1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/firmware.h> 27 #include <linux/module.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 #include "vi.h" 33 #include "vid.h" 34 35 #include "oss/oss_3_0_d.h" 36 #include "oss/oss_3_0_sh_mask.h" 37 38 #include "gmc/gmc_8_1_d.h" 39 #include "gmc/gmc_8_1_sh_mask.h" 40 41 #include "gca/gfx_8_0_d.h" 42 #include "gca/gfx_8_0_enum.h" 43 #include "gca/gfx_8_0_sh_mask.h" 44 45 #include "bif/bif_5_0_d.h" 46 #include "bif/bif_5_0_sh_mask.h" 47 48 #include "tonga_sdma_pkt_open.h" 49 50 #include "ivsrcid/ivsrcid_vislands30.h" 51 52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev); 53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev); 54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev); 55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev); 56 57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin"); 58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin"); 59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin"); 60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin"); 61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin"); 65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin"); 66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin"); 67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin"); 68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin"); 69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin"); 70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin"); 71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin"); 72 73 74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 75 { 76 SDMA0_REGISTER_OFFSET, 77 SDMA1_REGISTER_OFFSET 78 }; 79 80 static const u32 golden_settings_tonga_a11[] = 81 { 82 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 83 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 84 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 85 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 86 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 87 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 88 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 89 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 90 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 91 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 92 }; 93 94 static const u32 tonga_mgcg_cgcg_init[] = 95 { 96 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 97 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 98 }; 99 100 static const u32 golden_settings_fiji_a10[] = 101 { 102 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 103 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 104 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 105 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 106 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 107 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 108 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 109 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 110 }; 111 112 static const u32 fiji_mgcg_cgcg_init[] = 113 { 114 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 115 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 116 }; 117 118 static const u32 golden_settings_polaris11_a11[] = 119 { 120 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 121 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 122 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 123 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 124 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 125 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 126 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 127 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 128 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 129 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 130 }; 131 132 static const u32 golden_settings_polaris10_a11[] = 133 { 134 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 135 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 136 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 137 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 138 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 139 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 140 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 141 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 142 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 143 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 144 }; 145 146 static const u32 cz_golden_settings_a11[] = 147 { 148 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 149 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 150 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 151 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 152 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 153 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 154 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 155 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 156 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100, 157 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800, 158 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100, 159 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100, 160 }; 161 162 static const u32 cz_mgcg_cgcg_init[] = 163 { 164 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 165 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 166 }; 167 168 static const u32 stoney_golden_settings_a11[] = 169 { 170 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 171 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 172 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 173 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 174 }; 175 176 static const u32 stoney_mgcg_cgcg_init[] = 177 { 178 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100, 179 }; 180 181 /* 182 * sDMA - System DMA 183 * Starting with CIK, the GPU has new asynchronous 184 * DMA engines. These engines are used for compute 185 * and gfx. There are two DMA engines (SDMA0, SDMA1) 186 * and each one supports 1 ring buffer used for gfx 187 * and 2 queues used for compute. 188 * 189 * The programming model is very similar to the CP 190 * (ring buffer, IBs, etc.), but sDMA has it's own 191 * packet format that is different from the PM4 format 192 * used by the CP. sDMA supports copying data, writing 193 * embedded data, solid fills, and a number of other 194 * things. It also has support for tiling/detiling of 195 * buffers. 196 */ 197 198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev) 199 { 200 switch (adev->asic_type) { 201 case CHIP_FIJI: 202 amdgpu_device_program_register_sequence(adev, 203 fiji_mgcg_cgcg_init, 204 ARRAY_SIZE(fiji_mgcg_cgcg_init)); 205 amdgpu_device_program_register_sequence(adev, 206 golden_settings_fiji_a10, 207 ARRAY_SIZE(golden_settings_fiji_a10)); 208 break; 209 case CHIP_TONGA: 210 amdgpu_device_program_register_sequence(adev, 211 tonga_mgcg_cgcg_init, 212 ARRAY_SIZE(tonga_mgcg_cgcg_init)); 213 amdgpu_device_program_register_sequence(adev, 214 golden_settings_tonga_a11, 215 ARRAY_SIZE(golden_settings_tonga_a11)); 216 break; 217 case CHIP_POLARIS11: 218 case CHIP_POLARIS12: 219 case CHIP_VEGAM: 220 amdgpu_device_program_register_sequence(adev, 221 golden_settings_polaris11_a11, 222 ARRAY_SIZE(golden_settings_polaris11_a11)); 223 break; 224 case CHIP_POLARIS10: 225 amdgpu_device_program_register_sequence(adev, 226 golden_settings_polaris10_a11, 227 ARRAY_SIZE(golden_settings_polaris10_a11)); 228 break; 229 case CHIP_CARRIZO: 230 amdgpu_device_program_register_sequence(adev, 231 cz_mgcg_cgcg_init, 232 ARRAY_SIZE(cz_mgcg_cgcg_init)); 233 amdgpu_device_program_register_sequence(adev, 234 cz_golden_settings_a11, 235 ARRAY_SIZE(cz_golden_settings_a11)); 236 break; 237 case CHIP_STONEY: 238 amdgpu_device_program_register_sequence(adev, 239 stoney_mgcg_cgcg_init, 240 ARRAY_SIZE(stoney_mgcg_cgcg_init)); 241 amdgpu_device_program_register_sequence(adev, 242 stoney_golden_settings_a11, 243 ARRAY_SIZE(stoney_golden_settings_a11)); 244 break; 245 default: 246 break; 247 } 248 } 249 250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev) 251 { 252 int i; 253 for (i = 0; i < adev->sdma.num_instances; i++) { 254 release_firmware(adev->sdma.instance[i].fw); 255 adev->sdma.instance[i].fw = NULL; 256 } 257 } 258 259 /** 260 * sdma_v3_0_init_microcode - load ucode images from disk 261 * 262 * @adev: amdgpu_device pointer 263 * 264 * Use the firmware interface to load the ucode images into 265 * the driver (not loaded into hw). 266 * Returns 0 on success, error on failure. 267 */ 268 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev) 269 { 270 const char *chip_name; 271 char fw_name[30]; 272 int err = 0, i; 273 struct amdgpu_firmware_info *info = NULL; 274 const struct common_firmware_header *header = NULL; 275 const struct sdma_firmware_header_v1_0 *hdr; 276 277 DRM_DEBUG("\n"); 278 279 switch (adev->asic_type) { 280 case CHIP_TONGA: 281 chip_name = "tonga"; 282 break; 283 case CHIP_FIJI: 284 chip_name = "fiji"; 285 break; 286 case CHIP_POLARIS10: 287 chip_name = "polaris10"; 288 break; 289 case CHIP_POLARIS11: 290 chip_name = "polaris11"; 291 break; 292 case CHIP_POLARIS12: 293 chip_name = "polaris12"; 294 break; 295 case CHIP_VEGAM: 296 chip_name = "vegam"; 297 break; 298 case CHIP_CARRIZO: 299 chip_name = "carrizo"; 300 break; 301 case CHIP_STONEY: 302 chip_name = "stoney"; 303 break; 304 default: BUG(); 305 } 306 307 for (i = 0; i < adev->sdma.num_instances; i++) { 308 if (i == 0) 309 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 310 else 311 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 312 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 313 if (err) 314 goto out; 315 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 316 if (err) 317 goto out; 318 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 319 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 320 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 321 if (adev->sdma.instance[i].feature_version >= 20) 322 adev->sdma.instance[i].burst_nop = true; 323 324 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 325 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 326 info->fw = adev->sdma.instance[i].fw; 327 header = (const struct common_firmware_header *)info->fw->data; 328 adev->firmware.fw_size += 329 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 330 331 } 332 out: 333 if (err) { 334 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name); 335 for (i = 0; i < adev->sdma.num_instances; i++) { 336 release_firmware(adev->sdma.instance[i].fw); 337 adev->sdma.instance[i].fw = NULL; 338 } 339 } 340 return err; 341 } 342 343 /** 344 * sdma_v3_0_ring_get_rptr - get the current read pointer 345 * 346 * @ring: amdgpu ring pointer 347 * 348 * Get the current rptr from the hardware (VI+). 349 */ 350 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring) 351 { 352 /* XXX check if swapping is necessary on BE */ 353 return ring->adev->wb.wb[ring->rptr_offs] >> 2; 354 } 355 356 /** 357 * sdma_v3_0_ring_get_wptr - get the current write pointer 358 * 359 * @ring: amdgpu ring pointer 360 * 361 * Get the current wptr from the hardware (VI+). 362 */ 363 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring) 364 { 365 struct amdgpu_device *adev = ring->adev; 366 u32 wptr; 367 368 if (ring->use_doorbell || ring->use_pollmem) { 369 /* XXX check if swapping is necessary on BE */ 370 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2; 371 } else { 372 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2; 373 } 374 375 return wptr; 376 } 377 378 /** 379 * sdma_v3_0_ring_set_wptr - commit the write pointer 380 * 381 * @ring: amdgpu ring pointer 382 * 383 * Write the wptr back to the hardware (VI+). 384 */ 385 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring) 386 { 387 struct amdgpu_device *adev = ring->adev; 388 389 if (ring->use_doorbell) { 390 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs]; 391 /* XXX check if swapping is necessary on BE */ 392 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2)); 393 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2); 394 } else if (ring->use_pollmem) { 395 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs]; 396 397 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2)); 398 } else { 399 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2); 400 } 401 } 402 403 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 404 { 405 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 406 int i; 407 408 for (i = 0; i < count; i++) 409 if (sdma && sdma->burst_nop && (i == 0)) 410 amdgpu_ring_write(ring, ring->funcs->nop | 411 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 412 else 413 amdgpu_ring_write(ring, ring->funcs->nop); 414 } 415 416 /** 417 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine 418 * 419 * @ring: amdgpu ring pointer 420 * @ib: IB object to schedule 421 * 422 * Schedule an IB in the DMA ring (VI). 423 */ 424 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring, 425 struct amdgpu_job *job, 426 struct amdgpu_ib *ib, 427 uint32_t flags) 428 { 429 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 430 431 /* IB packet must end on a 8 DW boundary */ 432 sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 433 434 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 435 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 436 /* base must be 32 byte aligned */ 437 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 438 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 439 amdgpu_ring_write(ring, ib->length_dw); 440 amdgpu_ring_write(ring, 0); 441 amdgpu_ring_write(ring, 0); 442 443 } 444 445 /** 446 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 447 * 448 * @ring: amdgpu ring pointer 449 * 450 * Emit an hdp flush packet on the requested DMA ring. 451 */ 452 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 453 { 454 u32 ref_and_mask = 0; 455 456 if (ring->me == 0) 457 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); 458 else 459 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); 460 461 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 462 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 463 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 464 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 465 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 466 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 467 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 468 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 469 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 470 } 471 472 /** 473 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring 474 * 475 * @ring: amdgpu ring pointer 476 * @fence: amdgpu fence object 477 * 478 * Add a DMA fence packet to the ring to write 479 * the fence seq number and DMA trap packet to generate 480 * an interrupt if needed (VI). 481 */ 482 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 483 unsigned flags) 484 { 485 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 486 /* write the fence */ 487 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 488 amdgpu_ring_write(ring, lower_32_bits(addr)); 489 amdgpu_ring_write(ring, upper_32_bits(addr)); 490 amdgpu_ring_write(ring, lower_32_bits(seq)); 491 492 /* optionally write high bits as well */ 493 if (write64bit) { 494 addr += 4; 495 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 496 amdgpu_ring_write(ring, lower_32_bits(addr)); 497 amdgpu_ring_write(ring, upper_32_bits(addr)); 498 amdgpu_ring_write(ring, upper_32_bits(seq)); 499 } 500 501 /* generate an interrupt */ 502 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 503 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 504 } 505 506 /** 507 * sdma_v3_0_gfx_stop - stop the gfx async dma engines 508 * 509 * @adev: amdgpu_device pointer 510 * 511 * Stop the gfx async dma ring buffers (VI). 512 */ 513 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev) 514 { 515 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 516 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 517 u32 rb_cntl, ib_cntl; 518 int i; 519 520 if ((adev->mman.buffer_funcs_ring == sdma0) || 521 (adev->mman.buffer_funcs_ring == sdma1)) 522 amdgpu_ttm_set_buffer_funcs_status(adev, false); 523 524 for (i = 0; i < adev->sdma.num_instances; i++) { 525 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 526 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 527 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 528 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 529 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 530 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 531 } 532 } 533 534 /** 535 * sdma_v3_0_rlc_stop - stop the compute async dma engines 536 * 537 * @adev: amdgpu_device pointer 538 * 539 * Stop the compute async dma queues (VI). 540 */ 541 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev) 542 { 543 /* XXX todo */ 544 } 545 546 /** 547 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch 548 * 549 * @adev: amdgpu_device pointer 550 * @enable: enable/disable the DMA MEs context switch. 551 * 552 * Halt or unhalt the async dma engines context switch (VI). 553 */ 554 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 555 { 556 u32 f32_cntl, phase_quantum = 0; 557 int i; 558 559 if (amdgpu_sdma_phase_quantum) { 560 unsigned value = amdgpu_sdma_phase_quantum; 561 unsigned unit = 0; 562 563 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 564 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 565 value = (value + 1) >> 1; 566 unit++; 567 } 568 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 569 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 570 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 571 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 572 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 573 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 574 WARN_ONCE(1, 575 "clamping sdma_phase_quantum to %uK clock cycles\n", 576 value << unit); 577 } 578 phase_quantum = 579 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 580 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 581 } 582 583 for (i = 0; i < adev->sdma.num_instances; i++) { 584 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); 585 if (enable) { 586 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 587 AUTO_CTXSW_ENABLE, 1); 588 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 589 ATC_L1_ENABLE, 1); 590 if (amdgpu_sdma_phase_quantum) { 591 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i], 592 phase_quantum); 593 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i], 594 phase_quantum); 595 } 596 } else { 597 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 598 AUTO_CTXSW_ENABLE, 0); 599 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 600 ATC_L1_ENABLE, 1); 601 } 602 603 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); 604 } 605 } 606 607 /** 608 * sdma_v3_0_enable - stop the async dma engines 609 * 610 * @adev: amdgpu_device pointer 611 * @enable: enable/disable the DMA MEs. 612 * 613 * Halt or unhalt the async dma engines (VI). 614 */ 615 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable) 616 { 617 u32 f32_cntl; 618 int i; 619 620 if (!enable) { 621 sdma_v3_0_gfx_stop(adev); 622 sdma_v3_0_rlc_stop(adev); 623 } 624 625 for (i = 0; i < adev->sdma.num_instances; i++) { 626 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 627 if (enable) 628 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); 629 else 630 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); 631 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); 632 } 633 } 634 635 /** 636 * sdma_v3_0_gfx_resume - setup and start the async dma engines 637 * 638 * @adev: amdgpu_device pointer 639 * 640 * Set up the gfx DMA ring buffers and enable them (VI). 641 * Returns 0 for success, error for failure. 642 */ 643 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev) 644 { 645 struct amdgpu_ring *ring; 646 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 647 u32 rb_bufsz; 648 u32 wb_offset; 649 u32 doorbell; 650 u64 wptr_gpu_addr; 651 int i, j, r; 652 653 for (i = 0; i < adev->sdma.num_instances; i++) { 654 ring = &adev->sdma.instance[i].ring; 655 amdgpu_ring_clear_ring(ring); 656 wb_offset = (ring->rptr_offs * 4); 657 658 mutex_lock(&adev->srbm_mutex); 659 for (j = 0; j < 16; j++) { 660 vi_srbm_select(adev, 0, 0, 0, j); 661 /* SDMA GFX */ 662 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 663 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 664 } 665 vi_srbm_select(adev, 0, 0, 0, 0); 666 mutex_unlock(&adev->srbm_mutex); 667 668 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], 669 adev->gfx.config.gb_addr_config & 0x70); 670 671 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 672 673 /* Set ring buffer size in dwords */ 674 rb_bufsz = order_base_2(ring->ring_size / 4); 675 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 676 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 677 #ifdef __BIG_ENDIAN 678 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 679 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 680 RPTR_WRITEBACK_SWAP_ENABLE, 1); 681 #endif 682 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 683 684 /* Initialize the ring buffer's read and write pointers */ 685 ring->wptr = 0; 686 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 687 sdma_v3_0_ring_set_wptr(ring); 688 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); 689 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); 690 691 /* set the wb address whether it's enabled or not */ 692 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 693 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 694 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 695 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 696 697 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 698 699 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 700 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 701 702 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]); 703 704 if (ring->use_doorbell) { 705 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, 706 OFFSET, ring->doorbell_index); 707 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); 708 } else { 709 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); 710 } 711 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell); 712 713 /* setup the wptr shadow polling */ 714 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 715 716 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i], 717 lower_32_bits(wptr_gpu_addr)); 718 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i], 719 upper_32_bits(wptr_gpu_addr)); 720 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]); 721 if (ring->use_pollmem) { 722 /*wptr polling is not enogh fast, directly clean the wptr register */ 723 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); 724 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 725 SDMA0_GFX_RB_WPTR_POLL_CNTL, 726 ENABLE, 1); 727 } else { 728 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 729 SDMA0_GFX_RB_WPTR_POLL_CNTL, 730 ENABLE, 0); 731 } 732 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl); 733 734 /* enable DMA RB */ 735 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 736 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 737 738 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 739 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 740 #ifdef __BIG_ENDIAN 741 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 742 #endif 743 /* enable DMA IBs */ 744 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 745 746 ring->sched.ready = true; 747 } 748 749 /* unhalt the MEs */ 750 sdma_v3_0_enable(adev, true); 751 /* enable sdma ring preemption */ 752 sdma_v3_0_ctx_switch_enable(adev, true); 753 754 for (i = 0; i < adev->sdma.num_instances; i++) { 755 ring = &adev->sdma.instance[i].ring; 756 r = amdgpu_ring_test_helper(ring); 757 if (r) 758 return r; 759 760 if (adev->mman.buffer_funcs_ring == ring) 761 amdgpu_ttm_set_buffer_funcs_status(adev, true); 762 } 763 764 return 0; 765 } 766 767 /** 768 * sdma_v3_0_rlc_resume - setup and start the async dma engines 769 * 770 * @adev: amdgpu_device pointer 771 * 772 * Set up the compute DMA queues and enable them (VI). 773 * Returns 0 for success, error for failure. 774 */ 775 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev) 776 { 777 /* XXX todo */ 778 return 0; 779 } 780 781 /** 782 * sdma_v3_0_start - setup and start the async dma engines 783 * 784 * @adev: amdgpu_device pointer 785 * 786 * Set up the DMA engines and enable them (VI). 787 * Returns 0 for success, error for failure. 788 */ 789 static int sdma_v3_0_start(struct amdgpu_device *adev) 790 { 791 int r; 792 793 /* disable sdma engine before programing it */ 794 sdma_v3_0_ctx_switch_enable(adev, false); 795 sdma_v3_0_enable(adev, false); 796 797 /* start the gfx rings and rlc compute queues */ 798 r = sdma_v3_0_gfx_resume(adev); 799 if (r) 800 return r; 801 r = sdma_v3_0_rlc_resume(adev); 802 if (r) 803 return r; 804 805 return 0; 806 } 807 808 /** 809 * sdma_v3_0_ring_test_ring - simple async dma engine test 810 * 811 * @ring: amdgpu_ring structure holding ring information 812 * 813 * Test the DMA engine by writing using it to write an 814 * value to memory. (VI). 815 * Returns 0 for success, error for failure. 816 */ 817 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring) 818 { 819 struct amdgpu_device *adev = ring->adev; 820 unsigned i; 821 unsigned index; 822 int r; 823 u32 tmp; 824 u64 gpu_addr; 825 826 r = amdgpu_device_wb_get(adev, &index); 827 if (r) 828 return r; 829 830 gpu_addr = adev->wb.gpu_addr + (index * 4); 831 tmp = 0xCAFEDEAD; 832 adev->wb.wb[index] = cpu_to_le32(tmp); 833 834 r = amdgpu_ring_alloc(ring, 5); 835 if (r) 836 goto error_free_wb; 837 838 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 839 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 840 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 841 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 842 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 843 amdgpu_ring_write(ring, 0xDEADBEEF); 844 amdgpu_ring_commit(ring); 845 846 for (i = 0; i < adev->usec_timeout; i++) { 847 tmp = le32_to_cpu(adev->wb.wb[index]); 848 if (tmp == 0xDEADBEEF) 849 break; 850 udelay(1); 851 } 852 853 if (i >= adev->usec_timeout) 854 r = -ETIMEDOUT; 855 856 error_free_wb: 857 amdgpu_device_wb_free(adev, index); 858 return r; 859 } 860 861 /** 862 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine 863 * 864 * @ring: amdgpu_ring structure holding ring information 865 * 866 * Test a simple IB in the DMA ring (VI). 867 * Returns 0 on success, error on failure. 868 */ 869 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 870 { 871 struct amdgpu_device *adev = ring->adev; 872 struct amdgpu_ib ib; 873 struct dma_fence *f = NULL; 874 unsigned index; 875 u32 tmp = 0; 876 u64 gpu_addr; 877 long r; 878 879 r = amdgpu_device_wb_get(adev, &index); 880 if (r) 881 return r; 882 883 gpu_addr = adev->wb.gpu_addr + (index * 4); 884 tmp = 0xCAFEDEAD; 885 adev->wb.wb[index] = cpu_to_le32(tmp); 886 memset(&ib, 0, sizeof(ib)); 887 r = amdgpu_ib_get(adev, NULL, 256, 888 AMDGPU_IB_POOL_DIRECT, &ib); 889 if (r) 890 goto err0; 891 892 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 893 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 894 ib.ptr[1] = lower_32_bits(gpu_addr); 895 ib.ptr[2] = upper_32_bits(gpu_addr); 896 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); 897 ib.ptr[4] = 0xDEADBEEF; 898 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 899 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 900 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 901 ib.length_dw = 8; 902 903 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 904 if (r) 905 goto err1; 906 907 r = dma_fence_wait_timeout(f, false, timeout); 908 if (r == 0) { 909 r = -ETIMEDOUT; 910 goto err1; 911 } else if (r < 0) { 912 goto err1; 913 } 914 tmp = le32_to_cpu(adev->wb.wb[index]); 915 if (tmp == 0xDEADBEEF) 916 r = 0; 917 else 918 r = -EINVAL; 919 err1: 920 amdgpu_ib_free(adev, &ib, NULL); 921 dma_fence_put(f); 922 err0: 923 amdgpu_device_wb_free(adev, index); 924 return r; 925 } 926 927 /** 928 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART 929 * 930 * @ib: indirect buffer to fill with commands 931 * @pe: addr of the page entry 932 * @src: src addr to copy from 933 * @count: number of page entries to update 934 * 935 * Update PTEs by copying them from the GART using sDMA (CIK). 936 */ 937 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib, 938 uint64_t pe, uint64_t src, 939 unsigned count) 940 { 941 unsigned bytes = count * 8; 942 943 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 944 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 945 ib->ptr[ib->length_dw++] = bytes; 946 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 947 ib->ptr[ib->length_dw++] = lower_32_bits(src); 948 ib->ptr[ib->length_dw++] = upper_32_bits(src); 949 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 950 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 951 } 952 953 /** 954 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually 955 * 956 * @ib: indirect buffer to fill with commands 957 * @pe: addr of the page entry 958 * @value: dst addr to write into pe 959 * @count: number of page entries to update 960 * @incr: increase next addr by incr bytes 961 * 962 * Update PTEs by writing them manually using sDMA (CIK). 963 */ 964 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 965 uint64_t value, unsigned count, 966 uint32_t incr) 967 { 968 unsigned ndw = count * 2; 969 970 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 971 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 972 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 973 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 974 ib->ptr[ib->length_dw++] = ndw; 975 for (; ndw > 0; ndw -= 2) { 976 ib->ptr[ib->length_dw++] = lower_32_bits(value); 977 ib->ptr[ib->length_dw++] = upper_32_bits(value); 978 value += incr; 979 } 980 } 981 982 /** 983 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA 984 * 985 * @ib: indirect buffer to fill with commands 986 * @pe: addr of the page entry 987 * @addr: dst addr to write into pe 988 * @count: number of page entries to update 989 * @incr: increase next addr by incr bytes 990 * @flags: access flags 991 * 992 * Update the page tables using sDMA (CIK). 993 */ 994 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, 995 uint64_t addr, unsigned count, 996 uint32_t incr, uint64_t flags) 997 { 998 /* for physically contiguous pages (vram) */ 999 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); 1000 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1001 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1002 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1003 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1004 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1005 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1006 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1007 ib->ptr[ib->length_dw++] = 0; 1008 ib->ptr[ib->length_dw++] = count; /* number of entries */ 1009 } 1010 1011 /** 1012 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw 1013 * 1014 * @ib: indirect buffer to fill with padding 1015 * 1016 */ 1017 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1018 { 1019 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1020 u32 pad_count; 1021 int i; 1022 1023 pad_count = (-ib->length_dw) & 7; 1024 for (i = 0; i < pad_count; i++) 1025 if (sdma && sdma->burst_nop && (i == 0)) 1026 ib->ptr[ib->length_dw++] = 1027 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1028 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1029 else 1030 ib->ptr[ib->length_dw++] = 1031 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1032 } 1033 1034 /** 1035 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline 1036 * 1037 * @ring: amdgpu_ring pointer 1038 * 1039 * Make sure all previous operations are completed (CIK). 1040 */ 1041 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1042 { 1043 uint32_t seq = ring->fence_drv.sync_seq; 1044 uint64_t addr = ring->fence_drv.gpu_addr; 1045 1046 /* wait for idle */ 1047 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1048 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1049 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1050 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1051 amdgpu_ring_write(ring, addr & 0xfffffffc); 1052 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1053 amdgpu_ring_write(ring, seq); /* reference */ 1054 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1055 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1056 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1057 } 1058 1059 /** 1060 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA 1061 * 1062 * @ring: amdgpu_ring pointer 1063 * @vm: amdgpu_vm pointer 1064 * 1065 * Update the page table base and flush the VM TLB 1066 * using sDMA (VI). 1067 */ 1068 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1069 unsigned vmid, uint64_t pd_addr) 1070 { 1071 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1072 1073 /* wait for flush */ 1074 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1075 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1076 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ 1077 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 1078 amdgpu_ring_write(ring, 0); 1079 amdgpu_ring_write(ring, 0); /* reference */ 1080 amdgpu_ring_write(ring, 0); /* mask */ 1081 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1082 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 1083 } 1084 1085 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring, 1086 uint32_t reg, uint32_t val) 1087 { 1088 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1089 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1090 amdgpu_ring_write(ring, reg); 1091 amdgpu_ring_write(ring, val); 1092 } 1093 1094 static int sdma_v3_0_early_init(void *handle) 1095 { 1096 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1097 1098 switch (adev->asic_type) { 1099 case CHIP_STONEY: 1100 adev->sdma.num_instances = 1; 1101 break; 1102 default: 1103 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 1104 break; 1105 } 1106 1107 sdma_v3_0_set_ring_funcs(adev); 1108 sdma_v3_0_set_buffer_funcs(adev); 1109 sdma_v3_0_set_vm_pte_funcs(adev); 1110 sdma_v3_0_set_irq_funcs(adev); 1111 1112 return 0; 1113 } 1114 1115 static int sdma_v3_0_sw_init(void *handle) 1116 { 1117 struct amdgpu_ring *ring; 1118 int r, i; 1119 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1120 1121 /* SDMA trap event */ 1122 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP, 1123 &adev->sdma.trap_irq); 1124 if (r) 1125 return r; 1126 1127 /* SDMA Privileged inst */ 1128 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241, 1129 &adev->sdma.illegal_inst_irq); 1130 if (r) 1131 return r; 1132 1133 /* SDMA Privileged inst */ 1134 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE, 1135 &adev->sdma.illegal_inst_irq); 1136 if (r) 1137 return r; 1138 1139 r = sdma_v3_0_init_microcode(adev); 1140 if (r) { 1141 DRM_ERROR("Failed to load sdma firmware!\n"); 1142 return r; 1143 } 1144 1145 for (i = 0; i < adev->sdma.num_instances; i++) { 1146 ring = &adev->sdma.instance[i].ring; 1147 ring->ring_obj = NULL; 1148 if (!amdgpu_sriov_vf(adev)) { 1149 ring->use_doorbell = true; 1150 ring->doorbell_index = adev->doorbell_index.sdma_engine[i]; 1151 } else { 1152 ring->use_pollmem = true; 1153 } 1154 1155 sprintf(ring->name, "sdma%d", i); 1156 r = amdgpu_ring_init(adev, ring, 1024, 1157 &adev->sdma.trap_irq, 1158 (i == 0) ? 1159 AMDGPU_SDMA_IRQ_INSTANCE0 : 1160 AMDGPU_SDMA_IRQ_INSTANCE1, 1161 AMDGPU_RING_PRIO_DEFAULT); 1162 if (r) 1163 return r; 1164 } 1165 1166 return r; 1167 } 1168 1169 static int sdma_v3_0_sw_fini(void *handle) 1170 { 1171 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1172 int i; 1173 1174 for (i = 0; i < adev->sdma.num_instances; i++) 1175 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1176 1177 sdma_v3_0_free_microcode(adev); 1178 return 0; 1179 } 1180 1181 static int sdma_v3_0_hw_init(void *handle) 1182 { 1183 int r; 1184 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1185 1186 sdma_v3_0_init_golden_registers(adev); 1187 1188 r = sdma_v3_0_start(adev); 1189 if (r) 1190 return r; 1191 1192 return r; 1193 } 1194 1195 static int sdma_v3_0_hw_fini(void *handle) 1196 { 1197 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1198 1199 sdma_v3_0_ctx_switch_enable(adev, false); 1200 sdma_v3_0_enable(adev, false); 1201 1202 return 0; 1203 } 1204 1205 static int sdma_v3_0_suspend(void *handle) 1206 { 1207 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1208 1209 return sdma_v3_0_hw_fini(adev); 1210 } 1211 1212 static int sdma_v3_0_resume(void *handle) 1213 { 1214 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1215 1216 return sdma_v3_0_hw_init(adev); 1217 } 1218 1219 static bool sdma_v3_0_is_idle(void *handle) 1220 { 1221 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1222 u32 tmp = RREG32(mmSRBM_STATUS2); 1223 1224 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 1225 SRBM_STATUS2__SDMA1_BUSY_MASK)) 1226 return false; 1227 1228 return true; 1229 } 1230 1231 static int sdma_v3_0_wait_for_idle(void *handle) 1232 { 1233 unsigned i; 1234 u32 tmp; 1235 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1236 1237 for (i = 0; i < adev->usec_timeout; i++) { 1238 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 1239 SRBM_STATUS2__SDMA1_BUSY_MASK); 1240 1241 if (!tmp) 1242 return 0; 1243 udelay(1); 1244 } 1245 return -ETIMEDOUT; 1246 } 1247 1248 static bool sdma_v3_0_check_soft_reset(void *handle) 1249 { 1250 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1251 u32 srbm_soft_reset = 0; 1252 u32 tmp = RREG32(mmSRBM_STATUS2); 1253 1254 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) || 1255 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) { 1256 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 1257 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 1258 } 1259 1260 if (srbm_soft_reset) { 1261 adev->sdma.srbm_soft_reset = srbm_soft_reset; 1262 return true; 1263 } else { 1264 adev->sdma.srbm_soft_reset = 0; 1265 return false; 1266 } 1267 } 1268 1269 static int sdma_v3_0_pre_soft_reset(void *handle) 1270 { 1271 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1272 u32 srbm_soft_reset = 0; 1273 1274 if (!adev->sdma.srbm_soft_reset) 1275 return 0; 1276 1277 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1278 1279 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1280 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1281 sdma_v3_0_ctx_switch_enable(adev, false); 1282 sdma_v3_0_enable(adev, false); 1283 } 1284 1285 return 0; 1286 } 1287 1288 static int sdma_v3_0_post_soft_reset(void *handle) 1289 { 1290 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1291 u32 srbm_soft_reset = 0; 1292 1293 if (!adev->sdma.srbm_soft_reset) 1294 return 0; 1295 1296 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1297 1298 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1299 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1300 sdma_v3_0_gfx_resume(adev); 1301 sdma_v3_0_rlc_resume(adev); 1302 } 1303 1304 return 0; 1305 } 1306 1307 static int sdma_v3_0_soft_reset(void *handle) 1308 { 1309 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1310 u32 srbm_soft_reset = 0; 1311 u32 tmp; 1312 1313 if (!adev->sdma.srbm_soft_reset) 1314 return 0; 1315 1316 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1317 1318 if (srbm_soft_reset) { 1319 tmp = RREG32(mmSRBM_SOFT_RESET); 1320 tmp |= srbm_soft_reset; 1321 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1322 WREG32(mmSRBM_SOFT_RESET, tmp); 1323 tmp = RREG32(mmSRBM_SOFT_RESET); 1324 1325 udelay(50); 1326 1327 tmp &= ~srbm_soft_reset; 1328 WREG32(mmSRBM_SOFT_RESET, tmp); 1329 tmp = RREG32(mmSRBM_SOFT_RESET); 1330 1331 /* Wait a little for things to settle down */ 1332 udelay(50); 1333 } 1334 1335 return 0; 1336 } 1337 1338 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev, 1339 struct amdgpu_irq_src *source, 1340 unsigned type, 1341 enum amdgpu_interrupt_state state) 1342 { 1343 u32 sdma_cntl; 1344 1345 switch (type) { 1346 case AMDGPU_SDMA_IRQ_INSTANCE0: 1347 switch (state) { 1348 case AMDGPU_IRQ_STATE_DISABLE: 1349 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1350 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1351 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1352 break; 1353 case AMDGPU_IRQ_STATE_ENABLE: 1354 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1355 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1356 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1357 break; 1358 default: 1359 break; 1360 } 1361 break; 1362 case AMDGPU_SDMA_IRQ_INSTANCE1: 1363 switch (state) { 1364 case AMDGPU_IRQ_STATE_DISABLE: 1365 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1366 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1367 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1368 break; 1369 case AMDGPU_IRQ_STATE_ENABLE: 1370 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1371 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1372 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1373 break; 1374 default: 1375 break; 1376 } 1377 break; 1378 default: 1379 break; 1380 } 1381 return 0; 1382 } 1383 1384 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev, 1385 struct amdgpu_irq_src *source, 1386 struct amdgpu_iv_entry *entry) 1387 { 1388 u8 instance_id, queue_id; 1389 1390 instance_id = (entry->ring_id & 0x3) >> 0; 1391 queue_id = (entry->ring_id & 0xc) >> 2; 1392 DRM_DEBUG("IH: SDMA trap\n"); 1393 switch (instance_id) { 1394 case 0: 1395 switch (queue_id) { 1396 case 0: 1397 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1398 break; 1399 case 1: 1400 /* XXX compute */ 1401 break; 1402 case 2: 1403 /* XXX compute */ 1404 break; 1405 } 1406 break; 1407 case 1: 1408 switch (queue_id) { 1409 case 0: 1410 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1411 break; 1412 case 1: 1413 /* XXX compute */ 1414 break; 1415 case 2: 1416 /* XXX compute */ 1417 break; 1418 } 1419 break; 1420 } 1421 return 0; 1422 } 1423 1424 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1425 struct amdgpu_irq_src *source, 1426 struct amdgpu_iv_entry *entry) 1427 { 1428 u8 instance_id, queue_id; 1429 1430 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1431 instance_id = (entry->ring_id & 0x3) >> 0; 1432 queue_id = (entry->ring_id & 0xc) >> 2; 1433 1434 if (instance_id <= 1 && queue_id == 0) 1435 drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched); 1436 return 0; 1437 } 1438 1439 static void sdma_v3_0_update_sdma_medium_grain_clock_gating( 1440 struct amdgpu_device *adev, 1441 bool enable) 1442 { 1443 uint32_t temp, data; 1444 int i; 1445 1446 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 1447 for (i = 0; i < adev->sdma.num_instances; i++) { 1448 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1449 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1450 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1451 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1452 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1453 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1454 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1455 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1456 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1457 if (data != temp) 1458 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1459 } 1460 } else { 1461 for (i = 0; i < adev->sdma.num_instances; i++) { 1462 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1463 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1464 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1465 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1466 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1467 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1468 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1469 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1470 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK; 1471 1472 if (data != temp) 1473 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1474 } 1475 } 1476 } 1477 1478 static void sdma_v3_0_update_sdma_medium_grain_light_sleep( 1479 struct amdgpu_device *adev, 1480 bool enable) 1481 { 1482 uint32_t temp, data; 1483 int i; 1484 1485 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 1486 for (i = 0; i < adev->sdma.num_instances; i++) { 1487 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1488 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1489 1490 if (temp != data) 1491 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1492 } 1493 } else { 1494 for (i = 0; i < adev->sdma.num_instances; i++) { 1495 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1496 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1497 1498 if (temp != data) 1499 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1500 } 1501 } 1502 } 1503 1504 static int sdma_v3_0_set_clockgating_state(void *handle, 1505 enum amd_clockgating_state state) 1506 { 1507 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1508 1509 if (amdgpu_sriov_vf(adev)) 1510 return 0; 1511 1512 switch (adev->asic_type) { 1513 case CHIP_FIJI: 1514 case CHIP_CARRIZO: 1515 case CHIP_STONEY: 1516 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev, 1517 state == AMD_CG_STATE_GATE); 1518 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev, 1519 state == AMD_CG_STATE_GATE); 1520 break; 1521 default: 1522 break; 1523 } 1524 return 0; 1525 } 1526 1527 static int sdma_v3_0_set_powergating_state(void *handle, 1528 enum amd_powergating_state state) 1529 { 1530 return 0; 1531 } 1532 1533 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags) 1534 { 1535 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1536 int data; 1537 1538 if (amdgpu_sriov_vf(adev)) 1539 *flags = 0; 1540 1541 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1542 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]); 1543 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK)) 1544 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1545 1546 /* AMD_CG_SUPPORT_SDMA_LS */ 1547 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]); 1548 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1549 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1550 } 1551 1552 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = { 1553 .name = "sdma_v3_0", 1554 .early_init = sdma_v3_0_early_init, 1555 .late_init = NULL, 1556 .sw_init = sdma_v3_0_sw_init, 1557 .sw_fini = sdma_v3_0_sw_fini, 1558 .hw_init = sdma_v3_0_hw_init, 1559 .hw_fini = sdma_v3_0_hw_fini, 1560 .suspend = sdma_v3_0_suspend, 1561 .resume = sdma_v3_0_resume, 1562 .is_idle = sdma_v3_0_is_idle, 1563 .wait_for_idle = sdma_v3_0_wait_for_idle, 1564 .check_soft_reset = sdma_v3_0_check_soft_reset, 1565 .pre_soft_reset = sdma_v3_0_pre_soft_reset, 1566 .post_soft_reset = sdma_v3_0_post_soft_reset, 1567 .soft_reset = sdma_v3_0_soft_reset, 1568 .set_clockgating_state = sdma_v3_0_set_clockgating_state, 1569 .set_powergating_state = sdma_v3_0_set_powergating_state, 1570 .get_clockgating_state = sdma_v3_0_get_clockgating_state, 1571 }; 1572 1573 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = { 1574 .type = AMDGPU_RING_TYPE_SDMA, 1575 .align_mask = 0xf, 1576 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1577 .support_64bit_ptrs = false, 1578 .get_rptr = sdma_v3_0_ring_get_rptr, 1579 .get_wptr = sdma_v3_0_ring_get_wptr, 1580 .set_wptr = sdma_v3_0_ring_set_wptr, 1581 .emit_frame_size = 1582 6 + /* sdma_v3_0_ring_emit_hdp_flush */ 1583 3 + /* hdp invalidate */ 1584 6 + /* sdma_v3_0_ring_emit_pipeline_sync */ 1585 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */ 1586 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */ 1587 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */ 1588 .emit_ib = sdma_v3_0_ring_emit_ib, 1589 .emit_fence = sdma_v3_0_ring_emit_fence, 1590 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync, 1591 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush, 1592 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush, 1593 .test_ring = sdma_v3_0_ring_test_ring, 1594 .test_ib = sdma_v3_0_ring_test_ib, 1595 .insert_nop = sdma_v3_0_ring_insert_nop, 1596 .pad_ib = sdma_v3_0_ring_pad_ib, 1597 .emit_wreg = sdma_v3_0_ring_emit_wreg, 1598 }; 1599 1600 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev) 1601 { 1602 int i; 1603 1604 for (i = 0; i < adev->sdma.num_instances; i++) { 1605 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs; 1606 adev->sdma.instance[i].ring.me = i; 1607 } 1608 } 1609 1610 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = { 1611 .set = sdma_v3_0_set_trap_irq_state, 1612 .process = sdma_v3_0_process_trap_irq, 1613 }; 1614 1615 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = { 1616 .process = sdma_v3_0_process_illegal_inst_irq, 1617 }; 1618 1619 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev) 1620 { 1621 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1622 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs; 1623 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs; 1624 } 1625 1626 /** 1627 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine 1628 * 1629 * @ring: amdgpu_ring structure holding ring information 1630 * @src_offset: src GPU address 1631 * @dst_offset: dst GPU address 1632 * @byte_count: number of bytes to xfer 1633 * 1634 * Copy GPU buffers using the DMA engine (VI). 1635 * Used by the amdgpu ttm implementation to move pages if 1636 * registered as the asic copy callback. 1637 */ 1638 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib, 1639 uint64_t src_offset, 1640 uint64_t dst_offset, 1641 uint32_t byte_count) 1642 { 1643 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1644 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1645 ib->ptr[ib->length_dw++] = byte_count; 1646 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1647 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1648 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1649 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1650 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1651 } 1652 1653 /** 1654 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine 1655 * 1656 * @ring: amdgpu_ring structure holding ring information 1657 * @src_data: value to write to buffer 1658 * @dst_offset: dst GPU address 1659 * @byte_count: number of bytes to xfer 1660 * 1661 * Fill GPU buffers using the DMA engine (VI). 1662 */ 1663 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib, 1664 uint32_t src_data, 1665 uint64_t dst_offset, 1666 uint32_t byte_count) 1667 { 1668 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1669 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1670 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1671 ib->ptr[ib->length_dw++] = src_data; 1672 ib->ptr[ib->length_dw++] = byte_count; 1673 } 1674 1675 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = { 1676 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1677 .copy_num_dw = 7, 1678 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer, 1679 1680 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1681 .fill_num_dw = 5, 1682 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer, 1683 }; 1684 1685 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev) 1686 { 1687 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs; 1688 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1689 } 1690 1691 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = { 1692 .copy_pte_num_dw = 7, 1693 .copy_pte = sdma_v3_0_vm_copy_pte, 1694 1695 .write_pte = sdma_v3_0_vm_write_pte, 1696 .set_pte_pde = sdma_v3_0_vm_set_pte_pde, 1697 }; 1698 1699 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1700 { 1701 unsigned i; 1702 1703 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs; 1704 for (i = 0; i < adev->sdma.num_instances; i++) { 1705 adev->vm_manager.vm_pte_scheds[i] = 1706 &adev->sdma.instance[i].ring.sched; 1707 } 1708 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1709 } 1710 1711 const struct amdgpu_ip_block_version sdma_v3_0_ip_block = 1712 { 1713 .type = AMD_IP_BLOCK_TYPE_SDMA, 1714 .major = 3, 1715 .minor = 0, 1716 .rev = 0, 1717 .funcs = &sdma_v3_0_ip_funcs, 1718 }; 1719 1720 const struct amdgpu_ip_block_version sdma_v3_1_ip_block = 1721 { 1722 .type = AMD_IP_BLOCK_TYPE_SDMA, 1723 .major = 3, 1724 .minor = 1, 1725 .rev = 0, 1726 .funcs = &sdma_v3_0_ip_funcs, 1727 }; 1728