1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65 
66 
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69 	SDMA0_REGISTER_OFFSET,
70 	SDMA1_REGISTER_OFFSET
71 };
72 
73 static const u32 golden_settings_tonga_a11[] =
74 {
75 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86 
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92 
93 static const u32 golden_settings_fiji_a10[] =
94 {
95 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104 
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110 
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124 
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138 
139 static const u32 cz_golden_settings_a11[] =
140 {
141 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154 
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160 
161 static const u32 stoney_golden_settings_a11[] =
162 {
163 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168 
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173 
174 /*
175  * sDMA - System DMA
176  * Starting with CIK, the GPU has new asynchronous
177  * DMA engines.  These engines are used for compute
178  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
179  * and each one supports 1 ring buffer used for gfx
180  * and 2 queues used for compute.
181  *
182  * The programming model is very similar to the CP
183  * (ring buffer, IBs, etc.), but sDMA has it's own
184  * packet format that is different from the PM4 format
185  * used by the CP. sDMA supports copying data, writing
186  * embedded data, solid fills, and a number of other
187  * things.  It also has support for tiling/detiling of
188  * buffers.
189  */
190 
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193 	switch (adev->asic_type) {
194 	case CHIP_FIJI:
195 		amdgpu_program_register_sequence(adev,
196 						 fiji_mgcg_cgcg_init,
197 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 		amdgpu_program_register_sequence(adev,
199 						 golden_settings_fiji_a10,
200 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
201 		break;
202 	case CHIP_TONGA:
203 		amdgpu_program_register_sequence(adev,
204 						 tonga_mgcg_cgcg_init,
205 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 		amdgpu_program_register_sequence(adev,
207 						 golden_settings_tonga_a11,
208 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
209 		break;
210 	case CHIP_POLARIS11:
211 	case CHIP_POLARIS12:
212 		amdgpu_program_register_sequence(adev,
213 						 golden_settings_polaris11_a11,
214 						 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
215 		break;
216 	case CHIP_POLARIS10:
217 		amdgpu_program_register_sequence(adev,
218 						 golden_settings_polaris10_a11,
219 						 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
220 		break;
221 	case CHIP_CARRIZO:
222 		amdgpu_program_register_sequence(adev,
223 						 cz_mgcg_cgcg_init,
224 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
225 		amdgpu_program_register_sequence(adev,
226 						 cz_golden_settings_a11,
227 						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
228 		break;
229 	case CHIP_STONEY:
230 		amdgpu_program_register_sequence(adev,
231 						 stoney_mgcg_cgcg_init,
232 						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 		amdgpu_program_register_sequence(adev,
234 						 stoney_golden_settings_a11,
235 						 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
236 		break;
237 	default:
238 		break;
239 	}
240 }
241 
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244 	int i;
245 	for (i = 0; i < adev->sdma.num_instances; i++) {
246 		release_firmware(adev->sdma.instance[i].fw);
247 		adev->sdma.instance[i].fw = NULL;
248 	}
249 }
250 
251 /**
252  * sdma_v3_0_init_microcode - load ucode images from disk
253  *
254  * @adev: amdgpu_device pointer
255  *
256  * Use the firmware interface to load the ucode images into
257  * the driver (not loaded into hw).
258  * Returns 0 on success, error on failure.
259  */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262 	const char *chip_name;
263 	char fw_name[30];
264 	int err = 0, i;
265 	struct amdgpu_firmware_info *info = NULL;
266 	const struct common_firmware_header *header = NULL;
267 	const struct sdma_firmware_header_v1_0 *hdr;
268 
269 	DRM_DEBUG("\n");
270 
271 	switch (adev->asic_type) {
272 	case CHIP_TONGA:
273 		chip_name = "tonga";
274 		break;
275 	case CHIP_FIJI:
276 		chip_name = "fiji";
277 		break;
278 	case CHIP_POLARIS11:
279 		chip_name = "polaris11";
280 		break;
281 	case CHIP_POLARIS10:
282 		chip_name = "polaris10";
283 		break;
284 	case CHIP_POLARIS12:
285 		chip_name = "polaris12";
286 		break;
287 	case CHIP_CARRIZO:
288 		chip_name = "carrizo";
289 		break;
290 	case CHIP_STONEY:
291 		chip_name = "stoney";
292 		break;
293 	default: BUG();
294 	}
295 
296 	for (i = 0; i < adev->sdma.num_instances; i++) {
297 		if (i == 0)
298 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 		else
300 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 		if (err)
303 			goto out;
304 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 		if (err)
306 			goto out;
307 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 		if (adev->sdma.instance[i].feature_version >= 20)
311 			adev->sdma.instance[i].burst_nop = true;
312 
313 		if (adev->firmware.smu_load) {
314 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 			info->fw = adev->sdma.instance[i].fw;
317 			header = (const struct common_firmware_header *)info->fw->data;
318 			adev->firmware.fw_size +=
319 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 		}
321 	}
322 out:
323 	if (err) {
324 		printk(KERN_ERR
325 		       "sdma_v3_0: Failed to load firmware \"%s\"\n",
326 		       fw_name);
327 		for (i = 0; i < adev->sdma.num_instances; i++) {
328 			release_firmware(adev->sdma.instance[i].fw);
329 			adev->sdma.instance[i].fw = NULL;
330 		}
331 	}
332 	return err;
333 }
334 
335 /**
336  * sdma_v3_0_ring_get_rptr - get the current read pointer
337  *
338  * @ring: amdgpu ring pointer
339  *
340  * Get the current rptr from the hardware (VI+).
341  */
342 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
343 {
344 	/* XXX check if swapping is necessary on BE */
345 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
346 }
347 
348 /**
349  * sdma_v3_0_ring_get_wptr - get the current write pointer
350  *
351  * @ring: amdgpu ring pointer
352  *
353  * Get the current wptr from the hardware (VI+).
354  */
355 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
356 {
357 	struct amdgpu_device *adev = ring->adev;
358 	u32 wptr;
359 
360 	if (ring->use_doorbell) {
361 		/* XXX check if swapping is necessary on BE */
362 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
363 	} else {
364 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
365 
366 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
367 	}
368 
369 	return wptr;
370 }
371 
372 /**
373  * sdma_v3_0_ring_set_wptr - commit the write pointer
374  *
375  * @ring: amdgpu ring pointer
376  *
377  * Write the wptr back to the hardware (VI+).
378  */
379 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
380 {
381 	struct amdgpu_device *adev = ring->adev;
382 
383 	if (ring->use_doorbell) {
384 		/* XXX check if swapping is necessary on BE */
385 		adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
386 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
387 	} else {
388 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
389 
390 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
391 	}
392 }
393 
394 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
395 {
396 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
397 	int i;
398 
399 	for (i = 0; i < count; i++)
400 		if (sdma && sdma->burst_nop && (i == 0))
401 			amdgpu_ring_write(ring, ring->funcs->nop |
402 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
403 		else
404 			amdgpu_ring_write(ring, ring->funcs->nop);
405 }
406 
407 /**
408  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
409  *
410  * @ring: amdgpu ring pointer
411  * @ib: IB object to schedule
412  *
413  * Schedule an IB in the DMA ring (VI).
414  */
415 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
416 				   struct amdgpu_ib *ib,
417 				   unsigned vm_id, bool ctx_switch)
418 {
419 	u32 vmid = vm_id & 0xf;
420 
421 	/* IB packet must end on a 8 DW boundary */
422 	sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
423 
424 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
425 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
426 	/* base must be 32 byte aligned */
427 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
428 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
429 	amdgpu_ring_write(ring, ib->length_dw);
430 	amdgpu_ring_write(ring, 0);
431 	amdgpu_ring_write(ring, 0);
432 
433 }
434 
435 /**
436  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
437  *
438  * @ring: amdgpu ring pointer
439  *
440  * Emit an hdp flush packet on the requested DMA ring.
441  */
442 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
443 {
444 	u32 ref_and_mask = 0;
445 
446 	if (ring == &ring->adev->sdma.instance[0].ring)
447 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
448 	else
449 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
450 
451 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
452 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
453 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
454 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
455 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
456 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
457 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
458 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
459 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
460 }
461 
462 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
463 {
464 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
465 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
466 	amdgpu_ring_write(ring, mmHDP_DEBUG0);
467 	amdgpu_ring_write(ring, 1);
468 }
469 
470 /**
471  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
472  *
473  * @ring: amdgpu ring pointer
474  * @fence: amdgpu fence object
475  *
476  * Add a DMA fence packet to the ring to write
477  * the fence seq number and DMA trap packet to generate
478  * an interrupt if needed (VI).
479  */
480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 				      unsigned flags)
482 {
483 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 	/* write the fence */
485 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 	amdgpu_ring_write(ring, lower_32_bits(addr));
487 	amdgpu_ring_write(ring, upper_32_bits(addr));
488 	amdgpu_ring_write(ring, lower_32_bits(seq));
489 
490 	/* optionally write high bits as well */
491 	if (write64bit) {
492 		addr += 4;
493 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 		amdgpu_ring_write(ring, lower_32_bits(addr));
495 		amdgpu_ring_write(ring, upper_32_bits(addr));
496 		amdgpu_ring_write(ring, upper_32_bits(seq));
497 	}
498 
499 	/* generate an interrupt */
500 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502 }
503 
504 /**
505  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506  *
507  * @adev: amdgpu_device pointer
508  *
509  * Stop the gfx async dma ring buffers (VI).
510  */
511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512 {
513 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
514 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
515 	u32 rb_cntl, ib_cntl;
516 	int i;
517 
518 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
519 	    (adev->mman.buffer_funcs_ring == sdma1))
520 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
521 
522 	for (i = 0; i < adev->sdma.num_instances; i++) {
523 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
524 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
525 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
526 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
527 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
528 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
529 	}
530 	sdma0->ready = false;
531 	sdma1->ready = false;
532 }
533 
534 /**
535  * sdma_v3_0_rlc_stop - stop the compute async dma engines
536  *
537  * @adev: amdgpu_device pointer
538  *
539  * Stop the compute async dma queues (VI).
540  */
541 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
542 {
543 	/* XXX todo */
544 }
545 
546 /**
547  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
548  *
549  * @adev: amdgpu_device pointer
550  * @enable: enable/disable the DMA MEs context switch.
551  *
552  * Halt or unhalt the async dma engines context switch (VI).
553  */
554 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
555 {
556 	u32 f32_cntl;
557 	int i;
558 
559 	for (i = 0; i < adev->sdma.num_instances; i++) {
560 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
561 		if (enable)
562 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
563 					AUTO_CTXSW_ENABLE, 1);
564 		else
565 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
566 					AUTO_CTXSW_ENABLE, 0);
567 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
568 	}
569 }
570 
571 /**
572  * sdma_v3_0_enable - stop the async dma engines
573  *
574  * @adev: amdgpu_device pointer
575  * @enable: enable/disable the DMA MEs.
576  *
577  * Halt or unhalt the async dma engines (VI).
578  */
579 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
580 {
581 	u32 f32_cntl;
582 	int i;
583 
584 	if (!enable) {
585 		sdma_v3_0_gfx_stop(adev);
586 		sdma_v3_0_rlc_stop(adev);
587 	}
588 
589 	for (i = 0; i < adev->sdma.num_instances; i++) {
590 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
591 		if (enable)
592 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
593 		else
594 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
595 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
596 	}
597 }
598 
599 /**
600  * sdma_v3_0_gfx_resume - setup and start the async dma engines
601  *
602  * @adev: amdgpu_device pointer
603  *
604  * Set up the gfx DMA ring buffers and enable them (VI).
605  * Returns 0 for success, error for failure.
606  */
607 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
608 {
609 	struct amdgpu_ring *ring;
610 	u32 rb_cntl, ib_cntl;
611 	u32 rb_bufsz;
612 	u32 wb_offset;
613 	u32 doorbell;
614 	int i, j, r;
615 
616 	for (i = 0; i < adev->sdma.num_instances; i++) {
617 		ring = &adev->sdma.instance[i].ring;
618 		wb_offset = (ring->rptr_offs * 4);
619 
620 		mutex_lock(&adev->srbm_mutex);
621 		for (j = 0; j < 16; j++) {
622 			vi_srbm_select(adev, 0, 0, 0, j);
623 			/* SDMA GFX */
624 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
625 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
626 		}
627 		vi_srbm_select(adev, 0, 0, 0, 0);
628 		mutex_unlock(&adev->srbm_mutex);
629 
630 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
631 		       adev->gfx.config.gb_addr_config & 0x70);
632 
633 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
634 
635 		/* Set ring buffer size in dwords */
636 		rb_bufsz = order_base_2(ring->ring_size / 4);
637 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
638 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
639 #ifdef __BIG_ENDIAN
640 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
641 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
642 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
643 #endif
644 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
645 
646 		/* Initialize the ring buffer's read and write pointers */
647 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
648 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
649 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
650 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
651 
652 		/* set the wb address whether it's enabled or not */
653 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
654 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
655 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
656 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
657 
658 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
659 
660 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
661 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
662 
663 		ring->wptr = 0;
664 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
665 
666 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
667 
668 		if (ring->use_doorbell) {
669 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
670 						 OFFSET, ring->doorbell_index);
671 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
672 		} else {
673 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
674 		}
675 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
676 
677 		/* enable DMA RB */
678 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
679 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
680 
681 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
682 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
683 #ifdef __BIG_ENDIAN
684 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
685 #endif
686 		/* enable DMA IBs */
687 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
688 
689 		ring->ready = true;
690 	}
691 
692 	/* unhalt the MEs */
693 	sdma_v3_0_enable(adev, true);
694 	/* enable sdma ring preemption */
695 	sdma_v3_0_ctx_switch_enable(adev, true);
696 
697 	for (i = 0; i < adev->sdma.num_instances; i++) {
698 		ring = &adev->sdma.instance[i].ring;
699 		r = amdgpu_ring_test_ring(ring);
700 		if (r) {
701 			ring->ready = false;
702 			return r;
703 		}
704 
705 		if (adev->mman.buffer_funcs_ring == ring)
706 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
707 	}
708 
709 	return 0;
710 }
711 
712 /**
713  * sdma_v3_0_rlc_resume - setup and start the async dma engines
714  *
715  * @adev: amdgpu_device pointer
716  *
717  * Set up the compute DMA queues and enable them (VI).
718  * Returns 0 for success, error for failure.
719  */
720 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
721 {
722 	/* XXX todo */
723 	return 0;
724 }
725 
726 /**
727  * sdma_v3_0_load_microcode - load the sDMA ME ucode
728  *
729  * @adev: amdgpu_device pointer
730  *
731  * Loads the sDMA0/1 ucode.
732  * Returns 0 for success, -EINVAL if the ucode is not available.
733  */
734 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
735 {
736 	const struct sdma_firmware_header_v1_0 *hdr;
737 	const __le32 *fw_data;
738 	u32 fw_size;
739 	int i, j;
740 
741 	/* halt the MEs */
742 	sdma_v3_0_enable(adev, false);
743 
744 	for (i = 0; i < adev->sdma.num_instances; i++) {
745 		if (!adev->sdma.instance[i].fw)
746 			return -EINVAL;
747 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
748 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
749 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
750 		fw_data = (const __le32 *)
751 			(adev->sdma.instance[i].fw->data +
752 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
753 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
754 		for (j = 0; j < fw_size; j++)
755 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
756 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
757 	}
758 
759 	return 0;
760 }
761 
762 /**
763  * sdma_v3_0_start - setup and start the async dma engines
764  *
765  * @adev: amdgpu_device pointer
766  *
767  * Set up the DMA engines and enable them (VI).
768  * Returns 0 for success, error for failure.
769  */
770 static int sdma_v3_0_start(struct amdgpu_device *adev)
771 {
772 	int r, i;
773 
774 	if (!adev->pp_enabled) {
775 		if (!adev->firmware.smu_load) {
776 			r = sdma_v3_0_load_microcode(adev);
777 			if (r)
778 				return r;
779 		} else {
780 			for (i = 0; i < adev->sdma.num_instances; i++) {
781 				r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
782 										 (i == 0) ?
783 										 AMDGPU_UCODE_ID_SDMA0 :
784 										 AMDGPU_UCODE_ID_SDMA1);
785 				if (r)
786 					return -EINVAL;
787 			}
788 		}
789 	}
790 
791 	/* disble sdma engine before programing it */
792 	sdma_v3_0_ctx_switch_enable(adev, false);
793 	sdma_v3_0_enable(adev, false);
794 
795 	/* start the gfx rings and rlc compute queues */
796 	r = sdma_v3_0_gfx_resume(adev);
797 	if (r)
798 		return r;
799 	r = sdma_v3_0_rlc_resume(adev);
800 	if (r)
801 		return r;
802 
803 	return 0;
804 }
805 
806 /**
807  * sdma_v3_0_ring_test_ring - simple async dma engine test
808  *
809  * @ring: amdgpu_ring structure holding ring information
810  *
811  * Test the DMA engine by writing using it to write an
812  * value to memory. (VI).
813  * Returns 0 for success, error for failure.
814  */
815 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
816 {
817 	struct amdgpu_device *adev = ring->adev;
818 	unsigned i;
819 	unsigned index;
820 	int r;
821 	u32 tmp;
822 	u64 gpu_addr;
823 
824 	r = amdgpu_wb_get(adev, &index);
825 	if (r) {
826 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
827 		return r;
828 	}
829 
830 	gpu_addr = adev->wb.gpu_addr + (index * 4);
831 	tmp = 0xCAFEDEAD;
832 	adev->wb.wb[index] = cpu_to_le32(tmp);
833 
834 	r = amdgpu_ring_alloc(ring, 5);
835 	if (r) {
836 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
837 		amdgpu_wb_free(adev, index);
838 		return r;
839 	}
840 
841 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
842 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
843 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
844 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
845 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
846 	amdgpu_ring_write(ring, 0xDEADBEEF);
847 	amdgpu_ring_commit(ring);
848 
849 	for (i = 0; i < adev->usec_timeout; i++) {
850 		tmp = le32_to_cpu(adev->wb.wb[index]);
851 		if (tmp == 0xDEADBEEF)
852 			break;
853 		DRM_UDELAY(1);
854 	}
855 
856 	if (i < adev->usec_timeout) {
857 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
858 	} else {
859 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
860 			  ring->idx, tmp);
861 		r = -EINVAL;
862 	}
863 	amdgpu_wb_free(adev, index);
864 
865 	return r;
866 }
867 
868 /**
869  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
870  *
871  * @ring: amdgpu_ring structure holding ring information
872  *
873  * Test a simple IB in the DMA ring (VI).
874  * Returns 0 on success, error on failure.
875  */
876 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
877 {
878 	struct amdgpu_device *adev = ring->adev;
879 	struct amdgpu_ib ib;
880 	struct dma_fence *f = NULL;
881 	unsigned index;
882 	u32 tmp = 0;
883 	u64 gpu_addr;
884 	long r;
885 
886 	r = amdgpu_wb_get(adev, &index);
887 	if (r) {
888 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
889 		return r;
890 	}
891 
892 	gpu_addr = adev->wb.gpu_addr + (index * 4);
893 	tmp = 0xCAFEDEAD;
894 	adev->wb.wb[index] = cpu_to_le32(tmp);
895 	memset(&ib, 0, sizeof(ib));
896 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
897 	if (r) {
898 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
899 		goto err0;
900 	}
901 
902 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
903 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
904 	ib.ptr[1] = lower_32_bits(gpu_addr);
905 	ib.ptr[2] = upper_32_bits(gpu_addr);
906 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
907 	ib.ptr[4] = 0xDEADBEEF;
908 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
909 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
910 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
911 	ib.length_dw = 8;
912 
913 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
914 	if (r)
915 		goto err1;
916 
917 	r = dma_fence_wait_timeout(f, false, timeout);
918 	if (r == 0) {
919 		DRM_ERROR("amdgpu: IB test timed out\n");
920 		r = -ETIMEDOUT;
921 		goto err1;
922 	} else if (r < 0) {
923 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
924 		goto err1;
925 	}
926 	tmp = le32_to_cpu(adev->wb.wb[index]);
927 	if (tmp == 0xDEADBEEF) {
928 		DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
929 		r = 0;
930 	} else {
931 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
932 		r = -EINVAL;
933 	}
934 err1:
935 	amdgpu_ib_free(adev, &ib, NULL);
936 	dma_fence_put(f);
937 err0:
938 	amdgpu_wb_free(adev, index);
939 	return r;
940 }
941 
942 /**
943  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
944  *
945  * @ib: indirect buffer to fill with commands
946  * @pe: addr of the page entry
947  * @src: src addr to copy from
948  * @count: number of page entries to update
949  *
950  * Update PTEs by copying them from the GART using sDMA (CIK).
951  */
952 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
953 				  uint64_t pe, uint64_t src,
954 				  unsigned count)
955 {
956 	unsigned bytes = count * 8;
957 
958 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
959 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
960 	ib->ptr[ib->length_dw++] = bytes;
961 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
962 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
963 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
964 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
965 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
966 }
967 
968 /**
969  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
970  *
971  * @ib: indirect buffer to fill with commands
972  * @pe: addr of the page entry
973  * @value: dst addr to write into pe
974  * @count: number of page entries to update
975  * @incr: increase next addr by incr bytes
976  *
977  * Update PTEs by writing them manually using sDMA (CIK).
978  */
979 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
980 				   uint64_t value, unsigned count,
981 				   uint32_t incr)
982 {
983 	unsigned ndw = count * 2;
984 
985 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
986 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
987 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
988 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
989 	ib->ptr[ib->length_dw++] = ndw;
990 	for (; ndw > 0; ndw -= 2) {
991 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
992 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
993 		value += incr;
994 	}
995 }
996 
997 /**
998  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
999  *
1000  * @ib: indirect buffer to fill with commands
1001  * @pe: addr of the page entry
1002  * @addr: dst addr to write into pe
1003  * @count: number of page entries to update
1004  * @incr: increase next addr by incr bytes
1005  * @flags: access flags
1006  *
1007  * Update the page tables using sDMA (CIK).
1008  */
1009 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1010 				     uint64_t addr, unsigned count,
1011 				     uint32_t incr, uint32_t flags)
1012 {
1013 	/* for physically contiguous pages (vram) */
1014 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1015 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1016 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1017 	ib->ptr[ib->length_dw++] = flags; /* mask */
1018 	ib->ptr[ib->length_dw++] = 0;
1019 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1020 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1021 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1022 	ib->ptr[ib->length_dw++] = 0;
1023 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1024 }
1025 
1026 /**
1027  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1028  *
1029  * @ib: indirect buffer to fill with padding
1030  *
1031  */
1032 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1033 {
1034 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1035 	u32 pad_count;
1036 	int i;
1037 
1038 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1039 	for (i = 0; i < pad_count; i++)
1040 		if (sdma && sdma->burst_nop && (i == 0))
1041 			ib->ptr[ib->length_dw++] =
1042 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1043 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1044 		else
1045 			ib->ptr[ib->length_dw++] =
1046 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1047 }
1048 
1049 /**
1050  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1051  *
1052  * @ring: amdgpu_ring pointer
1053  *
1054  * Make sure all previous operations are completed (CIK).
1055  */
1056 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1057 {
1058 	uint32_t seq = ring->fence_drv.sync_seq;
1059 	uint64_t addr = ring->fence_drv.gpu_addr;
1060 
1061 	/* wait for idle */
1062 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1063 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1064 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1065 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1066 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1067 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1068 	amdgpu_ring_write(ring, seq); /* reference */
1069 	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1070 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1071 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1072 }
1073 
1074 /**
1075  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1076  *
1077  * @ring: amdgpu_ring pointer
1078  * @vm: amdgpu_vm pointer
1079  *
1080  * Update the page table base and flush the VM TLB
1081  * using sDMA (VI).
1082  */
1083 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1084 					 unsigned vm_id, uint64_t pd_addr)
1085 {
1086 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1087 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1088 	if (vm_id < 8) {
1089 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1090 	} else {
1091 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1092 	}
1093 	amdgpu_ring_write(ring, pd_addr >> 12);
1094 
1095 	/* flush TLB */
1096 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1097 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1098 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1099 	amdgpu_ring_write(ring, 1 << vm_id);
1100 
1101 	/* wait for flush */
1102 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1103 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1104 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1105 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1106 	amdgpu_ring_write(ring, 0);
1107 	amdgpu_ring_write(ring, 0); /* reference */
1108 	amdgpu_ring_write(ring, 0); /* mask */
1109 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1111 }
1112 
1113 static int sdma_v3_0_early_init(void *handle)
1114 {
1115 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1116 
1117 	switch (adev->asic_type) {
1118 	case CHIP_STONEY:
1119 		adev->sdma.num_instances = 1;
1120 		break;
1121 	default:
1122 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1123 		break;
1124 	}
1125 
1126 	sdma_v3_0_set_ring_funcs(adev);
1127 	sdma_v3_0_set_buffer_funcs(adev);
1128 	sdma_v3_0_set_vm_pte_funcs(adev);
1129 	sdma_v3_0_set_irq_funcs(adev);
1130 
1131 	return 0;
1132 }
1133 
1134 static int sdma_v3_0_sw_init(void *handle)
1135 {
1136 	struct amdgpu_ring *ring;
1137 	int r, i;
1138 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1139 
1140 	/* SDMA trap event */
1141 	r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1142 	if (r)
1143 		return r;
1144 
1145 	/* SDMA Privileged inst */
1146 	r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1147 	if (r)
1148 		return r;
1149 
1150 	/* SDMA Privileged inst */
1151 	r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1152 	if (r)
1153 		return r;
1154 
1155 	r = sdma_v3_0_init_microcode(adev);
1156 	if (r) {
1157 		DRM_ERROR("Failed to load sdma firmware!\n");
1158 		return r;
1159 	}
1160 
1161 	for (i = 0; i < adev->sdma.num_instances; i++) {
1162 		ring = &adev->sdma.instance[i].ring;
1163 		ring->ring_obj = NULL;
1164 		ring->use_doorbell = true;
1165 		ring->doorbell_index = (i == 0) ?
1166 			AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1167 
1168 		sprintf(ring->name, "sdma%d", i);
1169 		r = amdgpu_ring_init(adev, ring, 1024,
1170 				     &adev->sdma.trap_irq,
1171 				     (i == 0) ?
1172 				     AMDGPU_SDMA_IRQ_TRAP0 :
1173 				     AMDGPU_SDMA_IRQ_TRAP1);
1174 		if (r)
1175 			return r;
1176 	}
1177 
1178 	return r;
1179 }
1180 
1181 static int sdma_v3_0_sw_fini(void *handle)
1182 {
1183 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1184 	int i;
1185 
1186 	for (i = 0; i < adev->sdma.num_instances; i++)
1187 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1188 
1189 	sdma_v3_0_free_microcode(adev);
1190 	return 0;
1191 }
1192 
1193 static int sdma_v3_0_hw_init(void *handle)
1194 {
1195 	int r;
1196 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1197 
1198 	sdma_v3_0_init_golden_registers(adev);
1199 
1200 	r = sdma_v3_0_start(adev);
1201 	if (r)
1202 		return r;
1203 
1204 	return r;
1205 }
1206 
1207 static int sdma_v3_0_hw_fini(void *handle)
1208 {
1209 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1210 
1211 	sdma_v3_0_ctx_switch_enable(adev, false);
1212 	sdma_v3_0_enable(adev, false);
1213 
1214 	return 0;
1215 }
1216 
1217 static int sdma_v3_0_suspend(void *handle)
1218 {
1219 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1220 
1221 	return sdma_v3_0_hw_fini(adev);
1222 }
1223 
1224 static int sdma_v3_0_resume(void *handle)
1225 {
1226 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1227 
1228 	return sdma_v3_0_hw_init(adev);
1229 }
1230 
1231 static bool sdma_v3_0_is_idle(void *handle)
1232 {
1233 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1234 	u32 tmp = RREG32(mmSRBM_STATUS2);
1235 
1236 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1237 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1238 	    return false;
1239 
1240 	return true;
1241 }
1242 
1243 static int sdma_v3_0_wait_for_idle(void *handle)
1244 {
1245 	unsigned i;
1246 	u32 tmp;
1247 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248 
1249 	for (i = 0; i < adev->usec_timeout; i++) {
1250 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1251 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1252 
1253 		if (!tmp)
1254 			return 0;
1255 		udelay(1);
1256 	}
1257 	return -ETIMEDOUT;
1258 }
1259 
1260 static bool sdma_v3_0_check_soft_reset(void *handle)
1261 {
1262 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1263 	u32 srbm_soft_reset = 0;
1264 	u32 tmp = RREG32(mmSRBM_STATUS2);
1265 
1266 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1267 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1268 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1269 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1270 	}
1271 
1272 	if (srbm_soft_reset) {
1273 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1274 		return true;
1275 	} else {
1276 		adev->sdma.srbm_soft_reset = 0;
1277 		return false;
1278 	}
1279 }
1280 
1281 static int sdma_v3_0_pre_soft_reset(void *handle)
1282 {
1283 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284 	u32 srbm_soft_reset = 0;
1285 
1286 	if (!adev->sdma.srbm_soft_reset)
1287 		return 0;
1288 
1289 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1290 
1291 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1292 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1293 		sdma_v3_0_ctx_switch_enable(adev, false);
1294 		sdma_v3_0_enable(adev, false);
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 static int sdma_v3_0_post_soft_reset(void *handle)
1301 {
1302 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1303 	u32 srbm_soft_reset = 0;
1304 
1305 	if (!adev->sdma.srbm_soft_reset)
1306 		return 0;
1307 
1308 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1309 
1310 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1311 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1312 		sdma_v3_0_gfx_resume(adev);
1313 		sdma_v3_0_rlc_resume(adev);
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 static int sdma_v3_0_soft_reset(void *handle)
1320 {
1321 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1322 	u32 srbm_soft_reset = 0;
1323 	u32 tmp;
1324 
1325 	if (!adev->sdma.srbm_soft_reset)
1326 		return 0;
1327 
1328 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1329 
1330 	if (srbm_soft_reset) {
1331 		tmp = RREG32(mmSRBM_SOFT_RESET);
1332 		tmp |= srbm_soft_reset;
1333 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1334 		WREG32(mmSRBM_SOFT_RESET, tmp);
1335 		tmp = RREG32(mmSRBM_SOFT_RESET);
1336 
1337 		udelay(50);
1338 
1339 		tmp &= ~srbm_soft_reset;
1340 		WREG32(mmSRBM_SOFT_RESET, tmp);
1341 		tmp = RREG32(mmSRBM_SOFT_RESET);
1342 
1343 		/* Wait a little for things to settle down */
1344 		udelay(50);
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1351 					struct amdgpu_irq_src *source,
1352 					unsigned type,
1353 					enum amdgpu_interrupt_state state)
1354 {
1355 	u32 sdma_cntl;
1356 
1357 	switch (type) {
1358 	case AMDGPU_SDMA_IRQ_TRAP0:
1359 		switch (state) {
1360 		case AMDGPU_IRQ_STATE_DISABLE:
1361 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1362 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1363 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1364 			break;
1365 		case AMDGPU_IRQ_STATE_ENABLE:
1366 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1367 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1368 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1369 			break;
1370 		default:
1371 			break;
1372 		}
1373 		break;
1374 	case AMDGPU_SDMA_IRQ_TRAP1:
1375 		switch (state) {
1376 		case AMDGPU_IRQ_STATE_DISABLE:
1377 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1378 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1379 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1380 			break;
1381 		case AMDGPU_IRQ_STATE_ENABLE:
1382 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1383 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1384 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1385 			break;
1386 		default:
1387 			break;
1388 		}
1389 		break;
1390 	default:
1391 		break;
1392 	}
1393 	return 0;
1394 }
1395 
1396 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1397 				      struct amdgpu_irq_src *source,
1398 				      struct amdgpu_iv_entry *entry)
1399 {
1400 	u8 instance_id, queue_id;
1401 
1402 	instance_id = (entry->ring_id & 0x3) >> 0;
1403 	queue_id = (entry->ring_id & 0xc) >> 2;
1404 	DRM_DEBUG("IH: SDMA trap\n");
1405 	switch (instance_id) {
1406 	case 0:
1407 		switch (queue_id) {
1408 		case 0:
1409 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1410 			break;
1411 		case 1:
1412 			/* XXX compute */
1413 			break;
1414 		case 2:
1415 			/* XXX compute */
1416 			break;
1417 		}
1418 		break;
1419 	case 1:
1420 		switch (queue_id) {
1421 		case 0:
1422 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1423 			break;
1424 		case 1:
1425 			/* XXX compute */
1426 			break;
1427 		case 2:
1428 			/* XXX compute */
1429 			break;
1430 		}
1431 		break;
1432 	}
1433 	return 0;
1434 }
1435 
1436 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1437 					      struct amdgpu_irq_src *source,
1438 					      struct amdgpu_iv_entry *entry)
1439 {
1440 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1441 	schedule_work(&adev->reset_work);
1442 	return 0;
1443 }
1444 
1445 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1446 		struct amdgpu_device *adev,
1447 		bool enable)
1448 {
1449 	uint32_t temp, data;
1450 	int i;
1451 
1452 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1453 		for (i = 0; i < adev->sdma.num_instances; i++) {
1454 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1455 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1456 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1457 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1458 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1459 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1460 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1461 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1462 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1463 			if (data != temp)
1464 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1465 		}
1466 	} else {
1467 		for (i = 0; i < adev->sdma.num_instances; i++) {
1468 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1469 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1470 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1471 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1472 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1473 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1474 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1475 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1476 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1477 
1478 			if (data != temp)
1479 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1480 		}
1481 	}
1482 }
1483 
1484 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1485 		struct amdgpu_device *adev,
1486 		bool enable)
1487 {
1488 	uint32_t temp, data;
1489 	int i;
1490 
1491 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1492 		for (i = 0; i < adev->sdma.num_instances; i++) {
1493 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1494 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1495 
1496 			if (temp != data)
1497 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1498 		}
1499 	} else {
1500 		for (i = 0; i < adev->sdma.num_instances; i++) {
1501 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1502 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1503 
1504 			if (temp != data)
1505 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1506 		}
1507 	}
1508 }
1509 
1510 static int sdma_v3_0_set_clockgating_state(void *handle,
1511 					  enum amd_clockgating_state state)
1512 {
1513 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1514 
1515 	switch (adev->asic_type) {
1516 	case CHIP_FIJI:
1517 	case CHIP_CARRIZO:
1518 	case CHIP_STONEY:
1519 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1520 				state == AMD_CG_STATE_GATE ? true : false);
1521 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1522 				state == AMD_CG_STATE_GATE ? true : false);
1523 		break;
1524 	default:
1525 		break;
1526 	}
1527 	return 0;
1528 }
1529 
1530 static int sdma_v3_0_set_powergating_state(void *handle,
1531 					  enum amd_powergating_state state)
1532 {
1533 	return 0;
1534 }
1535 
1536 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1537 	.name = "sdma_v3_0",
1538 	.early_init = sdma_v3_0_early_init,
1539 	.late_init = NULL,
1540 	.sw_init = sdma_v3_0_sw_init,
1541 	.sw_fini = sdma_v3_0_sw_fini,
1542 	.hw_init = sdma_v3_0_hw_init,
1543 	.hw_fini = sdma_v3_0_hw_fini,
1544 	.suspend = sdma_v3_0_suspend,
1545 	.resume = sdma_v3_0_resume,
1546 	.is_idle = sdma_v3_0_is_idle,
1547 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1548 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1549 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1550 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1551 	.soft_reset = sdma_v3_0_soft_reset,
1552 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1553 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1554 };
1555 
1556 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1557 	.type = AMDGPU_RING_TYPE_SDMA,
1558 	.align_mask = 0xf,
1559 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1560 	.get_rptr = sdma_v3_0_ring_get_rptr,
1561 	.get_wptr = sdma_v3_0_ring_get_wptr,
1562 	.set_wptr = sdma_v3_0_ring_set_wptr,
1563 	.emit_frame_size =
1564 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1565 		3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1566 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1567 		12 + /* sdma_v3_0_ring_emit_vm_flush */
1568 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1569 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1570 	.emit_ib = sdma_v3_0_ring_emit_ib,
1571 	.emit_fence = sdma_v3_0_ring_emit_fence,
1572 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1573 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1574 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1575 	.emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1576 	.test_ring = sdma_v3_0_ring_test_ring,
1577 	.test_ib = sdma_v3_0_ring_test_ib,
1578 	.insert_nop = sdma_v3_0_ring_insert_nop,
1579 	.pad_ib = sdma_v3_0_ring_pad_ib,
1580 };
1581 
1582 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1583 {
1584 	int i;
1585 
1586 	for (i = 0; i < adev->sdma.num_instances; i++)
1587 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1588 }
1589 
1590 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1591 	.set = sdma_v3_0_set_trap_irq_state,
1592 	.process = sdma_v3_0_process_trap_irq,
1593 };
1594 
1595 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1596 	.process = sdma_v3_0_process_illegal_inst_irq,
1597 };
1598 
1599 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1600 {
1601 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1602 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1603 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1604 }
1605 
1606 /**
1607  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1608  *
1609  * @ring: amdgpu_ring structure holding ring information
1610  * @src_offset: src GPU address
1611  * @dst_offset: dst GPU address
1612  * @byte_count: number of bytes to xfer
1613  *
1614  * Copy GPU buffers using the DMA engine (VI).
1615  * Used by the amdgpu ttm implementation to move pages if
1616  * registered as the asic copy callback.
1617  */
1618 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1619 				       uint64_t src_offset,
1620 				       uint64_t dst_offset,
1621 				       uint32_t byte_count)
1622 {
1623 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1624 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1625 	ib->ptr[ib->length_dw++] = byte_count;
1626 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1627 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1628 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1629 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1630 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1631 }
1632 
1633 /**
1634  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1635  *
1636  * @ring: amdgpu_ring structure holding ring information
1637  * @src_data: value to write to buffer
1638  * @dst_offset: dst GPU address
1639  * @byte_count: number of bytes to xfer
1640  *
1641  * Fill GPU buffers using the DMA engine (VI).
1642  */
1643 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1644 				       uint32_t src_data,
1645 				       uint64_t dst_offset,
1646 				       uint32_t byte_count)
1647 {
1648 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1649 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1650 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1651 	ib->ptr[ib->length_dw++] = src_data;
1652 	ib->ptr[ib->length_dw++] = byte_count;
1653 }
1654 
1655 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1656 	.copy_max_bytes = 0x1fffff,
1657 	.copy_num_dw = 7,
1658 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1659 
1660 	.fill_max_bytes = 0x1fffff,
1661 	.fill_num_dw = 5,
1662 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1663 };
1664 
1665 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1666 {
1667 	if (adev->mman.buffer_funcs == NULL) {
1668 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1669 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1670 	}
1671 }
1672 
1673 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1674 	.copy_pte = sdma_v3_0_vm_copy_pte,
1675 	.write_pte = sdma_v3_0_vm_write_pte,
1676 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1677 };
1678 
1679 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1680 {
1681 	unsigned i;
1682 
1683 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1684 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1685 		for (i = 0; i < adev->sdma.num_instances; i++)
1686 			adev->vm_manager.vm_pte_rings[i] =
1687 				&adev->sdma.instance[i].ring;
1688 
1689 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1690 	}
1691 }
1692 
1693 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1694 {
1695 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1696 	.major = 3,
1697 	.minor = 0,
1698 	.rev = 0,
1699 	.funcs = &sdma_v3_0_ip_funcs,
1700 };
1701 
1702 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1703 {
1704 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1705 	.major = 3,
1706 	.minor = 1,
1707 	.rev = 0,
1708 	.funcs = &sdma_v3_0_ip_funcs,
1709 };
1710