1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/firmware.h> 27 #include <linux/module.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 #include "vi.h" 33 #include "vid.h" 34 35 #include "oss/oss_2_4_d.h" 36 #include "oss/oss_2_4_sh_mask.h" 37 38 #include "gmc/gmc_7_1_d.h" 39 #include "gmc/gmc_7_1_sh_mask.h" 40 41 #include "gca/gfx_8_0_d.h" 42 #include "gca/gfx_8_0_enum.h" 43 #include "gca/gfx_8_0_sh_mask.h" 44 45 #include "bif/bif_5_0_d.h" 46 #include "bif/bif_5_0_sh_mask.h" 47 48 #include "iceland_sdma_pkt_open.h" 49 50 #include "ivsrcid/ivsrcid_vislands30.h" 51 52 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev); 53 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev); 54 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev); 55 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev); 56 57 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin"); 58 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin"); 59 60 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 61 { 62 SDMA0_REGISTER_OFFSET, 63 SDMA1_REGISTER_OFFSET 64 }; 65 66 static const u32 golden_settings_iceland_a11[] = 67 { 68 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 69 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 70 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 71 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 72 }; 73 74 static const u32 iceland_mgcg_cgcg_init[] = 75 { 76 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 77 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 78 }; 79 80 /* 81 * sDMA - System DMA 82 * Starting with CIK, the GPU has new asynchronous 83 * DMA engines. These engines are used for compute 84 * and gfx. There are two DMA engines (SDMA0, SDMA1) 85 * and each one supports 1 ring buffer used for gfx 86 * and 2 queues used for compute. 87 * 88 * The programming model is very similar to the CP 89 * (ring buffer, IBs, etc.), but sDMA has it's own 90 * packet format that is different from the PM4 format 91 * used by the CP. sDMA supports copying data, writing 92 * embedded data, solid fills, and a number of other 93 * things. It also has support for tiling/detiling of 94 * buffers. 95 */ 96 97 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev) 98 { 99 switch (adev->asic_type) { 100 case CHIP_TOPAZ: 101 amdgpu_device_program_register_sequence(adev, 102 iceland_mgcg_cgcg_init, 103 ARRAY_SIZE(iceland_mgcg_cgcg_init)); 104 amdgpu_device_program_register_sequence(adev, 105 golden_settings_iceland_a11, 106 ARRAY_SIZE(golden_settings_iceland_a11)); 107 break; 108 default: 109 break; 110 } 111 } 112 113 static void sdma_v2_4_free_microcode(struct amdgpu_device *adev) 114 { 115 int i; 116 for (i = 0; i < adev->sdma.num_instances; i++) { 117 release_firmware(adev->sdma.instance[i].fw); 118 adev->sdma.instance[i].fw = NULL; 119 } 120 } 121 122 /** 123 * sdma_v2_4_init_microcode - load ucode images from disk 124 * 125 * @adev: amdgpu_device pointer 126 * 127 * Use the firmware interface to load the ucode images into 128 * the driver (not loaded into hw). 129 * Returns 0 on success, error on failure. 130 */ 131 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev) 132 { 133 const char *chip_name; 134 char fw_name[30]; 135 int err = 0, i; 136 struct amdgpu_firmware_info *info = NULL; 137 const struct common_firmware_header *header = NULL; 138 const struct sdma_firmware_header_v1_0 *hdr; 139 140 DRM_DEBUG("\n"); 141 142 switch (adev->asic_type) { 143 case CHIP_TOPAZ: 144 chip_name = "topaz"; 145 break; 146 default: BUG(); 147 } 148 149 for (i = 0; i < adev->sdma.num_instances; i++) { 150 if (i == 0) 151 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 152 else 153 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 154 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 155 if (err) 156 goto out; 157 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 158 if (err) 159 goto out; 160 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 161 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 162 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 163 if (adev->sdma.instance[i].feature_version >= 20) 164 adev->sdma.instance[i].burst_nop = true; 165 166 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) { 167 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 168 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 169 info->fw = adev->sdma.instance[i].fw; 170 header = (const struct common_firmware_header *)info->fw->data; 171 adev->firmware.fw_size += 172 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 173 } 174 } 175 176 out: 177 if (err) { 178 pr_err("sdma_v2_4: Failed to load firmware \"%s\"\n", fw_name); 179 for (i = 0; i < adev->sdma.num_instances; i++) { 180 release_firmware(adev->sdma.instance[i].fw); 181 adev->sdma.instance[i].fw = NULL; 182 } 183 } 184 return err; 185 } 186 187 /** 188 * sdma_v2_4_ring_get_rptr - get the current read pointer 189 * 190 * @ring: amdgpu ring pointer 191 * 192 * Get the current rptr from the hardware (VI+). 193 */ 194 static uint64_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring) 195 { 196 /* XXX check if swapping is necessary on BE */ 197 return ring->adev->wb.wb[ring->rptr_offs] >> 2; 198 } 199 200 /** 201 * sdma_v2_4_ring_get_wptr - get the current write pointer 202 * 203 * @ring: amdgpu ring pointer 204 * 205 * Get the current wptr from the hardware (VI+). 206 */ 207 static uint64_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring) 208 { 209 struct amdgpu_device *adev = ring->adev; 210 u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2; 211 212 return wptr; 213 } 214 215 /** 216 * sdma_v2_4_ring_set_wptr - commit the write pointer 217 * 218 * @ring: amdgpu ring pointer 219 * 220 * Write the wptr back to the hardware (VI+). 221 */ 222 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring) 223 { 224 struct amdgpu_device *adev = ring->adev; 225 226 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2); 227 } 228 229 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 230 { 231 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 232 int i; 233 234 for (i = 0; i < count; i++) 235 if (sdma && sdma->burst_nop && (i == 0)) 236 amdgpu_ring_write(ring, ring->funcs->nop | 237 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 238 else 239 amdgpu_ring_write(ring, ring->funcs->nop); 240 } 241 242 /** 243 * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine 244 * 245 * @ring: amdgpu ring pointer 246 * @job: job to retrieve vmid from 247 * @ib: IB object to schedule 248 * @flags: unused 249 * 250 * Schedule an IB in the DMA ring (VI). 251 */ 252 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring, 253 struct amdgpu_job *job, 254 struct amdgpu_ib *ib, 255 uint32_t flags) 256 { 257 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 258 259 /* IB packet must end on a 8 DW boundary */ 260 sdma_v2_4_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 261 262 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 263 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 264 /* base must be 32 byte aligned */ 265 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 266 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 267 amdgpu_ring_write(ring, ib->length_dw); 268 amdgpu_ring_write(ring, 0); 269 amdgpu_ring_write(ring, 0); 270 271 } 272 273 /** 274 * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring 275 * 276 * @ring: amdgpu ring pointer 277 * 278 * Emit an hdp flush packet on the requested DMA ring. 279 */ 280 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring) 281 { 282 u32 ref_and_mask = 0; 283 284 if (ring->me == 0) 285 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); 286 else 287 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); 288 289 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 290 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 291 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 292 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 293 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 294 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 295 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 296 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 297 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 298 } 299 300 /** 301 * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring 302 * 303 * @ring: amdgpu ring pointer 304 * @addr: address 305 * @seq: sequence number 306 * @flags: fence related flags 307 * 308 * Add a DMA fence packet to the ring to write 309 * the fence seq number and DMA trap packet to generate 310 * an interrupt if needed (VI). 311 */ 312 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 313 unsigned flags) 314 { 315 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 316 /* write the fence */ 317 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 318 amdgpu_ring_write(ring, lower_32_bits(addr)); 319 amdgpu_ring_write(ring, upper_32_bits(addr)); 320 amdgpu_ring_write(ring, lower_32_bits(seq)); 321 322 /* optionally write high bits as well */ 323 if (write64bit) { 324 addr += 4; 325 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 326 amdgpu_ring_write(ring, lower_32_bits(addr)); 327 amdgpu_ring_write(ring, upper_32_bits(addr)); 328 amdgpu_ring_write(ring, upper_32_bits(seq)); 329 } 330 331 /* generate an interrupt */ 332 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 333 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 334 } 335 336 /** 337 * sdma_v2_4_gfx_stop - stop the gfx async dma engines 338 * 339 * @adev: amdgpu_device pointer 340 * 341 * Stop the gfx async dma ring buffers (VI). 342 */ 343 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev) 344 { 345 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 346 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 347 u32 rb_cntl, ib_cntl; 348 int i; 349 350 if ((adev->mman.buffer_funcs_ring == sdma0) || 351 (adev->mman.buffer_funcs_ring == sdma1)) 352 amdgpu_ttm_set_buffer_funcs_status(adev, false); 353 354 for (i = 0; i < adev->sdma.num_instances; i++) { 355 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 356 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 357 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 358 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 359 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 360 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 361 } 362 } 363 364 /** 365 * sdma_v2_4_rlc_stop - stop the compute async dma engines 366 * 367 * @adev: amdgpu_device pointer 368 * 369 * Stop the compute async dma queues (VI). 370 */ 371 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev) 372 { 373 /* XXX todo */ 374 } 375 376 /** 377 * sdma_v2_4_enable - stop the async dma engines 378 * 379 * @adev: amdgpu_device pointer 380 * @enable: enable/disable the DMA MEs. 381 * 382 * Halt or unhalt the async dma engines (VI). 383 */ 384 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable) 385 { 386 u32 f32_cntl; 387 int i; 388 389 if (!enable) { 390 sdma_v2_4_gfx_stop(adev); 391 sdma_v2_4_rlc_stop(adev); 392 } 393 394 for (i = 0; i < adev->sdma.num_instances; i++) { 395 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 396 if (enable) 397 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); 398 else 399 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); 400 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); 401 } 402 } 403 404 /** 405 * sdma_v2_4_gfx_resume - setup and start the async dma engines 406 * 407 * @adev: amdgpu_device pointer 408 * 409 * Set up the gfx DMA ring buffers and enable them (VI). 410 * Returns 0 for success, error for failure. 411 */ 412 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev) 413 { 414 struct amdgpu_ring *ring; 415 u32 rb_cntl, ib_cntl; 416 u32 rb_bufsz; 417 u32 wb_offset; 418 int i, j, r; 419 420 for (i = 0; i < adev->sdma.num_instances; i++) { 421 ring = &adev->sdma.instance[i].ring; 422 wb_offset = (ring->rptr_offs * 4); 423 424 mutex_lock(&adev->srbm_mutex); 425 for (j = 0; j < 16; j++) { 426 vi_srbm_select(adev, 0, 0, 0, j); 427 /* SDMA GFX */ 428 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 429 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 430 } 431 vi_srbm_select(adev, 0, 0, 0, 0); 432 mutex_unlock(&adev->srbm_mutex); 433 434 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], 435 adev->gfx.config.gb_addr_config & 0x70); 436 437 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 438 439 /* Set ring buffer size in dwords */ 440 rb_bufsz = order_base_2(ring->ring_size / 4); 441 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 442 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 443 #ifdef __BIG_ENDIAN 444 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 445 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 446 RPTR_WRITEBACK_SWAP_ENABLE, 1); 447 #endif 448 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 449 450 /* Initialize the ring buffer's read and write pointers */ 451 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 452 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); 453 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); 454 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); 455 456 /* set the wb address whether it's enabled or not */ 457 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 458 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 459 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 460 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 461 462 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 463 464 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 465 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 466 467 ring->wptr = 0; 468 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], lower_32_bits(ring->wptr) << 2); 469 470 /* enable DMA RB */ 471 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 472 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 473 474 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 475 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 476 #ifdef __BIG_ENDIAN 477 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 478 #endif 479 /* enable DMA IBs */ 480 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 481 482 ring->sched.ready = true; 483 } 484 485 sdma_v2_4_enable(adev, true); 486 for (i = 0; i < adev->sdma.num_instances; i++) { 487 ring = &adev->sdma.instance[i].ring; 488 r = amdgpu_ring_test_helper(ring); 489 if (r) 490 return r; 491 492 if (adev->mman.buffer_funcs_ring == ring) 493 amdgpu_ttm_set_buffer_funcs_status(adev, true); 494 } 495 496 return 0; 497 } 498 499 /** 500 * sdma_v2_4_rlc_resume - setup and start the async dma engines 501 * 502 * @adev: amdgpu_device pointer 503 * 504 * Set up the compute DMA queues and enable them (VI). 505 * Returns 0 for success, error for failure. 506 */ 507 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev) 508 { 509 /* XXX todo */ 510 return 0; 511 } 512 513 514 /** 515 * sdma_v2_4_start - setup and start the async dma engines 516 * 517 * @adev: amdgpu_device pointer 518 * 519 * Set up the DMA engines and enable them (VI). 520 * Returns 0 for success, error for failure. 521 */ 522 static int sdma_v2_4_start(struct amdgpu_device *adev) 523 { 524 int r; 525 526 /* halt the engine before programing */ 527 sdma_v2_4_enable(adev, false); 528 529 /* start the gfx rings and rlc compute queues */ 530 r = sdma_v2_4_gfx_resume(adev); 531 if (r) 532 return r; 533 r = sdma_v2_4_rlc_resume(adev); 534 if (r) 535 return r; 536 537 return 0; 538 } 539 540 /** 541 * sdma_v2_4_ring_test_ring - simple async dma engine test 542 * 543 * @ring: amdgpu_ring structure holding ring information 544 * 545 * Test the DMA engine by writing using it to write an 546 * value to memory. (VI). 547 * Returns 0 for success, error for failure. 548 */ 549 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring) 550 { 551 struct amdgpu_device *adev = ring->adev; 552 unsigned i; 553 unsigned index; 554 int r; 555 u32 tmp; 556 u64 gpu_addr; 557 558 r = amdgpu_device_wb_get(adev, &index); 559 if (r) 560 return r; 561 562 gpu_addr = adev->wb.gpu_addr + (index * 4); 563 tmp = 0xCAFEDEAD; 564 adev->wb.wb[index] = cpu_to_le32(tmp); 565 566 r = amdgpu_ring_alloc(ring, 5); 567 if (r) 568 goto error_free_wb; 569 570 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 571 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 572 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 573 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 574 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 575 amdgpu_ring_write(ring, 0xDEADBEEF); 576 amdgpu_ring_commit(ring); 577 578 for (i = 0; i < adev->usec_timeout; i++) { 579 tmp = le32_to_cpu(adev->wb.wb[index]); 580 if (tmp == 0xDEADBEEF) 581 break; 582 udelay(1); 583 } 584 585 if (i >= adev->usec_timeout) 586 r = -ETIMEDOUT; 587 588 error_free_wb: 589 amdgpu_device_wb_free(adev, index); 590 return r; 591 } 592 593 /** 594 * sdma_v2_4_ring_test_ib - test an IB on the DMA engine 595 * 596 * @ring: amdgpu_ring structure holding ring information 597 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 598 * 599 * Test a simple IB in the DMA ring (VI). 600 * Returns 0 on success, error on failure. 601 */ 602 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring, long timeout) 603 { 604 struct amdgpu_device *adev = ring->adev; 605 struct amdgpu_ib ib; 606 struct dma_fence *f = NULL; 607 unsigned index; 608 u32 tmp = 0; 609 u64 gpu_addr; 610 long r; 611 612 r = amdgpu_device_wb_get(adev, &index); 613 if (r) 614 return r; 615 616 gpu_addr = adev->wb.gpu_addr + (index * 4); 617 tmp = 0xCAFEDEAD; 618 adev->wb.wb[index] = cpu_to_le32(tmp); 619 memset(&ib, 0, sizeof(ib)); 620 r = amdgpu_ib_get(adev, NULL, 256, 621 AMDGPU_IB_POOL_DIRECT, &ib); 622 if (r) 623 goto err0; 624 625 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 626 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 627 ib.ptr[1] = lower_32_bits(gpu_addr); 628 ib.ptr[2] = upper_32_bits(gpu_addr); 629 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); 630 ib.ptr[4] = 0xDEADBEEF; 631 ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 632 ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 633 ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 634 ib.length_dw = 8; 635 636 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 637 if (r) 638 goto err1; 639 640 r = dma_fence_wait_timeout(f, false, timeout); 641 if (r == 0) { 642 r = -ETIMEDOUT; 643 goto err1; 644 } else if (r < 0) { 645 goto err1; 646 } 647 tmp = le32_to_cpu(adev->wb.wb[index]); 648 if (tmp == 0xDEADBEEF) 649 r = 0; 650 else 651 r = -EINVAL; 652 653 err1: 654 amdgpu_ib_free(adev, &ib, NULL); 655 dma_fence_put(f); 656 err0: 657 amdgpu_device_wb_free(adev, index); 658 return r; 659 } 660 661 /** 662 * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART 663 * 664 * @ib: indirect buffer to fill with commands 665 * @pe: addr of the page entry 666 * @src: src addr to copy from 667 * @count: number of page entries to update 668 * 669 * Update PTEs by copying them from the GART using sDMA (CIK). 670 */ 671 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib, 672 uint64_t pe, uint64_t src, 673 unsigned count) 674 { 675 unsigned bytes = count * 8; 676 677 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 678 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 679 ib->ptr[ib->length_dw++] = bytes; 680 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 681 ib->ptr[ib->length_dw++] = lower_32_bits(src); 682 ib->ptr[ib->length_dw++] = upper_32_bits(src); 683 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 684 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 685 } 686 687 /** 688 * sdma_v2_4_vm_write_pte - update PTEs by writing them manually 689 * 690 * @ib: indirect buffer to fill with commands 691 * @pe: addr of the page entry 692 * @value: dst addr to write into pe 693 * @count: number of page entries to update 694 * @incr: increase next addr by incr bytes 695 * 696 * Update PTEs by writing them manually using sDMA (CIK). 697 */ 698 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 699 uint64_t value, unsigned count, 700 uint32_t incr) 701 { 702 unsigned ndw = count * 2; 703 704 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 705 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 706 ib->ptr[ib->length_dw++] = pe; 707 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 708 ib->ptr[ib->length_dw++] = ndw; 709 for (; ndw > 0; ndw -= 2) { 710 ib->ptr[ib->length_dw++] = lower_32_bits(value); 711 ib->ptr[ib->length_dw++] = upper_32_bits(value); 712 value += incr; 713 } 714 } 715 716 /** 717 * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA 718 * 719 * @ib: indirect buffer to fill with commands 720 * @pe: addr of the page entry 721 * @addr: dst addr to write into pe 722 * @count: number of page entries to update 723 * @incr: increase next addr by incr bytes 724 * @flags: access flags 725 * 726 * Update the page tables using sDMA (CIK). 727 */ 728 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, 729 uint64_t addr, unsigned count, 730 uint32_t incr, uint64_t flags) 731 { 732 /* for physically contiguous pages (vram) */ 733 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); 734 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 735 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 736 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 737 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 738 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 739 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 740 ib->ptr[ib->length_dw++] = incr; /* increment size */ 741 ib->ptr[ib->length_dw++] = 0; 742 ib->ptr[ib->length_dw++] = count; /* number of entries */ 743 } 744 745 /** 746 * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw 747 * 748 * @ring: amdgpu_ring structure holding ring information 749 * @ib: indirect buffer to fill with padding 750 * 751 */ 752 static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 753 { 754 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 755 u32 pad_count; 756 int i; 757 758 pad_count = (-ib->length_dw) & 7; 759 for (i = 0; i < pad_count; i++) 760 if (sdma && sdma->burst_nop && (i == 0)) 761 ib->ptr[ib->length_dw++] = 762 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 763 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 764 else 765 ib->ptr[ib->length_dw++] = 766 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 767 } 768 769 /** 770 * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline 771 * 772 * @ring: amdgpu_ring pointer 773 * 774 * Make sure all previous operations are completed (CIK). 775 */ 776 static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 777 { 778 uint32_t seq = ring->fence_drv.sync_seq; 779 uint64_t addr = ring->fence_drv.gpu_addr; 780 781 /* wait for idle */ 782 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 783 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 784 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 785 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 786 amdgpu_ring_write(ring, addr & 0xfffffffc); 787 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 788 amdgpu_ring_write(ring, seq); /* reference */ 789 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 790 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 791 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 792 } 793 794 /** 795 * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA 796 * 797 * @ring: amdgpu_ring pointer 798 * @vmid: vmid number to use 799 * @pd_addr: address 800 * 801 * Update the page table base and flush the VM TLB 802 * using sDMA (VI). 803 */ 804 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring, 805 unsigned vmid, uint64_t pd_addr) 806 { 807 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 808 809 /* wait for flush */ 810 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 811 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 812 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ 813 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 814 amdgpu_ring_write(ring, 0); 815 amdgpu_ring_write(ring, 0); /* reference */ 816 amdgpu_ring_write(ring, 0); /* mask */ 817 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 818 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 819 } 820 821 static void sdma_v2_4_ring_emit_wreg(struct amdgpu_ring *ring, 822 uint32_t reg, uint32_t val) 823 { 824 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 825 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 826 amdgpu_ring_write(ring, reg); 827 amdgpu_ring_write(ring, val); 828 } 829 830 static int sdma_v2_4_early_init(void *handle) 831 { 832 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 833 834 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 835 836 sdma_v2_4_set_ring_funcs(adev); 837 sdma_v2_4_set_buffer_funcs(adev); 838 sdma_v2_4_set_vm_pte_funcs(adev); 839 sdma_v2_4_set_irq_funcs(adev); 840 841 return 0; 842 } 843 844 static int sdma_v2_4_sw_init(void *handle) 845 { 846 struct amdgpu_ring *ring; 847 int r, i; 848 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 849 850 /* SDMA trap event */ 851 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP, 852 &adev->sdma.trap_irq); 853 if (r) 854 return r; 855 856 /* SDMA Privileged inst */ 857 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241, 858 &adev->sdma.illegal_inst_irq); 859 if (r) 860 return r; 861 862 /* SDMA Privileged inst */ 863 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE, 864 &adev->sdma.illegal_inst_irq); 865 if (r) 866 return r; 867 868 r = sdma_v2_4_init_microcode(adev); 869 if (r) { 870 DRM_ERROR("Failed to load sdma firmware!\n"); 871 return r; 872 } 873 874 for (i = 0; i < adev->sdma.num_instances; i++) { 875 ring = &adev->sdma.instance[i].ring; 876 ring->ring_obj = NULL; 877 ring->use_doorbell = false; 878 sprintf(ring->name, "sdma%d", i); 879 r = amdgpu_ring_init(adev, ring, 1024, 880 &adev->sdma.trap_irq, 881 (i == 0) ? 882 AMDGPU_SDMA_IRQ_INSTANCE0 : 883 AMDGPU_SDMA_IRQ_INSTANCE1, 884 AMDGPU_RING_PRIO_DEFAULT); 885 if (r) 886 return r; 887 } 888 889 return r; 890 } 891 892 static int sdma_v2_4_sw_fini(void *handle) 893 { 894 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 895 int i; 896 897 for (i = 0; i < adev->sdma.num_instances; i++) 898 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 899 900 sdma_v2_4_free_microcode(adev); 901 return 0; 902 } 903 904 static int sdma_v2_4_hw_init(void *handle) 905 { 906 int r; 907 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 908 909 sdma_v2_4_init_golden_registers(adev); 910 911 r = sdma_v2_4_start(adev); 912 if (r) 913 return r; 914 915 return r; 916 } 917 918 static int sdma_v2_4_hw_fini(void *handle) 919 { 920 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 921 922 sdma_v2_4_enable(adev, false); 923 924 return 0; 925 } 926 927 static int sdma_v2_4_suspend(void *handle) 928 { 929 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 930 931 return sdma_v2_4_hw_fini(adev); 932 } 933 934 static int sdma_v2_4_resume(void *handle) 935 { 936 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 937 938 return sdma_v2_4_hw_init(adev); 939 } 940 941 static bool sdma_v2_4_is_idle(void *handle) 942 { 943 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 944 u32 tmp = RREG32(mmSRBM_STATUS2); 945 946 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 947 SRBM_STATUS2__SDMA1_BUSY_MASK)) 948 return false; 949 950 return true; 951 } 952 953 static int sdma_v2_4_wait_for_idle(void *handle) 954 { 955 unsigned i; 956 u32 tmp; 957 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 958 959 for (i = 0; i < adev->usec_timeout; i++) { 960 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 961 SRBM_STATUS2__SDMA1_BUSY_MASK); 962 963 if (!tmp) 964 return 0; 965 udelay(1); 966 } 967 return -ETIMEDOUT; 968 } 969 970 static int sdma_v2_4_soft_reset(void *handle) 971 { 972 u32 srbm_soft_reset = 0; 973 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 974 u32 tmp = RREG32(mmSRBM_STATUS2); 975 976 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) { 977 /* sdma0 */ 978 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET); 979 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); 980 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp); 981 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 982 } 983 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) { 984 /* sdma1 */ 985 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET); 986 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); 987 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp); 988 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 989 } 990 991 if (srbm_soft_reset) { 992 tmp = RREG32(mmSRBM_SOFT_RESET); 993 tmp |= srbm_soft_reset; 994 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 995 WREG32(mmSRBM_SOFT_RESET, tmp); 996 tmp = RREG32(mmSRBM_SOFT_RESET); 997 998 udelay(50); 999 1000 tmp &= ~srbm_soft_reset; 1001 WREG32(mmSRBM_SOFT_RESET, tmp); 1002 tmp = RREG32(mmSRBM_SOFT_RESET); 1003 1004 /* Wait a little for things to settle down */ 1005 udelay(50); 1006 } 1007 1008 return 0; 1009 } 1010 1011 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev, 1012 struct amdgpu_irq_src *src, 1013 unsigned type, 1014 enum amdgpu_interrupt_state state) 1015 { 1016 u32 sdma_cntl; 1017 1018 switch (type) { 1019 case AMDGPU_SDMA_IRQ_INSTANCE0: 1020 switch (state) { 1021 case AMDGPU_IRQ_STATE_DISABLE: 1022 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1023 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1024 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1025 break; 1026 case AMDGPU_IRQ_STATE_ENABLE: 1027 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1028 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1029 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1030 break; 1031 default: 1032 break; 1033 } 1034 break; 1035 case AMDGPU_SDMA_IRQ_INSTANCE1: 1036 switch (state) { 1037 case AMDGPU_IRQ_STATE_DISABLE: 1038 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1039 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1040 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1041 break; 1042 case AMDGPU_IRQ_STATE_ENABLE: 1043 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1044 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1045 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1046 break; 1047 default: 1048 break; 1049 } 1050 break; 1051 default: 1052 break; 1053 } 1054 return 0; 1055 } 1056 1057 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev, 1058 struct amdgpu_irq_src *source, 1059 struct amdgpu_iv_entry *entry) 1060 { 1061 u8 instance_id, queue_id; 1062 1063 instance_id = (entry->ring_id & 0x3) >> 0; 1064 queue_id = (entry->ring_id & 0xc) >> 2; 1065 DRM_DEBUG("IH: SDMA trap\n"); 1066 switch (instance_id) { 1067 case 0: 1068 switch (queue_id) { 1069 case 0: 1070 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1071 break; 1072 case 1: 1073 /* XXX compute */ 1074 break; 1075 case 2: 1076 /* XXX compute */ 1077 break; 1078 } 1079 break; 1080 case 1: 1081 switch (queue_id) { 1082 case 0: 1083 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1084 break; 1085 case 1: 1086 /* XXX compute */ 1087 break; 1088 case 2: 1089 /* XXX compute */ 1090 break; 1091 } 1092 break; 1093 } 1094 return 0; 1095 } 1096 1097 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev, 1098 struct amdgpu_irq_src *source, 1099 struct amdgpu_iv_entry *entry) 1100 { 1101 u8 instance_id, queue_id; 1102 1103 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1104 instance_id = (entry->ring_id & 0x3) >> 0; 1105 queue_id = (entry->ring_id & 0xc) >> 2; 1106 1107 if (instance_id <= 1 && queue_id == 0) 1108 drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched); 1109 return 0; 1110 } 1111 1112 static int sdma_v2_4_set_clockgating_state(void *handle, 1113 enum amd_clockgating_state state) 1114 { 1115 /* XXX handled via the smc on VI */ 1116 return 0; 1117 } 1118 1119 static int sdma_v2_4_set_powergating_state(void *handle, 1120 enum amd_powergating_state state) 1121 { 1122 return 0; 1123 } 1124 1125 static const struct amd_ip_funcs sdma_v2_4_ip_funcs = { 1126 .name = "sdma_v2_4", 1127 .early_init = sdma_v2_4_early_init, 1128 .late_init = NULL, 1129 .sw_init = sdma_v2_4_sw_init, 1130 .sw_fini = sdma_v2_4_sw_fini, 1131 .hw_init = sdma_v2_4_hw_init, 1132 .hw_fini = sdma_v2_4_hw_fini, 1133 .suspend = sdma_v2_4_suspend, 1134 .resume = sdma_v2_4_resume, 1135 .is_idle = sdma_v2_4_is_idle, 1136 .wait_for_idle = sdma_v2_4_wait_for_idle, 1137 .soft_reset = sdma_v2_4_soft_reset, 1138 .set_clockgating_state = sdma_v2_4_set_clockgating_state, 1139 .set_powergating_state = sdma_v2_4_set_powergating_state, 1140 }; 1141 1142 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = { 1143 .type = AMDGPU_RING_TYPE_SDMA, 1144 .align_mask = 0xf, 1145 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1146 .support_64bit_ptrs = false, 1147 .get_rptr = sdma_v2_4_ring_get_rptr, 1148 .get_wptr = sdma_v2_4_ring_get_wptr, 1149 .set_wptr = sdma_v2_4_ring_set_wptr, 1150 .emit_frame_size = 1151 6 + /* sdma_v2_4_ring_emit_hdp_flush */ 1152 3 + /* hdp invalidate */ 1153 6 + /* sdma_v2_4_ring_emit_pipeline_sync */ 1154 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v2_4_ring_emit_vm_flush */ 1155 10 + 10 + 10, /* sdma_v2_4_ring_emit_fence x3 for user fence, vm fence */ 1156 .emit_ib_size = 7 + 6, /* sdma_v2_4_ring_emit_ib */ 1157 .emit_ib = sdma_v2_4_ring_emit_ib, 1158 .emit_fence = sdma_v2_4_ring_emit_fence, 1159 .emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync, 1160 .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush, 1161 .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush, 1162 .test_ring = sdma_v2_4_ring_test_ring, 1163 .test_ib = sdma_v2_4_ring_test_ib, 1164 .insert_nop = sdma_v2_4_ring_insert_nop, 1165 .pad_ib = sdma_v2_4_ring_pad_ib, 1166 .emit_wreg = sdma_v2_4_ring_emit_wreg, 1167 }; 1168 1169 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev) 1170 { 1171 int i; 1172 1173 for (i = 0; i < adev->sdma.num_instances; i++) { 1174 adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs; 1175 adev->sdma.instance[i].ring.me = i; 1176 } 1177 } 1178 1179 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = { 1180 .set = sdma_v2_4_set_trap_irq_state, 1181 .process = sdma_v2_4_process_trap_irq, 1182 }; 1183 1184 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = { 1185 .process = sdma_v2_4_process_illegal_inst_irq, 1186 }; 1187 1188 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev) 1189 { 1190 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1191 adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs; 1192 adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs; 1193 } 1194 1195 /** 1196 * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine 1197 * 1198 * @ib: indirect buffer to copy to 1199 * @src_offset: src GPU address 1200 * @dst_offset: dst GPU address 1201 * @byte_count: number of bytes to xfer 1202 * @tmz: unused 1203 * 1204 * Copy GPU buffers using the DMA engine (VI). 1205 * Used by the amdgpu ttm implementation to move pages if 1206 * registered as the asic copy callback. 1207 */ 1208 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib, 1209 uint64_t src_offset, 1210 uint64_t dst_offset, 1211 uint32_t byte_count, 1212 bool tmz) 1213 { 1214 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1215 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1216 ib->ptr[ib->length_dw++] = byte_count; 1217 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1218 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1219 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1220 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1221 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1222 } 1223 1224 /** 1225 * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine 1226 * 1227 * @ib: indirect buffer to copy to 1228 * @src_data: value to write to buffer 1229 * @dst_offset: dst GPU address 1230 * @byte_count: number of bytes to xfer 1231 * 1232 * Fill GPU buffers using the DMA engine (VI). 1233 */ 1234 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib, 1235 uint32_t src_data, 1236 uint64_t dst_offset, 1237 uint32_t byte_count) 1238 { 1239 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1240 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1241 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1242 ib->ptr[ib->length_dw++] = src_data; 1243 ib->ptr[ib->length_dw++] = byte_count; 1244 } 1245 1246 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = { 1247 .copy_max_bytes = 0x1fffff, 1248 .copy_num_dw = 7, 1249 .emit_copy_buffer = sdma_v2_4_emit_copy_buffer, 1250 1251 .fill_max_bytes = 0x1fffff, 1252 .fill_num_dw = 7, 1253 .emit_fill_buffer = sdma_v2_4_emit_fill_buffer, 1254 }; 1255 1256 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev) 1257 { 1258 adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs; 1259 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1260 } 1261 1262 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = { 1263 .copy_pte_num_dw = 7, 1264 .copy_pte = sdma_v2_4_vm_copy_pte, 1265 1266 .write_pte = sdma_v2_4_vm_write_pte, 1267 .set_pte_pde = sdma_v2_4_vm_set_pte_pde, 1268 }; 1269 1270 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev) 1271 { 1272 unsigned i; 1273 1274 adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs; 1275 for (i = 0; i < adev->sdma.num_instances; i++) { 1276 adev->vm_manager.vm_pte_scheds[i] = 1277 &adev->sdma.instance[i].ring.sched; 1278 } 1279 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1280 } 1281 1282 const struct amdgpu_ip_block_version sdma_v2_4_ip_block = 1283 { 1284 .type = AMD_IP_BLOCK_TYPE_SDMA, 1285 .major = 2, 1286 .minor = 4, 1287 .rev = 0, 1288 .funcs = &sdma_v2_4_ip_funcs, 1289 }; 1290