:
168 		amdgpu_program_register_sequence(adev,
169 						 tonga_mgcg_cgcg_init,
170 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
171 		amdgpu_program_register_sequence(adev,
172 						 golden_settings_tonga_a11,
173 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
174 		break;
175 	case CHIP_CARRIZO:
176 		amdgpu_program_register_sequence(adev,
177 						 cz_mgcg_cgcg_init,
178 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
179 		amdgpu_program_register_sequence(adev,
180 						 cz_golden_settings_a11,
181 						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
182 		break;
183 	case CHIP_STONEY:
184 		amdgpu_program_register_sequence(adev,
185 						 stoney_mgcg_cgcg_init,
186 						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
187 		amdgpu_program_register_sequence(adev,
188 						 stoney_golden_settings_a11,
189 						 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
190 		break;
191 	default:
192 		break;
193 	}
194 }
195 
196 /**
197  * sdma_v3_0_init_microcode - load ucode images from disk
198  *
199  * @adev: amdgpu_device pointer
200  *
201  * Use the firmware interface to load the ucode images into
202  * the driver (not loaded into hw).
203  * Returns 0 on success, error on failure.
204  */
205 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
206 {
207 	const char *chip_name;
208 	char fw_name[30];
209 	int err = 0, i;
210 	struct amdgpu_firmware_info *info = NULL;
211 	const struct common_firmware_header *header = NULL;
212 	const struct sdma_firmware_header_v1_0 *hdr;
213 
214 	DRM_DEBUG("\n");
215 
216 	switch (adev->asic_type) {
217 	case CHIP_TONGA:
218 		chip_name = "tonga";
219 		break;
220 	case CHIP_FIJI:
221 		chip_name = "fiji";
222 		break;
223 	case CHIP_CARRIZO:
224 		chip_name = "carrizo";
225 		break;
226 	case CHIP_STONEY:
227 		chip_name = "stoney";
228 		break;
229 	default: BUG();
230 	}
231 
232 	for (i = 0; i < adev->sdma.num_instances; i++) {
233 		if (i == 0)
234 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
235 		else
236 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
237 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
238 		if (err)
239 			goto out;
240 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
241 		if (err)
242 			goto out;
243 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
244 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
245 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
246 		if (adev->sdma.instance[i].feature_version >= 20)
247 			adev->sdma.instance[i].burst_nop = true;
248 
249 		if (adev->firmware.smu_load) {
250 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
251 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
252 			info->fw = adev->sdma.instance[i].fw;
253 			header = (const struct common_firmware_header *)info->fw->data;
254 			adev->firmware.fw_size +=
255 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
256 		}
257 	}
258 out:
259 	if (err) {
260 		printk(KERN_ERR
261 		       "sdma_v3_0: Failed to load firmware \"%s\"\n",
262 		       fw_name);
263 		for (i = 0; i < adev->sdma.num_instances; i++) {
264 			release_firmware(adev->sdma.instance[i].fw);
265 			adev->sdma.instance[i].fw = NULL;
266 		}
267 	}
268 	return err;
269 }
270 
271 /**
272  * sdma_v3_0_ring_get_rptr - get the current read pointer
273  *
274  * @ring: amdgpu ring pointer
275  *
276  * Get the current rptr from the hardware (VI+).
277  */
278 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
279 {
280 	u32 rptr;
281 
282 	/* XXX check if swapping is necessary on BE */
283 	rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
284 
285 	return rptr;
286 }
287 
288 /**
289  * sdma_v3_0_ring_get_wptr - get the current write pointer
290  *
291  * @ring: amdgpu ring pointer
292  *
293  * Get the current wptr from the hardware (VI+).
294  */
295 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
296 {
297 	struct amdgpu_device *adev = ring->adev;
298 	u32 wptr;
299 
300 	if (ring->use_doorbell) {
301 		/* XXX check if swapping is necessary on BE */
302 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
303 	} else {
304 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
305 
306 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
307 	}
308 
309 	return wptr;
310 }
311 
312 /**
313  * sdma_v3_0_ring_set_wptr - commit the write pointer
314  *
315  * @ring: amdgpu ring pointer
316  *
317  * Write the wptr back to the hardware (VI+).
318  */
319 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
320 {
321 	struct amdgpu_device *adev = ring->adev;
322 
323 	if (ring->use_doorbell) {
324 		/* XXX check if swapping is necessary on BE */
325 		adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
326 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
327 	} else {
328 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
329 
330 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
331 	}
332 }
333 
334 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
335 {
336 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
337 	int i;
338 
339 	for (i = 0; i < count; i++)
340 		if (sdma && sdma->burst_nop && (i == 0))
341 			amdgpu_ring_write(ring, ring->nop |
342 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
343 		else
344 			amdgpu_ring_write(ring, ring->nop);
345 }
346 
347 /**
348  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
349  *
350  * @ring: amdgpu ring pointer
351  * @ib: IB object to schedule
352  *
353  * Schedule an IB in the DMA ring (VI).
354  */
355 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
356 				   struct amdgpu_ib *ib)
357 {
358 	u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
359 	u32 next_rptr = ring->wptr + 5;
360 
361 	while ((next_rptr & 7) != 2)
362 		next_rptr++;
363 	next_rptr += 6;
364 
365 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
366 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
367 	amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
368 	amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
369 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
370 	amdgpu_ring_write(ring, next_rptr);
371 
372 	/* IB packet must end on a 8 DW boundary */
373 	sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
374 
375 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
376 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
377 	/* base must be 32 byte aligned */
378 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
379 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
380 	amdgpu_ring_write(ring, ib->length_dw);
381 	amdgpu_ring_write(ring, 0);
382 	amdgpu_ring_write(ring, 0);
383 
384 }
385 
386 /**
387  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
388  *
389  * @ring: amdgpu ring pointer
390  *
391  * Emit an hdp flush packet on the requested DMA ring.
392  */
393 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
394 {
395 	u32 ref_and_mask = 0;
396 
397 	if (ring == &ring->adev->sdma.instance[0].ring)
398 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
399 	else
400 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
401 
402 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
403 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
404 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
405 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
406 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
407 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
408 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
409 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
410 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
411 }
412 
413 /**
414  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
415  *
416  * @ring: amdgpu ring pointer
417  * @fence: amdgpu fence object
418  *
419  * Add a DMA fence packet to the ring to write
420  * the fence seq number and DMA trap packet to generate
421  * an interrupt if needed (VI).
422  */
423 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
424 				      unsigned flags)
425 {
426 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
427 	/* write the fence */
428 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
429 	amdgpu_ring_write(ring, lower_32_bits(addr));
430 	amdgpu_ring_write(ring, upper_32_bits(addr));
431 	amdgpu_ring_write(ring, lower_32_bits(seq));
432 
433 	/* optionally write high bits as well */
434 	if (write64bit) {
435 		addr += 4;
436 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
437 		amdgpu_ring_write(ring, lower_32_bits(addr));
438 		amdgpu_ring_write(ring, upper_32_bits(addr));
439 		amdgpu_ring_write(ring, upper_32_bits(seq));
440 	}
441 
442 	/* generate an interrupt */
443 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
444 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
445 }
446 
447 
448 /**
449  * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
450  *
451  * @ring: amdgpu_ring structure holding ring information
452  * @semaphore: amdgpu semaphore object
453  * @emit_wait: wait or signal semaphore
454  *
455  * Add a DMA semaphore packet to the ring wait on or signal
456  * other rings (VI).
457  */
458 static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
459 					  struct amdgpu_semaphore *semaphore,
460 					  bool emit_wait)
461 {
462 	u64 addr = semaphore->gpu_addr;
463 	u32 sig = emit_wait ? 0 : 1;
464 
465 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
466 			  SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
467 	amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
468 	amdgpu_ring_write(ring, upper_32_bits(addr));
469 
470 	return true;
471 }
472 
473 /**
474  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
475  *
476  * @adev: amdgpu_device pointer
477  *
478  * Stop the gfx async dma ring buffers (VI).
479  */
480 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
481 {
482 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
483 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
484 	u32 rb_cntl, ib_cntl;
485 	int i;
486 
487 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
488 	    (adev->mman.buffer_funcs_ring == sdma1))
489 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
490 
491 	for (i = 0; i < adev->sdma.num_instances; i++) {
492 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
493 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
494 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
495 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
496 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
497 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
498 	}
499 	sdma0->ready = false;
500 	sdma1->ready = false;
501 }
502 
503 /**
504  * sdma_v3_0_rlc_stop - stop the compute async dma engines
505  *
506  * @adev: amdgpu_device pointer
507  *
508  * Stop the compute async dma queues (VI).
509  */
510 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
511 {
512 	/* XXX todo */
513 }
514 
515 /**
516  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
517  *
518  * @adev: amdgpu_device pointer
519  * @enable: enable/disable the DMA MEs context switch.
520  *
521  * Halt or unhalt the async dma engines context switch (VI).
522  */
523 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
524 {
525 	u32 f32_cntl;
526 	int i;
527 
528 	for (i = 0; i < adev->sdma.num_instances; i++) {
529 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
530 		if (enable)
531 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
532 					AUTO_CTXSW_ENABLE, 1);
533 		else
534 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
535 					AUTO_CTXSW_ENABLE, 0);
536 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
537 	}
538 }
539 
540 /**
541  * sdma_v3_0_enable - stop the async dma engines
542  *
543  * @adev: amdgpu_device pointer
544  * @enable: enable/disable the DMA MEs.
545  *
546  * Halt or unhalt the async dma engines (VI).
547  */
548 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
549 {
550 	u32 f32_cntl;
551 	int i;
552 
553 	if (enable == false) {
554 		sdma_v3_0_gfx_stop(adev);
555 		sdma_v3_0_rlc_stop(adev);
556 	}
557 
558 	for (i = 0; i < adev->sdma.num_instances; i++) {
559 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
560 		if (enable)
561 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
562 		else
563 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
564 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
565 	}
566 }
567 
568 /**
569  * sdma_v3_0_gfx_resume - setup and start the async dma engines
570  *
571  * @adev: amdgpu_device pointer
572  *
573  * Set up the gfx DMA ring buffers and enable them (VI).
574  * Returns 0 for success, error for failure.
575  */
576 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
577 {
578 	struct amdgpu_ring *ring;
579 	u32 rb_cntl, ib_cntl;
580 	u32 rb_bufsz;
581 	u32 wb_offset;
582 	u32 doorbell;
583 	int i, j, r;
584 
585 	for (i = 0; i < adev->sdma.num_instances; i++) {
586 		ring = &adev->sdma.instance[i].ring;
587 		wb_offset = (ring->rptr_offs * 4);
588 
589 		mutex_lock(&adev->srbm_mutex);
590 		for (j = 0; j < 16; j++) {
591 			vi_srbm_select(adev, 0, 0, 0, j);
592 			/* SDMA GFX */
593 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
594 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
595 		}
596 		vi_srbm_select(adev, 0, 0, 0, 0);
597 		mutex_unlock(&adev->srbm_mutex);
598 
599 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
600 
601 		/* Set ring buffer size in dwords */
602 		rb_bufsz = order_base_2(ring->ring_size / 4);
603 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
604 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
605 #ifdef __BIG_ENDIAN
606 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
607 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
608 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
609 #endif
610 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
611 
612 		/* Initialize the ring buffer's read and write pointers */
613 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
614 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
615 
616 		/* set the wb address whether it's enabled or not */
617 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
618 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
619 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
620 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
621 
622 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
623 
624 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
625 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
626 
627 		ring->wptr = 0;
628 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
629 
630 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
631 
632 		if (ring->use_doorbell) {
633 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
634 						 OFFSET, ring->doorbell_index);
635 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
636 		} else {
637 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
638 		}
639 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
640 
641 		/* enable DMA RB */
642 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
643 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
644 
645 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
646 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
647 #ifdef __BIG_ENDIAN
648 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
649 #endif
650 		/* enable DMA IBs */
651 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
652 
653 		ring->ready = true;
654 
655 		r = amdgpu_ring_test_ring(ring);
656 		if (r) {
657 			ring->ready = false;
658 			return r;
659 		}
660 
661 		if (adev->mman.buffer_funcs_ring == ring)
662 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  * sdma_v3_0_rlc_resume - setup and start the async dma engines
670  *
671  * @adev: amdgpu_device pointer
672  *
673  * Set up the compute DMA queues and enable them (VI).
674  * Returns 0 for success, error for failure.
675  */
676 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
677 {
678 	/* XXX todo */
679 	return 0;
680 }
681 
682 /**
683  * sdma_v3_0_load_microcode - load the sDMA ME ucode
684  *
685  * @adev: amdgpu_device pointer
686  *
687  * Loads the sDMA0/1 ucode.
688  * Returns 0 for success, -EINVAL if the ucode is not available.
689  */
690 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
691 {
692 	const struct sdma_firmware_header_v1_0 *hdr;
693 	const __le32 *fw_data;
694 	u32 fw_size;
695 	int i, j;
696 
697 	/* halt the MEs */
698 	sdma_v3_0_enable(adev, false);
699 
700 	for (i = 0; i < adev->sdma.num_instances; i++) {
701 		if (!adev->sdma.instance[i].fw)
702 			return -EINVAL;
703 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
704 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
705 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
706 		fw_data = (const __le32 *)
707 			(adev->sdma.instance[i].fw->data +
708 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
709 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
710 		for (j = 0; j < fw_size; j++)
711 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
712 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
713 	}
714 
715 	return 0;
716 }
717 
718 /**
719  * sdma_v3_0_start - setup and start the async dma engines
720  *
721  * @adev: amdgpu_device pointer
722  *
723  * Set up the DMA engines and enable them (VI).
724  * Returns 0 for success, error for failure.
725  */
726 static int sdma_v3_0_start(struct amdgpu_device *adev)
727 {
728 	int r, i;
729 
730 	if (!adev->pp_enabled) {
731 		if (!adev->firmware.smu_load) {
732 			r = sdma_v3_0_load_microcode(adev);
733 			if (r)
734 				return r;
735 		} else {
736 			for (i = 0; i < adev->sdma.num_instances; i++) {
737 				r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
738 										 (i == 0) ?
739 										 AMDGPU_UCODE_ID_SDMA0 :
740 										 AMDGPU_UCODE_ID_SDMA1);
741 				if (r)
742 					return -EINVAL;
743 			}
744 		}
745 	}
746 
747 	/* unhalt the MEs */
748 	sdma_v3_0_enable(adev, true);
749 	/* enable sdma ring preemption */
750 	sdma_v3_0_ctx_switch_enable(adev, true);
751 
752 	/* start the gfx rings and rlc compute queues */
753 	r = sdma_v3_0_gfx_resume(adev);
754 	if (r)
755 		return r;
756 	r = sdma_v3_0_rlc_resume(adev);
757 	if (r)
758 		return r;
759 
760 	return 0;
761 }
762 
763 /**
764  * sdma_v3_0_ring_test_ring - simple async dma engine test
765  *
766  * @ring: amdgpu_ring structure holding ring information
767  *
768  * Test the DMA engine by writing using it to write an
769  * value to memory. (VI).
770  * Returns 0 for success, error for failure.
771  */
772 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
773 {
774 	struct amdgpu_device *adev = ring->adev;
775 	unsigned i;
776 	unsigned index;
777 	int r;
778 	u32 tmp;
779 	u64 gpu_addr;
780 
781 	r = amdgpu_wb_get(adev, &index);
782 	if (r) {
783 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
784 		return r;
785 	}
786 
787 	gpu_addr = adev->wb.gpu_addr + (index * 4);
788 	tmp = 0xCAFEDEAD;
789 	adev->wb.wb[index] = cpu_to_le32(tmp);
790 
791 	r = amdgpu_ring_lock(ring, 5);
792 	if (r) {
793 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
794 		amdgpu_wb_free(adev, index);
795 		return r;
796 	}
797 
798 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
799 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
800 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
801 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
802 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
803 	amdgpu_ring_write(ring, 0xDEADBEEF);
804 	amdgpu_ring_unlock_commit(ring);
805 
806 	for (i = 0; i < adev->usec_timeout; i++) {
807 		tmp = le32_to_cpu(adev->wb.wb[index]);
808 		if (tmp == 0xDEADBEEF)
809 			break;
810 		DRM_UDELAY(1);
811 	}
812 
813 	if (i < adev->usec_timeout) {
814 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
815 	} else {
816 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
817 			  ring->idx, tmp);
818 		r = -EINVAL;
819 	}
820 	amdgpu_wb_free(adev, index);
821 
822 	return r;
823 }
824 
825 /**
826  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
827  *
828  * @ring: amdgpu_ring structure holding ring information
829  *
830  * Test a simple IB in the DMA ring (VI).
831  * Returns 0 on success, error on failure.
832  */
833 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
834 {
835 	struct amdgpu_device *adev = ring->adev;
836 	struct amdgpu_ib ib;
837 	struct fence *f = NULL;
838 	unsigned i;
839 	unsigned index;
840 	int r;
841 	u32 tmp = 0;
842 	u64 gpu_addr;
843 
844 	r = amdgpu_wb_get(adev, &index);
845 	if (r) {
846 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
847 		return r;
848 	}
849 
850 	gpu_addr = adev->wb.gpu_addr + (index * 4);
851 	tmp = 0xCAFEDEAD;
852 	adev->wb.wb[index] = cpu_to_le32(tmp);
853 	memset(&ib, 0, sizeof(ib));
854 	r = amdgpu_ib_get(ring, NULL, 256, &ib);
855 	if (r) {
856 		DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
857 		goto err0;
858 	}
859 
860 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
861 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
862 	ib.ptr[1] = lower_32_bits(gpu_addr);
863 	ib.ptr[2] = upper_32_bits(gpu_addr);
864 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
865 	ib.ptr[4] = 0xDEADBEEF;
866 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
867 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
868 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
869 	ib.length_dw = 8;
870 
871 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
872 						 AMDGPU_FENCE_OWNER_UNDEFINED,
873 						 &f);
874 	if (r)
875 		goto err1;
876 
877 	r = fence_wait(f, false);
878 	if (r) {
879 		DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
880 		goto err1;
881 	}
882 	for (i = 0; i < adev->usec_timeout; i++) {
883 		tmp = le32_to_cpu(adev->wb.wb[index]);
884 		if (tmp == 0xDEADBEEF)
885 			break;
886 		DRM_UDELAY(1);
887 	}
888 	if (i < adev->usec_timeout) {
889 		DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
890 			 ring->idx, i);
891 		goto err1;
892 	} else {
893 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
894 		r = -EINVAL;
895 	}
896 err1:
897 	fence_put(f);
898 	amdgpu_ib_free(adev, &ib);
899 err0:
900 	amdgpu_wb_free(adev, index);
901 	return r;
902 }
903 
904 /**
905  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
906  *
907  * @ib: indirect buffer to fill with commands
908  * @pe: addr of the page entry
909  * @src: src addr to copy from
910  * @count: number of page entries to update
911  *
912  * Update PTEs by copying them from the GART using sDMA (CIK).
913  */
914 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
915 				  uint64_t pe, uint64_t src,
916 				  unsigned count)
917 {
918 	while (count) {
919 		unsigned bytes = count * 8;
920 		if (bytes > 0x1FFFF8)
921 			bytes = 0x1FFFF8;
922 
923 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
924 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
925 		ib->ptr[ib->length_dw++] = bytes;
926 		ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
927 		ib->ptr[ib->length_dw++] = lower_32_bits(src);
928 		ib->ptr[ib->length_dw++] = upper_32_bits(src);
929 		ib->ptr[ib->length_dw++] = lower_32_bits(pe);
930 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
931 
932 		pe += bytes;
933 		src += bytes;
934 		count -= bytes / 8;
935 	}
936 }
937 
938 /**
939  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
940  *
941  * @ib: indirect buffer to fill with commands
942  * @pe: addr of the page entry
943  * @addr: dst addr to write into pe
944  * @count: number of page entries to update
945  * @incr: increase next addr by incr bytes
946  * @flags: access flags
947  *
948  * Update PTEs by writing them manually using sDMA (CIK).
949  */
950 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
951 				   uint64_t pe,
952 				   uint64_t addr, unsigned count,
953 				   uint32_t incr, uint32_t flags)
954 {
955 	uint64_t value;
956 	unsigned ndw;
957 
958 	while (count) {
959 		ndw = count * 2;
960 		if (ndw > 0xFFFFE)
961 			ndw = 0xFFFFE;
962 
963 		/* for non-physically contiguous pages (system) */
964 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
965 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
966 		ib->ptr[ib->length_dw++] = pe;
967 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
968 		ib->ptr[ib->length_dw++] = ndw;
969 		for (; ndw > 0; ndw -= 2, --count, pe += 8) {
970 			if (flags & AMDGPU_PTE_SYSTEM) {
971 				value = amdgpu_vm_map_gart(ib->ring->adev, addr);
972 				value &= 0xFFFFFFFFFFFFF000ULL;
973 			} else if (flags & AMDGPU_PTE_VALID) {
974 				value = addr;
975 			} else {
976 				value = 0;
977 			}
978 			addr += incr;
979 			value |= flags;
980 			ib->ptr[ib->length_dw++] = value;
981 			ib->ptr[ib->length_dw++] = upper_32_bits(value);
982 		}
983 	}
984 }
985 
986 /**
987  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
988  *
989  * @ib: indirect buffer to fill with commands
990  * @pe: addr of the page entry
991  * @addr: dst addr to write into pe
992  * @count: number of page entries to update
993  * @incr: increase next addr by incr bytes
994  * @flags: access flags
995  *
996  * Update the page tables using sDMA (CIK).
997  */
998 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
999 				     uint64_t pe,
1000 				     uint64_t addr, unsigned count,
1001 				     uint32_t incr, uint32_t flags)
1002 {
1003 	uint64_t value;
1004 	unsigned ndw;
1005 
1006 	while (count) {
1007 		ndw = count;
1008 		if (ndw > 0x7FFFF)
1009 			ndw = 0x7FFFF;
1010 
1011 		if (flags & AMDGPU_PTE_VALID)
1012 			value = addr;
1013 		else
1014 			value = 0;
1015 
1016 		/* for physically contiguous pages (vram) */
1017 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1018 		ib->ptr[ib->length_dw++] = pe; /* dst addr */
1019 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1020 		ib->ptr[ib->length_dw++] = flags; /* mask */
1021 		ib->ptr[ib->length_dw++] = 0;
1022 		ib->ptr[ib->length_dw++] = value; /* value */
1023 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1024 		ib->ptr[ib->length_dw++] = incr; /* increment size */
1025 		ib->ptr[ib->length_dw++] = 0;
1026 		ib->ptr[ib->length_dw++] = ndw; /* number of entries */
1027 
1028 		pe += ndw * 8;
1029 		addr += ndw * incr;
1030 		count -= ndw;
1031 	}
1032 }
1033 
1034 /**
1035  * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
1036  *
1037  * @ib: indirect buffer to fill with padding
1038  *
1039  */
1040 static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
1041 {
1042 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring);
1043 	u32 pad_count;
1044 	int i;
1045 
1046 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1047 	for (i = 0; i < pad_count; i++)
1048 		if (sdma && sdma->burst_nop && (i == 0))
1049 			ib->ptr[ib->length_dw++] =
1050 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1051 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1052 		else
1053 			ib->ptr[ib->length_dw++] =
1054 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1055 }
1056 
1057 /**
1058  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1059  *
1060  * @ring: amdgpu_ring pointer
1061  * @vm: amdgpu_vm pointer
1062  *
1063  * Update the page table base and flush the VM TLB
1064  * using sDMA (VI).
1065  */
1066 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1067 					 unsigned vm_id, uint64_t pd_addr)
1068 {
1069 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1070 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1071 	if (vm_id < 8) {
1072 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1073 	} else {
1074 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1075 	}
1076 	amdgpu_ring_write(ring, pd_addr >> 12);
1077 
1078 	/* flush TLB */
1079 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1080 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1081 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1082 	amdgpu_ring_write(ring, 1 << vm_id);
1083 
1084 	/* wait for flush */
1085 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1086 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1087 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1088 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1089 	amdgpu_ring_write(ring, 0);
1090 	amdgpu_ring_write(ring, 0); /* reference */
1091 	amdgpu_ring_write(ring, 0); /* mask */
1092 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1093 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1094 }
1095 
1096 static int sdma_v3_0_early_init(void *handle)
1097 {
1098 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1099 
1100 	switch (adev->asic_type) {
1101 	case CHIP_STONEY:
1102 		adev->sdma.num_instances = 1;
1103 		break;
1104 	default:
1105 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1106 		break;
1107 	}
1108 
1109 	sdma_v3_0_set_ring_funcs(adev);
1110 	sdma_v3_0_set_buffer_funcs(adev);
1111 	sdma_v3_0_set_vm_pte_funcs(adev);
1112 	sdma_v3_0_set_irq_funcs(adev);
1113 
1114 	return 0;
1115 }
1116 
1117 static int sdma_v3_0_sw_init(void *handle)
1118 {
1119 	struct amdgpu_ring *ring;
1120 	int r, i;
1121 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1122 
1123 	/* SDMA trap event */
1124 	r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1125 	if (r)
1126 		return r;
1127 
1128 	/* SDMA Privileged inst */
1129 	r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1130 	if (r)
1131 		return r;
1132 
1133 	/* SDMA Privileged inst */
1134 	r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1135 	if (r)
1136 		return r;
1137 
1138 	r = sdma_v3_0_init_microcode(adev);
1139 	if (r) {
1140 		DRM_ERROR("Failed to load sdma firmware!\n");
1141 		return r;
1142 	}
1143 
1144 	for (i = 0; i < adev->sdma.num_instances; i++) {
1145 		ring = &adev->sdma.instance[i].ring;
1146 		ring->ring_obj = NULL;
1147 		ring->use_doorbell = true;
1148 		ring->doorbell_index = (i == 0) ?
1149 			AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1150 
1151 		sprintf(ring->name, "sdma%d", i);
1152 		r = amdgpu_ring_init(adev, ring, 256 * 1024,
1153 				     SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1154 				     &adev->sdma.trap_irq,
1155 				     (i == 0) ?
1156 				     AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1157 				     AMDGPU_RING_TYPE_SDMA);
1158 		if (r)
1159 			return r;
1160 	}
1161 
1162 	return r;
1163 }
1164 
1165 static int sdma_v3_0_sw_fini(void *handle)
1166 {
1167 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1168 	int i;
1169 
1170 	for (i = 0; i < adev->sdma.num_instances; i++)
1171 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1172 
1173 	return 0;
1174 }
1175 
1176 static int sdma_v3_0_hw_init(void *handle)
1177 {
1178 	int r;
1179 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1180 
1181 	sdma_v3_0_init_golden_registers(adev);
1182 
1183 	r = sdma_v3_0_start(adev);
1184 	if (r)
1185 		return r;
1186 
1187 	return r;
1188 }
1189 
1190 static int sdma_v3_0_hw_fini(void *handle)
1191 {
1192 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1193 
1194 	sdma_v3_0_ctx_switch_enable(adev, false);
1195 	sdma_v3_0_enable(adev, false);
1196 
1197 	return 0;
1198 }
1199 
1200 static int sdma_v3_0_suspend(void *handle)
1201 {
1202 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1203 
1204 	return sdma_v3_0_hw_fini(adev);
1205 }
1206 
1207 static int sdma_v3_0_resume(void *handle)
1208 {
1209 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1210 
1211 	return sdma_v3_0_hw_init(adev);
1212 }
1213 
1214 static bool sdma_v3_0_is_idle(void *handle)
1215 {
1216 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1217 	u32 tmp = RREG32(mmSRBM_STATUS2);
1218 
1219 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1220 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1221 	    return false;
1222 
1223 	return true;
1224 }
1225 
1226 static int sdma_v3_0_wait_for_idle(void *handle)
1227 {
1228 	unsigned i;
1229 	u32 tmp;
1230 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1231 
1232 	for (i = 0; i < adev->usec_timeout; i++) {
1233 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1234 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1235 
1236 		if (!tmp)
1237 			return 0;
1238 		udelay(1);
1239 	}
1240 	return -ETIMEDOUT;
1241 }
1242 
1243 static void sdma_v3_0_print_status(void *handle)
1244 {
1245 	int i, j;
1246 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1247 
1248 	dev_info(adev->dev, "VI SDMA registers\n");
1249 	dev_info(adev->dev, "  SRBM_STATUS2=0x%08X\n",
1250 		 RREG32(mmSRBM_STATUS2));
1251 	for (i = 0; i < adev->sdma.num_instances; i++) {
1252 		dev_info(adev->dev, "  SDMA%d_STATUS_REG=0x%08X\n",
1253 			 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
1254 		dev_info(adev->dev, "  SDMA%d_F32_CNTL=0x%08X\n",
1255 			 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
1256 		dev_info(adev->dev, "  SDMA%d_CNTL=0x%08X\n",
1257 			 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
1258 		dev_info(adev->dev, "  SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
1259 			 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
1260 		dev_info(adev->dev, "  SDMA%d_GFX_IB_CNTL=0x%08X\n",
1261 			 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
1262 		dev_info(adev->dev, "  SDMA%d_GFX_RB_CNTL=0x%08X\n",
1263 			 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
1264 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR=0x%08X\n",
1265 			 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
1266 		dev_info(adev->dev, "  SDMA%d_GFX_RB_WPTR=0x%08X\n",
1267 			 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
1268 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
1269 			 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
1270 		dev_info(adev->dev, "  SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
1271 			 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
1272 		dev_info(adev->dev, "  SDMA%d_GFX_RB_BASE=0x%08X\n",
1273 			 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
1274 		dev_info(adev->dev, "  SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
1275 			 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
1276 		dev_info(adev->dev, "  SDMA%d_GFX_DOORBELL=0x%08X\n",
1277 			 i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
1278 		mutex_lock(&adev->srbm_mutex);
1279 		for (j = 0; j < 16; j++) {
1280 			vi_srbm_select(adev, 0, 0, 0, j);
1281 			dev_info(adev->dev, "  VM %d:\n", j);
1282 			dev_info(adev->dev, "  SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
1283 				 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
1284 			dev_info(adev->dev, "  SDMA%d_GFX_APE1_CNTL=0x%08X\n",
1285 				 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
1286 		}
1287 		vi_srbm_select(adev, 0, 0, 0, 0);
1288 		mutex_unlock(&adev->srbm_mutex);
1289 	}
1290 }
1291 
1292 static int sdma_v3_0_soft_reset(void *handle)
1293 {
1294 	u32 srbm_soft_reset = 0;
1295 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1296 	u32 tmp = RREG32(mmSRBM_STATUS2);
1297 
1298 	if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1299 		/* sdma0 */
1300 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1301 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1302 		WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1303 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1304 	}
1305 	if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1306 		/* sdma1 */
1307 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1308 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1309 		WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1310 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1311 	}
1312 
1313 	if (srbm_soft_reset) {
1314 		sdma_v3_0_print_status((void *)adev);
1315 
1316 		tmp = RREG32(mmSRBM_SOFT_RESET);
1317 		tmp |= srbm_soft_reset;
1318 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1319 		WREG32(mmSRBM_SOFT_RESET, tmp);
1320 		tmp = RREG32(mmSRBM_SOFT_RESET);
1321 
1322 		udelay(50);
1323 
1324 		tmp &= ~srbm_soft_reset;
1325 		WREG32(mmSRBM_SOFT_RESET, tmp);
1326 		tmp = RREG32(mmSRBM_SOFT_RESET);
1327 
1328 		/* Wait a little for things to settle down */
1329 		udelay(50);
1330 
1331 		sdma_v3_0_print_status((void *)adev);
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1338 					struct amdgpu_irq_src *source,
1339 					unsigned type,
1340 					enum amdgpu_interrupt_state state)
1341 {
1342 	u32 sdma_cntl;
1343 
1344 	switch (type) {
1345 	case AMDGPU_SDMA_IRQ_TRAP0:
1346 		switch (state) {
1347 		case AMDGPU_IRQ_STATE_DISABLE:
1348 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1349 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1350 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1351 			break;
1352 		case AMDGPU_IRQ_STATE_ENABLE:
1353 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1354 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1355 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1356 			break;
1357 		default:
1358 			break;
1359 		}
1360 		break;
1361 	case AMDGPU_SDMA_IRQ_TRAP1:
1362 		switch (state) {
1363 		case AMDGPU_IRQ_STATE_DISABLE:
1364 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1365 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1366 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1367 			break;
1368 		case AMDGPU_IRQ_STATE_ENABLE:
1369 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1370 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1371 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1372 			break;
1373 		default:
1374 			break;
1375 		}
1376 		break;
1377 	default:
1378 		break;
1379 	}
1380 	return 0;
1381 }
1382 
1383 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1384 				      struct amdgpu_irq_src *source,
1385 				      struct amdgpu_iv_entry *entry)
1386 {
1387 	u8 instance_id, queue_id;
1388 
1389 	instance_id = (entry->ring_id & 0x3) >> 0;
1390 	queue_id = (entry->ring_id & 0xc) >> 2;
1391 	DRM_DEBUG("IH: SDMA trap\n");
1392 	switch (instance_id) {
1393 	case 0:
1394 		switch (queue_id) {
1395 		case 0:
1396 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1397 			break;
1398 		case 1:
1399 			/* XXX compute */
1400 			break;
1401 		case 2:
1402 			/* XXX compute */
1403 			break;
1404 		}
1405 		break;
1406 	case 1:
1407 		switch (queue_id) {
1408 		case 0:
1409 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1410 			break;
1411 		case 1:
1412 			/* XXX compute */
1413 			break;
1414 		case 2:
1415 			/* XXX compute */
1416 			break;
1417 		}
1418 		break;
1419 	}
1420 	return 0;
1421 }
1422 
1423 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1424 					      struct amdgpu_irq_src *source,
1425 					      struct amdgpu_iv_entry *entry)
1426 {
1427 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1428 	schedule_work(&adev->reset_work);
1429 	return 0;
1430 }
1431 
1432 static void fiji_update_sdma_medium_grain_clock_gating(
1433 		struct amdgpu_device *adev,
1434 		bool enable)
1435 {
1436 	uint32_t temp, data;
1437 
1438 	if (enable) {
1439 		temp = data = RREG32(mmSDMA0_CLK_CTRL);
1440 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1441 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1442 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1443 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1444 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1445 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1446 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1447 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1448 		if (data != temp)
1449 			WREG32(mmSDMA0_CLK_CTRL, data);
1450 
1451 		temp = data = RREG32(mmSDMA1_CLK_CTRL);
1452 		data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1453 				SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1454 				SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1455 				SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1456 				SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1457 				SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1458 				SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1459 				SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1460 
1461 		if (data != temp)
1462 			WREG32(mmSDMA1_CLK_CTRL, data);
1463 	} else {
1464 		temp = data = RREG32(mmSDMA0_CLK_CTRL);
1465 		data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1466 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1467 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1468 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1469 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1470 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1471 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1472 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1473 
1474 		if (data != temp)
1475 			WREG32(mmSDMA0_CLK_CTRL, data);
1476 
1477 		temp = data = RREG32(mmSDMA1_CLK_CTRL);
1478 		data |= SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1479 				SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1480 				SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1481 				SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1482 				SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1483 				SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1484 				SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1485 				SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1486 
1487 		if (data != temp)
1488 			WREG32(mmSDMA1_CLK_CTRL, data);
1489 	}
1490 }
1491 
1492 static void fiji_update_sdma_medium_grain_light_sleep(
1493 		struct amdgpu_device *adev,
1494 		bool enable)
1495 {
1496 	uint32_t temp, data;
1497 
1498 	if (enable) {
1499 		temp = data = RREG32(mmSDMA0_POWER_CNTL);
1500 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1501 
1502 		if (temp != data)
1503 			WREG32(mmSDMA0_POWER_CNTL, data);
1504 
1505 		temp = data = RREG32(mmSDMA1_POWER_CNTL);
1506 		data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1507 
1508 		if (temp != data)
1509 			WREG32(mmSDMA1_POWER_CNTL, data);
1510 	} else {
1511 		temp = data = RREG32(mmSDMA0_POWER_CNTL);
1512 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1513 
1514 		if (temp != data)
1515 			WREG32(mmSDMA0_POWER_CNTL, data);
1516 
1517 		temp = data = RREG32(mmSDMA1_POWER_CNTL);
1518 		data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1519 
1520 		if (temp != data)
1521 			WREG32(mmSDMA1_POWER_CNTL, data);
1522 	}
1523 }
1524 
1525 static int sdma_v3_0_set_clockgating_state(void *handle,
1526 					  enum amd_clockgating_state state)
1527 {
1528 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1529 
1530 	switch (adev->asic_type) {
1531 	case CHIP_FIJI:
1532 		fiji_update_sdma_medium_grain_clock_gating(adev,
1533 				state == AMD_CG_STATE_GATE ? true : false);
1534 		fiji_update_sdma_medium_grain_light_sleep(adev,
1535 				state == AMD_CG_STATE_GATE ? true : false);
1536 		break;
1537 	default:
1538 		break;
1539 	}
1540 	return 0;
1541 }
1542 
1543 static int sdma_v3_0_set_powergating_state(void *handle,
1544 					  enum amd_powergating_state state)
1545 {
1546 	return 0;
1547 }
1548 
1549 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1550 	.early_init = sdma_v3_0_early_init,
1551 	.late_init = NULL,
1552 	.sw_init = sdma_v3_0_sw_init,
1553 	.sw_fini = sdma_v3_0_sw_fini,
1554 	.hw_init = sdma_v3_0_hw_init,
1555 	.hw_fini = sdma_v3_0_hw_fini,
1556 	.suspend = sdma_v3_0_suspend,
1557 	.resume = sdma_v3_0_resume,
1558 	.is_idle = sdma_v3_0_is_idle,
1559 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1560 	.soft_reset = sdma_v3_0_soft_reset,
1561 	.print_status = sdma_v3_0_print_status,
1562 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1563 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1564 };
1565 
1566 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1567 	.get_rptr = sdma_v3_0_ring_get_rptr,
1568 	.get_wptr = sdma_v3_0_ring_get_wptr,
1569 	.set_wptr = sdma_v3_0_ring_set_wptr,
1570 	.parse_cs = NULL,
1571 	.emit_ib = sdma_v3_0_ring_emit_ib,
1572 	.emit_fence = sdma_v3_0_ring_emit_fence,
1573 	.emit_semaphore = sdma_v3_0_ring_emit_semaphore,
1574 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1575 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1576 	.test_ring = sdma_v3_0_ring_test_ring,
1577 	.test_ib = sdma_v3_0_ring_test_ib,
1578 	.insert_nop = sdma_v3_0_ring_insert_nop,
1579 };
1580 
1581 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1582 {
1583 	int i;
1584 
1585 	for (i = 0; i < adev->sdma.num_instances; i++)
1586 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1587 }
1588 
1589 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1590 	.set = sdma_v3_0_set_trap_irq_state,
1591 	.process = sdma_v3_0_process_trap_irq,
1592 };
1593 
1594 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1595 	.process = sdma_v3_0_process_illegal_inst_irq,
1596 };
1597 
1598 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1599 {
1600 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1601 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1602 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1603 }
1604 
1605 /**
1606  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1607  *
1608  * @ring: amdgpu_ring structure holding ring information
1609  * @src_offset: src GPU address
1610  * @dst_offset: dst GPU address
1611  * @byte_count: number of bytes to xfer
1612  *
1613  * Copy GPU buffers using the DMA engine (VI).
1614  * Used by the amdgpu ttm implementation to move pages if
1615  * registered as the asic copy callback.
1616  */
1617 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1618 				       uint64_t src_offset,
1619 				       uint64_t dst_offset,
1620 				       uint32_t byte_count)
1621 {
1622 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1623 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1624 	ib->ptr[ib->length_dw++] = byte_count;
1625 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1626 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1627 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1628 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1629 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1630 }
1631 
1632 /**
1633  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1634  *
1635  * @ring: amdgpu_ring structure holding ring information
1636  * @src_data: value to write to buffer
1637  * @dst_offset: dst GPU address
1638  * @byte_count: number of bytes to xfer
1639  *
1640  * Fill GPU buffers using the DMA engine (VI).
1641  */
1642 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1643 				       uint32_t src_data,
1644 				       uint64_t dst_offset,
1645 				       uint32_t byte_count)
1646 {
1647 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1648 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1649 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1650 	ib->ptr[ib->length_dw++] = src_data;
1651 	ib->ptr[ib->length_dw++] = byte_count;
1652 }
1653 
1654 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1655 	.copy_max_bytes = 0x1fffff,
1656 	.copy_num_dw = 7,
1657 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1658 
1659 	.fill_max_bytes = 0x1fffff,
1660 	.fill_num_dw = 5,
1661 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1662 };
1663 
1664 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1665 {
1666 	if (adev->mman.buffer_funcs == NULL) {
1667 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1668 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1669 	}
1670 }
1671 
1672 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1673 	.copy_pte = sdma_v3_0_vm_copy_pte,
1674 	.write_pte = sdma_v3_0_vm_write_pte,
1675 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1676 	.pad_ib = sdma_v3_0_vm_pad_ib,
1677 };
1678 
1679 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1680 {
1681 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1682 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1683 		adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring;
1684 		adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
1685 	}
1686 }
1687