xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65 
66 
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69 	SDMA0_REGISTER_OFFSET,
70 	SDMA1_REGISTER_OFFSET
71 };
72 
73 static const u32 golden_settings_tonga_a11[] =
74 {
75 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86 
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92 
93 static const u32 golden_settings_fiji_a10[] =
94 {
95 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104 
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110 
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124 
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138 
139 static const u32 cz_golden_settings_a11[] =
140 {
141 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154 
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160 
161 static const u32 stoney_golden_settings_a11[] =
162 {
163 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168 
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173 
174 /*
175  * sDMA - System DMA
176  * Starting with CIK, the GPU has new asynchronous
177  * DMA engines.  These engines are used for compute
178  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
179  * and each one supports 1 ring buffer used for gfx
180  * and 2 queues used for compute.
181  *
182  * The programming model is very similar to the CP
183  * (ring buffer, IBs, etc.), but sDMA has it's own
184  * packet format that is different from the PM4 format
185  * used by the CP. sDMA supports copying data, writing
186  * embedded data, solid fills, and a number of other
187  * things.  It also has support for tiling/detiling of
188  * buffers.
189  */
190 
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193 	switch (adev->asic_type) {
194 	case CHIP_FIJI:
195 		amdgpu_device_program_register_sequence(adev,
196 							fiji_mgcg_cgcg_init,
197 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 		amdgpu_device_program_register_sequence(adev,
199 							golden_settings_fiji_a10,
200 							ARRAY_SIZE(golden_settings_fiji_a10));
201 		break;
202 	case CHIP_TONGA:
203 		amdgpu_device_program_register_sequence(adev,
204 							tonga_mgcg_cgcg_init,
205 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 		amdgpu_device_program_register_sequence(adev,
207 							golden_settings_tonga_a11,
208 							ARRAY_SIZE(golden_settings_tonga_a11));
209 		break;
210 	case CHIP_POLARIS11:
211 	case CHIP_POLARIS12:
212 		amdgpu_device_program_register_sequence(adev,
213 							golden_settings_polaris11_a11,
214 							ARRAY_SIZE(golden_settings_polaris11_a11));
215 		break;
216 	case CHIP_POLARIS10:
217 		amdgpu_device_program_register_sequence(adev,
218 							golden_settings_polaris10_a11,
219 							ARRAY_SIZE(golden_settings_polaris10_a11));
220 		break;
221 	case CHIP_CARRIZO:
222 		amdgpu_device_program_register_sequence(adev,
223 							cz_mgcg_cgcg_init,
224 							ARRAY_SIZE(cz_mgcg_cgcg_init));
225 		amdgpu_device_program_register_sequence(adev,
226 							cz_golden_settings_a11,
227 							ARRAY_SIZE(cz_golden_settings_a11));
228 		break;
229 	case CHIP_STONEY:
230 		amdgpu_device_program_register_sequence(adev,
231 							stoney_mgcg_cgcg_init,
232 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 		amdgpu_device_program_register_sequence(adev,
234 							stoney_golden_settings_a11,
235 							ARRAY_SIZE(stoney_golden_settings_a11));
236 		break;
237 	default:
238 		break;
239 	}
240 }
241 
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244 	int i;
245 	for (i = 0; i < adev->sdma.num_instances; i++) {
246 		release_firmware(adev->sdma.instance[i].fw);
247 		adev->sdma.instance[i].fw = NULL;
248 	}
249 }
250 
251 /**
252  * sdma_v3_0_init_microcode - load ucode images from disk
253  *
254  * @adev: amdgpu_device pointer
255  *
256  * Use the firmware interface to load the ucode images into
257  * the driver (not loaded into hw).
258  * Returns 0 on success, error on failure.
259  */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262 	const char *chip_name;
263 	char fw_name[30];
264 	int err = 0, i;
265 	struct amdgpu_firmware_info *info = NULL;
266 	const struct common_firmware_header *header = NULL;
267 	const struct sdma_firmware_header_v1_0 *hdr;
268 
269 	DRM_DEBUG("\n");
270 
271 	switch (adev->asic_type) {
272 	case CHIP_TONGA:
273 		chip_name = "tonga";
274 		break;
275 	case CHIP_FIJI:
276 		chip_name = "fiji";
277 		break;
278 	case CHIP_POLARIS11:
279 		chip_name = "polaris11";
280 		break;
281 	case CHIP_POLARIS10:
282 		chip_name = "polaris10";
283 		break;
284 	case CHIP_POLARIS12:
285 		chip_name = "polaris12";
286 		break;
287 	case CHIP_CARRIZO:
288 		chip_name = "carrizo";
289 		break;
290 	case CHIP_STONEY:
291 		chip_name = "stoney";
292 		break;
293 	default: BUG();
294 	}
295 
296 	for (i = 0; i < adev->sdma.num_instances; i++) {
297 		if (i == 0)
298 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 		else
300 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 		if (err)
303 			goto out;
304 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 		if (err)
306 			goto out;
307 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 		if (adev->sdma.instance[i].feature_version >= 20)
311 			adev->sdma.instance[i].burst_nop = true;
312 
313 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
314 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 			info->fw = adev->sdma.instance[i].fw;
317 			header = (const struct common_firmware_header *)info->fw->data;
318 			adev->firmware.fw_size +=
319 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 		}
321 	}
322 out:
323 	if (err) {
324 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
325 		for (i = 0; i < adev->sdma.num_instances; i++) {
326 			release_firmware(adev->sdma.instance[i].fw);
327 			adev->sdma.instance[i].fw = NULL;
328 		}
329 	}
330 	return err;
331 }
332 
333 /**
334  * sdma_v3_0_ring_get_rptr - get the current read pointer
335  *
336  * @ring: amdgpu ring pointer
337  *
338  * Get the current rptr from the hardware (VI+).
339  */
340 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
341 {
342 	/* XXX check if swapping is necessary on BE */
343 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
344 }
345 
346 /**
347  * sdma_v3_0_ring_get_wptr - get the current write pointer
348  *
349  * @ring: amdgpu ring pointer
350  *
351  * Get the current wptr from the hardware (VI+).
352  */
353 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355 	struct amdgpu_device *adev = ring->adev;
356 	u32 wptr;
357 
358 	if (ring->use_doorbell || ring->use_pollmem) {
359 		/* XXX check if swapping is necessary on BE */
360 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 	} else {
362 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363 
364 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 	}
366 
367 	return wptr;
368 }
369 
370 /**
371  * sdma_v3_0_ring_set_wptr - commit the write pointer
372  *
373  * @ring: amdgpu ring pointer
374  *
375  * Write the wptr back to the hardware (VI+).
376  */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379 	struct amdgpu_device *adev = ring->adev;
380 
381 	if (ring->use_doorbell) {
382 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
383 		/* XXX check if swapping is necessary on BE */
384 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
385 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
386 	} else if (ring->use_pollmem) {
387 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
388 
389 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
390 	} else {
391 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
392 
393 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
394 	}
395 }
396 
397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398 {
399 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
400 	int i;
401 
402 	for (i = 0; i < count; i++)
403 		if (sdma && sdma->burst_nop && (i == 0))
404 			amdgpu_ring_write(ring, ring->funcs->nop |
405 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406 		else
407 			amdgpu_ring_write(ring, ring->funcs->nop);
408 }
409 
410 /**
411  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412  *
413  * @ring: amdgpu ring pointer
414  * @ib: IB object to schedule
415  *
416  * Schedule an IB in the DMA ring (VI).
417  */
418 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
419 				   struct amdgpu_ib *ib,
420 				   unsigned vmid, bool ctx_switch)
421 {
422 	/* IB packet must end on a 8 DW boundary */
423 	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
424 
425 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
426 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
427 	/* base must be 32 byte aligned */
428 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
429 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
430 	amdgpu_ring_write(ring, ib->length_dw);
431 	amdgpu_ring_write(ring, 0);
432 	amdgpu_ring_write(ring, 0);
433 
434 }
435 
436 /**
437  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
438  *
439  * @ring: amdgpu ring pointer
440  *
441  * Emit an hdp flush packet on the requested DMA ring.
442  */
443 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
444 {
445 	u32 ref_and_mask = 0;
446 
447 	if (ring == &ring->adev->sdma.instance[0].ring)
448 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
449 	else
450 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
451 
452 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
453 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
454 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
455 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
456 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
457 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
458 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
459 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
460 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
461 }
462 
463 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
464 {
465 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
466 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
467 	amdgpu_ring_write(ring, mmHDP_DEBUG0);
468 	amdgpu_ring_write(ring, 1);
469 }
470 
471 /**
472  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
473  *
474  * @ring: amdgpu ring pointer
475  * @fence: amdgpu fence object
476  *
477  * Add a DMA fence packet to the ring to write
478  * the fence seq number and DMA trap packet to generate
479  * an interrupt if needed (VI).
480  */
481 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
482 				      unsigned flags)
483 {
484 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
485 	/* write the fence */
486 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
487 	amdgpu_ring_write(ring, lower_32_bits(addr));
488 	amdgpu_ring_write(ring, upper_32_bits(addr));
489 	amdgpu_ring_write(ring, lower_32_bits(seq));
490 
491 	/* optionally write high bits as well */
492 	if (write64bit) {
493 		addr += 4;
494 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
495 		amdgpu_ring_write(ring, lower_32_bits(addr));
496 		amdgpu_ring_write(ring, upper_32_bits(addr));
497 		amdgpu_ring_write(ring, upper_32_bits(seq));
498 	}
499 
500 	/* generate an interrupt */
501 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
502 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
503 }
504 
505 /**
506  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
507  *
508  * @adev: amdgpu_device pointer
509  *
510  * Stop the gfx async dma ring buffers (VI).
511  */
512 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
513 {
514 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
515 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
516 	u32 rb_cntl, ib_cntl;
517 	int i;
518 
519 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
520 	    (adev->mman.buffer_funcs_ring == sdma1))
521 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
522 
523 	for (i = 0; i < adev->sdma.num_instances; i++) {
524 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
525 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
526 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
527 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
528 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
529 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
530 	}
531 	sdma0->ready = false;
532 	sdma1->ready = false;
533 }
534 
535 /**
536  * sdma_v3_0_rlc_stop - stop the compute async dma engines
537  *
538  * @adev: amdgpu_device pointer
539  *
540  * Stop the compute async dma queues (VI).
541  */
542 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
543 {
544 	/* XXX todo */
545 }
546 
547 /**
548  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
549  *
550  * @adev: amdgpu_device pointer
551  * @enable: enable/disable the DMA MEs context switch.
552  *
553  * Halt or unhalt the async dma engines context switch (VI).
554  */
555 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
556 {
557 	u32 f32_cntl, phase_quantum = 0;
558 	int i;
559 
560 	if (amdgpu_sdma_phase_quantum) {
561 		unsigned value = amdgpu_sdma_phase_quantum;
562 		unsigned unit = 0;
563 
564 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
565 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
566 			value = (value + 1) >> 1;
567 			unit++;
568 		}
569 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
570 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
571 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
572 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
573 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
574 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
575 			WARN_ONCE(1,
576 			"clamping sdma_phase_quantum to %uK clock cycles\n",
577 				  value << unit);
578 		}
579 		phase_quantum =
580 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
581 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
582 	}
583 
584 	for (i = 0; i < adev->sdma.num_instances; i++) {
585 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
586 		if (enable) {
587 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
588 					AUTO_CTXSW_ENABLE, 1);
589 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
590 					ATC_L1_ENABLE, 1);
591 			if (amdgpu_sdma_phase_quantum) {
592 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
593 				       phase_quantum);
594 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
595 				       phase_quantum);
596 			}
597 		} else {
598 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
599 					AUTO_CTXSW_ENABLE, 0);
600 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
601 					ATC_L1_ENABLE, 1);
602 		}
603 
604 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
605 	}
606 }
607 
608 /**
609  * sdma_v3_0_enable - stop the async dma engines
610  *
611  * @adev: amdgpu_device pointer
612  * @enable: enable/disable the DMA MEs.
613  *
614  * Halt or unhalt the async dma engines (VI).
615  */
616 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
617 {
618 	u32 f32_cntl;
619 	int i;
620 
621 	if (!enable) {
622 		sdma_v3_0_gfx_stop(adev);
623 		sdma_v3_0_rlc_stop(adev);
624 	}
625 
626 	for (i = 0; i < adev->sdma.num_instances; i++) {
627 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
628 		if (enable)
629 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
630 		else
631 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
632 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
633 	}
634 }
635 
636 /**
637  * sdma_v3_0_gfx_resume - setup and start the async dma engines
638  *
639  * @adev: amdgpu_device pointer
640  *
641  * Set up the gfx DMA ring buffers and enable them (VI).
642  * Returns 0 for success, error for failure.
643  */
644 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
645 {
646 	struct amdgpu_ring *ring;
647 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
648 	u32 rb_bufsz;
649 	u32 wb_offset;
650 	u32 doorbell;
651 	u64 wptr_gpu_addr;
652 	int i, j, r;
653 
654 	for (i = 0; i < adev->sdma.num_instances; i++) {
655 		ring = &adev->sdma.instance[i].ring;
656 		amdgpu_ring_clear_ring(ring);
657 		wb_offset = (ring->rptr_offs * 4);
658 
659 		mutex_lock(&adev->srbm_mutex);
660 		for (j = 0; j < 16; j++) {
661 			vi_srbm_select(adev, 0, 0, 0, j);
662 			/* SDMA GFX */
663 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
664 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
665 		}
666 		vi_srbm_select(adev, 0, 0, 0, 0);
667 		mutex_unlock(&adev->srbm_mutex);
668 
669 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
670 		       adev->gfx.config.gb_addr_config & 0x70);
671 
672 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
673 
674 		/* Set ring buffer size in dwords */
675 		rb_bufsz = order_base_2(ring->ring_size / 4);
676 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
677 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
678 #ifdef __BIG_ENDIAN
679 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
680 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
681 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
682 #endif
683 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
684 
685 		/* Initialize the ring buffer's read and write pointers */
686 		ring->wptr = 0;
687 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
688 		sdma_v3_0_ring_set_wptr(ring);
689 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
690 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
691 
692 		/* set the wb address whether it's enabled or not */
693 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
694 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
695 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
696 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
697 
698 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
699 
700 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
701 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
702 
703 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
704 
705 		if (ring->use_doorbell) {
706 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
707 						 OFFSET, ring->doorbell_index);
708 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
709 		} else {
710 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
711 		}
712 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
713 
714 		/* setup the wptr shadow polling */
715 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
716 
717 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
718 		       lower_32_bits(wptr_gpu_addr));
719 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
720 		       upper_32_bits(wptr_gpu_addr));
721 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
722 		if (ring->use_pollmem)
723 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
724 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
725 						       ENABLE, 1);
726 		else
727 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
728 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
729 						       ENABLE, 0);
730 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
731 
732 		/* enable DMA RB */
733 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
734 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
735 
736 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
737 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
738 #ifdef __BIG_ENDIAN
739 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
740 #endif
741 		/* enable DMA IBs */
742 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
743 
744 		ring->ready = true;
745 	}
746 
747 	/* unhalt the MEs */
748 	sdma_v3_0_enable(adev, true);
749 	/* enable sdma ring preemption */
750 	sdma_v3_0_ctx_switch_enable(adev, true);
751 
752 	for (i = 0; i < adev->sdma.num_instances; i++) {
753 		ring = &adev->sdma.instance[i].ring;
754 		r = amdgpu_ring_test_ring(ring);
755 		if (r) {
756 			ring->ready = false;
757 			return r;
758 		}
759 
760 		if (adev->mman.buffer_funcs_ring == ring)
761 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
762 	}
763 
764 	return 0;
765 }
766 
767 /**
768  * sdma_v3_0_rlc_resume - setup and start the async dma engines
769  *
770  * @adev: amdgpu_device pointer
771  *
772  * Set up the compute DMA queues and enable them (VI).
773  * Returns 0 for success, error for failure.
774  */
775 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
776 {
777 	/* XXX todo */
778 	return 0;
779 }
780 
781 /**
782  * sdma_v3_0_load_microcode - load the sDMA ME ucode
783  *
784  * @adev: amdgpu_device pointer
785  *
786  * Loads the sDMA0/1 ucode.
787  * Returns 0 for success, -EINVAL if the ucode is not available.
788  */
789 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
790 {
791 	const struct sdma_firmware_header_v1_0 *hdr;
792 	const __le32 *fw_data;
793 	u32 fw_size;
794 	int i, j;
795 
796 	/* halt the MEs */
797 	sdma_v3_0_enable(adev, false);
798 
799 	for (i = 0; i < adev->sdma.num_instances; i++) {
800 		if (!adev->sdma.instance[i].fw)
801 			return -EINVAL;
802 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
803 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
804 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
805 		fw_data = (const __le32 *)
806 			(adev->sdma.instance[i].fw->data +
807 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
808 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
809 		for (j = 0; j < fw_size; j++)
810 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
811 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
812 	}
813 
814 	return 0;
815 }
816 
817 /**
818  * sdma_v3_0_start - setup and start the async dma engines
819  *
820  * @adev: amdgpu_device pointer
821  *
822  * Set up the DMA engines and enable them (VI).
823  * Returns 0 for success, error for failure.
824  */
825 static int sdma_v3_0_start(struct amdgpu_device *adev)
826 {
827 	int r;
828 
829 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
830 		r = sdma_v3_0_load_microcode(adev);
831 		if (r)
832 			return r;
833 	}
834 
835 	/* disable sdma engine before programing it */
836 	sdma_v3_0_ctx_switch_enable(adev, false);
837 	sdma_v3_0_enable(adev, false);
838 
839 	/* start the gfx rings and rlc compute queues */
840 	r = sdma_v3_0_gfx_resume(adev);
841 	if (r)
842 		return r;
843 	r = sdma_v3_0_rlc_resume(adev);
844 	if (r)
845 		return r;
846 
847 	return 0;
848 }
849 
850 /**
851  * sdma_v3_0_ring_test_ring - simple async dma engine test
852  *
853  * @ring: amdgpu_ring structure holding ring information
854  *
855  * Test the DMA engine by writing using it to write an
856  * value to memory. (VI).
857  * Returns 0 for success, error for failure.
858  */
859 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
860 {
861 	struct amdgpu_device *adev = ring->adev;
862 	unsigned i;
863 	unsigned index;
864 	int r;
865 	u32 tmp;
866 	u64 gpu_addr;
867 
868 	r = amdgpu_device_wb_get(adev, &index);
869 	if (r) {
870 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
871 		return r;
872 	}
873 
874 	gpu_addr = adev->wb.gpu_addr + (index * 4);
875 	tmp = 0xCAFEDEAD;
876 	adev->wb.wb[index] = cpu_to_le32(tmp);
877 
878 	r = amdgpu_ring_alloc(ring, 5);
879 	if (r) {
880 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
881 		amdgpu_device_wb_free(adev, index);
882 		return r;
883 	}
884 
885 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
886 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
887 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
888 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
889 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
890 	amdgpu_ring_write(ring, 0xDEADBEEF);
891 	amdgpu_ring_commit(ring);
892 
893 	for (i = 0; i < adev->usec_timeout; i++) {
894 		tmp = le32_to_cpu(adev->wb.wb[index]);
895 		if (tmp == 0xDEADBEEF)
896 			break;
897 		DRM_UDELAY(1);
898 	}
899 
900 	if (i < adev->usec_timeout) {
901 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
902 	} else {
903 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
904 			  ring->idx, tmp);
905 		r = -EINVAL;
906 	}
907 	amdgpu_device_wb_free(adev, index);
908 
909 	return r;
910 }
911 
912 /**
913  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
914  *
915  * @ring: amdgpu_ring structure holding ring information
916  *
917  * Test a simple IB in the DMA ring (VI).
918  * Returns 0 on success, error on failure.
919  */
920 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
921 {
922 	struct amdgpu_device *adev = ring->adev;
923 	struct amdgpu_ib ib;
924 	struct dma_fence *f = NULL;
925 	unsigned index;
926 	u32 tmp = 0;
927 	u64 gpu_addr;
928 	long r;
929 
930 	r = amdgpu_device_wb_get(adev, &index);
931 	if (r) {
932 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
933 		return r;
934 	}
935 
936 	gpu_addr = adev->wb.gpu_addr + (index * 4);
937 	tmp = 0xCAFEDEAD;
938 	adev->wb.wb[index] = cpu_to_le32(tmp);
939 	memset(&ib, 0, sizeof(ib));
940 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
941 	if (r) {
942 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
943 		goto err0;
944 	}
945 
946 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
947 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
948 	ib.ptr[1] = lower_32_bits(gpu_addr);
949 	ib.ptr[2] = upper_32_bits(gpu_addr);
950 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
951 	ib.ptr[4] = 0xDEADBEEF;
952 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
953 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
954 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
955 	ib.length_dw = 8;
956 
957 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
958 	if (r)
959 		goto err1;
960 
961 	r = dma_fence_wait_timeout(f, false, timeout);
962 	if (r == 0) {
963 		DRM_ERROR("amdgpu: IB test timed out\n");
964 		r = -ETIMEDOUT;
965 		goto err1;
966 	} else if (r < 0) {
967 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
968 		goto err1;
969 	}
970 	tmp = le32_to_cpu(adev->wb.wb[index]);
971 	if (tmp == 0xDEADBEEF) {
972 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
973 		r = 0;
974 	} else {
975 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
976 		r = -EINVAL;
977 	}
978 err1:
979 	amdgpu_ib_free(adev, &ib, NULL);
980 	dma_fence_put(f);
981 err0:
982 	amdgpu_device_wb_free(adev, index);
983 	return r;
984 }
985 
986 /**
987  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
988  *
989  * @ib: indirect buffer to fill with commands
990  * @pe: addr of the page entry
991  * @src: src addr to copy from
992  * @count: number of page entries to update
993  *
994  * Update PTEs by copying them from the GART using sDMA (CIK).
995  */
996 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
997 				  uint64_t pe, uint64_t src,
998 				  unsigned count)
999 {
1000 	unsigned bytes = count * 8;
1001 
1002 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1003 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1004 	ib->ptr[ib->length_dw++] = bytes;
1005 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1006 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1007 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1008 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1009 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1010 }
1011 
1012 /**
1013  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1014  *
1015  * @ib: indirect buffer to fill with commands
1016  * @pe: addr of the page entry
1017  * @value: dst addr to write into pe
1018  * @count: number of page entries to update
1019  * @incr: increase next addr by incr bytes
1020  *
1021  * Update PTEs by writing them manually using sDMA (CIK).
1022  */
1023 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1024 				   uint64_t value, unsigned count,
1025 				   uint32_t incr)
1026 {
1027 	unsigned ndw = count * 2;
1028 
1029 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1030 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1031 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1032 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1033 	ib->ptr[ib->length_dw++] = ndw;
1034 	for (; ndw > 0; ndw -= 2) {
1035 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1036 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1037 		value += incr;
1038 	}
1039 }
1040 
1041 /**
1042  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1043  *
1044  * @ib: indirect buffer to fill with commands
1045  * @pe: addr of the page entry
1046  * @addr: dst addr to write into pe
1047  * @count: number of page entries to update
1048  * @incr: increase next addr by incr bytes
1049  * @flags: access flags
1050  *
1051  * Update the page tables using sDMA (CIK).
1052  */
1053 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1054 				     uint64_t addr, unsigned count,
1055 				     uint32_t incr, uint64_t flags)
1056 {
1057 	/* for physically contiguous pages (vram) */
1058 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1059 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1060 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1061 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1062 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1063 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1064 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1065 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1066 	ib->ptr[ib->length_dw++] = 0;
1067 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1068 }
1069 
1070 /**
1071  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1072  *
1073  * @ib: indirect buffer to fill with padding
1074  *
1075  */
1076 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1077 {
1078 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1079 	u32 pad_count;
1080 	int i;
1081 
1082 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1083 	for (i = 0; i < pad_count; i++)
1084 		if (sdma && sdma->burst_nop && (i == 0))
1085 			ib->ptr[ib->length_dw++] =
1086 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1087 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1088 		else
1089 			ib->ptr[ib->length_dw++] =
1090 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1091 }
1092 
1093 /**
1094  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1095  *
1096  * @ring: amdgpu_ring pointer
1097  *
1098  * Make sure all previous operations are completed (CIK).
1099  */
1100 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1101 {
1102 	uint32_t seq = ring->fence_drv.sync_seq;
1103 	uint64_t addr = ring->fence_drv.gpu_addr;
1104 
1105 	/* wait for idle */
1106 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1107 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1108 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1109 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1110 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1111 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1112 	amdgpu_ring_write(ring, seq); /* reference */
1113 	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1114 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1115 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1116 }
1117 
1118 /**
1119  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1120  *
1121  * @ring: amdgpu_ring pointer
1122  * @vm: amdgpu_vm pointer
1123  *
1124  * Update the page table base and flush the VM TLB
1125  * using sDMA (VI).
1126  */
1127 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1128 					 unsigned vmid, uint64_t pd_addr)
1129 {
1130 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1131 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1132 	if (vmid < 8) {
1133 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vmid));
1134 	} else {
1135 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8));
1136 	}
1137 	amdgpu_ring_write(ring, pd_addr >> 12);
1138 
1139 	/* flush TLB */
1140 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1141 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1142 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1143 	amdgpu_ring_write(ring, 1 << vmid);
1144 
1145 	/* wait for flush */
1146 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1147 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1148 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1149 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1150 	amdgpu_ring_write(ring, 0);
1151 	amdgpu_ring_write(ring, 0); /* reference */
1152 	amdgpu_ring_write(ring, 0); /* mask */
1153 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1154 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1155 }
1156 
1157 static int sdma_v3_0_early_init(void *handle)
1158 {
1159 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1160 
1161 	switch (adev->asic_type) {
1162 	case CHIP_STONEY:
1163 		adev->sdma.num_instances = 1;
1164 		break;
1165 	default:
1166 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1167 		break;
1168 	}
1169 
1170 	sdma_v3_0_set_ring_funcs(adev);
1171 	sdma_v3_0_set_buffer_funcs(adev);
1172 	sdma_v3_0_set_vm_pte_funcs(adev);
1173 	sdma_v3_0_set_irq_funcs(adev);
1174 
1175 	return 0;
1176 }
1177 
1178 static int sdma_v3_0_sw_init(void *handle)
1179 {
1180 	struct amdgpu_ring *ring;
1181 	int r, i;
1182 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1183 
1184 	/* SDMA trap event */
1185 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1186 			      &adev->sdma.trap_irq);
1187 	if (r)
1188 		return r;
1189 
1190 	/* SDMA Privileged inst */
1191 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1192 			      &adev->sdma.illegal_inst_irq);
1193 	if (r)
1194 		return r;
1195 
1196 	/* SDMA Privileged inst */
1197 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1198 			      &adev->sdma.illegal_inst_irq);
1199 	if (r)
1200 		return r;
1201 
1202 	r = sdma_v3_0_init_microcode(adev);
1203 	if (r) {
1204 		DRM_ERROR("Failed to load sdma firmware!\n");
1205 		return r;
1206 	}
1207 
1208 	for (i = 0; i < adev->sdma.num_instances; i++) {
1209 		ring = &adev->sdma.instance[i].ring;
1210 		ring->ring_obj = NULL;
1211 		if (!amdgpu_sriov_vf(adev)) {
1212 			ring->use_doorbell = true;
1213 			ring->doorbell_index = (i == 0) ?
1214 				AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1215 		} else {
1216 			ring->use_pollmem = true;
1217 		}
1218 
1219 		sprintf(ring->name, "sdma%d", i);
1220 		r = amdgpu_ring_init(adev, ring, 1024,
1221 				     &adev->sdma.trap_irq,
1222 				     (i == 0) ?
1223 				     AMDGPU_SDMA_IRQ_TRAP0 :
1224 				     AMDGPU_SDMA_IRQ_TRAP1);
1225 		if (r)
1226 			return r;
1227 	}
1228 
1229 	return r;
1230 }
1231 
1232 static int sdma_v3_0_sw_fini(void *handle)
1233 {
1234 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1235 	int i;
1236 
1237 	for (i = 0; i < adev->sdma.num_instances; i++)
1238 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1239 
1240 	sdma_v3_0_free_microcode(adev);
1241 	return 0;
1242 }
1243 
1244 static int sdma_v3_0_hw_init(void *handle)
1245 {
1246 	int r;
1247 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248 
1249 	sdma_v3_0_init_golden_registers(adev);
1250 
1251 	r = sdma_v3_0_start(adev);
1252 	if (r)
1253 		return r;
1254 
1255 	return r;
1256 }
1257 
1258 static int sdma_v3_0_hw_fini(void *handle)
1259 {
1260 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1261 
1262 	sdma_v3_0_ctx_switch_enable(adev, false);
1263 	sdma_v3_0_enable(adev, false);
1264 
1265 	return 0;
1266 }
1267 
1268 static int sdma_v3_0_suspend(void *handle)
1269 {
1270 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1271 
1272 	return sdma_v3_0_hw_fini(adev);
1273 }
1274 
1275 static int sdma_v3_0_resume(void *handle)
1276 {
1277 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1278 
1279 	return sdma_v3_0_hw_init(adev);
1280 }
1281 
1282 static bool sdma_v3_0_is_idle(void *handle)
1283 {
1284 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1285 	u32 tmp = RREG32(mmSRBM_STATUS2);
1286 
1287 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1288 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1289 	    return false;
1290 
1291 	return true;
1292 }
1293 
1294 static int sdma_v3_0_wait_for_idle(void *handle)
1295 {
1296 	unsigned i;
1297 	u32 tmp;
1298 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1299 
1300 	for (i = 0; i < adev->usec_timeout; i++) {
1301 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1302 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1303 
1304 		if (!tmp)
1305 			return 0;
1306 		udelay(1);
1307 	}
1308 	return -ETIMEDOUT;
1309 }
1310 
1311 static bool sdma_v3_0_check_soft_reset(void *handle)
1312 {
1313 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1314 	u32 srbm_soft_reset = 0;
1315 	u32 tmp = RREG32(mmSRBM_STATUS2);
1316 
1317 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1318 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1319 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1320 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1321 	}
1322 
1323 	if (srbm_soft_reset) {
1324 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1325 		return true;
1326 	} else {
1327 		adev->sdma.srbm_soft_reset = 0;
1328 		return false;
1329 	}
1330 }
1331 
1332 static int sdma_v3_0_pre_soft_reset(void *handle)
1333 {
1334 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1335 	u32 srbm_soft_reset = 0;
1336 
1337 	if (!adev->sdma.srbm_soft_reset)
1338 		return 0;
1339 
1340 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1341 
1342 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1343 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1344 		sdma_v3_0_ctx_switch_enable(adev, false);
1345 		sdma_v3_0_enable(adev, false);
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int sdma_v3_0_post_soft_reset(void *handle)
1352 {
1353 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1354 	u32 srbm_soft_reset = 0;
1355 
1356 	if (!adev->sdma.srbm_soft_reset)
1357 		return 0;
1358 
1359 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1360 
1361 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1362 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1363 		sdma_v3_0_gfx_resume(adev);
1364 		sdma_v3_0_rlc_resume(adev);
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 static int sdma_v3_0_soft_reset(void *handle)
1371 {
1372 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1373 	u32 srbm_soft_reset = 0;
1374 	u32 tmp;
1375 
1376 	if (!adev->sdma.srbm_soft_reset)
1377 		return 0;
1378 
1379 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1380 
1381 	if (srbm_soft_reset) {
1382 		tmp = RREG32(mmSRBM_SOFT_RESET);
1383 		tmp |= srbm_soft_reset;
1384 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1385 		WREG32(mmSRBM_SOFT_RESET, tmp);
1386 		tmp = RREG32(mmSRBM_SOFT_RESET);
1387 
1388 		udelay(50);
1389 
1390 		tmp &= ~srbm_soft_reset;
1391 		WREG32(mmSRBM_SOFT_RESET, tmp);
1392 		tmp = RREG32(mmSRBM_SOFT_RESET);
1393 
1394 		/* Wait a little for things to settle down */
1395 		udelay(50);
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1402 					struct amdgpu_irq_src *source,
1403 					unsigned type,
1404 					enum amdgpu_interrupt_state state)
1405 {
1406 	u32 sdma_cntl;
1407 
1408 	switch (type) {
1409 	case AMDGPU_SDMA_IRQ_TRAP0:
1410 		switch (state) {
1411 		case AMDGPU_IRQ_STATE_DISABLE:
1412 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1413 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1414 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1415 			break;
1416 		case AMDGPU_IRQ_STATE_ENABLE:
1417 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1418 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1419 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1420 			break;
1421 		default:
1422 			break;
1423 		}
1424 		break;
1425 	case AMDGPU_SDMA_IRQ_TRAP1:
1426 		switch (state) {
1427 		case AMDGPU_IRQ_STATE_DISABLE:
1428 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1429 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1430 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1431 			break;
1432 		case AMDGPU_IRQ_STATE_ENABLE:
1433 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1434 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1435 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1436 			break;
1437 		default:
1438 			break;
1439 		}
1440 		break;
1441 	default:
1442 		break;
1443 	}
1444 	return 0;
1445 }
1446 
1447 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1448 				      struct amdgpu_irq_src *source,
1449 				      struct amdgpu_iv_entry *entry)
1450 {
1451 	u8 instance_id, queue_id;
1452 
1453 	instance_id = (entry->ring_id & 0x3) >> 0;
1454 	queue_id = (entry->ring_id & 0xc) >> 2;
1455 	DRM_DEBUG("IH: SDMA trap\n");
1456 	switch (instance_id) {
1457 	case 0:
1458 		switch (queue_id) {
1459 		case 0:
1460 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1461 			break;
1462 		case 1:
1463 			/* XXX compute */
1464 			break;
1465 		case 2:
1466 			/* XXX compute */
1467 			break;
1468 		}
1469 		break;
1470 	case 1:
1471 		switch (queue_id) {
1472 		case 0:
1473 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1474 			break;
1475 		case 1:
1476 			/* XXX compute */
1477 			break;
1478 		case 2:
1479 			/* XXX compute */
1480 			break;
1481 		}
1482 		break;
1483 	}
1484 	return 0;
1485 }
1486 
1487 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1488 					      struct amdgpu_irq_src *source,
1489 					      struct amdgpu_iv_entry *entry)
1490 {
1491 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1492 	schedule_work(&adev->reset_work);
1493 	return 0;
1494 }
1495 
1496 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1497 		struct amdgpu_device *adev,
1498 		bool enable)
1499 {
1500 	uint32_t temp, data;
1501 	int i;
1502 
1503 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1504 		for (i = 0; i < adev->sdma.num_instances; i++) {
1505 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1506 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1507 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1508 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1509 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1510 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1511 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1512 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1513 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1514 			if (data != temp)
1515 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1516 		}
1517 	} else {
1518 		for (i = 0; i < adev->sdma.num_instances; i++) {
1519 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1520 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1521 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1522 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1523 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1524 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1525 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1526 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1527 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1528 
1529 			if (data != temp)
1530 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1531 		}
1532 	}
1533 }
1534 
1535 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1536 		struct amdgpu_device *adev,
1537 		bool enable)
1538 {
1539 	uint32_t temp, data;
1540 	int i;
1541 
1542 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1543 		for (i = 0; i < adev->sdma.num_instances; i++) {
1544 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1545 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1546 
1547 			if (temp != data)
1548 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1549 		}
1550 	} else {
1551 		for (i = 0; i < adev->sdma.num_instances; i++) {
1552 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1553 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1554 
1555 			if (temp != data)
1556 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1557 		}
1558 	}
1559 }
1560 
1561 static int sdma_v3_0_set_clockgating_state(void *handle,
1562 					  enum amd_clockgating_state state)
1563 {
1564 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1565 
1566 	if (amdgpu_sriov_vf(adev))
1567 		return 0;
1568 
1569 	switch (adev->asic_type) {
1570 	case CHIP_FIJI:
1571 	case CHIP_CARRIZO:
1572 	case CHIP_STONEY:
1573 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1574 				state == AMD_CG_STATE_GATE);
1575 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1576 				state == AMD_CG_STATE_GATE);
1577 		break;
1578 	default:
1579 		break;
1580 	}
1581 	return 0;
1582 }
1583 
1584 static int sdma_v3_0_set_powergating_state(void *handle,
1585 					  enum amd_powergating_state state)
1586 {
1587 	return 0;
1588 }
1589 
1590 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1591 {
1592 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1593 	int data;
1594 
1595 	if (amdgpu_sriov_vf(adev))
1596 		*flags = 0;
1597 
1598 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1599 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1600 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1601 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1602 
1603 	/* AMD_CG_SUPPORT_SDMA_LS */
1604 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1605 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1606 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1607 }
1608 
1609 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1610 	.name = "sdma_v3_0",
1611 	.early_init = sdma_v3_0_early_init,
1612 	.late_init = NULL,
1613 	.sw_init = sdma_v3_0_sw_init,
1614 	.sw_fini = sdma_v3_0_sw_fini,
1615 	.hw_init = sdma_v3_0_hw_init,
1616 	.hw_fini = sdma_v3_0_hw_fini,
1617 	.suspend = sdma_v3_0_suspend,
1618 	.resume = sdma_v3_0_resume,
1619 	.is_idle = sdma_v3_0_is_idle,
1620 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1621 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1622 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1623 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1624 	.soft_reset = sdma_v3_0_soft_reset,
1625 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1626 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1627 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1628 };
1629 
1630 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1631 	.type = AMDGPU_RING_TYPE_SDMA,
1632 	.align_mask = 0xf,
1633 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1634 	.support_64bit_ptrs = false,
1635 	.get_rptr = sdma_v3_0_ring_get_rptr,
1636 	.get_wptr = sdma_v3_0_ring_get_wptr,
1637 	.set_wptr = sdma_v3_0_ring_set_wptr,
1638 	.emit_frame_size =
1639 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1640 		3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1641 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1642 		12 + /* sdma_v3_0_ring_emit_vm_flush */
1643 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1644 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1645 	.emit_ib = sdma_v3_0_ring_emit_ib,
1646 	.emit_fence = sdma_v3_0_ring_emit_fence,
1647 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1648 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1649 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1650 	.emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1651 	.test_ring = sdma_v3_0_ring_test_ring,
1652 	.test_ib = sdma_v3_0_ring_test_ib,
1653 	.insert_nop = sdma_v3_0_ring_insert_nop,
1654 	.pad_ib = sdma_v3_0_ring_pad_ib,
1655 };
1656 
1657 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1658 {
1659 	int i;
1660 
1661 	for (i = 0; i < adev->sdma.num_instances; i++)
1662 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1663 }
1664 
1665 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1666 	.set = sdma_v3_0_set_trap_irq_state,
1667 	.process = sdma_v3_0_process_trap_irq,
1668 };
1669 
1670 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1671 	.process = sdma_v3_0_process_illegal_inst_irq,
1672 };
1673 
1674 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1675 {
1676 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1677 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1678 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1679 }
1680 
1681 /**
1682  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1683  *
1684  * @ring: amdgpu_ring structure holding ring information
1685  * @src_offset: src GPU address
1686  * @dst_offset: dst GPU address
1687  * @byte_count: number of bytes to xfer
1688  *
1689  * Copy GPU buffers using the DMA engine (VI).
1690  * Used by the amdgpu ttm implementation to move pages if
1691  * registered as the asic copy callback.
1692  */
1693 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1694 				       uint64_t src_offset,
1695 				       uint64_t dst_offset,
1696 				       uint32_t byte_count)
1697 {
1698 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1699 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1700 	ib->ptr[ib->length_dw++] = byte_count;
1701 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1702 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1703 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1704 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1705 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1706 }
1707 
1708 /**
1709  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1710  *
1711  * @ring: amdgpu_ring structure holding ring information
1712  * @src_data: value to write to buffer
1713  * @dst_offset: dst GPU address
1714  * @byte_count: number of bytes to xfer
1715  *
1716  * Fill GPU buffers using the DMA engine (VI).
1717  */
1718 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1719 				       uint32_t src_data,
1720 				       uint64_t dst_offset,
1721 				       uint32_t byte_count)
1722 {
1723 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1724 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1725 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1726 	ib->ptr[ib->length_dw++] = src_data;
1727 	ib->ptr[ib->length_dw++] = byte_count;
1728 }
1729 
1730 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1731 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1732 	.copy_num_dw = 7,
1733 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1734 
1735 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1736 	.fill_num_dw = 5,
1737 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1738 };
1739 
1740 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1741 {
1742 	if (adev->mman.buffer_funcs == NULL) {
1743 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1744 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1745 	}
1746 }
1747 
1748 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1749 	.copy_pte_num_dw = 7,
1750 	.copy_pte = sdma_v3_0_vm_copy_pte,
1751 
1752 	.write_pte = sdma_v3_0_vm_write_pte,
1753 
1754 	/* not 0x3fffff due to HW limitation */
1755 	.set_max_nums_pte_pde = 0x3fffe0 >> 3,
1756 	.set_pte_pde_num_dw = 10,
1757 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1758 };
1759 
1760 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1761 {
1762 	unsigned i;
1763 
1764 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1765 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1766 		for (i = 0; i < adev->sdma.num_instances; i++)
1767 			adev->vm_manager.vm_pte_rings[i] =
1768 				&adev->sdma.instance[i].ring;
1769 
1770 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1771 	}
1772 }
1773 
1774 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1775 {
1776 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1777 	.major = 3,
1778 	.minor = 0,
1779 	.rev = 0,
1780 	.funcs = &sdma_v3_0_ip_funcs,
1781 };
1782 
1783 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1784 {
1785 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1786 	.major = 3,
1787 	.minor = 1,
1788 	.rev = 0,
1789 	.funcs = &sdma_v3_0_ip_funcs,
1790 };
1791