1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 #include <linux/firmware.h> 25 #include <drm/drmP.h> 26 #include "amdgpu.h" 27 #include "amdgpu_ucode.h" 28 #include "amdgpu_trace.h" 29 #include "vi.h" 30 #include "vid.h" 31 32 #include "oss/oss_2_4_d.h" 33 #include "oss/oss_2_4_sh_mask.h" 34 35 #include "gmc/gmc_7_1_d.h" 36 #include "gmc/gmc_7_1_sh_mask.h" 37 38 #include "gca/gfx_8_0_d.h" 39 #include "gca/gfx_8_0_enum.h" 40 #include "gca/gfx_8_0_sh_mask.h" 41 42 #include "bif/bif_5_0_d.h" 43 #include "bif/bif_5_0_sh_mask.h" 44 45 #include "iceland_sdma_pkt_open.h" 46 47 #include "ivsrcid/ivsrcid_vislands30.h" 48 49 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev); 50 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev); 51 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev); 52 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev); 53 54 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin"); 55 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin"); 56 57 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 58 { 59 SDMA0_REGISTER_OFFSET, 60 SDMA1_REGISTER_OFFSET 61 }; 62 63 static const u32 golden_settings_iceland_a11[] = 64 { 65 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 66 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 67 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 68 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 69 }; 70 71 static const u32 iceland_mgcg_cgcg_init[] = 72 { 73 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 74 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 75 }; 76 77 /* 78 * sDMA - System DMA 79 * Starting with CIK, the GPU has new asynchronous 80 * DMA engines. These engines are used for compute 81 * and gfx. There are two DMA engines (SDMA0, SDMA1) 82 * and each one supports 1 ring buffer used for gfx 83 * and 2 queues used for compute. 84 * 85 * The programming model is very similar to the CP 86 * (ring buffer, IBs, etc.), but sDMA has it's own 87 * packet format that is different from the PM4 format 88 * used by the CP. sDMA supports copying data, writing 89 * embedded data, solid fills, and a number of other 90 * things. It also has support for tiling/detiling of 91 * buffers. 92 */ 93 94 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev) 95 { 96 switch (adev->asic_type) { 97 case CHIP_TOPAZ: 98 amdgpu_device_program_register_sequence(adev, 99 iceland_mgcg_cgcg_init, 100 ARRAY_SIZE(iceland_mgcg_cgcg_init)); 101 amdgpu_device_program_register_sequence(adev, 102 golden_settings_iceland_a11, 103 ARRAY_SIZE(golden_settings_iceland_a11)); 104 break; 105 default: 106 break; 107 } 108 } 109 110 static void sdma_v2_4_free_microcode(struct amdgpu_device *adev) 111 { 112 int i; 113 for (i = 0; i < adev->sdma.num_instances; i++) { 114 release_firmware(adev->sdma.instance[i].fw); 115 adev->sdma.instance[i].fw = NULL; 116 } 117 } 118 119 /** 120 * sdma_v2_4_init_microcode - load ucode images from disk 121 * 122 * @adev: amdgpu_device pointer 123 * 124 * Use the firmware interface to load the ucode images into 125 * the driver (not loaded into hw). 126 * Returns 0 on success, error on failure. 127 */ 128 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev) 129 { 130 const char *chip_name; 131 char fw_name[30]; 132 int err = 0, i; 133 struct amdgpu_firmware_info *info = NULL; 134 const struct common_firmware_header *header = NULL; 135 const struct sdma_firmware_header_v1_0 *hdr; 136 137 DRM_DEBUG("\n"); 138 139 switch (adev->asic_type) { 140 case CHIP_TOPAZ: 141 chip_name = "topaz"; 142 break; 143 default: BUG(); 144 } 145 146 for (i = 0; i < adev->sdma.num_instances; i++) { 147 if (i == 0) 148 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 149 else 150 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 151 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 152 if (err) 153 goto out; 154 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 155 if (err) 156 goto out; 157 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 158 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 159 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 160 if (adev->sdma.instance[i].feature_version >= 20) 161 adev->sdma.instance[i].burst_nop = true; 162 163 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) { 164 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 165 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 166 info->fw = adev->sdma.instance[i].fw; 167 header = (const struct common_firmware_header *)info->fw->data; 168 adev->firmware.fw_size += 169 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 170 } 171 } 172 173 out: 174 if (err) { 175 pr_err("sdma_v2_4: Failed to load firmware \"%s\"\n", fw_name); 176 for (i = 0; i < adev->sdma.num_instances; i++) { 177 release_firmware(adev->sdma.instance[i].fw); 178 adev->sdma.instance[i].fw = NULL; 179 } 180 } 181 return err; 182 } 183 184 /** 185 * sdma_v2_4_ring_get_rptr - get the current read pointer 186 * 187 * @ring: amdgpu ring pointer 188 * 189 * Get the current rptr from the hardware (VI+). 190 */ 191 static uint64_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring) 192 { 193 /* XXX check if swapping is necessary on BE */ 194 return ring->adev->wb.wb[ring->rptr_offs] >> 2; 195 } 196 197 /** 198 * sdma_v2_4_ring_get_wptr - get the current write pointer 199 * 200 * @ring: amdgpu ring pointer 201 * 202 * Get the current wptr from the hardware (VI+). 203 */ 204 static uint64_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring) 205 { 206 struct amdgpu_device *adev = ring->adev; 207 u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2; 208 209 return wptr; 210 } 211 212 /** 213 * sdma_v2_4_ring_set_wptr - commit the write pointer 214 * 215 * @ring: amdgpu ring pointer 216 * 217 * Write the wptr back to the hardware (VI+). 218 */ 219 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring) 220 { 221 struct amdgpu_device *adev = ring->adev; 222 223 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2); 224 } 225 226 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 227 { 228 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 229 int i; 230 231 for (i = 0; i < count; i++) 232 if (sdma && sdma->burst_nop && (i == 0)) 233 amdgpu_ring_write(ring, ring->funcs->nop | 234 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 235 else 236 amdgpu_ring_write(ring, ring->funcs->nop); 237 } 238 239 /** 240 * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine 241 * 242 * @ring: amdgpu ring pointer 243 * @ib: IB object to schedule 244 * 245 * Schedule an IB in the DMA ring (VI). 246 */ 247 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring, 248 struct amdgpu_job *job, 249 struct amdgpu_ib *ib, 250 bool ctx_switch) 251 { 252 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 253 254 /* IB packet must end on a 8 DW boundary */ 255 sdma_v2_4_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8); 256 257 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 258 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 259 /* base must be 32 byte aligned */ 260 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 261 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 262 amdgpu_ring_write(ring, ib->length_dw); 263 amdgpu_ring_write(ring, 0); 264 amdgpu_ring_write(ring, 0); 265 266 } 267 268 /** 269 * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring 270 * 271 * @ring: amdgpu ring pointer 272 * 273 * Emit an hdp flush packet on the requested DMA ring. 274 */ 275 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring) 276 { 277 u32 ref_and_mask = 0; 278 279 if (ring->me == 0) 280 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); 281 else 282 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); 283 284 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 285 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 286 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 287 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 288 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 289 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 290 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 291 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 292 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 293 } 294 295 /** 296 * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring 297 * 298 * @ring: amdgpu ring pointer 299 * @fence: amdgpu fence object 300 * 301 * Add a DMA fence packet to the ring to write 302 * the fence seq number and DMA trap packet to generate 303 * an interrupt if needed (VI). 304 */ 305 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 306 unsigned flags) 307 { 308 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 309 /* write the fence */ 310 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 311 amdgpu_ring_write(ring, lower_32_bits(addr)); 312 amdgpu_ring_write(ring, upper_32_bits(addr)); 313 amdgpu_ring_write(ring, lower_32_bits(seq)); 314 315 /* optionally write high bits as well */ 316 if (write64bit) { 317 addr += 4; 318 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 319 amdgpu_ring_write(ring, lower_32_bits(addr)); 320 amdgpu_ring_write(ring, upper_32_bits(addr)); 321 amdgpu_ring_write(ring, upper_32_bits(seq)); 322 } 323 324 /* generate an interrupt */ 325 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 326 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 327 } 328 329 /** 330 * sdma_v2_4_gfx_stop - stop the gfx async dma engines 331 * 332 * @adev: amdgpu_device pointer 333 * 334 * Stop the gfx async dma ring buffers (VI). 335 */ 336 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev) 337 { 338 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 339 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 340 u32 rb_cntl, ib_cntl; 341 int i; 342 343 if ((adev->mman.buffer_funcs_ring == sdma0) || 344 (adev->mman.buffer_funcs_ring == sdma1)) 345 amdgpu_ttm_set_buffer_funcs_status(adev, false); 346 347 for (i = 0; i < adev->sdma.num_instances; i++) { 348 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 349 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 350 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 351 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 352 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 353 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 354 } 355 sdma0->sched.ready = false; 356 sdma1->sched.ready = false; 357 } 358 359 /** 360 * sdma_v2_4_rlc_stop - stop the compute async dma engines 361 * 362 * @adev: amdgpu_device pointer 363 * 364 * Stop the compute async dma queues (VI). 365 */ 366 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev) 367 { 368 /* XXX todo */ 369 } 370 371 /** 372 * sdma_v2_4_enable - stop the async dma engines 373 * 374 * @adev: amdgpu_device pointer 375 * @enable: enable/disable the DMA MEs. 376 * 377 * Halt or unhalt the async dma engines (VI). 378 */ 379 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable) 380 { 381 u32 f32_cntl; 382 int i; 383 384 if (!enable) { 385 sdma_v2_4_gfx_stop(adev); 386 sdma_v2_4_rlc_stop(adev); 387 } 388 389 for (i = 0; i < adev->sdma.num_instances; i++) { 390 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 391 if (enable) 392 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); 393 else 394 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); 395 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); 396 } 397 } 398 399 /** 400 * sdma_v2_4_gfx_resume - setup and start the async dma engines 401 * 402 * @adev: amdgpu_device pointer 403 * 404 * Set up the gfx DMA ring buffers and enable them (VI). 405 * Returns 0 for success, error for failure. 406 */ 407 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev) 408 { 409 struct amdgpu_ring *ring; 410 u32 rb_cntl, ib_cntl; 411 u32 rb_bufsz; 412 u32 wb_offset; 413 int i, j, r; 414 415 for (i = 0; i < adev->sdma.num_instances; i++) { 416 ring = &adev->sdma.instance[i].ring; 417 wb_offset = (ring->rptr_offs * 4); 418 419 mutex_lock(&adev->srbm_mutex); 420 for (j = 0; j < 16; j++) { 421 vi_srbm_select(adev, 0, 0, 0, j); 422 /* SDMA GFX */ 423 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 424 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 425 } 426 vi_srbm_select(adev, 0, 0, 0, 0); 427 mutex_unlock(&adev->srbm_mutex); 428 429 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], 430 adev->gfx.config.gb_addr_config & 0x70); 431 432 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 433 434 /* Set ring buffer size in dwords */ 435 rb_bufsz = order_base_2(ring->ring_size / 4); 436 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 437 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 438 #ifdef __BIG_ENDIAN 439 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 440 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 441 RPTR_WRITEBACK_SWAP_ENABLE, 1); 442 #endif 443 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 444 445 /* Initialize the ring buffer's read and write pointers */ 446 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 447 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); 448 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); 449 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); 450 451 /* set the wb address whether it's enabled or not */ 452 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 453 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 454 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 455 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 456 457 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 458 459 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 460 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 461 462 ring->wptr = 0; 463 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], lower_32_bits(ring->wptr) << 2); 464 465 /* enable DMA RB */ 466 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 467 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 468 469 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 470 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 471 #ifdef __BIG_ENDIAN 472 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 473 #endif 474 /* enable DMA IBs */ 475 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 476 477 ring->sched.ready = true; 478 } 479 480 sdma_v2_4_enable(adev, true); 481 for (i = 0; i < adev->sdma.num_instances; i++) { 482 ring = &adev->sdma.instance[i].ring; 483 r = amdgpu_ring_test_helper(ring); 484 if (r) 485 return r; 486 487 if (adev->mman.buffer_funcs_ring == ring) 488 amdgpu_ttm_set_buffer_funcs_status(adev, true); 489 } 490 491 return 0; 492 } 493 494 /** 495 * sdma_v2_4_rlc_resume - setup and start the async dma engines 496 * 497 * @adev: amdgpu_device pointer 498 * 499 * Set up the compute DMA queues and enable them (VI). 500 * Returns 0 for success, error for failure. 501 */ 502 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev) 503 { 504 /* XXX todo */ 505 return 0; 506 } 507 508 509 /** 510 * sdma_v2_4_start - setup and start the async dma engines 511 * 512 * @adev: amdgpu_device pointer 513 * 514 * Set up the DMA engines and enable them (VI). 515 * Returns 0 for success, error for failure. 516 */ 517 static int sdma_v2_4_start(struct amdgpu_device *adev) 518 { 519 int r; 520 521 /* halt the engine before programing */ 522 sdma_v2_4_enable(adev, false); 523 524 /* start the gfx rings and rlc compute queues */ 525 r = sdma_v2_4_gfx_resume(adev); 526 if (r) 527 return r; 528 r = sdma_v2_4_rlc_resume(adev); 529 if (r) 530 return r; 531 532 return 0; 533 } 534 535 /** 536 * sdma_v2_4_ring_test_ring - simple async dma engine test 537 * 538 * @ring: amdgpu_ring structure holding ring information 539 * 540 * Test the DMA engine by writing using it to write an 541 * value to memory. (VI). 542 * Returns 0 for success, error for failure. 543 */ 544 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring) 545 { 546 struct amdgpu_device *adev = ring->adev; 547 unsigned i; 548 unsigned index; 549 int r; 550 u32 tmp; 551 u64 gpu_addr; 552 553 r = amdgpu_device_wb_get(adev, &index); 554 if (r) 555 return r; 556 557 gpu_addr = adev->wb.gpu_addr + (index * 4); 558 tmp = 0xCAFEDEAD; 559 adev->wb.wb[index] = cpu_to_le32(tmp); 560 561 r = amdgpu_ring_alloc(ring, 5); 562 if (r) 563 goto error_free_wb; 564 565 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 566 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 567 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 568 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 569 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 570 amdgpu_ring_write(ring, 0xDEADBEEF); 571 amdgpu_ring_commit(ring); 572 573 for (i = 0; i < adev->usec_timeout; i++) { 574 tmp = le32_to_cpu(adev->wb.wb[index]); 575 if (tmp == 0xDEADBEEF) 576 break; 577 DRM_UDELAY(1); 578 } 579 580 if (i >= adev->usec_timeout) 581 r = -ETIMEDOUT; 582 583 error_free_wb: 584 amdgpu_device_wb_free(adev, index); 585 return r; 586 } 587 588 /** 589 * sdma_v2_4_ring_test_ib - test an IB on the DMA engine 590 * 591 * @ring: amdgpu_ring structure holding ring information 592 * 593 * Test a simple IB in the DMA ring (VI). 594 * Returns 0 on success, error on failure. 595 */ 596 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring, long timeout) 597 { 598 struct amdgpu_device *adev = ring->adev; 599 struct amdgpu_ib ib; 600 struct dma_fence *f = NULL; 601 unsigned index; 602 u32 tmp = 0; 603 u64 gpu_addr; 604 long r; 605 606 r = amdgpu_device_wb_get(adev, &index); 607 if (r) 608 return r; 609 610 gpu_addr = adev->wb.gpu_addr + (index * 4); 611 tmp = 0xCAFEDEAD; 612 adev->wb.wb[index] = cpu_to_le32(tmp); 613 memset(&ib, 0, sizeof(ib)); 614 r = amdgpu_ib_get(adev, NULL, 256, &ib); 615 if (r) 616 goto err0; 617 618 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 619 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 620 ib.ptr[1] = lower_32_bits(gpu_addr); 621 ib.ptr[2] = upper_32_bits(gpu_addr); 622 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); 623 ib.ptr[4] = 0xDEADBEEF; 624 ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 625 ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 626 ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 627 ib.length_dw = 8; 628 629 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 630 if (r) 631 goto err1; 632 633 r = dma_fence_wait_timeout(f, false, timeout); 634 if (r == 0) { 635 r = -ETIMEDOUT; 636 goto err1; 637 } else if (r < 0) { 638 goto err1; 639 } 640 tmp = le32_to_cpu(adev->wb.wb[index]); 641 if (tmp == 0xDEADBEEF) 642 r = 0; 643 else 644 r = -EINVAL; 645 646 err1: 647 amdgpu_ib_free(adev, &ib, NULL); 648 dma_fence_put(f); 649 err0: 650 amdgpu_device_wb_free(adev, index); 651 return r; 652 } 653 654 /** 655 * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART 656 * 657 * @ib: indirect buffer to fill with commands 658 * @pe: addr of the page entry 659 * @src: src addr to copy from 660 * @count: number of page entries to update 661 * 662 * Update PTEs by copying them from the GART using sDMA (CIK). 663 */ 664 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib, 665 uint64_t pe, uint64_t src, 666 unsigned count) 667 { 668 unsigned bytes = count * 8; 669 670 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 671 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 672 ib->ptr[ib->length_dw++] = bytes; 673 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 674 ib->ptr[ib->length_dw++] = lower_32_bits(src); 675 ib->ptr[ib->length_dw++] = upper_32_bits(src); 676 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 677 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 678 } 679 680 /** 681 * sdma_v2_4_vm_write_pte - update PTEs by writing them manually 682 * 683 * @ib: indirect buffer to fill with commands 684 * @pe: addr of the page entry 685 * @value: dst addr to write into pe 686 * @count: number of page entries to update 687 * @incr: increase next addr by incr bytes 688 * 689 * Update PTEs by writing them manually using sDMA (CIK). 690 */ 691 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 692 uint64_t value, unsigned count, 693 uint32_t incr) 694 { 695 unsigned ndw = count * 2; 696 697 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 698 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 699 ib->ptr[ib->length_dw++] = pe; 700 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 701 ib->ptr[ib->length_dw++] = ndw; 702 for (; ndw > 0; ndw -= 2) { 703 ib->ptr[ib->length_dw++] = lower_32_bits(value); 704 ib->ptr[ib->length_dw++] = upper_32_bits(value); 705 value += incr; 706 } 707 } 708 709 /** 710 * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA 711 * 712 * @ib: indirect buffer to fill with commands 713 * @pe: addr of the page entry 714 * @addr: dst addr to write into pe 715 * @count: number of page entries to update 716 * @incr: increase next addr by incr bytes 717 * @flags: access flags 718 * 719 * Update the page tables using sDMA (CIK). 720 */ 721 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, 722 uint64_t addr, unsigned count, 723 uint32_t incr, uint64_t flags) 724 { 725 /* for physically contiguous pages (vram) */ 726 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); 727 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 728 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 729 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 730 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 731 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 732 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 733 ib->ptr[ib->length_dw++] = incr; /* increment size */ 734 ib->ptr[ib->length_dw++] = 0; 735 ib->ptr[ib->length_dw++] = count; /* number of entries */ 736 } 737 738 /** 739 * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw 740 * 741 * @ib: indirect buffer to fill with padding 742 * 743 */ 744 static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 745 { 746 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 747 u32 pad_count; 748 int i; 749 750 pad_count = (8 - (ib->length_dw & 0x7)) % 8; 751 for (i = 0; i < pad_count; i++) 752 if (sdma && sdma->burst_nop && (i == 0)) 753 ib->ptr[ib->length_dw++] = 754 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 755 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 756 else 757 ib->ptr[ib->length_dw++] = 758 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 759 } 760 761 /** 762 * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline 763 * 764 * @ring: amdgpu_ring pointer 765 * 766 * Make sure all previous operations are completed (CIK). 767 */ 768 static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 769 { 770 uint32_t seq = ring->fence_drv.sync_seq; 771 uint64_t addr = ring->fence_drv.gpu_addr; 772 773 /* wait for idle */ 774 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 775 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 776 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 777 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 778 amdgpu_ring_write(ring, addr & 0xfffffffc); 779 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 780 amdgpu_ring_write(ring, seq); /* reference */ 781 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 782 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 783 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 784 } 785 786 /** 787 * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA 788 * 789 * @ring: amdgpu_ring pointer 790 * @vm: amdgpu_vm pointer 791 * 792 * Update the page table base and flush the VM TLB 793 * using sDMA (VI). 794 */ 795 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring, 796 unsigned vmid, uint64_t pd_addr) 797 { 798 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 799 800 /* wait for flush */ 801 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 802 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 803 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ 804 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 805 amdgpu_ring_write(ring, 0); 806 amdgpu_ring_write(ring, 0); /* reference */ 807 amdgpu_ring_write(ring, 0); /* mask */ 808 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 809 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 810 } 811 812 static void sdma_v2_4_ring_emit_wreg(struct amdgpu_ring *ring, 813 uint32_t reg, uint32_t val) 814 { 815 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 816 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 817 amdgpu_ring_write(ring, reg); 818 amdgpu_ring_write(ring, val); 819 } 820 821 static int sdma_v2_4_early_init(void *handle) 822 { 823 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 824 825 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 826 827 sdma_v2_4_set_ring_funcs(adev); 828 sdma_v2_4_set_buffer_funcs(adev); 829 sdma_v2_4_set_vm_pte_funcs(adev); 830 sdma_v2_4_set_irq_funcs(adev); 831 832 return 0; 833 } 834 835 static int sdma_v2_4_sw_init(void *handle) 836 { 837 struct amdgpu_ring *ring; 838 int r, i; 839 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 840 841 /* SDMA trap event */ 842 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP, 843 &adev->sdma.trap_irq); 844 if (r) 845 return r; 846 847 /* SDMA Privileged inst */ 848 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241, 849 &adev->sdma.illegal_inst_irq); 850 if (r) 851 return r; 852 853 /* SDMA Privileged inst */ 854 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE, 855 &adev->sdma.illegal_inst_irq); 856 if (r) 857 return r; 858 859 r = sdma_v2_4_init_microcode(adev); 860 if (r) { 861 DRM_ERROR("Failed to load sdma firmware!\n"); 862 return r; 863 } 864 865 for (i = 0; i < adev->sdma.num_instances; i++) { 866 ring = &adev->sdma.instance[i].ring; 867 ring->ring_obj = NULL; 868 ring->use_doorbell = false; 869 sprintf(ring->name, "sdma%d", i); 870 r = amdgpu_ring_init(adev, ring, 1024, 871 &adev->sdma.trap_irq, 872 (i == 0) ? 873 AMDGPU_SDMA_IRQ_TRAP0 : 874 AMDGPU_SDMA_IRQ_TRAP1); 875 if (r) 876 return r; 877 } 878 879 return r; 880 } 881 882 static int sdma_v2_4_sw_fini(void *handle) 883 { 884 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 885 int i; 886 887 for (i = 0; i < adev->sdma.num_instances; i++) 888 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 889 890 sdma_v2_4_free_microcode(adev); 891 return 0; 892 } 893 894 static int sdma_v2_4_hw_init(void *handle) 895 { 896 int r; 897 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 898 899 sdma_v2_4_init_golden_registers(adev); 900 901 r = sdma_v2_4_start(adev); 902 if (r) 903 return r; 904 905 return r; 906 } 907 908 static int sdma_v2_4_hw_fini(void *handle) 909 { 910 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 911 912 sdma_v2_4_enable(adev, false); 913 914 return 0; 915 } 916 917 static int sdma_v2_4_suspend(void *handle) 918 { 919 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 920 921 return sdma_v2_4_hw_fini(adev); 922 } 923 924 static int sdma_v2_4_resume(void *handle) 925 { 926 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 927 928 return sdma_v2_4_hw_init(adev); 929 } 930 931 static bool sdma_v2_4_is_idle(void *handle) 932 { 933 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 934 u32 tmp = RREG32(mmSRBM_STATUS2); 935 936 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 937 SRBM_STATUS2__SDMA1_BUSY_MASK)) 938 return false; 939 940 return true; 941 } 942 943 static int sdma_v2_4_wait_for_idle(void *handle) 944 { 945 unsigned i; 946 u32 tmp; 947 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 948 949 for (i = 0; i < adev->usec_timeout; i++) { 950 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 951 SRBM_STATUS2__SDMA1_BUSY_MASK); 952 953 if (!tmp) 954 return 0; 955 udelay(1); 956 } 957 return -ETIMEDOUT; 958 } 959 960 static int sdma_v2_4_soft_reset(void *handle) 961 { 962 u32 srbm_soft_reset = 0; 963 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 964 u32 tmp = RREG32(mmSRBM_STATUS2); 965 966 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) { 967 /* sdma0 */ 968 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET); 969 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); 970 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp); 971 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 972 } 973 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) { 974 /* sdma1 */ 975 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET); 976 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); 977 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp); 978 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 979 } 980 981 if (srbm_soft_reset) { 982 tmp = RREG32(mmSRBM_SOFT_RESET); 983 tmp |= srbm_soft_reset; 984 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 985 WREG32(mmSRBM_SOFT_RESET, tmp); 986 tmp = RREG32(mmSRBM_SOFT_RESET); 987 988 udelay(50); 989 990 tmp &= ~srbm_soft_reset; 991 WREG32(mmSRBM_SOFT_RESET, tmp); 992 tmp = RREG32(mmSRBM_SOFT_RESET); 993 994 /* Wait a little for things to settle down */ 995 udelay(50); 996 } 997 998 return 0; 999 } 1000 1001 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev, 1002 struct amdgpu_irq_src *src, 1003 unsigned type, 1004 enum amdgpu_interrupt_state state) 1005 { 1006 u32 sdma_cntl; 1007 1008 switch (type) { 1009 case AMDGPU_SDMA_IRQ_TRAP0: 1010 switch (state) { 1011 case AMDGPU_IRQ_STATE_DISABLE: 1012 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1013 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1014 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1015 break; 1016 case AMDGPU_IRQ_STATE_ENABLE: 1017 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1018 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1019 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1020 break; 1021 default: 1022 break; 1023 } 1024 break; 1025 case AMDGPU_SDMA_IRQ_TRAP1: 1026 switch (state) { 1027 case AMDGPU_IRQ_STATE_DISABLE: 1028 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1029 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1030 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1031 break; 1032 case AMDGPU_IRQ_STATE_ENABLE: 1033 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1034 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1035 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1036 break; 1037 default: 1038 break; 1039 } 1040 break; 1041 default: 1042 break; 1043 } 1044 return 0; 1045 } 1046 1047 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev, 1048 struct amdgpu_irq_src *source, 1049 struct amdgpu_iv_entry *entry) 1050 { 1051 u8 instance_id, queue_id; 1052 1053 instance_id = (entry->ring_id & 0x3) >> 0; 1054 queue_id = (entry->ring_id & 0xc) >> 2; 1055 DRM_DEBUG("IH: SDMA trap\n"); 1056 switch (instance_id) { 1057 case 0: 1058 switch (queue_id) { 1059 case 0: 1060 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1061 break; 1062 case 1: 1063 /* XXX compute */ 1064 break; 1065 case 2: 1066 /* XXX compute */ 1067 break; 1068 } 1069 break; 1070 case 1: 1071 switch (queue_id) { 1072 case 0: 1073 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1074 break; 1075 case 1: 1076 /* XXX compute */ 1077 break; 1078 case 2: 1079 /* XXX compute */ 1080 break; 1081 } 1082 break; 1083 } 1084 return 0; 1085 } 1086 1087 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev, 1088 struct amdgpu_irq_src *source, 1089 struct amdgpu_iv_entry *entry) 1090 { 1091 u8 instance_id, queue_id; 1092 1093 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1094 instance_id = (entry->ring_id & 0x3) >> 0; 1095 queue_id = (entry->ring_id & 0xc) >> 2; 1096 1097 if (instance_id <= 1 && queue_id == 0) 1098 drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched); 1099 return 0; 1100 } 1101 1102 static int sdma_v2_4_set_clockgating_state(void *handle, 1103 enum amd_clockgating_state state) 1104 { 1105 /* XXX handled via the smc on VI */ 1106 return 0; 1107 } 1108 1109 static int sdma_v2_4_set_powergating_state(void *handle, 1110 enum amd_powergating_state state) 1111 { 1112 return 0; 1113 } 1114 1115 static const struct amd_ip_funcs sdma_v2_4_ip_funcs = { 1116 .name = "sdma_v2_4", 1117 .early_init = sdma_v2_4_early_init, 1118 .late_init = NULL, 1119 .sw_init = sdma_v2_4_sw_init, 1120 .sw_fini = sdma_v2_4_sw_fini, 1121 .hw_init = sdma_v2_4_hw_init, 1122 .hw_fini = sdma_v2_4_hw_fini, 1123 .suspend = sdma_v2_4_suspend, 1124 .resume = sdma_v2_4_resume, 1125 .is_idle = sdma_v2_4_is_idle, 1126 .wait_for_idle = sdma_v2_4_wait_for_idle, 1127 .soft_reset = sdma_v2_4_soft_reset, 1128 .set_clockgating_state = sdma_v2_4_set_clockgating_state, 1129 .set_powergating_state = sdma_v2_4_set_powergating_state, 1130 }; 1131 1132 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = { 1133 .type = AMDGPU_RING_TYPE_SDMA, 1134 .align_mask = 0xf, 1135 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1136 .support_64bit_ptrs = false, 1137 .get_rptr = sdma_v2_4_ring_get_rptr, 1138 .get_wptr = sdma_v2_4_ring_get_wptr, 1139 .set_wptr = sdma_v2_4_ring_set_wptr, 1140 .emit_frame_size = 1141 6 + /* sdma_v2_4_ring_emit_hdp_flush */ 1142 3 + /* hdp invalidate */ 1143 6 + /* sdma_v2_4_ring_emit_pipeline_sync */ 1144 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v2_4_ring_emit_vm_flush */ 1145 10 + 10 + 10, /* sdma_v2_4_ring_emit_fence x3 for user fence, vm fence */ 1146 .emit_ib_size = 7 + 6, /* sdma_v2_4_ring_emit_ib */ 1147 .emit_ib = sdma_v2_4_ring_emit_ib, 1148 .emit_fence = sdma_v2_4_ring_emit_fence, 1149 .emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync, 1150 .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush, 1151 .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush, 1152 .test_ring = sdma_v2_4_ring_test_ring, 1153 .test_ib = sdma_v2_4_ring_test_ib, 1154 .insert_nop = sdma_v2_4_ring_insert_nop, 1155 .pad_ib = sdma_v2_4_ring_pad_ib, 1156 .emit_wreg = sdma_v2_4_ring_emit_wreg, 1157 }; 1158 1159 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev) 1160 { 1161 int i; 1162 1163 for (i = 0; i < adev->sdma.num_instances; i++) { 1164 adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs; 1165 adev->sdma.instance[i].ring.me = i; 1166 } 1167 } 1168 1169 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = { 1170 .set = sdma_v2_4_set_trap_irq_state, 1171 .process = sdma_v2_4_process_trap_irq, 1172 }; 1173 1174 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = { 1175 .process = sdma_v2_4_process_illegal_inst_irq, 1176 }; 1177 1178 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev) 1179 { 1180 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1181 adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs; 1182 adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs; 1183 } 1184 1185 /** 1186 * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine 1187 * 1188 * @ring: amdgpu_ring structure holding ring information 1189 * @src_offset: src GPU address 1190 * @dst_offset: dst GPU address 1191 * @byte_count: number of bytes to xfer 1192 * 1193 * Copy GPU buffers using the DMA engine (VI). 1194 * Used by the amdgpu ttm implementation to move pages if 1195 * registered as the asic copy callback. 1196 */ 1197 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib, 1198 uint64_t src_offset, 1199 uint64_t dst_offset, 1200 uint32_t byte_count) 1201 { 1202 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1203 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1204 ib->ptr[ib->length_dw++] = byte_count; 1205 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1206 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1207 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1208 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1209 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1210 } 1211 1212 /** 1213 * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine 1214 * 1215 * @ring: amdgpu_ring structure holding ring information 1216 * @src_data: value to write to buffer 1217 * @dst_offset: dst GPU address 1218 * @byte_count: number of bytes to xfer 1219 * 1220 * Fill GPU buffers using the DMA engine (VI). 1221 */ 1222 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib, 1223 uint32_t src_data, 1224 uint64_t dst_offset, 1225 uint32_t byte_count) 1226 { 1227 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1228 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1229 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1230 ib->ptr[ib->length_dw++] = src_data; 1231 ib->ptr[ib->length_dw++] = byte_count; 1232 } 1233 1234 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = { 1235 .copy_max_bytes = 0x1fffff, 1236 .copy_num_dw = 7, 1237 .emit_copy_buffer = sdma_v2_4_emit_copy_buffer, 1238 1239 .fill_max_bytes = 0x1fffff, 1240 .fill_num_dw = 7, 1241 .emit_fill_buffer = sdma_v2_4_emit_fill_buffer, 1242 }; 1243 1244 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev) 1245 { 1246 adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs; 1247 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1248 } 1249 1250 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = { 1251 .copy_pte_num_dw = 7, 1252 .copy_pte = sdma_v2_4_vm_copy_pte, 1253 1254 .write_pte = sdma_v2_4_vm_write_pte, 1255 .set_pte_pde = sdma_v2_4_vm_set_pte_pde, 1256 }; 1257 1258 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev) 1259 { 1260 struct drm_gpu_scheduler *sched; 1261 unsigned i; 1262 1263 adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs; 1264 for (i = 0; i < adev->sdma.num_instances; i++) { 1265 sched = &adev->sdma.instance[i].ring.sched; 1266 adev->vm_manager.vm_pte_rqs[i] = 1267 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1268 } 1269 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances; 1270 } 1271 1272 const struct amdgpu_ip_block_version sdma_v2_4_ip_block = 1273 { 1274 .type = AMD_IP_BLOCK_TYPE_SDMA, 1275 .major = 2, 1276 .minor = 4, 1277 .rev = 0, 1278 .funcs = &sdma_v2_4_ip_funcs, 1279 }; 1280