1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65 
66 
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69 	SDMA0_REGISTER_OFFSET,
70 	SDMA1_REGISTER_OFFSET
71 };
72 
73 static const u32 golden_settings_tonga_a11[] =
74 {
75 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86 
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92 
93 static const u32 golden_settings_fiji_a10[] =
94 {
95 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104 
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110 
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124 
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138 
139 static const u32 cz_golden_settings_a11[] =
140 {
141 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154 
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160 
161 static const u32 stoney_golden_settings_a11[] =
162 {
163 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168 
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173 
174 /*
175  * sDMA - System DMA
176  * Starting with CIK, the GPU has new asynchronous
177  * DMA engines.  These engines are used for compute
178  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
179  * and each one supports 1 ring buffer used for gfx
180  * and 2 queues used for compute.
181  *
182  * The programming model is very similar to the CP
183  * (ring buffer, IBs, etc.), but sDMA has it's own
184  * packet format that is different from the PM4 format
185  * used by the CP. sDMA supports copying data, writing
186  * embedded data, solid fills, and a number of other
187  * things.  It also has support for tiling/detiling of
188  * buffers.
189  */
190 
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193 	switch (adev->asic_type) {
194 	case CHIP_FIJI:
195 		amdgpu_program_register_sequence(adev,
196 						 fiji_mgcg_cgcg_init,
197 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 		amdgpu_program_register_sequence(adev,
199 						 golden_settings_fiji_a10,
200 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
201 		break;
202 	case CHIP_TONGA:
203 		amdgpu_program_register_sequence(adev,
204 						 tonga_mgcg_cgcg_init,
205 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 		amdgpu_program_register_sequence(adev,
207 						 golden_settings_tonga_a11,
208 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
209 		break;
210 	case CHIP_POLARIS11:
211 	case CHIP_POLARIS12:
212 		amdgpu_program_register_sequence(adev,
213 						 golden_settings_polaris11_a11,
214 						 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
215 		break;
216 	case CHIP_POLARIS10:
217 		amdgpu_program_register_sequence(adev,
218 						 golden_settings_polaris10_a11,
219 						 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
220 		break;
221 	case CHIP_CARRIZO:
222 		amdgpu_program_register_sequence(adev,
223 						 cz_mgcg_cgcg_init,
224 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
225 		amdgpu_program_register_sequence(adev,
226 						 cz_golden_settings_a11,
227 						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
228 		break;
229 	case CHIP_STONEY:
230 		amdgpu_program_register_sequence(adev,
231 						 stoney_mgcg_cgcg_init,
232 						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 		amdgpu_program_register_sequence(adev,
234 						 stoney_golden_settings_a11,
235 						 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
236 		break;
237 	default:
238 		break;
239 	}
240 }
241 
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244 	int i;
245 	for (i = 0; i < adev->sdma.num_instances; i++) {
246 		release_firmware(adev->sdma.instance[i].fw);
247 		adev->sdma.instance[i].fw = NULL;
248 	}
249 }
250 
251 /**
252  * sdma_v3_0_init_microcode - load ucode images from disk
253  *
254  * @adev: amdgpu_device pointer
255  *
256  * Use the firmware interface to load the ucode images into
257  * the driver (not loaded into hw).
258  * Returns 0 on success, error on failure.
259  */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262 	const char *chip_name;
263 	char fw_name[30];
264 	int err = 0, i;
265 	struct amdgpu_firmware_info *info = NULL;
266 	const struct common_firmware_header *header = NULL;
267 	const struct sdma_firmware_header_v1_0 *hdr;
268 
269 	DRM_DEBUG("\n");
270 
271 	switch (adev->asic_type) {
272 	case CHIP_TONGA:
273 		chip_name = "tonga";
274 		break;
275 	case CHIP_FIJI:
276 		chip_name = "fiji";
277 		break;
278 	case CHIP_POLARIS11:
279 		chip_name = "polaris11";
280 		break;
281 	case CHIP_POLARIS10:
282 		chip_name = "polaris10";
283 		break;
284 	case CHIP_POLARIS12:
285 		chip_name = "polaris12";
286 		break;
287 	case CHIP_CARRIZO:
288 		chip_name = "carrizo";
289 		break;
290 	case CHIP_STONEY:
291 		chip_name = "stoney";
292 		break;
293 	default: BUG();
294 	}
295 
296 	for (i = 0; i < adev->sdma.num_instances; i++) {
297 		if (i == 0)
298 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 		else
300 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 		if (err)
303 			goto out;
304 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 		if (err)
306 			goto out;
307 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 		if (adev->sdma.instance[i].feature_version >= 20)
311 			adev->sdma.instance[i].burst_nop = true;
312 
313 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
314 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 			info->fw = adev->sdma.instance[i].fw;
317 			header = (const struct common_firmware_header *)info->fw->data;
318 			adev->firmware.fw_size +=
319 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 		}
321 	}
322 out:
323 	if (err) {
324 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
325 		for (i = 0; i < adev->sdma.num_instances; i++) {
326 			release_firmware(adev->sdma.instance[i].fw);
327 			adev->sdma.instance[i].fw = NULL;
328 		}
329 	}
330 	return err;
331 }
332 
333 /**
334  * sdma_v3_0_ring_get_rptr - get the current read pointer
335  *
336  * @ring: amdgpu ring pointer
337  *
338  * Get the current rptr from the hardware (VI+).
339  */
340 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
341 {
342 	/* XXX check if swapping is necessary on BE */
343 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
344 }
345 
346 /**
347  * sdma_v3_0_ring_get_wptr - get the current write pointer
348  *
349  * @ring: amdgpu ring pointer
350  *
351  * Get the current wptr from the hardware (VI+).
352  */
353 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355 	struct amdgpu_device *adev = ring->adev;
356 	u32 wptr;
357 
358 	if (ring->use_doorbell) {
359 		/* XXX check if swapping is necessary on BE */
360 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 	} else {
362 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363 
364 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 	}
366 
367 	return wptr;
368 }
369 
370 /**
371  * sdma_v3_0_ring_set_wptr - commit the write pointer
372  *
373  * @ring: amdgpu ring pointer
374  *
375  * Write the wptr back to the hardware (VI+).
376  */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379 	struct amdgpu_device *adev = ring->adev;
380 
381 	if (ring->use_doorbell) {
382 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
383 
384 		/* XXX check if swapping is necessary on BE */
385 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
386 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
387 	} else {
388 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
389 
390 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
391 	}
392 }
393 
394 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
395 {
396 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
397 	int i;
398 
399 	for (i = 0; i < count; i++)
400 		if (sdma && sdma->burst_nop && (i == 0))
401 			amdgpu_ring_write(ring, ring->funcs->nop |
402 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
403 		else
404 			amdgpu_ring_write(ring, ring->funcs->nop);
405 }
406 
407 /**
408  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
409  *
410  * @ring: amdgpu ring pointer
411  * @ib: IB object to schedule
412  *
413  * Schedule an IB in the DMA ring (VI).
414  */
415 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
416 				   struct amdgpu_ib *ib,
417 				   unsigned vm_id, bool ctx_switch)
418 {
419 	u32 vmid = vm_id & 0xf;
420 
421 	/* IB packet must end on a 8 DW boundary */
422 	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
423 
424 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
425 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
426 	/* base must be 32 byte aligned */
427 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
428 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
429 	amdgpu_ring_write(ring, ib->length_dw);
430 	amdgpu_ring_write(ring, 0);
431 	amdgpu_ring_write(ring, 0);
432 
433 }
434 
435 /**
436  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
437  *
438  * @ring: amdgpu ring pointer
439  *
440  * Emit an hdp flush packet on the requested DMA ring.
441  */
442 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
443 {
444 	u32 ref_and_mask = 0;
445 
446 	if (ring == &ring->adev->sdma.instance[0].ring)
447 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
448 	else
449 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
450 
451 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
452 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
453 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
454 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
455 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
456 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
457 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
458 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
459 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
460 }
461 
462 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
463 {
464 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
465 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
466 	amdgpu_ring_write(ring, mmHDP_DEBUG0);
467 	amdgpu_ring_write(ring, 1);
468 }
469 
470 /**
471  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
472  *
473  * @ring: amdgpu ring pointer
474  * @fence: amdgpu fence object
475  *
476  * Add a DMA fence packet to the ring to write
477  * the fence seq number and DMA trap packet to generate
478  * an interrupt if needed (VI).
479  */
480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 				      unsigned flags)
482 {
483 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 	/* write the fence */
485 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 	amdgpu_ring_write(ring, lower_32_bits(addr));
487 	amdgpu_ring_write(ring, upper_32_bits(addr));
488 	amdgpu_ring_write(ring, lower_32_bits(seq));
489 
490 	/* optionally write high bits as well */
491 	if (write64bit) {
492 		addr += 4;
493 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 		amdgpu_ring_write(ring, lower_32_bits(addr));
495 		amdgpu_ring_write(ring, upper_32_bits(addr));
496 		amdgpu_ring_write(ring, upper_32_bits(seq));
497 	}
498 
499 	/* generate an interrupt */
500 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502 }
503 
504 /**
505  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506  *
507  * @adev: amdgpu_device pointer
508  *
509  * Stop the gfx async dma ring buffers (VI).
510  */
511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512 {
513 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
514 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
515 	u32 rb_cntl, ib_cntl;
516 	int i;
517 
518 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
519 	    (adev->mman.buffer_funcs_ring == sdma1))
520 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
521 
522 	for (i = 0; i < adev->sdma.num_instances; i++) {
523 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
524 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
525 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
526 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
527 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
528 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
529 	}
530 	sdma0->ready = false;
531 	sdma1->ready = false;
532 }
533 
534 /**
535  * sdma_v3_0_rlc_stop - stop the compute async dma engines
536  *
537  * @adev: amdgpu_device pointer
538  *
539  * Stop the compute async dma queues (VI).
540  */
541 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
542 {
543 	/* XXX todo */
544 }
545 
546 /**
547  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
548  *
549  * @adev: amdgpu_device pointer
550  * @enable: enable/disable the DMA MEs context switch.
551  *
552  * Halt or unhalt the async dma engines context switch (VI).
553  */
554 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
555 {
556 	u32 f32_cntl, phase_quantum = 0;
557 	int i;
558 
559 	if (amdgpu_sdma_phase_quantum) {
560 		unsigned value = amdgpu_sdma_phase_quantum;
561 		unsigned unit = 0;
562 
563 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
564 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
565 			value = (value + 1) >> 1;
566 			unit++;
567 		}
568 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
569 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
570 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
571 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
572 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
573 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
574 			WARN_ONCE(1,
575 			"clamping sdma_phase_quantum to %uK clock cycles\n",
576 				  value << unit);
577 		}
578 		phase_quantum =
579 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
580 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
581 	}
582 
583 	for (i = 0; i < adev->sdma.num_instances; i++) {
584 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
585 		if (enable) {
586 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
587 					AUTO_CTXSW_ENABLE, 1);
588 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
589 					ATC_L1_ENABLE, 1);
590 			if (amdgpu_sdma_phase_quantum) {
591 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
592 				       phase_quantum);
593 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
594 				       phase_quantum);
595 			}
596 		} else {
597 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
598 					AUTO_CTXSW_ENABLE, 0);
599 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
600 					ATC_L1_ENABLE, 1);
601 		}
602 
603 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
604 	}
605 }
606 
607 /**
608  * sdma_v3_0_enable - stop the async dma engines
609  *
610  * @adev: amdgpu_device pointer
611  * @enable: enable/disable the DMA MEs.
612  *
613  * Halt or unhalt the async dma engines (VI).
614  */
615 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
616 {
617 	u32 f32_cntl;
618 	int i;
619 
620 	if (!enable) {
621 		sdma_v3_0_gfx_stop(adev);
622 		sdma_v3_0_rlc_stop(adev);
623 	}
624 
625 	for (i = 0; i < adev->sdma.num_instances; i++) {
626 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
627 		if (enable)
628 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
629 		else
630 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
631 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
632 	}
633 }
634 
635 /**
636  * sdma_v3_0_gfx_resume - setup and start the async dma engines
637  *
638  * @adev: amdgpu_device pointer
639  *
640  * Set up the gfx DMA ring buffers and enable them (VI).
641  * Returns 0 for success, error for failure.
642  */
643 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
644 {
645 	struct amdgpu_ring *ring;
646 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
647 	u32 rb_bufsz;
648 	u32 wb_offset;
649 	u32 doorbell;
650 	u64 wptr_gpu_addr;
651 	int i, j, r;
652 
653 	for (i = 0; i < adev->sdma.num_instances; i++) {
654 		ring = &adev->sdma.instance[i].ring;
655 		amdgpu_ring_clear_ring(ring);
656 		wb_offset = (ring->rptr_offs * 4);
657 
658 		mutex_lock(&adev->srbm_mutex);
659 		for (j = 0; j < 16; j++) {
660 			vi_srbm_select(adev, 0, 0, 0, j);
661 			/* SDMA GFX */
662 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
663 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
664 		}
665 		vi_srbm_select(adev, 0, 0, 0, 0);
666 		mutex_unlock(&adev->srbm_mutex);
667 
668 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
669 		       adev->gfx.config.gb_addr_config & 0x70);
670 
671 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
672 
673 		/* Set ring buffer size in dwords */
674 		rb_bufsz = order_base_2(ring->ring_size / 4);
675 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
676 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
677 #ifdef __BIG_ENDIAN
678 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
679 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
680 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
681 #endif
682 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
683 
684 		/* Initialize the ring buffer's read and write pointers */
685 		ring->wptr = 0;
686 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
687 		sdma_v3_0_ring_set_wptr(ring);
688 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
689 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
690 
691 		/* set the wb address whether it's enabled or not */
692 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
693 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
694 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
695 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
696 
697 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
698 
699 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
700 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
701 
702 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
703 
704 		if (ring->use_doorbell) {
705 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
706 						 OFFSET, ring->doorbell_index);
707 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
708 		} else {
709 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
710 		}
711 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
712 
713 		/* setup the wptr shadow polling */
714 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
715 
716 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
717 		       lower_32_bits(wptr_gpu_addr));
718 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
719 		       upper_32_bits(wptr_gpu_addr));
720 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
721 		if (amdgpu_sriov_vf(adev))
722 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
723 		else
724 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
725 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
726 
727 		/* enable DMA RB */
728 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
729 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
730 
731 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
732 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
733 #ifdef __BIG_ENDIAN
734 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
735 #endif
736 		/* enable DMA IBs */
737 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
738 
739 		ring->ready = true;
740 	}
741 
742 	/* unhalt the MEs */
743 	sdma_v3_0_enable(adev, true);
744 	/* enable sdma ring preemption */
745 	sdma_v3_0_ctx_switch_enable(adev, true);
746 
747 	for (i = 0; i < adev->sdma.num_instances; i++) {
748 		ring = &adev->sdma.instance[i].ring;
749 		r = amdgpu_ring_test_ring(ring);
750 		if (r) {
751 			ring->ready = false;
752 			return r;
753 		}
754 
755 		if (adev->mman.buffer_funcs_ring == ring)
756 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
757 	}
758 
759 	return 0;
760 }
761 
762 /**
763  * sdma_v3_0_rlc_resume - setup and start the async dma engines
764  *
765  * @adev: amdgpu_device pointer
766  *
767  * Set up the compute DMA queues and enable them (VI).
768  * Returns 0 for success, error for failure.
769  */
770 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
771 {
772 	/* XXX todo */
773 	return 0;
774 }
775 
776 /**
777  * sdma_v3_0_load_microcode - load the sDMA ME ucode
778  *
779  * @adev: amdgpu_device pointer
780  *
781  * Loads the sDMA0/1 ucode.
782  * Returns 0 for success, -EINVAL if the ucode is not available.
783  */
784 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
785 {
786 	const struct sdma_firmware_header_v1_0 *hdr;
787 	const __le32 *fw_data;
788 	u32 fw_size;
789 	int i, j;
790 
791 	/* halt the MEs */
792 	sdma_v3_0_enable(adev, false);
793 
794 	for (i = 0; i < adev->sdma.num_instances; i++) {
795 		if (!adev->sdma.instance[i].fw)
796 			return -EINVAL;
797 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
798 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
799 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
800 		fw_data = (const __le32 *)
801 			(adev->sdma.instance[i].fw->data +
802 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
803 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
804 		for (j = 0; j < fw_size; j++)
805 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
806 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
807 	}
808 
809 	return 0;
810 }
811 
812 /**
813  * sdma_v3_0_start - setup and start the async dma engines
814  *
815  * @adev: amdgpu_device pointer
816  *
817  * Set up the DMA engines and enable them (VI).
818  * Returns 0 for success, error for failure.
819  */
820 static int sdma_v3_0_start(struct amdgpu_device *adev)
821 {
822 	int r, i;
823 
824 	if (!adev->pp_enabled) {
825 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_SMU) {
826 			r = sdma_v3_0_load_microcode(adev);
827 			if (r)
828 				return r;
829 		} else {
830 			for (i = 0; i < adev->sdma.num_instances; i++) {
831 				r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
832 										 (i == 0) ?
833 										 AMDGPU_UCODE_ID_SDMA0 :
834 										 AMDGPU_UCODE_ID_SDMA1);
835 				if (r)
836 					return -EINVAL;
837 			}
838 		}
839 	}
840 
841 	/* disable sdma engine before programing it */
842 	sdma_v3_0_ctx_switch_enable(adev, false);
843 	sdma_v3_0_enable(adev, false);
844 
845 	/* start the gfx rings and rlc compute queues */
846 	r = sdma_v3_0_gfx_resume(adev);
847 	if (r)
848 		return r;
849 	r = sdma_v3_0_rlc_resume(adev);
850 	if (r)
851 		return r;
852 
853 	return 0;
854 }
855 
856 /**
857  * sdma_v3_0_ring_test_ring - simple async dma engine test
858  *
859  * @ring: amdgpu_ring structure holding ring information
860  *
861  * Test the DMA engine by writing using it to write an
862  * value to memory. (VI).
863  * Returns 0 for success, error for failure.
864  */
865 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
866 {
867 	struct amdgpu_device *adev = ring->adev;
868 	unsigned i;
869 	unsigned index;
870 	int r;
871 	u32 tmp;
872 	u64 gpu_addr;
873 
874 	r = amdgpu_wb_get(adev, &index);
875 	if (r) {
876 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
877 		return r;
878 	}
879 
880 	gpu_addr = adev->wb.gpu_addr + (index * 4);
881 	tmp = 0xCAFEDEAD;
882 	adev->wb.wb[index] = cpu_to_le32(tmp);
883 
884 	r = amdgpu_ring_alloc(ring, 5);
885 	if (r) {
886 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
887 		amdgpu_wb_free(adev, index);
888 		return r;
889 	}
890 
891 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
892 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
893 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
894 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
895 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
896 	amdgpu_ring_write(ring, 0xDEADBEEF);
897 	amdgpu_ring_commit(ring);
898 
899 	for (i = 0; i < adev->usec_timeout; i++) {
900 		tmp = le32_to_cpu(adev->wb.wb[index]);
901 		if (tmp == 0xDEADBEEF)
902 			break;
903 		DRM_UDELAY(1);
904 	}
905 
906 	if (i < adev->usec_timeout) {
907 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
908 	} else {
909 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
910 			  ring->idx, tmp);
911 		r = -EINVAL;
912 	}
913 	amdgpu_wb_free(adev, index);
914 
915 	return r;
916 }
917 
918 /**
919  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
920  *
921  * @ring: amdgpu_ring structure holding ring information
922  *
923  * Test a simple IB in the DMA ring (VI).
924  * Returns 0 on success, error on failure.
925  */
926 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
927 {
928 	struct amdgpu_device *adev = ring->adev;
929 	struct amdgpu_ib ib;
930 	struct dma_fence *f = NULL;
931 	unsigned index;
932 	u32 tmp = 0;
933 	u64 gpu_addr;
934 	long r;
935 
936 	r = amdgpu_wb_get(adev, &index);
937 	if (r) {
938 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
939 		return r;
940 	}
941 
942 	gpu_addr = adev->wb.gpu_addr + (index * 4);
943 	tmp = 0xCAFEDEAD;
944 	adev->wb.wb[index] = cpu_to_le32(tmp);
945 	memset(&ib, 0, sizeof(ib));
946 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
947 	if (r) {
948 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
949 		goto err0;
950 	}
951 
952 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
953 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
954 	ib.ptr[1] = lower_32_bits(gpu_addr);
955 	ib.ptr[2] = upper_32_bits(gpu_addr);
956 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
957 	ib.ptr[4] = 0xDEADBEEF;
958 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
959 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
960 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
961 	ib.length_dw = 8;
962 
963 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
964 	if (r)
965 		goto err1;
966 
967 	r = dma_fence_wait_timeout(f, false, timeout);
968 	if (r == 0) {
969 		DRM_ERROR("amdgpu: IB test timed out\n");
970 		r = -ETIMEDOUT;
971 		goto err1;
972 	} else if (r < 0) {
973 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
974 		goto err1;
975 	}
976 	tmp = le32_to_cpu(adev->wb.wb[index]);
977 	if (tmp == 0xDEADBEEF) {
978 		DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
979 		r = 0;
980 	} else {
981 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
982 		r = -EINVAL;
983 	}
984 err1:
985 	amdgpu_ib_free(adev, &ib, NULL);
986 	dma_fence_put(f);
987 err0:
988 	amdgpu_wb_free(adev, index);
989 	return r;
990 }
991 
992 /**
993  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
994  *
995  * @ib: indirect buffer to fill with commands
996  * @pe: addr of the page entry
997  * @src: src addr to copy from
998  * @count: number of page entries to update
999  *
1000  * Update PTEs by copying them from the GART using sDMA (CIK).
1001  */
1002 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
1003 				  uint64_t pe, uint64_t src,
1004 				  unsigned count)
1005 {
1006 	unsigned bytes = count * 8;
1007 
1008 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1009 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1010 	ib->ptr[ib->length_dw++] = bytes;
1011 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1012 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1013 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1014 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1015 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1016 }
1017 
1018 /**
1019  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1020  *
1021  * @ib: indirect buffer to fill with commands
1022  * @pe: addr of the page entry
1023  * @value: dst addr to write into pe
1024  * @count: number of page entries to update
1025  * @incr: increase next addr by incr bytes
1026  *
1027  * Update PTEs by writing them manually using sDMA (CIK).
1028  */
1029 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1030 				   uint64_t value, unsigned count,
1031 				   uint32_t incr)
1032 {
1033 	unsigned ndw = count * 2;
1034 
1035 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1036 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1037 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1038 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1039 	ib->ptr[ib->length_dw++] = ndw;
1040 	for (; ndw > 0; ndw -= 2) {
1041 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1042 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1043 		value += incr;
1044 	}
1045 }
1046 
1047 /**
1048  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1049  *
1050  * @ib: indirect buffer to fill with commands
1051  * @pe: addr of the page entry
1052  * @addr: dst addr to write into pe
1053  * @count: number of page entries to update
1054  * @incr: increase next addr by incr bytes
1055  * @flags: access flags
1056  *
1057  * Update the page tables using sDMA (CIK).
1058  */
1059 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1060 				     uint64_t addr, unsigned count,
1061 				     uint32_t incr, uint64_t flags)
1062 {
1063 	/* for physically contiguous pages (vram) */
1064 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1065 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1066 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1067 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1068 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1069 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1070 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1071 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1072 	ib->ptr[ib->length_dw++] = 0;
1073 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1074 }
1075 
1076 /**
1077  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1078  *
1079  * @ib: indirect buffer to fill with padding
1080  *
1081  */
1082 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1083 {
1084 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1085 	u32 pad_count;
1086 	int i;
1087 
1088 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1089 	for (i = 0; i < pad_count; i++)
1090 		if (sdma && sdma->burst_nop && (i == 0))
1091 			ib->ptr[ib->length_dw++] =
1092 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1093 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1094 		else
1095 			ib->ptr[ib->length_dw++] =
1096 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1097 }
1098 
1099 /**
1100  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1101  *
1102  * @ring: amdgpu_ring pointer
1103  *
1104  * Make sure all previous operations are completed (CIK).
1105  */
1106 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1107 {
1108 	uint32_t seq = ring->fence_drv.sync_seq;
1109 	uint64_t addr = ring->fence_drv.gpu_addr;
1110 
1111 	/* wait for idle */
1112 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1113 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1114 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1115 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1116 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1117 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1118 	amdgpu_ring_write(ring, seq); /* reference */
1119 	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1120 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1121 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1122 }
1123 
1124 /**
1125  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1126  *
1127  * @ring: amdgpu_ring pointer
1128  * @vm: amdgpu_vm pointer
1129  *
1130  * Update the page table base and flush the VM TLB
1131  * using sDMA (VI).
1132  */
1133 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1134 					 unsigned vm_id, uint64_t pd_addr)
1135 {
1136 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1137 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1138 	if (vm_id < 8) {
1139 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1140 	} else {
1141 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1142 	}
1143 	amdgpu_ring_write(ring, pd_addr >> 12);
1144 
1145 	/* flush TLB */
1146 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1147 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1148 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1149 	amdgpu_ring_write(ring, 1 << vm_id);
1150 
1151 	/* wait for flush */
1152 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1153 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1154 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1155 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1156 	amdgpu_ring_write(ring, 0);
1157 	amdgpu_ring_write(ring, 0); /* reference */
1158 	amdgpu_ring_write(ring, 0); /* mask */
1159 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1160 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1161 }
1162 
1163 static int sdma_v3_0_early_init(void *handle)
1164 {
1165 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1166 
1167 	switch (adev->asic_type) {
1168 	case CHIP_STONEY:
1169 		adev->sdma.num_instances = 1;
1170 		break;
1171 	default:
1172 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1173 		break;
1174 	}
1175 
1176 	sdma_v3_0_set_ring_funcs(adev);
1177 	sdma_v3_0_set_buffer_funcs(adev);
1178 	sdma_v3_0_set_vm_pte_funcs(adev);
1179 	sdma_v3_0_set_irq_funcs(adev);
1180 
1181 	return 0;
1182 }
1183 
1184 static int sdma_v3_0_sw_init(void *handle)
1185 {
1186 	struct amdgpu_ring *ring;
1187 	int r, i;
1188 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1189 
1190 	/* SDMA trap event */
1191 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1192 			      &adev->sdma.trap_irq);
1193 	if (r)
1194 		return r;
1195 
1196 	/* SDMA Privileged inst */
1197 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1198 			      &adev->sdma.illegal_inst_irq);
1199 	if (r)
1200 		return r;
1201 
1202 	/* SDMA Privileged inst */
1203 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1204 			      &adev->sdma.illegal_inst_irq);
1205 	if (r)
1206 		return r;
1207 
1208 	r = sdma_v3_0_init_microcode(adev);
1209 	if (r) {
1210 		DRM_ERROR("Failed to load sdma firmware!\n");
1211 		return r;
1212 	}
1213 
1214 	for (i = 0; i < adev->sdma.num_instances; i++) {
1215 		ring = &adev->sdma.instance[i].ring;
1216 		ring->ring_obj = NULL;
1217 		ring->use_doorbell = true;
1218 		ring->doorbell_index = (i == 0) ?
1219 			AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1220 
1221 		sprintf(ring->name, "sdma%d", i);
1222 		r = amdgpu_ring_init(adev, ring, 1024,
1223 				     &adev->sdma.trap_irq,
1224 				     (i == 0) ?
1225 				     AMDGPU_SDMA_IRQ_TRAP0 :
1226 				     AMDGPU_SDMA_IRQ_TRAP1);
1227 		if (r)
1228 			return r;
1229 	}
1230 
1231 	return r;
1232 }
1233 
1234 static int sdma_v3_0_sw_fini(void *handle)
1235 {
1236 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1237 	int i;
1238 
1239 	for (i = 0; i < adev->sdma.num_instances; i++)
1240 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1241 
1242 	sdma_v3_0_free_microcode(adev);
1243 	return 0;
1244 }
1245 
1246 static int sdma_v3_0_hw_init(void *handle)
1247 {
1248 	int r;
1249 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1250 
1251 	sdma_v3_0_init_golden_registers(adev);
1252 
1253 	r = sdma_v3_0_start(adev);
1254 	if (r)
1255 		return r;
1256 
1257 	return r;
1258 }
1259 
1260 static int sdma_v3_0_hw_fini(void *handle)
1261 {
1262 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1263 
1264 	sdma_v3_0_ctx_switch_enable(adev, false);
1265 	sdma_v3_0_enable(adev, false);
1266 
1267 	return 0;
1268 }
1269 
1270 static int sdma_v3_0_suspend(void *handle)
1271 {
1272 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1273 
1274 	return sdma_v3_0_hw_fini(adev);
1275 }
1276 
1277 static int sdma_v3_0_resume(void *handle)
1278 {
1279 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1280 
1281 	return sdma_v3_0_hw_init(adev);
1282 }
1283 
1284 static bool sdma_v3_0_is_idle(void *handle)
1285 {
1286 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1287 	u32 tmp = RREG32(mmSRBM_STATUS2);
1288 
1289 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1290 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1291 	    return false;
1292 
1293 	return true;
1294 }
1295 
1296 static int sdma_v3_0_wait_for_idle(void *handle)
1297 {
1298 	unsigned i;
1299 	u32 tmp;
1300 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1301 
1302 	for (i = 0; i < adev->usec_timeout; i++) {
1303 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1304 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1305 
1306 		if (!tmp)
1307 			return 0;
1308 		udelay(1);
1309 	}
1310 	return -ETIMEDOUT;
1311 }
1312 
1313 static bool sdma_v3_0_check_soft_reset(void *handle)
1314 {
1315 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1316 	u32 srbm_soft_reset = 0;
1317 	u32 tmp = RREG32(mmSRBM_STATUS2);
1318 
1319 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1320 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1321 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1322 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1323 	}
1324 
1325 	if (srbm_soft_reset) {
1326 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1327 		return true;
1328 	} else {
1329 		adev->sdma.srbm_soft_reset = 0;
1330 		return false;
1331 	}
1332 }
1333 
1334 static int sdma_v3_0_pre_soft_reset(void *handle)
1335 {
1336 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1337 	u32 srbm_soft_reset = 0;
1338 
1339 	if (!adev->sdma.srbm_soft_reset)
1340 		return 0;
1341 
1342 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1343 
1344 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1345 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1346 		sdma_v3_0_ctx_switch_enable(adev, false);
1347 		sdma_v3_0_enable(adev, false);
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static int sdma_v3_0_post_soft_reset(void *handle)
1354 {
1355 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1356 	u32 srbm_soft_reset = 0;
1357 
1358 	if (!adev->sdma.srbm_soft_reset)
1359 		return 0;
1360 
1361 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1362 
1363 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1364 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1365 		sdma_v3_0_gfx_resume(adev);
1366 		sdma_v3_0_rlc_resume(adev);
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 static int sdma_v3_0_soft_reset(void *handle)
1373 {
1374 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1375 	u32 srbm_soft_reset = 0;
1376 	u32 tmp;
1377 
1378 	if (!adev->sdma.srbm_soft_reset)
1379 		return 0;
1380 
1381 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1382 
1383 	if (srbm_soft_reset) {
1384 		tmp = RREG32(mmSRBM_SOFT_RESET);
1385 		tmp |= srbm_soft_reset;
1386 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1387 		WREG32(mmSRBM_SOFT_RESET, tmp);
1388 		tmp = RREG32(mmSRBM_SOFT_RESET);
1389 
1390 		udelay(50);
1391 
1392 		tmp &= ~srbm_soft_reset;
1393 		WREG32(mmSRBM_SOFT_RESET, tmp);
1394 		tmp = RREG32(mmSRBM_SOFT_RESET);
1395 
1396 		/* Wait a little for things to settle down */
1397 		udelay(50);
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1404 					struct amdgpu_irq_src *source,
1405 					unsigned type,
1406 					enum amdgpu_interrupt_state state)
1407 {
1408 	u32 sdma_cntl;
1409 
1410 	switch (type) {
1411 	case AMDGPU_SDMA_IRQ_TRAP0:
1412 		switch (state) {
1413 		case AMDGPU_IRQ_STATE_DISABLE:
1414 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1415 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1416 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1417 			break;
1418 		case AMDGPU_IRQ_STATE_ENABLE:
1419 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1420 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1421 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1422 			break;
1423 		default:
1424 			break;
1425 		}
1426 		break;
1427 	case AMDGPU_SDMA_IRQ_TRAP1:
1428 		switch (state) {
1429 		case AMDGPU_IRQ_STATE_DISABLE:
1430 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1431 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1432 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1433 			break;
1434 		case AMDGPU_IRQ_STATE_ENABLE:
1435 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1436 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1437 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1438 			break;
1439 		default:
1440 			break;
1441 		}
1442 		break;
1443 	default:
1444 		break;
1445 	}
1446 	return 0;
1447 }
1448 
1449 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1450 				      struct amdgpu_irq_src *source,
1451 				      struct amdgpu_iv_entry *entry)
1452 {
1453 	u8 instance_id, queue_id;
1454 
1455 	instance_id = (entry->ring_id & 0x3) >> 0;
1456 	queue_id = (entry->ring_id & 0xc) >> 2;
1457 	DRM_DEBUG("IH: SDMA trap\n");
1458 	switch (instance_id) {
1459 	case 0:
1460 		switch (queue_id) {
1461 		case 0:
1462 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1463 			break;
1464 		case 1:
1465 			/* XXX compute */
1466 			break;
1467 		case 2:
1468 			/* XXX compute */
1469 			break;
1470 		}
1471 		break;
1472 	case 1:
1473 		switch (queue_id) {
1474 		case 0:
1475 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1476 			break;
1477 		case 1:
1478 			/* XXX compute */
1479 			break;
1480 		case 2:
1481 			/* XXX compute */
1482 			break;
1483 		}
1484 		break;
1485 	}
1486 	return 0;
1487 }
1488 
1489 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1490 					      struct amdgpu_irq_src *source,
1491 					      struct amdgpu_iv_entry *entry)
1492 {
1493 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1494 	schedule_work(&adev->reset_work);
1495 	return 0;
1496 }
1497 
1498 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1499 		struct amdgpu_device *adev,
1500 		bool enable)
1501 {
1502 	uint32_t temp, data;
1503 	int i;
1504 
1505 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1506 		for (i = 0; i < adev->sdma.num_instances; i++) {
1507 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1508 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1509 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1510 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1511 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1512 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1513 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1514 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1515 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1516 			if (data != temp)
1517 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1518 		}
1519 	} else {
1520 		for (i = 0; i < adev->sdma.num_instances; i++) {
1521 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1522 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1523 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1524 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1525 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1526 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1527 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1528 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1529 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1530 
1531 			if (data != temp)
1532 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1533 		}
1534 	}
1535 }
1536 
1537 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1538 		struct amdgpu_device *adev,
1539 		bool enable)
1540 {
1541 	uint32_t temp, data;
1542 	int i;
1543 
1544 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1545 		for (i = 0; i < adev->sdma.num_instances; i++) {
1546 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1547 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1548 
1549 			if (temp != data)
1550 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1551 		}
1552 	} else {
1553 		for (i = 0; i < adev->sdma.num_instances; i++) {
1554 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1555 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1556 
1557 			if (temp != data)
1558 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1559 		}
1560 	}
1561 }
1562 
1563 static int sdma_v3_0_set_clockgating_state(void *handle,
1564 					  enum amd_clockgating_state state)
1565 {
1566 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1567 
1568 	if (amdgpu_sriov_vf(adev))
1569 		return 0;
1570 
1571 	switch (adev->asic_type) {
1572 	case CHIP_FIJI:
1573 	case CHIP_CARRIZO:
1574 	case CHIP_STONEY:
1575 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1576 				state == AMD_CG_STATE_GATE);
1577 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1578 				state == AMD_CG_STATE_GATE);
1579 		break;
1580 	default:
1581 		break;
1582 	}
1583 	return 0;
1584 }
1585 
1586 static int sdma_v3_0_set_powergating_state(void *handle,
1587 					  enum amd_powergating_state state)
1588 {
1589 	return 0;
1590 }
1591 
1592 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1593 {
1594 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1595 	int data;
1596 
1597 	if (amdgpu_sriov_vf(adev))
1598 		*flags = 0;
1599 
1600 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1601 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1602 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1603 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1604 
1605 	/* AMD_CG_SUPPORT_SDMA_LS */
1606 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1607 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1608 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1609 }
1610 
1611 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1612 	.name = "sdma_v3_0",
1613 	.early_init = sdma_v3_0_early_init,
1614 	.late_init = NULL,
1615 	.sw_init = sdma_v3_0_sw_init,
1616 	.sw_fini = sdma_v3_0_sw_fini,
1617 	.hw_init = sdma_v3_0_hw_init,
1618 	.hw_fini = sdma_v3_0_hw_fini,
1619 	.suspend = sdma_v3_0_suspend,
1620 	.resume = sdma_v3_0_resume,
1621 	.is_idle = sdma_v3_0_is_idle,
1622 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1623 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1624 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1625 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1626 	.soft_reset = sdma_v3_0_soft_reset,
1627 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1628 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1629 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1630 };
1631 
1632 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1633 	.type = AMDGPU_RING_TYPE_SDMA,
1634 	.align_mask = 0xf,
1635 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1636 	.support_64bit_ptrs = false,
1637 	.get_rptr = sdma_v3_0_ring_get_rptr,
1638 	.get_wptr = sdma_v3_0_ring_get_wptr,
1639 	.set_wptr = sdma_v3_0_ring_set_wptr,
1640 	.emit_frame_size =
1641 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1642 		3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1643 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1644 		12 + /* sdma_v3_0_ring_emit_vm_flush */
1645 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1646 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1647 	.emit_ib = sdma_v3_0_ring_emit_ib,
1648 	.emit_fence = sdma_v3_0_ring_emit_fence,
1649 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1650 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1651 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1652 	.emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1653 	.test_ring = sdma_v3_0_ring_test_ring,
1654 	.test_ib = sdma_v3_0_ring_test_ib,
1655 	.insert_nop = sdma_v3_0_ring_insert_nop,
1656 	.pad_ib = sdma_v3_0_ring_pad_ib,
1657 };
1658 
1659 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1660 {
1661 	int i;
1662 
1663 	for (i = 0; i < adev->sdma.num_instances; i++)
1664 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1665 }
1666 
1667 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1668 	.set = sdma_v3_0_set_trap_irq_state,
1669 	.process = sdma_v3_0_process_trap_irq,
1670 };
1671 
1672 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1673 	.process = sdma_v3_0_process_illegal_inst_irq,
1674 };
1675 
1676 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1677 {
1678 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1679 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1680 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1681 }
1682 
1683 /**
1684  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1685  *
1686  * @ring: amdgpu_ring structure holding ring information
1687  * @src_offset: src GPU address
1688  * @dst_offset: dst GPU address
1689  * @byte_count: number of bytes to xfer
1690  *
1691  * Copy GPU buffers using the DMA engine (VI).
1692  * Used by the amdgpu ttm implementation to move pages if
1693  * registered as the asic copy callback.
1694  */
1695 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1696 				       uint64_t src_offset,
1697 				       uint64_t dst_offset,
1698 				       uint32_t byte_count)
1699 {
1700 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1701 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1702 	ib->ptr[ib->length_dw++] = byte_count;
1703 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1704 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1705 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1706 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1707 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1708 }
1709 
1710 /**
1711  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1712  *
1713  * @ring: amdgpu_ring structure holding ring information
1714  * @src_data: value to write to buffer
1715  * @dst_offset: dst GPU address
1716  * @byte_count: number of bytes to xfer
1717  *
1718  * Fill GPU buffers using the DMA engine (VI).
1719  */
1720 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1721 				       uint32_t src_data,
1722 				       uint64_t dst_offset,
1723 				       uint32_t byte_count)
1724 {
1725 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1726 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1727 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1728 	ib->ptr[ib->length_dw++] = src_data;
1729 	ib->ptr[ib->length_dw++] = byte_count;
1730 }
1731 
1732 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1733 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1734 	.copy_num_dw = 7,
1735 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1736 
1737 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1738 	.fill_num_dw = 5,
1739 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1740 };
1741 
1742 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1743 {
1744 	if (adev->mman.buffer_funcs == NULL) {
1745 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1746 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1747 	}
1748 }
1749 
1750 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1751 	.copy_pte_num_dw = 7,
1752 	.copy_pte = sdma_v3_0_vm_copy_pte,
1753 
1754 	.write_pte = sdma_v3_0_vm_write_pte,
1755 
1756 	/* not 0x3fffff due to HW limitation */
1757 	.set_max_nums_pte_pde = 0x3fffe0 >> 3,
1758 	.set_pte_pde_num_dw = 10,
1759 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1760 };
1761 
1762 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1763 {
1764 	unsigned i;
1765 
1766 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1767 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1768 		for (i = 0; i < adev->sdma.num_instances; i++)
1769 			adev->vm_manager.vm_pte_rings[i] =
1770 				&adev->sdma.instance[i].ring;
1771 
1772 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1773 	}
1774 }
1775 
1776 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1777 {
1778 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1779 	.major = 3,
1780 	.minor = 0,
1781 	.rev = 0,
1782 	.funcs = &sdma_v3_0_ip_funcs,
1783 };
1784 
1785 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1786 {
1787 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1788 	.major = 3,
1789 	.minor = 1,
1790 	.rev = 0,
1791 	.funcs = &sdma_v3_0_ip_funcs,
1792 };
1793