xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
67 
68 
69 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
70 {
71 	SDMA0_REGISTER_OFFSET,
72 	SDMA1_REGISTER_OFFSET
73 };
74 
75 static const u32 golden_settings_tonga_a11[] =
76 {
77 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
78 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
79 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
80 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
81 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
82 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
83 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
84 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
85 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
86 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
87 };
88 
89 static const u32 tonga_mgcg_cgcg_init[] =
90 {
91 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
92 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
93 };
94 
95 static const u32 golden_settings_fiji_a10[] =
96 {
97 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
98 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
99 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
100 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
101 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
102 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
103 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
104 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
105 };
106 
107 static const u32 fiji_mgcg_cgcg_init[] =
108 {
109 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
110 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
111 };
112 
113 static const u32 golden_settings_polaris11_a11[] =
114 {
115 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
116 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
117 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
118 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
119 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
120 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
121 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
122 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
123 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
124 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
125 };
126 
127 static const u32 golden_settings_polaris10_a11[] =
128 {
129 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
130 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
131 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
132 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
133 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
134 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
135 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
136 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
137 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
138 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
139 };
140 
141 static const u32 cz_golden_settings_a11[] =
142 {
143 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
144 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
145 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
146 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
147 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
148 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
149 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
150 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
151 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
152 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
153 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
155 };
156 
157 static const u32 cz_mgcg_cgcg_init[] =
158 {
159 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
160 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
161 };
162 
163 static const u32 stoney_golden_settings_a11[] =
164 {
165 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
166 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
167 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
168 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
169 };
170 
171 static const u32 stoney_mgcg_cgcg_init[] =
172 {
173 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
174 };
175 
176 /*
177  * sDMA - System DMA
178  * Starting with CIK, the GPU has new asynchronous
179  * DMA engines.  These engines are used for compute
180  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
181  * and each one supports 1 ring buffer used for gfx
182  * and 2 queues used for compute.
183  *
184  * The programming model is very similar to the CP
185  * (ring buffer, IBs, etc.), but sDMA has it's own
186  * packet format that is different from the PM4 format
187  * used by the CP. sDMA supports copying data, writing
188  * embedded data, solid fills, and a number of other
189  * things.  It also has support for tiling/detiling of
190  * buffers.
191  */
192 
193 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
194 {
195 	switch (adev->asic_type) {
196 	case CHIP_FIJI:
197 		amdgpu_device_program_register_sequence(adev,
198 							fiji_mgcg_cgcg_init,
199 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
200 		amdgpu_device_program_register_sequence(adev,
201 							golden_settings_fiji_a10,
202 							ARRAY_SIZE(golden_settings_fiji_a10));
203 		break;
204 	case CHIP_TONGA:
205 		amdgpu_device_program_register_sequence(adev,
206 							tonga_mgcg_cgcg_init,
207 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
208 		amdgpu_device_program_register_sequence(adev,
209 							golden_settings_tonga_a11,
210 							ARRAY_SIZE(golden_settings_tonga_a11));
211 		break;
212 	case CHIP_POLARIS11:
213 	case CHIP_POLARIS12:
214 	case CHIP_VEGAM:
215 		amdgpu_device_program_register_sequence(adev,
216 							golden_settings_polaris11_a11,
217 							ARRAY_SIZE(golden_settings_polaris11_a11));
218 		break;
219 	case CHIP_POLARIS10:
220 		amdgpu_device_program_register_sequence(adev,
221 							golden_settings_polaris10_a11,
222 							ARRAY_SIZE(golden_settings_polaris10_a11));
223 		break;
224 	case CHIP_CARRIZO:
225 		amdgpu_device_program_register_sequence(adev,
226 							cz_mgcg_cgcg_init,
227 							ARRAY_SIZE(cz_mgcg_cgcg_init));
228 		amdgpu_device_program_register_sequence(adev,
229 							cz_golden_settings_a11,
230 							ARRAY_SIZE(cz_golden_settings_a11));
231 		break;
232 	case CHIP_STONEY:
233 		amdgpu_device_program_register_sequence(adev,
234 							stoney_mgcg_cgcg_init,
235 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
236 		amdgpu_device_program_register_sequence(adev,
237 							stoney_golden_settings_a11,
238 							ARRAY_SIZE(stoney_golden_settings_a11));
239 		break;
240 	default:
241 		break;
242 	}
243 }
244 
245 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
246 {
247 	int i;
248 	for (i = 0; i < adev->sdma.num_instances; i++) {
249 		release_firmware(adev->sdma.instance[i].fw);
250 		adev->sdma.instance[i].fw = NULL;
251 	}
252 }
253 
254 /**
255  * sdma_v3_0_init_microcode - load ucode images from disk
256  *
257  * @adev: amdgpu_device pointer
258  *
259  * Use the firmware interface to load the ucode images into
260  * the driver (not loaded into hw).
261  * Returns 0 on success, error on failure.
262  */
263 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
264 {
265 	const char *chip_name;
266 	char fw_name[30];
267 	int err = 0, i;
268 	struct amdgpu_firmware_info *info = NULL;
269 	const struct common_firmware_header *header = NULL;
270 	const struct sdma_firmware_header_v1_0 *hdr;
271 
272 	DRM_DEBUG("\n");
273 
274 	switch (adev->asic_type) {
275 	case CHIP_TONGA:
276 		chip_name = "tonga";
277 		break;
278 	case CHIP_FIJI:
279 		chip_name = "fiji";
280 		break;
281 	case CHIP_POLARIS10:
282 		chip_name = "polaris10";
283 		break;
284 	case CHIP_POLARIS11:
285 		chip_name = "polaris11";
286 		break;
287 	case CHIP_POLARIS12:
288 		chip_name = "polaris12";
289 		break;
290 	case CHIP_VEGAM:
291 		chip_name = "vegam";
292 		break;
293 	case CHIP_CARRIZO:
294 		chip_name = "carrizo";
295 		break;
296 	case CHIP_STONEY:
297 		chip_name = "stoney";
298 		break;
299 	default: BUG();
300 	}
301 
302 	for (i = 0; i < adev->sdma.num_instances; i++) {
303 		if (i == 0)
304 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
305 		else
306 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
307 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
308 		if (err)
309 			goto out;
310 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
311 		if (err)
312 			goto out;
313 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
314 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
315 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
316 		if (adev->sdma.instance[i].feature_version >= 20)
317 			adev->sdma.instance[i].burst_nop = true;
318 
319 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
320 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
321 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
322 			info->fw = adev->sdma.instance[i].fw;
323 			header = (const struct common_firmware_header *)info->fw->data;
324 			adev->firmware.fw_size +=
325 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
326 		}
327 	}
328 out:
329 	if (err) {
330 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
331 		for (i = 0; i < adev->sdma.num_instances; i++) {
332 			release_firmware(adev->sdma.instance[i].fw);
333 			adev->sdma.instance[i].fw = NULL;
334 		}
335 	}
336 	return err;
337 }
338 
339 /**
340  * sdma_v3_0_ring_get_rptr - get the current read pointer
341  *
342  * @ring: amdgpu ring pointer
343  *
344  * Get the current rptr from the hardware (VI+).
345  */
346 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
347 {
348 	/* XXX check if swapping is necessary on BE */
349 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
350 }
351 
352 /**
353  * sdma_v3_0_ring_get_wptr - get the current write pointer
354  *
355  * @ring: amdgpu ring pointer
356  *
357  * Get the current wptr from the hardware (VI+).
358  */
359 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
360 {
361 	struct amdgpu_device *adev = ring->adev;
362 	u32 wptr;
363 
364 	if (ring->use_doorbell || ring->use_pollmem) {
365 		/* XXX check if swapping is necessary on BE */
366 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
367 	} else {
368 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
369 	}
370 
371 	return wptr;
372 }
373 
374 /**
375  * sdma_v3_0_ring_set_wptr - commit the write pointer
376  *
377  * @ring: amdgpu ring pointer
378  *
379  * Write the wptr back to the hardware (VI+).
380  */
381 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
382 {
383 	struct amdgpu_device *adev = ring->adev;
384 
385 	if (ring->use_doorbell) {
386 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
387 		/* XXX check if swapping is necessary on BE */
388 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
389 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
390 	} else if (ring->use_pollmem) {
391 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
392 
393 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
394 	} else {
395 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
396 	}
397 }
398 
399 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
400 {
401 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
402 	int i;
403 
404 	for (i = 0; i < count; i++)
405 		if (sdma && sdma->burst_nop && (i == 0))
406 			amdgpu_ring_write(ring, ring->funcs->nop |
407 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
408 		else
409 			amdgpu_ring_write(ring, ring->funcs->nop);
410 }
411 
412 /**
413  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
414  *
415  * @ring: amdgpu ring pointer
416  * @ib: IB object to schedule
417  *
418  * Schedule an IB in the DMA ring (VI).
419  */
420 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
421 				   struct amdgpu_ib *ib,
422 				   unsigned vmid, bool ctx_switch)
423 {
424 	/* IB packet must end on a 8 DW boundary */
425 	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
426 
427 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
428 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
429 	/* base must be 32 byte aligned */
430 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
431 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
432 	amdgpu_ring_write(ring, ib->length_dw);
433 	amdgpu_ring_write(ring, 0);
434 	amdgpu_ring_write(ring, 0);
435 
436 }
437 
438 /**
439  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
440  *
441  * @ring: amdgpu ring pointer
442  *
443  * Emit an hdp flush packet on the requested DMA ring.
444  */
445 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
446 {
447 	u32 ref_and_mask = 0;
448 
449 	if (ring->me == 0)
450 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
451 	else
452 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
453 
454 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
455 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
456 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
457 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
458 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
459 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
460 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
461 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
462 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
463 }
464 
465 /**
466  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
467  *
468  * @ring: amdgpu ring pointer
469  * @fence: amdgpu fence object
470  *
471  * Add a DMA fence packet to the ring to write
472  * the fence seq number and DMA trap packet to generate
473  * an interrupt if needed (VI).
474  */
475 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
476 				      unsigned flags)
477 {
478 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
479 	/* write the fence */
480 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
481 	amdgpu_ring_write(ring, lower_32_bits(addr));
482 	amdgpu_ring_write(ring, upper_32_bits(addr));
483 	amdgpu_ring_write(ring, lower_32_bits(seq));
484 
485 	/* optionally write high bits as well */
486 	if (write64bit) {
487 		addr += 4;
488 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
489 		amdgpu_ring_write(ring, lower_32_bits(addr));
490 		amdgpu_ring_write(ring, upper_32_bits(addr));
491 		amdgpu_ring_write(ring, upper_32_bits(seq));
492 	}
493 
494 	/* generate an interrupt */
495 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
496 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
497 }
498 
499 /**
500  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
501  *
502  * @adev: amdgpu_device pointer
503  *
504  * Stop the gfx async dma ring buffers (VI).
505  */
506 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
507 {
508 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
509 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
510 	u32 rb_cntl, ib_cntl;
511 	int i;
512 
513 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
514 	    (adev->mman.buffer_funcs_ring == sdma1))
515 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
516 
517 	for (i = 0; i < adev->sdma.num_instances; i++) {
518 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
519 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
520 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
521 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
522 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
523 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
524 	}
525 	sdma0->ready = false;
526 	sdma1->ready = false;
527 }
528 
529 /**
530  * sdma_v3_0_rlc_stop - stop the compute async dma engines
531  *
532  * @adev: amdgpu_device pointer
533  *
534  * Stop the compute async dma queues (VI).
535  */
536 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
537 {
538 	/* XXX todo */
539 }
540 
541 /**
542  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
543  *
544  * @adev: amdgpu_device pointer
545  * @enable: enable/disable the DMA MEs context switch.
546  *
547  * Halt or unhalt the async dma engines context switch (VI).
548  */
549 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
550 {
551 	u32 f32_cntl, phase_quantum = 0;
552 	int i;
553 
554 	if (amdgpu_sdma_phase_quantum) {
555 		unsigned value = amdgpu_sdma_phase_quantum;
556 		unsigned unit = 0;
557 
558 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
559 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
560 			value = (value + 1) >> 1;
561 			unit++;
562 		}
563 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
564 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
565 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
566 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
567 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
568 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
569 			WARN_ONCE(1,
570 			"clamping sdma_phase_quantum to %uK clock cycles\n",
571 				  value << unit);
572 		}
573 		phase_quantum =
574 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
575 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
576 	}
577 
578 	for (i = 0; i < adev->sdma.num_instances; i++) {
579 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
580 		if (enable) {
581 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
582 					AUTO_CTXSW_ENABLE, 1);
583 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
584 					ATC_L1_ENABLE, 1);
585 			if (amdgpu_sdma_phase_quantum) {
586 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
587 				       phase_quantum);
588 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
589 				       phase_quantum);
590 			}
591 		} else {
592 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
593 					AUTO_CTXSW_ENABLE, 0);
594 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
595 					ATC_L1_ENABLE, 1);
596 		}
597 
598 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
599 	}
600 }
601 
602 /**
603  * sdma_v3_0_enable - stop the async dma engines
604  *
605  * @adev: amdgpu_device pointer
606  * @enable: enable/disable the DMA MEs.
607  *
608  * Halt or unhalt the async dma engines (VI).
609  */
610 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
611 {
612 	u32 f32_cntl;
613 	int i;
614 
615 	if (!enable) {
616 		sdma_v3_0_gfx_stop(adev);
617 		sdma_v3_0_rlc_stop(adev);
618 	}
619 
620 	for (i = 0; i < adev->sdma.num_instances; i++) {
621 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
622 		if (enable)
623 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
624 		else
625 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
626 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
627 	}
628 }
629 
630 /**
631  * sdma_v3_0_gfx_resume - setup and start the async dma engines
632  *
633  * @adev: amdgpu_device pointer
634  *
635  * Set up the gfx DMA ring buffers and enable them (VI).
636  * Returns 0 for success, error for failure.
637  */
638 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
639 {
640 	struct amdgpu_ring *ring;
641 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
642 	u32 rb_bufsz;
643 	u32 wb_offset;
644 	u32 doorbell;
645 	u64 wptr_gpu_addr;
646 	int i, j, r;
647 
648 	for (i = 0; i < adev->sdma.num_instances; i++) {
649 		ring = &adev->sdma.instance[i].ring;
650 		amdgpu_ring_clear_ring(ring);
651 		wb_offset = (ring->rptr_offs * 4);
652 
653 		mutex_lock(&adev->srbm_mutex);
654 		for (j = 0; j < 16; j++) {
655 			vi_srbm_select(adev, 0, 0, 0, j);
656 			/* SDMA GFX */
657 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
658 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
659 		}
660 		vi_srbm_select(adev, 0, 0, 0, 0);
661 		mutex_unlock(&adev->srbm_mutex);
662 
663 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
664 		       adev->gfx.config.gb_addr_config & 0x70);
665 
666 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
667 
668 		/* Set ring buffer size in dwords */
669 		rb_bufsz = order_base_2(ring->ring_size / 4);
670 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
671 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
672 #ifdef __BIG_ENDIAN
673 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
674 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
675 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
676 #endif
677 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
678 
679 		/* Initialize the ring buffer's read and write pointers */
680 		ring->wptr = 0;
681 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
682 		sdma_v3_0_ring_set_wptr(ring);
683 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
684 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
685 
686 		/* set the wb address whether it's enabled or not */
687 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
688 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
689 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
690 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
691 
692 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
693 
694 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
695 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
696 
697 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
698 
699 		if (ring->use_doorbell) {
700 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
701 						 OFFSET, ring->doorbell_index);
702 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
703 		} else {
704 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
705 		}
706 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
707 
708 		/* setup the wptr shadow polling */
709 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
710 
711 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
712 		       lower_32_bits(wptr_gpu_addr));
713 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
714 		       upper_32_bits(wptr_gpu_addr));
715 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
716 		if (ring->use_pollmem) {
717 			/*wptr polling is not enogh fast, directly clean the wptr register */
718 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
719 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
720 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
721 						       ENABLE, 1);
722 		} else {
723 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
724 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
725 						       ENABLE, 0);
726 		}
727 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
728 
729 		/* enable DMA RB */
730 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
731 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
732 
733 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
734 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
735 #ifdef __BIG_ENDIAN
736 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
737 #endif
738 		/* enable DMA IBs */
739 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
740 
741 		ring->ready = true;
742 	}
743 
744 	/* unhalt the MEs */
745 	sdma_v3_0_enable(adev, true);
746 	/* enable sdma ring preemption */
747 	sdma_v3_0_ctx_switch_enable(adev, true);
748 
749 	for (i = 0; i < adev->sdma.num_instances; i++) {
750 		ring = &adev->sdma.instance[i].ring;
751 		r = amdgpu_ring_test_ring(ring);
752 		if (r) {
753 			ring->ready = false;
754 			return r;
755 		}
756 
757 		if (adev->mman.buffer_funcs_ring == ring)
758 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
759 	}
760 
761 	return 0;
762 }
763 
764 /**
765  * sdma_v3_0_rlc_resume - setup and start the async dma engines
766  *
767  * @adev: amdgpu_device pointer
768  *
769  * Set up the compute DMA queues and enable them (VI).
770  * Returns 0 for success, error for failure.
771  */
772 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
773 {
774 	/* XXX todo */
775 	return 0;
776 }
777 
778 /**
779  * sdma_v3_0_load_microcode - load the sDMA ME ucode
780  *
781  * @adev: amdgpu_device pointer
782  *
783  * Loads the sDMA0/1 ucode.
784  * Returns 0 for success, -EINVAL if the ucode is not available.
785  */
786 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
787 {
788 	const struct sdma_firmware_header_v1_0 *hdr;
789 	const __le32 *fw_data;
790 	u32 fw_size;
791 	int i, j;
792 
793 	/* halt the MEs */
794 	sdma_v3_0_enable(adev, false);
795 
796 	for (i = 0; i < adev->sdma.num_instances; i++) {
797 		if (!adev->sdma.instance[i].fw)
798 			return -EINVAL;
799 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
800 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
801 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
802 		fw_data = (const __le32 *)
803 			(adev->sdma.instance[i].fw->data +
804 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
805 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
806 		for (j = 0; j < fw_size; j++)
807 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
808 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
809 	}
810 
811 	return 0;
812 }
813 
814 /**
815  * sdma_v3_0_start - setup and start the async dma engines
816  *
817  * @adev: amdgpu_device pointer
818  *
819  * Set up the DMA engines and enable them (VI).
820  * Returns 0 for success, error for failure.
821  */
822 static int sdma_v3_0_start(struct amdgpu_device *adev)
823 {
824 	int r;
825 
826 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
827 		r = sdma_v3_0_load_microcode(adev);
828 		if (r)
829 			return r;
830 	}
831 
832 	/* disable sdma engine before programing it */
833 	sdma_v3_0_ctx_switch_enable(adev, false);
834 	sdma_v3_0_enable(adev, false);
835 
836 	/* start the gfx rings and rlc compute queues */
837 	r = sdma_v3_0_gfx_resume(adev);
838 	if (r)
839 		return r;
840 	r = sdma_v3_0_rlc_resume(adev);
841 	if (r)
842 		return r;
843 
844 	return 0;
845 }
846 
847 /**
848  * sdma_v3_0_ring_test_ring - simple async dma engine test
849  *
850  * @ring: amdgpu_ring structure holding ring information
851  *
852  * Test the DMA engine by writing using it to write an
853  * value to memory. (VI).
854  * Returns 0 for success, error for failure.
855  */
856 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
857 {
858 	struct amdgpu_device *adev = ring->adev;
859 	unsigned i;
860 	unsigned index;
861 	int r;
862 	u32 tmp;
863 	u64 gpu_addr;
864 
865 	r = amdgpu_device_wb_get(adev, &index);
866 	if (r) {
867 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
868 		return r;
869 	}
870 
871 	gpu_addr = adev->wb.gpu_addr + (index * 4);
872 	tmp = 0xCAFEDEAD;
873 	adev->wb.wb[index] = cpu_to_le32(tmp);
874 
875 	r = amdgpu_ring_alloc(ring, 5);
876 	if (r) {
877 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
878 		amdgpu_device_wb_free(adev, index);
879 		return r;
880 	}
881 
882 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
883 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
884 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
885 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
886 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
887 	amdgpu_ring_write(ring, 0xDEADBEEF);
888 	amdgpu_ring_commit(ring);
889 
890 	for (i = 0; i < adev->usec_timeout; i++) {
891 		tmp = le32_to_cpu(adev->wb.wb[index]);
892 		if (tmp == 0xDEADBEEF)
893 			break;
894 		DRM_UDELAY(1);
895 	}
896 
897 	if (i < adev->usec_timeout) {
898 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
899 	} else {
900 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
901 			  ring->idx, tmp);
902 		r = -EINVAL;
903 	}
904 	amdgpu_device_wb_free(adev, index);
905 
906 	return r;
907 }
908 
909 /**
910  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
911  *
912  * @ring: amdgpu_ring structure holding ring information
913  *
914  * Test a simple IB in the DMA ring (VI).
915  * Returns 0 on success, error on failure.
916  */
917 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
918 {
919 	struct amdgpu_device *adev = ring->adev;
920 	struct amdgpu_ib ib;
921 	struct dma_fence *f = NULL;
922 	unsigned index;
923 	u32 tmp = 0;
924 	u64 gpu_addr;
925 	long r;
926 
927 	r = amdgpu_device_wb_get(adev, &index);
928 	if (r) {
929 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
930 		return r;
931 	}
932 
933 	gpu_addr = adev->wb.gpu_addr + (index * 4);
934 	tmp = 0xCAFEDEAD;
935 	adev->wb.wb[index] = cpu_to_le32(tmp);
936 	memset(&ib, 0, sizeof(ib));
937 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
938 	if (r) {
939 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
940 		goto err0;
941 	}
942 
943 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
944 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
945 	ib.ptr[1] = lower_32_bits(gpu_addr);
946 	ib.ptr[2] = upper_32_bits(gpu_addr);
947 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
948 	ib.ptr[4] = 0xDEADBEEF;
949 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
950 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
951 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
952 	ib.length_dw = 8;
953 
954 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
955 	if (r)
956 		goto err1;
957 
958 	r = dma_fence_wait_timeout(f, false, timeout);
959 	if (r == 0) {
960 		DRM_ERROR("amdgpu: IB test timed out\n");
961 		r = -ETIMEDOUT;
962 		goto err1;
963 	} else if (r < 0) {
964 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
965 		goto err1;
966 	}
967 	tmp = le32_to_cpu(adev->wb.wb[index]);
968 	if (tmp == 0xDEADBEEF) {
969 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
970 		r = 0;
971 	} else {
972 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
973 		r = -EINVAL;
974 	}
975 err1:
976 	amdgpu_ib_free(adev, &ib, NULL);
977 	dma_fence_put(f);
978 err0:
979 	amdgpu_device_wb_free(adev, index);
980 	return r;
981 }
982 
983 /**
984  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
985  *
986  * @ib: indirect buffer to fill with commands
987  * @pe: addr of the page entry
988  * @src: src addr to copy from
989  * @count: number of page entries to update
990  *
991  * Update PTEs by copying them from the GART using sDMA (CIK).
992  */
993 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
994 				  uint64_t pe, uint64_t src,
995 				  unsigned count)
996 {
997 	unsigned bytes = count * 8;
998 
999 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1000 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1001 	ib->ptr[ib->length_dw++] = bytes;
1002 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1003 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1004 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1005 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1006 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1007 }
1008 
1009 /**
1010  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1011  *
1012  * @ib: indirect buffer to fill with commands
1013  * @pe: addr of the page entry
1014  * @value: dst addr to write into pe
1015  * @count: number of page entries to update
1016  * @incr: increase next addr by incr bytes
1017  *
1018  * Update PTEs by writing them manually using sDMA (CIK).
1019  */
1020 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1021 				   uint64_t value, unsigned count,
1022 				   uint32_t incr)
1023 {
1024 	unsigned ndw = count * 2;
1025 
1026 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1027 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1028 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1029 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1030 	ib->ptr[ib->length_dw++] = ndw;
1031 	for (; ndw > 0; ndw -= 2) {
1032 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1033 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1034 		value += incr;
1035 	}
1036 }
1037 
1038 /**
1039  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1040  *
1041  * @ib: indirect buffer to fill with commands
1042  * @pe: addr of the page entry
1043  * @addr: dst addr to write into pe
1044  * @count: number of page entries to update
1045  * @incr: increase next addr by incr bytes
1046  * @flags: access flags
1047  *
1048  * Update the page tables using sDMA (CIK).
1049  */
1050 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1051 				     uint64_t addr, unsigned count,
1052 				     uint32_t incr, uint64_t flags)
1053 {
1054 	/* for physically contiguous pages (vram) */
1055 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1056 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1057 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1058 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1059 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1060 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1061 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1062 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1063 	ib->ptr[ib->length_dw++] = 0;
1064 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1065 }
1066 
1067 /**
1068  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1069  *
1070  * @ib: indirect buffer to fill with padding
1071  *
1072  */
1073 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1074 {
1075 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1076 	u32 pad_count;
1077 	int i;
1078 
1079 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1080 	for (i = 0; i < pad_count; i++)
1081 		if (sdma && sdma->burst_nop && (i == 0))
1082 			ib->ptr[ib->length_dw++] =
1083 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1084 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1085 		else
1086 			ib->ptr[ib->length_dw++] =
1087 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1088 }
1089 
1090 /**
1091  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1092  *
1093  * @ring: amdgpu_ring pointer
1094  *
1095  * Make sure all previous operations are completed (CIK).
1096  */
1097 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1098 {
1099 	uint32_t seq = ring->fence_drv.sync_seq;
1100 	uint64_t addr = ring->fence_drv.gpu_addr;
1101 
1102 	/* wait for idle */
1103 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1104 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1105 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1106 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1107 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1108 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1109 	amdgpu_ring_write(ring, seq); /* reference */
1110 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1111 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1112 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1113 }
1114 
1115 /**
1116  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1117  *
1118  * @ring: amdgpu_ring pointer
1119  * @vm: amdgpu_vm pointer
1120  *
1121  * Update the page table base and flush the VM TLB
1122  * using sDMA (VI).
1123  */
1124 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1125 					 unsigned vmid, uint64_t pd_addr)
1126 {
1127 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1128 
1129 	/* wait for flush */
1130 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1131 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1132 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1133 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1134 	amdgpu_ring_write(ring, 0);
1135 	amdgpu_ring_write(ring, 0); /* reference */
1136 	amdgpu_ring_write(ring, 0); /* mask */
1137 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1138 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1139 }
1140 
1141 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1142 				     uint32_t reg, uint32_t val)
1143 {
1144 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1145 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1146 	amdgpu_ring_write(ring, reg);
1147 	amdgpu_ring_write(ring, val);
1148 }
1149 
1150 static int sdma_v3_0_early_init(void *handle)
1151 {
1152 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1153 
1154 	switch (adev->asic_type) {
1155 	case CHIP_STONEY:
1156 		adev->sdma.num_instances = 1;
1157 		break;
1158 	default:
1159 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1160 		break;
1161 	}
1162 
1163 	sdma_v3_0_set_ring_funcs(adev);
1164 	sdma_v3_0_set_buffer_funcs(adev);
1165 	sdma_v3_0_set_vm_pte_funcs(adev);
1166 	sdma_v3_0_set_irq_funcs(adev);
1167 
1168 	return 0;
1169 }
1170 
1171 static int sdma_v3_0_sw_init(void *handle)
1172 {
1173 	struct amdgpu_ring *ring;
1174 	int r, i;
1175 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1176 
1177 	/* SDMA trap event */
1178 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1179 			      &adev->sdma.trap_irq);
1180 	if (r)
1181 		return r;
1182 
1183 	/* SDMA Privileged inst */
1184 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1185 			      &adev->sdma.illegal_inst_irq);
1186 	if (r)
1187 		return r;
1188 
1189 	/* SDMA Privileged inst */
1190 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1191 			      &adev->sdma.illegal_inst_irq);
1192 	if (r)
1193 		return r;
1194 
1195 	r = sdma_v3_0_init_microcode(adev);
1196 	if (r) {
1197 		DRM_ERROR("Failed to load sdma firmware!\n");
1198 		return r;
1199 	}
1200 
1201 	for (i = 0; i < adev->sdma.num_instances; i++) {
1202 		ring = &adev->sdma.instance[i].ring;
1203 		ring->ring_obj = NULL;
1204 		if (!amdgpu_sriov_vf(adev)) {
1205 			ring->use_doorbell = true;
1206 			ring->doorbell_index = (i == 0) ?
1207 				AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1208 		} else {
1209 			ring->use_pollmem = true;
1210 		}
1211 
1212 		sprintf(ring->name, "sdma%d", i);
1213 		r = amdgpu_ring_init(adev, ring, 1024,
1214 				     &adev->sdma.trap_irq,
1215 				     (i == 0) ?
1216 				     AMDGPU_SDMA_IRQ_TRAP0 :
1217 				     AMDGPU_SDMA_IRQ_TRAP1);
1218 		if (r)
1219 			return r;
1220 	}
1221 
1222 	return r;
1223 }
1224 
1225 static int sdma_v3_0_sw_fini(void *handle)
1226 {
1227 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1228 	int i;
1229 
1230 	for (i = 0; i < adev->sdma.num_instances; i++)
1231 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1232 
1233 	sdma_v3_0_free_microcode(adev);
1234 	return 0;
1235 }
1236 
1237 static int sdma_v3_0_hw_init(void *handle)
1238 {
1239 	int r;
1240 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1241 
1242 	sdma_v3_0_init_golden_registers(adev);
1243 
1244 	r = sdma_v3_0_start(adev);
1245 	if (r)
1246 		return r;
1247 
1248 	return r;
1249 }
1250 
1251 static int sdma_v3_0_hw_fini(void *handle)
1252 {
1253 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1254 
1255 	sdma_v3_0_ctx_switch_enable(adev, false);
1256 	sdma_v3_0_enable(adev, false);
1257 
1258 	return 0;
1259 }
1260 
1261 static int sdma_v3_0_suspend(void *handle)
1262 {
1263 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1264 
1265 	return sdma_v3_0_hw_fini(adev);
1266 }
1267 
1268 static int sdma_v3_0_resume(void *handle)
1269 {
1270 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1271 
1272 	return sdma_v3_0_hw_init(adev);
1273 }
1274 
1275 static bool sdma_v3_0_is_idle(void *handle)
1276 {
1277 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1278 	u32 tmp = RREG32(mmSRBM_STATUS2);
1279 
1280 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1281 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1282 	    return false;
1283 
1284 	return true;
1285 }
1286 
1287 static int sdma_v3_0_wait_for_idle(void *handle)
1288 {
1289 	unsigned i;
1290 	u32 tmp;
1291 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1292 
1293 	for (i = 0; i < adev->usec_timeout; i++) {
1294 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1295 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1296 
1297 		if (!tmp)
1298 			return 0;
1299 		udelay(1);
1300 	}
1301 	return -ETIMEDOUT;
1302 }
1303 
1304 static bool sdma_v3_0_check_soft_reset(void *handle)
1305 {
1306 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1307 	u32 srbm_soft_reset = 0;
1308 	u32 tmp = RREG32(mmSRBM_STATUS2);
1309 
1310 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1311 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1312 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1313 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1314 	}
1315 
1316 	if (srbm_soft_reset) {
1317 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1318 		return true;
1319 	} else {
1320 		adev->sdma.srbm_soft_reset = 0;
1321 		return false;
1322 	}
1323 }
1324 
1325 static int sdma_v3_0_pre_soft_reset(void *handle)
1326 {
1327 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1328 	u32 srbm_soft_reset = 0;
1329 
1330 	if (!adev->sdma.srbm_soft_reset)
1331 		return 0;
1332 
1333 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1334 
1335 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1336 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1337 		sdma_v3_0_ctx_switch_enable(adev, false);
1338 		sdma_v3_0_enable(adev, false);
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int sdma_v3_0_post_soft_reset(void *handle)
1345 {
1346 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1347 	u32 srbm_soft_reset = 0;
1348 
1349 	if (!adev->sdma.srbm_soft_reset)
1350 		return 0;
1351 
1352 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1353 
1354 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1355 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1356 		sdma_v3_0_gfx_resume(adev);
1357 		sdma_v3_0_rlc_resume(adev);
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static int sdma_v3_0_soft_reset(void *handle)
1364 {
1365 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1366 	u32 srbm_soft_reset = 0;
1367 	u32 tmp;
1368 
1369 	if (!adev->sdma.srbm_soft_reset)
1370 		return 0;
1371 
1372 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1373 
1374 	if (srbm_soft_reset) {
1375 		tmp = RREG32(mmSRBM_SOFT_RESET);
1376 		tmp |= srbm_soft_reset;
1377 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1378 		WREG32(mmSRBM_SOFT_RESET, tmp);
1379 		tmp = RREG32(mmSRBM_SOFT_RESET);
1380 
1381 		udelay(50);
1382 
1383 		tmp &= ~srbm_soft_reset;
1384 		WREG32(mmSRBM_SOFT_RESET, tmp);
1385 		tmp = RREG32(mmSRBM_SOFT_RESET);
1386 
1387 		/* Wait a little for things to settle down */
1388 		udelay(50);
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1395 					struct amdgpu_irq_src *source,
1396 					unsigned type,
1397 					enum amdgpu_interrupt_state state)
1398 {
1399 	u32 sdma_cntl;
1400 
1401 	switch (type) {
1402 	case AMDGPU_SDMA_IRQ_TRAP0:
1403 		switch (state) {
1404 		case AMDGPU_IRQ_STATE_DISABLE:
1405 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1406 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1407 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1408 			break;
1409 		case AMDGPU_IRQ_STATE_ENABLE:
1410 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1411 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1412 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1413 			break;
1414 		default:
1415 			break;
1416 		}
1417 		break;
1418 	case AMDGPU_SDMA_IRQ_TRAP1:
1419 		switch (state) {
1420 		case AMDGPU_IRQ_STATE_DISABLE:
1421 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1422 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1423 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1424 			break;
1425 		case AMDGPU_IRQ_STATE_ENABLE:
1426 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1427 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1428 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1429 			break;
1430 		default:
1431 			break;
1432 		}
1433 		break;
1434 	default:
1435 		break;
1436 	}
1437 	return 0;
1438 }
1439 
1440 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1441 				      struct amdgpu_irq_src *source,
1442 				      struct amdgpu_iv_entry *entry)
1443 {
1444 	u8 instance_id, queue_id;
1445 
1446 	instance_id = (entry->ring_id & 0x3) >> 0;
1447 	queue_id = (entry->ring_id & 0xc) >> 2;
1448 	DRM_DEBUG("IH: SDMA trap\n");
1449 	switch (instance_id) {
1450 	case 0:
1451 		switch (queue_id) {
1452 		case 0:
1453 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1454 			break;
1455 		case 1:
1456 			/* XXX compute */
1457 			break;
1458 		case 2:
1459 			/* XXX compute */
1460 			break;
1461 		}
1462 		break;
1463 	case 1:
1464 		switch (queue_id) {
1465 		case 0:
1466 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1467 			break;
1468 		case 1:
1469 			/* XXX compute */
1470 			break;
1471 		case 2:
1472 			/* XXX compute */
1473 			break;
1474 		}
1475 		break;
1476 	}
1477 	return 0;
1478 }
1479 
1480 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1481 					      struct amdgpu_irq_src *source,
1482 					      struct amdgpu_iv_entry *entry)
1483 {
1484 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1485 	schedule_work(&adev->reset_work);
1486 	return 0;
1487 }
1488 
1489 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1490 		struct amdgpu_device *adev,
1491 		bool enable)
1492 {
1493 	uint32_t temp, data;
1494 	int i;
1495 
1496 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1497 		for (i = 0; i < adev->sdma.num_instances; i++) {
1498 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1499 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1500 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1501 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1502 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1503 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1504 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1505 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1506 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1507 			if (data != temp)
1508 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1509 		}
1510 	} else {
1511 		for (i = 0; i < adev->sdma.num_instances; i++) {
1512 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1513 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1514 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1515 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1516 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1517 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1518 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1519 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1520 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1521 
1522 			if (data != temp)
1523 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1524 		}
1525 	}
1526 }
1527 
1528 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1529 		struct amdgpu_device *adev,
1530 		bool enable)
1531 {
1532 	uint32_t temp, data;
1533 	int i;
1534 
1535 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1536 		for (i = 0; i < adev->sdma.num_instances; i++) {
1537 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1538 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1539 
1540 			if (temp != data)
1541 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1542 		}
1543 	} else {
1544 		for (i = 0; i < adev->sdma.num_instances; i++) {
1545 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1546 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1547 
1548 			if (temp != data)
1549 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1550 		}
1551 	}
1552 }
1553 
1554 static int sdma_v3_0_set_clockgating_state(void *handle,
1555 					  enum amd_clockgating_state state)
1556 {
1557 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1558 
1559 	if (amdgpu_sriov_vf(adev))
1560 		return 0;
1561 
1562 	switch (adev->asic_type) {
1563 	case CHIP_FIJI:
1564 	case CHIP_CARRIZO:
1565 	case CHIP_STONEY:
1566 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1567 				state == AMD_CG_STATE_GATE);
1568 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1569 				state == AMD_CG_STATE_GATE);
1570 		break;
1571 	default:
1572 		break;
1573 	}
1574 	return 0;
1575 }
1576 
1577 static int sdma_v3_0_set_powergating_state(void *handle,
1578 					  enum amd_powergating_state state)
1579 {
1580 	return 0;
1581 }
1582 
1583 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1584 {
1585 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1586 	int data;
1587 
1588 	if (amdgpu_sriov_vf(adev))
1589 		*flags = 0;
1590 
1591 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1592 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1593 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1594 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1595 
1596 	/* AMD_CG_SUPPORT_SDMA_LS */
1597 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1598 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1599 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1600 }
1601 
1602 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1603 	.name = "sdma_v3_0",
1604 	.early_init = sdma_v3_0_early_init,
1605 	.late_init = NULL,
1606 	.sw_init = sdma_v3_0_sw_init,
1607 	.sw_fini = sdma_v3_0_sw_fini,
1608 	.hw_init = sdma_v3_0_hw_init,
1609 	.hw_fini = sdma_v3_0_hw_fini,
1610 	.suspend = sdma_v3_0_suspend,
1611 	.resume = sdma_v3_0_resume,
1612 	.is_idle = sdma_v3_0_is_idle,
1613 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1614 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1615 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1616 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1617 	.soft_reset = sdma_v3_0_soft_reset,
1618 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1619 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1620 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1621 };
1622 
1623 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1624 	.type = AMDGPU_RING_TYPE_SDMA,
1625 	.align_mask = 0xf,
1626 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1627 	.support_64bit_ptrs = false,
1628 	.get_rptr = sdma_v3_0_ring_get_rptr,
1629 	.get_wptr = sdma_v3_0_ring_get_wptr,
1630 	.set_wptr = sdma_v3_0_ring_set_wptr,
1631 	.emit_frame_size =
1632 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1633 		3 + /* hdp invalidate */
1634 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1635 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1636 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1637 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1638 	.emit_ib = sdma_v3_0_ring_emit_ib,
1639 	.emit_fence = sdma_v3_0_ring_emit_fence,
1640 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1641 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1642 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1643 	.test_ring = sdma_v3_0_ring_test_ring,
1644 	.test_ib = sdma_v3_0_ring_test_ib,
1645 	.insert_nop = sdma_v3_0_ring_insert_nop,
1646 	.pad_ib = sdma_v3_0_ring_pad_ib,
1647 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1648 };
1649 
1650 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1651 {
1652 	int i;
1653 
1654 	for (i = 0; i < adev->sdma.num_instances; i++) {
1655 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1656 		adev->sdma.instance[i].ring.me = i;
1657 	}
1658 }
1659 
1660 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1661 	.set = sdma_v3_0_set_trap_irq_state,
1662 	.process = sdma_v3_0_process_trap_irq,
1663 };
1664 
1665 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1666 	.process = sdma_v3_0_process_illegal_inst_irq,
1667 };
1668 
1669 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1670 {
1671 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1672 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1673 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1674 }
1675 
1676 /**
1677  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1678  *
1679  * @ring: amdgpu_ring structure holding ring information
1680  * @src_offset: src GPU address
1681  * @dst_offset: dst GPU address
1682  * @byte_count: number of bytes to xfer
1683  *
1684  * Copy GPU buffers using the DMA engine (VI).
1685  * Used by the amdgpu ttm implementation to move pages if
1686  * registered as the asic copy callback.
1687  */
1688 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1689 				       uint64_t src_offset,
1690 				       uint64_t dst_offset,
1691 				       uint32_t byte_count)
1692 {
1693 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1694 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1695 	ib->ptr[ib->length_dw++] = byte_count;
1696 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1697 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1698 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1699 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1700 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1701 }
1702 
1703 /**
1704  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1705  *
1706  * @ring: amdgpu_ring structure holding ring information
1707  * @src_data: value to write to buffer
1708  * @dst_offset: dst GPU address
1709  * @byte_count: number of bytes to xfer
1710  *
1711  * Fill GPU buffers using the DMA engine (VI).
1712  */
1713 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1714 				       uint32_t src_data,
1715 				       uint64_t dst_offset,
1716 				       uint32_t byte_count)
1717 {
1718 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1719 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1720 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1721 	ib->ptr[ib->length_dw++] = src_data;
1722 	ib->ptr[ib->length_dw++] = byte_count;
1723 }
1724 
1725 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1726 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1727 	.copy_num_dw = 7,
1728 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1729 
1730 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1731 	.fill_num_dw = 5,
1732 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1733 };
1734 
1735 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1736 {
1737 	if (adev->mman.buffer_funcs == NULL) {
1738 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1739 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1740 	}
1741 }
1742 
1743 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1744 	.copy_pte_num_dw = 7,
1745 	.copy_pte = sdma_v3_0_vm_copy_pte,
1746 
1747 	.write_pte = sdma_v3_0_vm_write_pte,
1748 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1749 };
1750 
1751 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1752 {
1753 	unsigned i;
1754 
1755 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1756 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1757 		for (i = 0; i < adev->sdma.num_instances; i++)
1758 			adev->vm_manager.vm_pte_rings[i] =
1759 				&adev->sdma.instance[i].ring;
1760 
1761 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1762 	}
1763 }
1764 
1765 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1766 {
1767 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1768 	.major = 3,
1769 	.minor = 0,
1770 	.rev = 0,
1771 	.funcs = &sdma_v3_0_ip_funcs,
1772 };
1773 
1774 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1775 {
1776 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1777 	.major = 3,
1778 	.minor = 1,
1779 	.rev = 0,
1780 	.funcs = &sdma_v3_0_ip_funcs,
1781 };
1782