xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/gmc_v8_0.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/firmware.h>
24 #include "drmP.h"
25 #include "amdgpu.h"
26 #include "gmc_v8_0.h"
27 #include "amdgpu_ucode.h"
28 
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 
32 #include "bif/bif_5_0_d.h"
33 #include "bif/bif_5_0_sh_mask.h"
34 
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 
38 #include "vid.h"
39 #include "vi.h"
40 
41 
42 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
43 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
44 static int gmc_v8_0_wait_for_idle(void *handle);
45 
46 MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
47 MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
48 MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
49 MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
50 
51 static const u32 golden_settings_tonga_a11[] =
52 {
53 	mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
54 	mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
55 	mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
56 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
57 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
58 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
59 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
60 };
61 
62 static const u32 tonga_mgcg_cgcg_init[] =
63 {
64 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
65 };
66 
67 static const u32 golden_settings_fiji_a10[] =
68 {
69 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
70 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
71 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
72 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
73 };
74 
75 static const u32 fiji_mgcg_cgcg_init[] =
76 {
77 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
78 };
79 
80 static const u32 golden_settings_polaris11_a11[] =
81 {
82 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
83 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
84 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
85 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
86 };
87 
88 static const u32 golden_settings_polaris10_a11[] =
89 {
90 	mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
91 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
92 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
93 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
94 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
95 };
96 
97 static const u32 cz_mgcg_cgcg_init[] =
98 {
99 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
100 };
101 
102 static const u32 stoney_mgcg_cgcg_init[] =
103 {
104 	mmATC_MISC_CG, 0xffffffff, 0x000c0200,
105 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
106 };
107 
108 static const u32 golden_settings_stoney_common[] =
109 {
110 	mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
111 	mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
112 };
113 
114 static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
115 {
116 	switch (adev->asic_type) {
117 	case CHIP_FIJI:
118 		amdgpu_program_register_sequence(adev,
119 						 fiji_mgcg_cgcg_init,
120 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
121 		amdgpu_program_register_sequence(adev,
122 						 golden_settings_fiji_a10,
123 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
124 		break;
125 	case CHIP_TONGA:
126 		amdgpu_program_register_sequence(adev,
127 						 tonga_mgcg_cgcg_init,
128 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
129 		amdgpu_program_register_sequence(adev,
130 						 golden_settings_tonga_a11,
131 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
132 		break;
133 	case CHIP_POLARIS11:
134 	case CHIP_POLARIS12:
135 		amdgpu_program_register_sequence(adev,
136 						 golden_settings_polaris11_a11,
137 						 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
138 		break;
139 	case CHIP_POLARIS10:
140 		amdgpu_program_register_sequence(adev,
141 						 golden_settings_polaris10_a11,
142 						 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
143 		break;
144 	case CHIP_CARRIZO:
145 		amdgpu_program_register_sequence(adev,
146 						 cz_mgcg_cgcg_init,
147 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
148 		break;
149 	case CHIP_STONEY:
150 		amdgpu_program_register_sequence(adev,
151 						 stoney_mgcg_cgcg_init,
152 						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
153 		amdgpu_program_register_sequence(adev,
154 						 golden_settings_stoney_common,
155 						 (const u32)ARRAY_SIZE(golden_settings_stoney_common));
156 		break;
157 	default:
158 		break;
159 	}
160 }
161 
162 static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
163 			     struct amdgpu_mode_mc_save *save)
164 {
165 	u32 blackout;
166 
167 	if (adev->mode_info.num_crtc)
168 		amdgpu_display_stop_mc_access(adev, save);
169 
170 	gmc_v8_0_wait_for_idle(adev);
171 
172 	blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
173 	if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
174 		/* Block CPU access */
175 		WREG32(mmBIF_FB_EN, 0);
176 		/* blackout the MC */
177 		blackout = REG_SET_FIELD(blackout,
178 					 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
179 		WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
180 	}
181 	/* wait for the MC to settle */
182 	udelay(100);
183 }
184 
185 static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
186 			       struct amdgpu_mode_mc_save *save)
187 {
188 	u32 tmp;
189 
190 	/* unblackout the MC */
191 	tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
192 	tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
193 	WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
194 	/* allow CPU access */
195 	tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
196 	tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
197 	WREG32(mmBIF_FB_EN, tmp);
198 
199 	if (adev->mode_info.num_crtc)
200 		amdgpu_display_resume_mc_access(adev, save);
201 }
202 
203 /**
204  * gmc_v8_0_init_microcode - load ucode images from disk
205  *
206  * @adev: amdgpu_device pointer
207  *
208  * Use the firmware interface to load the ucode images into
209  * the driver (not loaded into hw).
210  * Returns 0 on success, error on failure.
211  */
212 static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
213 {
214 	const char *chip_name;
215 	char fw_name[30];
216 	int err;
217 
218 	DRM_DEBUG("\n");
219 
220 	switch (adev->asic_type) {
221 	case CHIP_TONGA:
222 		chip_name = "tonga";
223 		break;
224 	case CHIP_POLARIS11:
225 		chip_name = "polaris11";
226 		break;
227 	case CHIP_POLARIS10:
228 		chip_name = "polaris10";
229 		break;
230 	case CHIP_POLARIS12:
231 		chip_name = "polaris12";
232 		break;
233 	case CHIP_FIJI:
234 	case CHIP_CARRIZO:
235 	case CHIP_STONEY:
236 		return 0;
237 	default: BUG();
238 	}
239 
240 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
241 	err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
242 	if (err)
243 		goto out;
244 	err = amdgpu_ucode_validate(adev->mc.fw);
245 
246 out:
247 	if (err) {
248 		pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
249 		release_firmware(adev->mc.fw);
250 		adev->mc.fw = NULL;
251 	}
252 	return err;
253 }
254 
255 /**
256  * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
257  *
258  * @adev: amdgpu_device pointer
259  *
260  * Load the GDDR MC ucode into the hw (CIK).
261  * Returns 0 on success, error on failure.
262  */
263 static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
264 {
265 	const struct mc_firmware_header_v1_0 *hdr;
266 	const __le32 *fw_data = NULL;
267 	const __le32 *io_mc_regs = NULL;
268 	u32 running;
269 	int i, ucode_size, regs_size;
270 
271 	/* Skip MC ucode loading on SR-IOV capable boards.
272 	 * vbios does this for us in asic_init in that case.
273 	 * Skip MC ucode loading on VF, because hypervisor will do that
274 	 * for this adaptor.
275 	 */
276 	if (amdgpu_sriov_bios(adev))
277 		return 0;
278 
279 	if (!adev->mc.fw)
280 		return -EINVAL;
281 
282 	hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
283 	amdgpu_ucode_print_mc_hdr(&hdr->header);
284 
285 	adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
286 	regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
287 	io_mc_regs = (const __le32 *)
288 		(adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
289 	ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
290 	fw_data = (const __le32 *)
291 		(adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
292 
293 	running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
294 
295 	if (running == 0) {
296 		/* reset the engine and set to writable */
297 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
298 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
299 
300 		/* load mc io regs */
301 		for (i = 0; i < regs_size; i++) {
302 			WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
303 			WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
304 		}
305 		/* load the MC ucode */
306 		for (i = 0; i < ucode_size; i++)
307 			WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
308 
309 		/* put the engine back into the active state */
310 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
311 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
312 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
313 
314 		/* wait for training to complete */
315 		for (i = 0; i < adev->usec_timeout; i++) {
316 			if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
317 					  MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
318 				break;
319 			udelay(1);
320 		}
321 		for (i = 0; i < adev->usec_timeout; i++) {
322 			if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
323 					  MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
324 				break;
325 			udelay(1);
326 		}
327 	}
328 
329 	return 0;
330 }
331 
332 static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
333 {
334 	const struct mc_firmware_header_v1_0 *hdr;
335 	const __le32 *fw_data = NULL;
336 	const __le32 *io_mc_regs = NULL;
337 	u32 data, vbios_version;
338 	int i, ucode_size, regs_size;
339 
340 	/* Skip MC ucode loading on SR-IOV capable boards.
341 	 * vbios does this for us in asic_init in that case.
342 	 * Skip MC ucode loading on VF, because hypervisor will do that
343 	 * for this adaptor.
344 	 */
345 	if (amdgpu_sriov_bios(adev))
346 		return 0;
347 
348 	WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
349 	data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
350 	vbios_version = data & 0xf;
351 
352 	if (vbios_version == 0)
353 		return 0;
354 
355 	if (!adev->mc.fw)
356 		return -EINVAL;
357 
358 	hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
359 	amdgpu_ucode_print_mc_hdr(&hdr->header);
360 
361 	adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
362 	regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
363 	io_mc_regs = (const __le32 *)
364 		(adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
365 	ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
366 	fw_data = (const __le32 *)
367 		(adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
368 
369 	data = RREG32(mmMC_SEQ_MISC0);
370 	data &= ~(0x40);
371 	WREG32(mmMC_SEQ_MISC0, data);
372 
373 	/* load mc io regs */
374 	for (i = 0; i < regs_size; i++) {
375 		WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
376 		WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
377 	}
378 
379 	WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
380 	WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
381 
382 	/* load the MC ucode */
383 	for (i = 0; i < ucode_size; i++)
384 		WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
385 
386 	/* put the engine back into the active state */
387 	WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
388 	WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
389 	WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
390 
391 	/* wait for training to complete */
392 	for (i = 0; i < adev->usec_timeout; i++) {
393 		data = RREG32(mmMC_SEQ_MISC0);
394 		if (data & 0x80)
395 			break;
396 		udelay(1);
397 	}
398 
399 	return 0;
400 }
401 
402 static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
403 				       struct amdgpu_mc *mc)
404 {
405 	if (mc->mc_vram_size > 0xFFC0000000ULL) {
406 		/* leave room for at least 1024M GTT */
407 		dev_warn(adev->dev, "limiting VRAM\n");
408 		mc->real_vram_size = 0xFFC0000000ULL;
409 		mc->mc_vram_size = 0xFFC0000000ULL;
410 	}
411 	amdgpu_vram_location(adev, &adev->mc, 0);
412 	adev->mc.gtt_base_align = 0;
413 	amdgpu_gtt_location(adev, mc);
414 }
415 
416 /**
417  * gmc_v8_0_mc_program - program the GPU memory controller
418  *
419  * @adev: amdgpu_device pointer
420  *
421  * Set the location of vram, gart, and AGP in the GPU's
422  * physical address space (CIK).
423  */
424 static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
425 {
426 	struct amdgpu_mode_mc_save save;
427 	u32 tmp;
428 	int i, j;
429 
430 	/* Initialize HDP */
431 	for (i = 0, j = 0; i < 32; i++, j += 0x6) {
432 		WREG32((0xb05 + j), 0x00000000);
433 		WREG32((0xb06 + j), 0x00000000);
434 		WREG32((0xb07 + j), 0x00000000);
435 		WREG32((0xb08 + j), 0x00000000);
436 		WREG32((0xb09 + j), 0x00000000);
437 	}
438 	WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
439 
440 	if (adev->mode_info.num_crtc)
441 		amdgpu_display_set_vga_render_state(adev, false);
442 
443 	gmc_v8_0_mc_stop(adev, &save);
444 	if (gmc_v8_0_wait_for_idle((void *)adev)) {
445 		dev_warn(adev->dev, "Wait for MC idle timedout !\n");
446 	}
447 	/* Update configuration */
448 	WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
449 	       adev->mc.vram_start >> 12);
450 	WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
451 	       adev->mc.vram_end >> 12);
452 	WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
453 	       adev->vram_scratch.gpu_addr >> 12);
454 	tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
455 	tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
456 	WREG32(mmMC_VM_FB_LOCATION, tmp);
457 	/* XXX double check these! */
458 	WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
459 	WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
460 	WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
461 	WREG32(mmMC_VM_AGP_BASE, 0);
462 	WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
463 	WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
464 	if (gmc_v8_0_wait_for_idle((void *)adev)) {
465 		dev_warn(adev->dev, "Wait for MC idle timedout !\n");
466 	}
467 	gmc_v8_0_mc_resume(adev, &save);
468 
469 	WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
470 
471 	tmp = RREG32(mmHDP_MISC_CNTL);
472 	tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
473 	WREG32(mmHDP_MISC_CNTL, tmp);
474 
475 	tmp = RREG32(mmHDP_HOST_PATH_CNTL);
476 	WREG32(mmHDP_HOST_PATH_CNTL, tmp);
477 }
478 
479 /**
480  * gmc_v8_0_mc_init - initialize the memory controller driver params
481  *
482  * @adev: amdgpu_device pointer
483  *
484  * Look up the amount of vram, vram width, and decide how to place
485  * vram and gart within the GPU's physical address space (CIK).
486  * Returns 0 for success.
487  */
488 static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
489 {
490 	u32 tmp;
491 	int chansize, numchan;
492 
493 	/* Get VRAM informations */
494 	tmp = RREG32(mmMC_ARB_RAMCFG);
495 	if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
496 		chansize = 64;
497 	} else {
498 		chansize = 32;
499 	}
500 	tmp = RREG32(mmMC_SHARED_CHMAP);
501 	switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
502 	case 0:
503 	default:
504 		numchan = 1;
505 		break;
506 	case 1:
507 		numchan = 2;
508 		break;
509 	case 2:
510 		numchan = 4;
511 		break;
512 	case 3:
513 		numchan = 8;
514 		break;
515 	case 4:
516 		numchan = 3;
517 		break;
518 	case 5:
519 		numchan = 6;
520 		break;
521 	case 6:
522 		numchan = 10;
523 		break;
524 	case 7:
525 		numchan = 12;
526 		break;
527 	case 8:
528 		numchan = 16;
529 		break;
530 	}
531 	adev->mc.vram_width = numchan * chansize;
532 	/* Could aper size report 0 ? */
533 	adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
534 	adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
535 	/* size in MB on si */
536 	adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
537 	adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
538 
539 #ifdef CONFIG_X86_64
540 	if (adev->flags & AMD_IS_APU) {
541 		adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
542 		adev->mc.aper_size = adev->mc.real_vram_size;
543 	}
544 #endif
545 
546 	/* In case the PCI BAR is larger than the actual amount of vram */
547 	adev->mc.visible_vram_size = adev->mc.aper_size;
548 	if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
549 		adev->mc.visible_vram_size = adev->mc.real_vram_size;
550 
551 	/* unless the user had overridden it, set the gart
552 	 * size equal to the 1024 or vram, whichever is larger.
553 	 */
554 	if (amdgpu_gart_size == -1)
555 		adev->mc.gtt_size = max((1024ULL << 20), adev->mc.mc_vram_size);
556 	else
557 		adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
558 
559 	gmc_v8_0_vram_gtt_location(adev, &adev->mc);
560 
561 	return 0;
562 }
563 
564 /*
565  * GART
566  * VMID 0 is the physical GPU addresses as used by the kernel.
567  * VMIDs 1-15 are used for userspace clients and are handled
568  * by the amdgpu vm/hsa code.
569  */
570 
571 /**
572  * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
573  *
574  * @adev: amdgpu_device pointer
575  * @vmid: vm instance to flush
576  *
577  * Flush the TLB for the requested page table (CIK).
578  */
579 static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
580 					uint32_t vmid)
581 {
582 	/* flush hdp cache */
583 	WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
584 
585 	/* bits 0-15 are the VM contexts0-15 */
586 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
587 }
588 
589 /**
590  * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
591  *
592  * @adev: amdgpu_device pointer
593  * @cpu_pt_addr: cpu address of the page table
594  * @gpu_page_idx: entry in the page table to update
595  * @addr: dst addr to write into pte/pde
596  * @flags: access flags
597  *
598  * Update the page tables using the CPU.
599  */
600 static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
601 				     void *cpu_pt_addr,
602 				     uint32_t gpu_page_idx,
603 				     uint64_t addr,
604 				     uint64_t flags)
605 {
606 	void __iomem *ptr = (void *)cpu_pt_addr;
607 	uint64_t value;
608 
609 	/*
610 	 * PTE format on VI:
611 	 * 63:40 reserved
612 	 * 39:12 4k physical page base address
613 	 * 11:7 fragment
614 	 * 6 write
615 	 * 5 read
616 	 * 4 exe
617 	 * 3 reserved
618 	 * 2 snooped
619 	 * 1 system
620 	 * 0 valid
621 	 *
622 	 * PDE format on VI:
623 	 * 63:59 block fragment size
624 	 * 58:40 reserved
625 	 * 39:1 physical base address of PTE
626 	 * bits 5:1 must be 0.
627 	 * 0 valid
628 	 */
629 	value = addr & 0x000000FFFFFFF000ULL;
630 	value |= flags;
631 	writeq(value, ptr + (gpu_page_idx * 8));
632 
633 	return 0;
634 }
635 
636 static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
637 					  uint32_t flags)
638 {
639 	uint64_t pte_flag = 0;
640 
641 	if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
642 		pte_flag |= AMDGPU_PTE_EXECUTABLE;
643 	if (flags & AMDGPU_VM_PAGE_READABLE)
644 		pte_flag |= AMDGPU_PTE_READABLE;
645 	if (flags & AMDGPU_VM_PAGE_WRITEABLE)
646 		pte_flag |= AMDGPU_PTE_WRITEABLE;
647 	if (flags & AMDGPU_VM_PAGE_PRT)
648 		pte_flag |= AMDGPU_PTE_PRT;
649 
650 	return pte_flag;
651 }
652 
653 /**
654  * gmc_v8_0_set_fault_enable_default - update VM fault handling
655  *
656  * @adev: amdgpu_device pointer
657  * @value: true redirects VM faults to the default page
658  */
659 static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
660 					      bool value)
661 {
662 	u32 tmp;
663 
664 	tmp = RREG32(mmVM_CONTEXT1_CNTL);
665 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
666 			    RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
667 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
668 			    DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
669 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
670 			    PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
671 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
672 			    VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
673 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
674 			    READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
675 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
676 			    WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
677 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
678 			    EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
679 	WREG32(mmVM_CONTEXT1_CNTL, tmp);
680 }
681 
682 /**
683  * gmc_v8_0_set_prt - set PRT VM fault
684  *
685  * @adev: amdgpu_device pointer
686  * @enable: enable/disable VM fault handling for PRT
687 */
688 static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
689 {
690 	u32 tmp;
691 
692 	if (enable && !adev->mc.prt_warning) {
693 		dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
694 		adev->mc.prt_warning = true;
695 	}
696 
697 	tmp = RREG32(mmVM_PRT_CNTL);
698 	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
699 			    CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
700 	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
701 			    CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
702 	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
703 			    TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
704 	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
705 			    TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
706 	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
707 			    L2_CACHE_STORE_INVALID_ENTRIES, enable);
708 	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
709 			    L1_TLB_STORE_INVALID_ENTRIES, enable);
710 	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
711 			    MASK_PDE0_FAULT, enable);
712 	WREG32(mmVM_PRT_CNTL, tmp);
713 
714 	if (enable) {
715 		uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
716 		uint32_t high = adev->vm_manager.max_pfn;
717 
718 		WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
719 		WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
720 		WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
721 		WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
722 		WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
723 		WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
724 		WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
725 		WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
726 	} else {
727 		WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
728 		WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
729 		WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
730 		WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
731 		WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
732 		WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
733 		WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
734 		WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
735 	}
736 }
737 
738 /**
739  * gmc_v8_0_gart_enable - gart enable
740  *
741  * @adev: amdgpu_device pointer
742  *
743  * This sets up the TLBs, programs the page tables for VMID0,
744  * sets up the hw for VMIDs 1-15 which are allocated on
745  * demand, and sets up the global locations for the LDS, GDS,
746  * and GPUVM for FSA64 clients (CIK).
747  * Returns 0 for success, errors for failure.
748  */
749 static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
750 {
751 	int r, i;
752 	u32 tmp;
753 
754 	if (adev->gart.robj == NULL) {
755 		dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
756 		return -EINVAL;
757 	}
758 	r = amdgpu_gart_table_vram_pin(adev);
759 	if (r)
760 		return r;
761 	/* Setup TLB control */
762 	tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
763 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
764 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
765 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
766 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
767 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
768 	WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
769 	/* Setup L2 cache */
770 	tmp = RREG32(mmVM_L2_CNTL);
771 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
772 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
773 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
774 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
775 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
776 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
777 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
778 	WREG32(mmVM_L2_CNTL, tmp);
779 	tmp = RREG32(mmVM_L2_CNTL2);
780 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
781 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
782 	WREG32(mmVM_L2_CNTL2, tmp);
783 	tmp = RREG32(mmVM_L2_CNTL3);
784 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
785 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
786 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
787 	WREG32(mmVM_L2_CNTL3, tmp);
788 	/* XXX: set to enable PTE/PDE in system memory */
789 	tmp = RREG32(mmVM_L2_CNTL4);
790 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
791 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
792 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
793 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
794 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
795 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
796 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
797 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
798 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
799 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
800 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
801 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
802 	WREG32(mmVM_L2_CNTL4, tmp);
803 	/* setup context0 */
804 	WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
805 	WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
806 	WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
807 	WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
808 			(u32)(adev->dummy_page.addr >> 12));
809 	WREG32(mmVM_CONTEXT0_CNTL2, 0);
810 	tmp = RREG32(mmVM_CONTEXT0_CNTL);
811 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
812 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
813 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
814 	WREG32(mmVM_CONTEXT0_CNTL, tmp);
815 
816 	WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
817 	WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
818 	WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
819 
820 	/* empty context1-15 */
821 	/* FIXME start with 4G, once using 2 level pt switch to full
822 	 * vm size space
823 	 */
824 	/* set vm size, must be a multiple of 4 */
825 	WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
826 	WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
827 	for (i = 1; i < 16; i++) {
828 		if (i < 8)
829 			WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
830 			       adev->gart.table_addr >> 12);
831 		else
832 			WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
833 			       adev->gart.table_addr >> 12);
834 	}
835 
836 	/* enable context1-15 */
837 	WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
838 	       (u32)(adev->dummy_page.addr >> 12));
839 	WREG32(mmVM_CONTEXT1_CNTL2, 4);
840 	tmp = RREG32(mmVM_CONTEXT1_CNTL);
841 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
842 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
843 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
844 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
845 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
846 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
847 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
848 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
849 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
850 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
851 			    amdgpu_vm_block_size - 9);
852 	WREG32(mmVM_CONTEXT1_CNTL, tmp);
853 	if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
854 		gmc_v8_0_set_fault_enable_default(adev, false);
855 	else
856 		gmc_v8_0_set_fault_enable_default(adev, true);
857 
858 	gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
859 	DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
860 		 (unsigned)(adev->mc.gtt_size >> 20),
861 		 (unsigned long long)adev->gart.table_addr);
862 	adev->gart.ready = true;
863 	return 0;
864 }
865 
866 static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
867 {
868 	int r;
869 
870 	if (adev->gart.robj) {
871 		WARN(1, "R600 PCIE GART already initialized\n");
872 		return 0;
873 	}
874 	/* Initialize common gart structure */
875 	r = amdgpu_gart_init(adev);
876 	if (r)
877 		return r;
878 	adev->gart.table_size = adev->gart.num_gpu_pages * 8;
879 	adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
880 	return amdgpu_gart_table_vram_alloc(adev);
881 }
882 
883 /**
884  * gmc_v8_0_gart_disable - gart disable
885  *
886  * @adev: amdgpu_device pointer
887  *
888  * This disables all VM page table (CIK).
889  */
890 static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
891 {
892 	u32 tmp;
893 
894 	/* Disable all tables */
895 	WREG32(mmVM_CONTEXT0_CNTL, 0);
896 	WREG32(mmVM_CONTEXT1_CNTL, 0);
897 	/* Setup TLB control */
898 	tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
899 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
900 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
901 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
902 	WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
903 	/* Setup L2 cache */
904 	tmp = RREG32(mmVM_L2_CNTL);
905 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
906 	WREG32(mmVM_L2_CNTL, tmp);
907 	WREG32(mmVM_L2_CNTL2, 0);
908 	amdgpu_gart_table_vram_unpin(adev);
909 }
910 
911 /**
912  * gmc_v8_0_gart_fini - vm fini callback
913  *
914  * @adev: amdgpu_device pointer
915  *
916  * Tears down the driver GART/VM setup (CIK).
917  */
918 static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
919 {
920 	amdgpu_gart_table_vram_free(adev);
921 	amdgpu_gart_fini(adev);
922 }
923 
924 /*
925  * vm
926  * VMID 0 is the physical GPU addresses as used by the kernel.
927  * VMIDs 1-15 are used for userspace clients and are handled
928  * by the amdgpu vm/hsa code.
929  */
930 /**
931  * gmc_v8_0_vm_init - cik vm init callback
932  *
933  * @adev: amdgpu_device pointer
934  *
935  * Inits cik specific vm parameters (number of VMs, base of vram for
936  * VMIDs 1-15) (CIK).
937  * Returns 0 for success.
938  */
939 static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
940 {
941 	/*
942 	 * number of VMs
943 	 * VMID 0 is reserved for System
944 	 * amdgpu graphics/compute will use VMIDs 1-7
945 	 * amdkfd will use VMIDs 8-15
946 	 */
947 	adev->vm_manager.num_ids = AMDGPU_NUM_OF_VMIDS;
948 	adev->vm_manager.num_level = 1;
949 	amdgpu_vm_manager_init(adev);
950 
951 	/* base offset of vram pages */
952 	if (adev->flags & AMD_IS_APU) {
953 		u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
954 		tmp <<= 22;
955 		adev->vm_manager.vram_base_offset = tmp;
956 	} else
957 		adev->vm_manager.vram_base_offset = 0;
958 
959 	return 0;
960 }
961 
962 /**
963  * gmc_v8_0_vm_fini - cik vm fini callback
964  *
965  * @adev: amdgpu_device pointer
966  *
967  * Tear down any asic specific VM setup (CIK).
968  */
969 static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
970 {
971 }
972 
973 /**
974  * gmc_v8_0_vm_decode_fault - print human readable fault info
975  *
976  * @adev: amdgpu_device pointer
977  * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
978  * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
979  *
980  * Print human readable fault information (CIK).
981  */
982 static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
983 				     u32 status, u32 addr, u32 mc_client)
984 {
985 	u32 mc_id;
986 	u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
987 	u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
988 					PROTECTIONS);
989 	char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
990 		(mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
991 
992 	mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
993 			      MEMORY_CLIENT_ID);
994 
995 	dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
996 	       protections, vmid, addr,
997 	       REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
998 			     MEMORY_CLIENT_RW) ?
999 	       "write" : "read", block, mc_client, mc_id);
1000 }
1001 
1002 static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
1003 {
1004 	switch (mc_seq_vram_type) {
1005 	case MC_SEQ_MISC0__MT__GDDR1:
1006 		return AMDGPU_VRAM_TYPE_GDDR1;
1007 	case MC_SEQ_MISC0__MT__DDR2:
1008 		return AMDGPU_VRAM_TYPE_DDR2;
1009 	case MC_SEQ_MISC0__MT__GDDR3:
1010 		return AMDGPU_VRAM_TYPE_GDDR3;
1011 	case MC_SEQ_MISC0__MT__GDDR4:
1012 		return AMDGPU_VRAM_TYPE_GDDR4;
1013 	case MC_SEQ_MISC0__MT__GDDR5:
1014 		return AMDGPU_VRAM_TYPE_GDDR5;
1015 	case MC_SEQ_MISC0__MT__HBM:
1016 		return AMDGPU_VRAM_TYPE_HBM;
1017 	case MC_SEQ_MISC0__MT__DDR3:
1018 		return AMDGPU_VRAM_TYPE_DDR3;
1019 	default:
1020 		return AMDGPU_VRAM_TYPE_UNKNOWN;
1021 	}
1022 }
1023 
1024 static int gmc_v8_0_early_init(void *handle)
1025 {
1026 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1027 
1028 	gmc_v8_0_set_gart_funcs(adev);
1029 	gmc_v8_0_set_irq_funcs(adev);
1030 
1031 	adev->mc.shared_aperture_start = 0x2000000000000000ULL;
1032 	adev->mc.shared_aperture_end =
1033 		adev->mc.shared_aperture_start + (4ULL << 30) - 1;
1034 	adev->mc.private_aperture_start =
1035 		adev->mc.shared_aperture_end + 1;
1036 	adev->mc.private_aperture_end =
1037 		adev->mc.private_aperture_start + (4ULL << 30) - 1;
1038 
1039 	return 0;
1040 }
1041 
1042 static int gmc_v8_0_late_init(void *handle)
1043 {
1044 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1045 
1046 	if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
1047 		return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
1048 	else
1049 		return 0;
1050 }
1051 
1052 #define mmMC_SEQ_MISC0_FIJI 0xA71
1053 
1054 static int gmc_v8_0_sw_init(void *handle)
1055 {
1056 	int r;
1057 	int dma_bits;
1058 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1059 
1060 	if (adev->flags & AMD_IS_APU) {
1061 		adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
1062 	} else {
1063 		u32 tmp;
1064 
1065 		if (adev->asic_type == CHIP_FIJI)
1066 			tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
1067 		else
1068 			tmp = RREG32(mmMC_SEQ_MISC0);
1069 		tmp &= MC_SEQ_MISC0__MT__MASK;
1070 		adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
1071 	}
1072 
1073 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
1074 	if (r)
1075 		return r;
1076 
1077 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
1078 	if (r)
1079 		return r;
1080 
1081 	/* Adjust VM size here.
1082 	 * Currently set to 4GB ((1 << 20) 4k pages).
1083 	 * Max GPUVM size for cayman and SI is 40 bits.
1084 	 */
1085 	adev->vm_manager.max_pfn = amdgpu_vm_size << 18;
1086 
1087 	/* Set the internal MC address mask
1088 	 * This is the max address of the GPU's
1089 	 * internal address space.
1090 	 */
1091 	adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
1092 
1093 	/* set DMA mask + need_dma32 flags.
1094 	 * PCIE - can handle 40-bits.
1095 	 * IGP - can handle 40-bits
1096 	 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
1097 	 */
1098 	adev->need_dma32 = false;
1099 	dma_bits = adev->need_dma32 ? 32 : 40;
1100 	r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
1101 	if (r) {
1102 		adev->need_dma32 = true;
1103 		dma_bits = 32;
1104 		pr_warn("amdgpu: No suitable DMA available\n");
1105 	}
1106 	r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
1107 	if (r) {
1108 		pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
1109 		pr_warn("amdgpu: No coherent DMA available\n");
1110 	}
1111 
1112 	r = gmc_v8_0_init_microcode(adev);
1113 	if (r) {
1114 		DRM_ERROR("Failed to load mc firmware!\n");
1115 		return r;
1116 	}
1117 
1118 	r = gmc_v8_0_mc_init(adev);
1119 	if (r)
1120 		return r;
1121 
1122 	/* Memory manager */
1123 	r = amdgpu_bo_init(adev);
1124 	if (r)
1125 		return r;
1126 
1127 	r = gmc_v8_0_gart_init(adev);
1128 	if (r)
1129 		return r;
1130 
1131 	if (!adev->vm_manager.enabled) {
1132 		r = gmc_v8_0_vm_init(adev);
1133 		if (r) {
1134 			dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
1135 			return r;
1136 		}
1137 		adev->vm_manager.enabled = true;
1138 	}
1139 
1140 	return r;
1141 }
1142 
1143 static int gmc_v8_0_sw_fini(void *handle)
1144 {
1145 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1146 
1147 	if (adev->vm_manager.enabled) {
1148 		amdgpu_vm_manager_fini(adev);
1149 		gmc_v8_0_vm_fini(adev);
1150 		adev->vm_manager.enabled = false;
1151 	}
1152 	gmc_v8_0_gart_fini(adev);
1153 	amdgpu_gem_force_release(adev);
1154 	amdgpu_bo_fini(adev);
1155 
1156 	return 0;
1157 }
1158 
1159 static int gmc_v8_0_hw_init(void *handle)
1160 {
1161 	int r;
1162 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1163 
1164 	gmc_v8_0_init_golden_registers(adev);
1165 
1166 	gmc_v8_0_mc_program(adev);
1167 
1168 	if (adev->asic_type == CHIP_TONGA) {
1169 		r = gmc_v8_0_tonga_mc_load_microcode(adev);
1170 		if (r) {
1171 			DRM_ERROR("Failed to load MC firmware!\n");
1172 			return r;
1173 		}
1174 	} else if (adev->asic_type == CHIP_POLARIS11 ||
1175 			adev->asic_type == CHIP_POLARIS10 ||
1176 			adev->asic_type == CHIP_POLARIS12) {
1177 		r = gmc_v8_0_polaris_mc_load_microcode(adev);
1178 		if (r) {
1179 			DRM_ERROR("Failed to load MC firmware!\n");
1180 			return r;
1181 		}
1182 	}
1183 
1184 	r = gmc_v8_0_gart_enable(adev);
1185 	if (r)
1186 		return r;
1187 
1188 	return r;
1189 }
1190 
1191 static int gmc_v8_0_hw_fini(void *handle)
1192 {
1193 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1194 
1195 	amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
1196 	gmc_v8_0_gart_disable(adev);
1197 
1198 	return 0;
1199 }
1200 
1201 static int gmc_v8_0_suspend(void *handle)
1202 {
1203 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1204 
1205 	if (adev->vm_manager.enabled) {
1206 		gmc_v8_0_vm_fini(adev);
1207 		adev->vm_manager.enabled = false;
1208 	}
1209 	gmc_v8_0_hw_fini(adev);
1210 
1211 	return 0;
1212 }
1213 
1214 static int gmc_v8_0_resume(void *handle)
1215 {
1216 	int r;
1217 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1218 
1219 	r = gmc_v8_0_hw_init(adev);
1220 	if (r)
1221 		return r;
1222 
1223 	if (!adev->vm_manager.enabled) {
1224 		r = gmc_v8_0_vm_init(adev);
1225 		if (r) {
1226 			dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
1227 			return r;
1228 		}
1229 		adev->vm_manager.enabled = true;
1230 	}
1231 
1232 	return r;
1233 }
1234 
1235 static bool gmc_v8_0_is_idle(void *handle)
1236 {
1237 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1238 	u32 tmp = RREG32(mmSRBM_STATUS);
1239 
1240 	if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1241 		   SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
1242 		return false;
1243 
1244 	return true;
1245 }
1246 
1247 static int gmc_v8_0_wait_for_idle(void *handle)
1248 {
1249 	unsigned i;
1250 	u32 tmp;
1251 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1252 
1253 	for (i = 0; i < adev->usec_timeout; i++) {
1254 		/* read MC_STATUS */
1255 		tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
1256 					       SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1257 					       SRBM_STATUS__MCC_BUSY_MASK |
1258 					       SRBM_STATUS__MCD_BUSY_MASK |
1259 					       SRBM_STATUS__VMC_BUSY_MASK |
1260 					       SRBM_STATUS__VMC1_BUSY_MASK);
1261 		if (!tmp)
1262 			return 0;
1263 		udelay(1);
1264 	}
1265 	return -ETIMEDOUT;
1266 
1267 }
1268 
1269 static bool gmc_v8_0_check_soft_reset(void *handle)
1270 {
1271 	u32 srbm_soft_reset = 0;
1272 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1273 	u32 tmp = RREG32(mmSRBM_STATUS);
1274 
1275 	if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
1276 		srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1277 						SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
1278 
1279 	if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1280 		   SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
1281 		if (!(adev->flags & AMD_IS_APU))
1282 			srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1283 							SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
1284 	}
1285 	if (srbm_soft_reset) {
1286 		adev->mc.srbm_soft_reset = srbm_soft_reset;
1287 		return true;
1288 	} else {
1289 		adev->mc.srbm_soft_reset = 0;
1290 		return false;
1291 	}
1292 }
1293 
1294 static int gmc_v8_0_pre_soft_reset(void *handle)
1295 {
1296 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1297 
1298 	if (!adev->mc.srbm_soft_reset)
1299 		return 0;
1300 
1301 	gmc_v8_0_mc_stop(adev, &adev->mc.save);
1302 	if (gmc_v8_0_wait_for_idle(adev)) {
1303 		dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static int gmc_v8_0_soft_reset(void *handle)
1310 {
1311 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1312 	u32 srbm_soft_reset;
1313 
1314 	if (!adev->mc.srbm_soft_reset)
1315 		return 0;
1316 	srbm_soft_reset = adev->mc.srbm_soft_reset;
1317 
1318 	if (srbm_soft_reset) {
1319 		u32 tmp;
1320 
1321 		tmp = RREG32(mmSRBM_SOFT_RESET);
1322 		tmp |= srbm_soft_reset;
1323 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1324 		WREG32(mmSRBM_SOFT_RESET, tmp);
1325 		tmp = RREG32(mmSRBM_SOFT_RESET);
1326 
1327 		udelay(50);
1328 
1329 		tmp &= ~srbm_soft_reset;
1330 		WREG32(mmSRBM_SOFT_RESET, tmp);
1331 		tmp = RREG32(mmSRBM_SOFT_RESET);
1332 
1333 		/* Wait a little for things to settle down */
1334 		udelay(50);
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static int gmc_v8_0_post_soft_reset(void *handle)
1341 {
1342 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1343 
1344 	if (!adev->mc.srbm_soft_reset)
1345 		return 0;
1346 
1347 	gmc_v8_0_mc_resume(adev, &adev->mc.save);
1348 	return 0;
1349 }
1350 
1351 static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
1352 					     struct amdgpu_irq_src *src,
1353 					     unsigned type,
1354 					     enum amdgpu_interrupt_state state)
1355 {
1356 	u32 tmp;
1357 	u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1358 		    VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1359 		    VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1360 		    VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1361 		    VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1362 		    VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1363 		    VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
1364 
1365 	switch (state) {
1366 	case AMDGPU_IRQ_STATE_DISABLE:
1367 		/* system context */
1368 		tmp = RREG32(mmVM_CONTEXT0_CNTL);
1369 		tmp &= ~bits;
1370 		WREG32(mmVM_CONTEXT0_CNTL, tmp);
1371 		/* VMs */
1372 		tmp = RREG32(mmVM_CONTEXT1_CNTL);
1373 		tmp &= ~bits;
1374 		WREG32(mmVM_CONTEXT1_CNTL, tmp);
1375 		break;
1376 	case AMDGPU_IRQ_STATE_ENABLE:
1377 		/* system context */
1378 		tmp = RREG32(mmVM_CONTEXT0_CNTL);
1379 		tmp |= bits;
1380 		WREG32(mmVM_CONTEXT0_CNTL, tmp);
1381 		/* VMs */
1382 		tmp = RREG32(mmVM_CONTEXT1_CNTL);
1383 		tmp |= bits;
1384 		WREG32(mmVM_CONTEXT1_CNTL, tmp);
1385 		break;
1386 	default:
1387 		break;
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
1394 				      struct amdgpu_irq_src *source,
1395 				      struct amdgpu_iv_entry *entry)
1396 {
1397 	u32 addr, status, mc_client;
1398 
1399 	if (amdgpu_sriov_vf(adev)) {
1400 		dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
1401 			entry->src_id, entry->src_data[0]);
1402 		dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
1403 		return 0;
1404 	}
1405 
1406 	addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
1407 	status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
1408 	mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
1409 	/* reset addr and status */
1410 	WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
1411 
1412 	if (!addr && !status)
1413 		return 0;
1414 
1415 	if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
1416 		gmc_v8_0_set_fault_enable_default(adev, false);
1417 
1418 	if (printk_ratelimit()) {
1419 		dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
1420 			entry->src_id, entry->src_data[0]);
1421 		dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
1422 			addr);
1423 		dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
1424 			status);
1425 		gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
1432 						     bool enable)
1433 {
1434 	uint32_t data;
1435 
1436 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
1437 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1438 		data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1439 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1440 
1441 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1442 		data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1443 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1444 
1445 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1446 		data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
1447 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1448 
1449 		data = RREG32(mmMC_XPB_CLK_GAT);
1450 		data |= MC_XPB_CLK_GAT__ENABLE_MASK;
1451 		WREG32(mmMC_XPB_CLK_GAT, data);
1452 
1453 		data = RREG32(mmATC_MISC_CG);
1454 		data |= ATC_MISC_CG__ENABLE_MASK;
1455 		WREG32(mmATC_MISC_CG, data);
1456 
1457 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1458 		data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
1459 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1460 
1461 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1462 		data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
1463 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1464 
1465 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1466 		data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
1467 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1468 
1469 		data = RREG32(mmVM_L2_CG);
1470 		data |= VM_L2_CG__ENABLE_MASK;
1471 		WREG32(mmVM_L2_CG, data);
1472 	} else {
1473 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1474 		data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1475 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1476 
1477 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1478 		data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1479 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1480 
1481 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1482 		data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
1483 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1484 
1485 		data = RREG32(mmMC_XPB_CLK_GAT);
1486 		data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
1487 		WREG32(mmMC_XPB_CLK_GAT, data);
1488 
1489 		data = RREG32(mmATC_MISC_CG);
1490 		data &= ~ATC_MISC_CG__ENABLE_MASK;
1491 		WREG32(mmATC_MISC_CG, data);
1492 
1493 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1494 		data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
1495 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1496 
1497 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1498 		data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
1499 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1500 
1501 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1502 		data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
1503 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1504 
1505 		data = RREG32(mmVM_L2_CG);
1506 		data &= ~VM_L2_CG__ENABLE_MASK;
1507 		WREG32(mmVM_L2_CG, data);
1508 	}
1509 }
1510 
1511 static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
1512 				       bool enable)
1513 {
1514 	uint32_t data;
1515 
1516 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
1517 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1518 		data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1519 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1520 
1521 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1522 		data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1523 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1524 
1525 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1526 		data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1527 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1528 
1529 		data = RREG32(mmMC_XPB_CLK_GAT);
1530 		data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1531 		WREG32(mmMC_XPB_CLK_GAT, data);
1532 
1533 		data = RREG32(mmATC_MISC_CG);
1534 		data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1535 		WREG32(mmATC_MISC_CG, data);
1536 
1537 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1538 		data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1539 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1540 
1541 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1542 		data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1543 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1544 
1545 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1546 		data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1547 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1548 
1549 		data = RREG32(mmVM_L2_CG);
1550 		data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
1551 		WREG32(mmVM_L2_CG, data);
1552 	} else {
1553 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1554 		data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1555 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1556 
1557 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1558 		data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1559 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1560 
1561 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1562 		data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1563 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1564 
1565 		data = RREG32(mmMC_XPB_CLK_GAT);
1566 		data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1567 		WREG32(mmMC_XPB_CLK_GAT, data);
1568 
1569 		data = RREG32(mmATC_MISC_CG);
1570 		data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1571 		WREG32(mmATC_MISC_CG, data);
1572 
1573 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1574 		data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1575 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1576 
1577 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1578 		data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1579 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1580 
1581 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1582 		data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1583 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1584 
1585 		data = RREG32(mmVM_L2_CG);
1586 		data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
1587 		WREG32(mmVM_L2_CG, data);
1588 	}
1589 }
1590 
1591 static int gmc_v8_0_set_clockgating_state(void *handle,
1592 					  enum amd_clockgating_state state)
1593 {
1594 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1595 
1596 	if (amdgpu_sriov_vf(adev))
1597 		return 0;
1598 
1599 	switch (adev->asic_type) {
1600 	case CHIP_FIJI:
1601 		fiji_update_mc_medium_grain_clock_gating(adev,
1602 				state == AMD_CG_STATE_GATE);
1603 		fiji_update_mc_light_sleep(adev,
1604 				state == AMD_CG_STATE_GATE);
1605 		break;
1606 	default:
1607 		break;
1608 	}
1609 	return 0;
1610 }
1611 
1612 static int gmc_v8_0_set_powergating_state(void *handle,
1613 					  enum amd_powergating_state state)
1614 {
1615 	return 0;
1616 }
1617 
1618 static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
1619 {
1620 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1621 	int data;
1622 
1623 	if (amdgpu_sriov_vf(adev))
1624 		*flags = 0;
1625 
1626 	/* AMD_CG_SUPPORT_MC_MGCG */
1627 	data = RREG32(mmMC_HUB_MISC_HUB_CG);
1628 	if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
1629 		*flags |= AMD_CG_SUPPORT_MC_MGCG;
1630 
1631 	/* AMD_CG_SUPPORT_MC_LS */
1632 	if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
1633 		*flags |= AMD_CG_SUPPORT_MC_LS;
1634 }
1635 
1636 static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
1637 	.name = "gmc_v8_0",
1638 	.early_init = gmc_v8_0_early_init,
1639 	.late_init = gmc_v8_0_late_init,
1640 	.sw_init = gmc_v8_0_sw_init,
1641 	.sw_fini = gmc_v8_0_sw_fini,
1642 	.hw_init = gmc_v8_0_hw_init,
1643 	.hw_fini = gmc_v8_0_hw_fini,
1644 	.suspend = gmc_v8_0_suspend,
1645 	.resume = gmc_v8_0_resume,
1646 	.is_idle = gmc_v8_0_is_idle,
1647 	.wait_for_idle = gmc_v8_0_wait_for_idle,
1648 	.check_soft_reset = gmc_v8_0_check_soft_reset,
1649 	.pre_soft_reset = gmc_v8_0_pre_soft_reset,
1650 	.soft_reset = gmc_v8_0_soft_reset,
1651 	.post_soft_reset = gmc_v8_0_post_soft_reset,
1652 	.set_clockgating_state = gmc_v8_0_set_clockgating_state,
1653 	.set_powergating_state = gmc_v8_0_set_powergating_state,
1654 	.get_clockgating_state = gmc_v8_0_get_clockgating_state,
1655 };
1656 
1657 static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
1658 	.flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
1659 	.set_pte_pde = gmc_v8_0_gart_set_pte_pde,
1660 	.set_prt = gmc_v8_0_set_prt,
1661 	.get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags
1662 };
1663 
1664 static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
1665 	.set = gmc_v8_0_vm_fault_interrupt_state,
1666 	.process = gmc_v8_0_process_interrupt,
1667 };
1668 
1669 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
1670 {
1671 	if (adev->gart.gart_funcs == NULL)
1672 		adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
1673 }
1674 
1675 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
1676 {
1677 	adev->mc.vm_fault.num_types = 1;
1678 	adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
1679 }
1680 
1681 const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
1682 {
1683 	.type = AMD_IP_BLOCK_TYPE_GMC,
1684 	.major = 8,
1685 	.minor = 0,
1686 	.rev = 0,
1687 	.funcs = &gmc_v8_0_ip_funcs,
1688 };
1689 
1690 const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
1691 {
1692 	.type = AMD_IP_BLOCK_TYPE_GMC,
1693 	.major = 8,
1694 	.minor = 1,
1695 	.rev = 0,
1696 	.funcs = &gmc_v8_0_ip_funcs,
1697 };
1698 
1699 const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
1700 {
1701 	.type = AMD_IP_BLOCK_TYPE_GMC,
1702 	.major = 8,
1703 	.minor = 5,
1704 	.rev = 0,
1705 	.funcs = &gmc_v8_0_ip_funcs,
1706 };
1707