1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include <linux/firmware.h> 24 #include <drm/drmP.h> 25 #include <drm/drm_cache.h> 26 #include "amdgpu.h" 27 #include "gmc_v8_0.h" 28 #include "amdgpu_ucode.h" 29 #include "amdgpu_amdkfd.h" 30 #include "amdgpu_gem.h" 31 32 #include "gmc/gmc_8_1_d.h" 33 #include "gmc/gmc_8_1_sh_mask.h" 34 35 #include "bif/bif_5_0_d.h" 36 #include "bif/bif_5_0_sh_mask.h" 37 38 #include "oss/oss_3_0_d.h" 39 #include "oss/oss_3_0_sh_mask.h" 40 41 #include "dce/dce_10_0_d.h" 42 #include "dce/dce_10_0_sh_mask.h" 43 44 #include "vid.h" 45 #include "vi.h" 46 47 #include "amdgpu_atombios.h" 48 49 #include "ivsrcid/ivsrcid_vislands30.h" 50 51 static void gmc_v8_0_set_gmc_funcs(struct amdgpu_device *adev); 52 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev); 53 static int gmc_v8_0_wait_for_idle(void *handle); 54 55 MODULE_FIRMWARE("amdgpu/tonga_mc.bin"); 56 MODULE_FIRMWARE("amdgpu/polaris11_mc.bin"); 57 MODULE_FIRMWARE("amdgpu/polaris10_mc.bin"); 58 MODULE_FIRMWARE("amdgpu/polaris12_mc.bin"); 59 MODULE_FIRMWARE("amdgpu/polaris11_k_mc.bin"); 60 MODULE_FIRMWARE("amdgpu/polaris10_k_mc.bin"); 61 MODULE_FIRMWARE("amdgpu/polaris12_k_mc.bin"); 62 63 static const u32 golden_settings_tonga_a11[] = 64 { 65 mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000, 66 mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028, 67 mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991, 68 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 69 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 70 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 71 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, 72 }; 73 74 static const u32 tonga_mgcg_cgcg_init[] = 75 { 76 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 77 }; 78 79 static const u32 golden_settings_fiji_a10[] = 80 { 81 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 82 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 83 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 84 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, 85 }; 86 87 static const u32 fiji_mgcg_cgcg_init[] = 88 { 89 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 90 }; 91 92 static const u32 golden_settings_polaris11_a11[] = 93 { 94 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 95 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 96 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 97 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff 98 }; 99 100 static const u32 golden_settings_polaris10_a11[] = 101 { 102 mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000, 103 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 104 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 105 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 106 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff 107 }; 108 109 static const u32 cz_mgcg_cgcg_init[] = 110 { 111 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 112 }; 113 114 static const u32 stoney_mgcg_cgcg_init[] = 115 { 116 mmATC_MISC_CG, 0xffffffff, 0x000c0200, 117 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 118 }; 119 120 static const u32 golden_settings_stoney_common[] = 121 { 122 mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004, 123 mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000 124 }; 125 126 static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev) 127 { 128 switch (adev->asic_type) { 129 case CHIP_FIJI: 130 amdgpu_device_program_register_sequence(adev, 131 fiji_mgcg_cgcg_init, 132 ARRAY_SIZE(fiji_mgcg_cgcg_init)); 133 amdgpu_device_program_register_sequence(adev, 134 golden_settings_fiji_a10, 135 ARRAY_SIZE(golden_settings_fiji_a10)); 136 break; 137 case CHIP_TONGA: 138 amdgpu_device_program_register_sequence(adev, 139 tonga_mgcg_cgcg_init, 140 ARRAY_SIZE(tonga_mgcg_cgcg_init)); 141 amdgpu_device_program_register_sequence(adev, 142 golden_settings_tonga_a11, 143 ARRAY_SIZE(golden_settings_tonga_a11)); 144 break; 145 case CHIP_POLARIS11: 146 case CHIP_POLARIS12: 147 case CHIP_VEGAM: 148 amdgpu_device_program_register_sequence(adev, 149 golden_settings_polaris11_a11, 150 ARRAY_SIZE(golden_settings_polaris11_a11)); 151 break; 152 case CHIP_POLARIS10: 153 amdgpu_device_program_register_sequence(adev, 154 golden_settings_polaris10_a11, 155 ARRAY_SIZE(golden_settings_polaris10_a11)); 156 break; 157 case CHIP_CARRIZO: 158 amdgpu_device_program_register_sequence(adev, 159 cz_mgcg_cgcg_init, 160 ARRAY_SIZE(cz_mgcg_cgcg_init)); 161 break; 162 case CHIP_STONEY: 163 amdgpu_device_program_register_sequence(adev, 164 stoney_mgcg_cgcg_init, 165 ARRAY_SIZE(stoney_mgcg_cgcg_init)); 166 amdgpu_device_program_register_sequence(adev, 167 golden_settings_stoney_common, 168 ARRAY_SIZE(golden_settings_stoney_common)); 169 break; 170 default: 171 break; 172 } 173 } 174 175 static void gmc_v8_0_mc_stop(struct amdgpu_device *adev) 176 { 177 u32 blackout; 178 179 gmc_v8_0_wait_for_idle(adev); 180 181 blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 182 if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) { 183 /* Block CPU access */ 184 WREG32(mmBIF_FB_EN, 0); 185 /* blackout the MC */ 186 blackout = REG_SET_FIELD(blackout, 187 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1); 188 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout); 189 } 190 /* wait for the MC to settle */ 191 udelay(100); 192 } 193 194 static void gmc_v8_0_mc_resume(struct amdgpu_device *adev) 195 { 196 u32 tmp; 197 198 /* unblackout the MC */ 199 tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 200 tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0); 201 WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp); 202 /* allow CPU access */ 203 tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1); 204 tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1); 205 WREG32(mmBIF_FB_EN, tmp); 206 } 207 208 /** 209 * gmc_v8_0_init_microcode - load ucode images from disk 210 * 211 * @adev: amdgpu_device pointer 212 * 213 * Use the firmware interface to load the ucode images into 214 * the driver (not loaded into hw). 215 * Returns 0 on success, error on failure. 216 */ 217 static int gmc_v8_0_init_microcode(struct amdgpu_device *adev) 218 { 219 const char *chip_name; 220 char fw_name[30]; 221 int err; 222 223 DRM_DEBUG("\n"); 224 225 switch (adev->asic_type) { 226 case CHIP_TONGA: 227 chip_name = "tonga"; 228 break; 229 case CHIP_POLARIS11: 230 if (((adev->pdev->device == 0x67ef) && 231 ((adev->pdev->revision == 0xe0) || 232 (adev->pdev->revision == 0xe5))) || 233 ((adev->pdev->device == 0x67ff) && 234 ((adev->pdev->revision == 0xcf) || 235 (adev->pdev->revision == 0xef) || 236 (adev->pdev->revision == 0xff)))) 237 chip_name = "polaris11_k"; 238 else if ((adev->pdev->device == 0x67ef) && 239 (adev->pdev->revision == 0xe2)) 240 chip_name = "polaris11_k"; 241 else 242 chip_name = "polaris11"; 243 break; 244 case CHIP_POLARIS10: 245 if ((adev->pdev->device == 0x67df) && 246 ((adev->pdev->revision == 0xe1) || 247 (adev->pdev->revision == 0xf7))) 248 chip_name = "polaris10_k"; 249 else 250 chip_name = "polaris10"; 251 break; 252 case CHIP_POLARIS12: 253 if (((adev->pdev->device == 0x6987) && 254 ((adev->pdev->revision == 0xc0) || 255 (adev->pdev->revision == 0xc3))) || 256 ((adev->pdev->device == 0x6981) && 257 ((adev->pdev->revision == 0x00) || 258 (adev->pdev->revision == 0x01) || 259 (adev->pdev->revision == 0x10)))) 260 chip_name = "polaris12_k"; 261 else 262 chip_name = "polaris12"; 263 break; 264 case CHIP_FIJI: 265 case CHIP_CARRIZO: 266 case CHIP_STONEY: 267 case CHIP_VEGAM: 268 return 0; 269 default: BUG(); 270 } 271 272 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name); 273 err = request_firmware(&adev->gmc.fw, fw_name, adev->dev); 274 if (err) 275 goto out; 276 err = amdgpu_ucode_validate(adev->gmc.fw); 277 278 out: 279 if (err) { 280 pr_err("mc: Failed to load firmware \"%s\"\n", fw_name); 281 release_firmware(adev->gmc.fw); 282 adev->gmc.fw = NULL; 283 } 284 return err; 285 } 286 287 /** 288 * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw 289 * 290 * @adev: amdgpu_device pointer 291 * 292 * Load the GDDR MC ucode into the hw (CIK). 293 * Returns 0 on success, error on failure. 294 */ 295 static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev) 296 { 297 const struct mc_firmware_header_v1_0 *hdr; 298 const __le32 *fw_data = NULL; 299 const __le32 *io_mc_regs = NULL; 300 u32 running; 301 int i, ucode_size, regs_size; 302 303 /* Skip MC ucode loading on SR-IOV capable boards. 304 * vbios does this for us in asic_init in that case. 305 * Skip MC ucode loading on VF, because hypervisor will do that 306 * for this adaptor. 307 */ 308 if (amdgpu_sriov_bios(adev)) 309 return 0; 310 311 if (!adev->gmc.fw) 312 return -EINVAL; 313 314 hdr = (const struct mc_firmware_header_v1_0 *)adev->gmc.fw->data; 315 amdgpu_ucode_print_mc_hdr(&hdr->header); 316 317 adev->gmc.fw_version = le32_to_cpu(hdr->header.ucode_version); 318 regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2); 319 io_mc_regs = (const __le32 *) 320 (adev->gmc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes)); 321 ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 322 fw_data = (const __le32 *) 323 (adev->gmc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 324 325 running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN); 326 327 if (running == 0) { 328 /* reset the engine and set to writable */ 329 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 330 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010); 331 332 /* load mc io regs */ 333 for (i = 0; i < regs_size; i++) { 334 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++)); 335 WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++)); 336 } 337 /* load the MC ucode */ 338 for (i = 0; i < ucode_size; i++) 339 WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++)); 340 341 /* put the engine back into the active state */ 342 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 343 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004); 344 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001); 345 346 /* wait for training to complete */ 347 for (i = 0; i < adev->usec_timeout; i++) { 348 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), 349 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0)) 350 break; 351 udelay(1); 352 } 353 for (i = 0; i < adev->usec_timeout; i++) { 354 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), 355 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1)) 356 break; 357 udelay(1); 358 } 359 } 360 361 return 0; 362 } 363 364 static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev) 365 { 366 const struct mc_firmware_header_v1_0 *hdr; 367 const __le32 *fw_data = NULL; 368 const __le32 *io_mc_regs = NULL; 369 u32 data; 370 int i, ucode_size, regs_size; 371 372 /* Skip MC ucode loading on SR-IOV capable boards. 373 * vbios does this for us in asic_init in that case. 374 * Skip MC ucode loading on VF, because hypervisor will do that 375 * for this adaptor. 376 */ 377 if (amdgpu_sriov_bios(adev)) 378 return 0; 379 380 if (!adev->gmc.fw) 381 return -EINVAL; 382 383 hdr = (const struct mc_firmware_header_v1_0 *)adev->gmc.fw->data; 384 amdgpu_ucode_print_mc_hdr(&hdr->header); 385 386 adev->gmc.fw_version = le32_to_cpu(hdr->header.ucode_version); 387 regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2); 388 io_mc_regs = (const __le32 *) 389 (adev->gmc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes)); 390 ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 391 fw_data = (const __le32 *) 392 (adev->gmc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 393 394 data = RREG32(mmMC_SEQ_MISC0); 395 data &= ~(0x40); 396 WREG32(mmMC_SEQ_MISC0, data); 397 398 /* load mc io regs */ 399 for (i = 0; i < regs_size; i++) { 400 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++)); 401 WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++)); 402 } 403 404 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 405 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010); 406 407 /* load the MC ucode */ 408 for (i = 0; i < ucode_size; i++) 409 WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++)); 410 411 /* put the engine back into the active state */ 412 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 413 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004); 414 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001); 415 416 /* wait for training to complete */ 417 for (i = 0; i < adev->usec_timeout; i++) { 418 data = RREG32(mmMC_SEQ_MISC0); 419 if (data & 0x80) 420 break; 421 udelay(1); 422 } 423 424 return 0; 425 } 426 427 static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev, 428 struct amdgpu_gmc *mc) 429 { 430 u64 base = 0; 431 432 if (!amdgpu_sriov_vf(adev)) 433 base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF; 434 base <<= 24; 435 436 amdgpu_gmc_vram_location(adev, &adev->gmc, base); 437 amdgpu_gmc_gart_location(adev, mc); 438 } 439 440 /** 441 * gmc_v8_0_mc_program - program the GPU memory controller 442 * 443 * @adev: amdgpu_device pointer 444 * 445 * Set the location of vram, gart, and AGP in the GPU's 446 * physical address space (CIK). 447 */ 448 static void gmc_v8_0_mc_program(struct amdgpu_device *adev) 449 { 450 u32 tmp; 451 int i, j; 452 453 /* Initialize HDP */ 454 for (i = 0, j = 0; i < 32; i++, j += 0x6) { 455 WREG32((0xb05 + j), 0x00000000); 456 WREG32((0xb06 + j), 0x00000000); 457 WREG32((0xb07 + j), 0x00000000); 458 WREG32((0xb08 + j), 0x00000000); 459 WREG32((0xb09 + j), 0x00000000); 460 } 461 WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0); 462 463 if (gmc_v8_0_wait_for_idle((void *)adev)) { 464 dev_warn(adev->dev, "Wait for MC idle timedout !\n"); 465 } 466 if (adev->mode_info.num_crtc) { 467 /* Lockout access through VGA aperture*/ 468 tmp = RREG32(mmVGA_HDP_CONTROL); 469 tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1); 470 WREG32(mmVGA_HDP_CONTROL, tmp); 471 472 /* disable VGA render */ 473 tmp = RREG32(mmVGA_RENDER_CONTROL); 474 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0); 475 WREG32(mmVGA_RENDER_CONTROL, tmp); 476 } 477 /* Update configuration */ 478 WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR, 479 adev->gmc.vram_start >> 12); 480 WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR, 481 adev->gmc.vram_end >> 12); 482 WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, 483 adev->vram_scratch.gpu_addr >> 12); 484 485 if (amdgpu_sriov_vf(adev)) { 486 tmp = ((adev->gmc.vram_end >> 24) & 0xFFFF) << 16; 487 tmp |= ((adev->gmc.vram_start >> 24) & 0xFFFF); 488 WREG32(mmMC_VM_FB_LOCATION, tmp); 489 /* XXX double check these! */ 490 WREG32(mmHDP_NONSURFACE_BASE, (adev->gmc.vram_start >> 8)); 491 WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); 492 WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF); 493 } 494 495 WREG32(mmMC_VM_AGP_BASE, 0); 496 WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF); 497 WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF); 498 if (gmc_v8_0_wait_for_idle((void *)adev)) { 499 dev_warn(adev->dev, "Wait for MC idle timedout !\n"); 500 } 501 502 WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK); 503 504 tmp = RREG32(mmHDP_MISC_CNTL); 505 tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0); 506 WREG32(mmHDP_MISC_CNTL, tmp); 507 508 tmp = RREG32(mmHDP_HOST_PATH_CNTL); 509 WREG32(mmHDP_HOST_PATH_CNTL, tmp); 510 } 511 512 /** 513 * gmc_v8_0_mc_init - initialize the memory controller driver params 514 * 515 * @adev: amdgpu_device pointer 516 * 517 * Look up the amount of vram, vram width, and decide how to place 518 * vram and gart within the GPU's physical address space (CIK). 519 * Returns 0 for success. 520 */ 521 static int gmc_v8_0_mc_init(struct amdgpu_device *adev) 522 { 523 int r; 524 525 adev->gmc.vram_width = amdgpu_atombios_get_vram_width(adev); 526 if (!adev->gmc.vram_width) { 527 u32 tmp; 528 int chansize, numchan; 529 530 /* Get VRAM informations */ 531 tmp = RREG32(mmMC_ARB_RAMCFG); 532 if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) { 533 chansize = 64; 534 } else { 535 chansize = 32; 536 } 537 tmp = RREG32(mmMC_SHARED_CHMAP); 538 switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) { 539 case 0: 540 default: 541 numchan = 1; 542 break; 543 case 1: 544 numchan = 2; 545 break; 546 case 2: 547 numchan = 4; 548 break; 549 case 3: 550 numchan = 8; 551 break; 552 case 4: 553 numchan = 3; 554 break; 555 case 5: 556 numchan = 6; 557 break; 558 case 6: 559 numchan = 10; 560 break; 561 case 7: 562 numchan = 12; 563 break; 564 case 8: 565 numchan = 16; 566 break; 567 } 568 adev->gmc.vram_width = numchan * chansize; 569 } 570 /* size in MB on si */ 571 adev->gmc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; 572 adev->gmc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; 573 574 if (!(adev->flags & AMD_IS_APU)) { 575 r = amdgpu_device_resize_fb_bar(adev); 576 if (r) 577 return r; 578 } 579 adev->gmc.aper_base = pci_resource_start(adev->pdev, 0); 580 adev->gmc.aper_size = pci_resource_len(adev->pdev, 0); 581 582 #ifdef CONFIG_X86_64 583 if (adev->flags & AMD_IS_APU) { 584 adev->gmc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22; 585 adev->gmc.aper_size = adev->gmc.real_vram_size; 586 } 587 #endif 588 589 /* In case the PCI BAR is larger than the actual amount of vram */ 590 adev->gmc.visible_vram_size = adev->gmc.aper_size; 591 if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size) 592 adev->gmc.visible_vram_size = adev->gmc.real_vram_size; 593 594 /* set the gart size */ 595 if (amdgpu_gart_size == -1) { 596 switch (adev->asic_type) { 597 case CHIP_POLARIS10: /* all engines support GPUVM */ 598 case CHIP_POLARIS11: /* all engines support GPUVM */ 599 case CHIP_POLARIS12: /* all engines support GPUVM */ 600 case CHIP_VEGAM: /* all engines support GPUVM */ 601 default: 602 adev->gmc.gart_size = 256ULL << 20; 603 break; 604 case CHIP_TONGA: /* UVD, VCE do not support GPUVM */ 605 case CHIP_FIJI: /* UVD, VCE do not support GPUVM */ 606 case CHIP_CARRIZO: /* UVD, VCE do not support GPUVM, DCE SG support */ 607 case CHIP_STONEY: /* UVD does not support GPUVM, DCE SG support */ 608 adev->gmc.gart_size = 1024ULL << 20; 609 break; 610 } 611 } else { 612 adev->gmc.gart_size = (u64)amdgpu_gart_size << 20; 613 } 614 615 gmc_v8_0_vram_gtt_location(adev, &adev->gmc); 616 617 return 0; 618 } 619 620 /* 621 * GART 622 * VMID 0 is the physical GPU addresses as used by the kernel. 623 * VMIDs 1-15 are used for userspace clients and are handled 624 * by the amdgpu vm/hsa code. 625 */ 626 627 /** 628 * gmc_v8_0_flush_gpu_tlb - gart tlb flush callback 629 * 630 * @adev: amdgpu_device pointer 631 * @vmid: vm instance to flush 632 * 633 * Flush the TLB for the requested page table (CIK). 634 */ 635 static void gmc_v8_0_flush_gpu_tlb(struct amdgpu_device *adev, 636 uint32_t vmid, uint32_t flush_type) 637 { 638 /* bits 0-15 are the VM contexts0-15 */ 639 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); 640 } 641 642 static uint64_t gmc_v8_0_emit_flush_gpu_tlb(struct amdgpu_ring *ring, 643 unsigned vmid, uint64_t pd_addr) 644 { 645 uint32_t reg; 646 647 if (vmid < 8) 648 reg = mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vmid; 649 else 650 reg = mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8; 651 amdgpu_ring_emit_wreg(ring, reg, pd_addr >> 12); 652 653 /* bits 0-15 are the VM contexts0-15 */ 654 amdgpu_ring_emit_wreg(ring, mmVM_INVALIDATE_REQUEST, 1 << vmid); 655 656 return pd_addr; 657 } 658 659 static void gmc_v8_0_emit_pasid_mapping(struct amdgpu_ring *ring, unsigned vmid, 660 unsigned pasid) 661 { 662 amdgpu_ring_emit_wreg(ring, mmIH_VMID_0_LUT + vmid, pasid); 663 } 664 665 /** 666 * gmc_v8_0_set_pte_pde - update the page tables using MMIO 667 * 668 * @adev: amdgpu_device pointer 669 * @cpu_pt_addr: cpu address of the page table 670 * @gpu_page_idx: entry in the page table to update 671 * @addr: dst addr to write into pte/pde 672 * @flags: access flags 673 * 674 * Update the page tables using the CPU. 675 */ 676 static int gmc_v8_0_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 677 uint32_t gpu_page_idx, uint64_t addr, 678 uint64_t flags) 679 { 680 void __iomem *ptr = (void *)cpu_pt_addr; 681 uint64_t value; 682 683 /* 684 * PTE format on VI: 685 * 63:40 reserved 686 * 39:12 4k physical page base address 687 * 11:7 fragment 688 * 6 write 689 * 5 read 690 * 4 exe 691 * 3 reserved 692 * 2 snooped 693 * 1 system 694 * 0 valid 695 * 696 * PDE format on VI: 697 * 63:59 block fragment size 698 * 58:40 reserved 699 * 39:1 physical base address of PTE 700 * bits 5:1 must be 0. 701 * 0 valid 702 */ 703 value = addr & 0x000000FFFFFFF000ULL; 704 value |= flags; 705 writeq(value, ptr + (gpu_page_idx * 8)); 706 707 return 0; 708 } 709 710 static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev, 711 uint32_t flags) 712 { 713 uint64_t pte_flag = 0; 714 715 if (flags & AMDGPU_VM_PAGE_EXECUTABLE) 716 pte_flag |= AMDGPU_PTE_EXECUTABLE; 717 if (flags & AMDGPU_VM_PAGE_READABLE) 718 pte_flag |= AMDGPU_PTE_READABLE; 719 if (flags & AMDGPU_VM_PAGE_WRITEABLE) 720 pte_flag |= AMDGPU_PTE_WRITEABLE; 721 if (flags & AMDGPU_VM_PAGE_PRT) 722 pte_flag |= AMDGPU_PTE_PRT; 723 724 return pte_flag; 725 } 726 727 static void gmc_v8_0_get_vm_pde(struct amdgpu_device *adev, int level, 728 uint64_t *addr, uint64_t *flags) 729 { 730 BUG_ON(*addr & 0xFFFFFF0000000FFFULL); 731 } 732 733 /** 734 * gmc_v8_0_set_fault_enable_default - update VM fault handling 735 * 736 * @adev: amdgpu_device pointer 737 * @value: true redirects VM faults to the default page 738 */ 739 static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev, 740 bool value) 741 { 742 u32 tmp; 743 744 tmp = RREG32(mmVM_CONTEXT1_CNTL); 745 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 746 RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 747 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 748 DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 749 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 750 PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value); 751 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 752 VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value); 753 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 754 READ_PROTECTION_FAULT_ENABLE_DEFAULT, value); 755 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 756 WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 757 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 758 EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 759 WREG32(mmVM_CONTEXT1_CNTL, tmp); 760 } 761 762 /** 763 * gmc_v8_0_set_prt - set PRT VM fault 764 * 765 * @adev: amdgpu_device pointer 766 * @enable: enable/disable VM fault handling for PRT 767 */ 768 static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable) 769 { 770 u32 tmp; 771 772 if (enable && !adev->gmc.prt_warning) { 773 dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n"); 774 adev->gmc.prt_warning = true; 775 } 776 777 tmp = RREG32(mmVM_PRT_CNTL); 778 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, 779 CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable); 780 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, 781 CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable); 782 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, 783 TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable); 784 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, 785 TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable); 786 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, 787 L2_CACHE_STORE_INVALID_ENTRIES, enable); 788 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, 789 L1_TLB_STORE_INVALID_ENTRIES, enable); 790 tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, 791 MASK_PDE0_FAULT, enable); 792 WREG32(mmVM_PRT_CNTL, tmp); 793 794 if (enable) { 795 uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT; 796 uint32_t high = adev->vm_manager.max_pfn - 797 (AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT); 798 799 WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low); 800 WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low); 801 WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low); 802 WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low); 803 WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high); 804 WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high); 805 WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high); 806 WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high); 807 } else { 808 WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff); 809 WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff); 810 WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff); 811 WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff); 812 WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0); 813 WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0); 814 WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0); 815 WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0); 816 } 817 } 818 819 /** 820 * gmc_v8_0_gart_enable - gart enable 821 * 822 * @adev: amdgpu_device pointer 823 * 824 * This sets up the TLBs, programs the page tables for VMID0, 825 * sets up the hw for VMIDs 1-15 which are allocated on 826 * demand, and sets up the global locations for the LDS, GDS, 827 * and GPUVM for FSA64 clients (CIK). 828 * Returns 0 for success, errors for failure. 829 */ 830 static int gmc_v8_0_gart_enable(struct amdgpu_device *adev) 831 { 832 uint64_t table_addr; 833 int r, i; 834 u32 tmp, field; 835 836 if (adev->gart.bo == NULL) { 837 dev_err(adev->dev, "No VRAM object for PCIE GART.\n"); 838 return -EINVAL; 839 } 840 r = amdgpu_gart_table_vram_pin(adev); 841 if (r) 842 return r; 843 844 table_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 845 846 /* Setup TLB control */ 847 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); 848 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1); 849 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1); 850 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3); 851 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1); 852 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0); 853 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); 854 /* Setup L2 cache */ 855 tmp = RREG32(mmVM_L2_CNTL); 856 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1); 857 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1); 858 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1); 859 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1); 860 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7); 861 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1); 862 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1); 863 WREG32(mmVM_L2_CNTL, tmp); 864 tmp = RREG32(mmVM_L2_CNTL2); 865 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1); 866 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1); 867 WREG32(mmVM_L2_CNTL2, tmp); 868 869 field = adev->vm_manager.fragment_size; 870 tmp = RREG32(mmVM_L2_CNTL3); 871 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1); 872 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, field); 873 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, field); 874 WREG32(mmVM_L2_CNTL3, tmp); 875 /* XXX: set to enable PTE/PDE in system memory */ 876 tmp = RREG32(mmVM_L2_CNTL4); 877 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0); 878 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0); 879 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0); 880 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0); 881 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0); 882 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0); 883 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0); 884 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0); 885 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0); 886 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0); 887 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0); 888 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0); 889 WREG32(mmVM_L2_CNTL4, tmp); 890 /* setup context0 */ 891 WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->gmc.gart_start >> 12); 892 WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->gmc.gart_end >> 12); 893 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, table_addr >> 12); 894 WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, 895 (u32)(adev->dummy_page_addr >> 12)); 896 WREG32(mmVM_CONTEXT0_CNTL2, 0); 897 tmp = RREG32(mmVM_CONTEXT0_CNTL); 898 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1); 899 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0); 900 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 901 WREG32(mmVM_CONTEXT0_CNTL, tmp); 902 903 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0); 904 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0); 905 WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0); 906 907 /* empty context1-15 */ 908 /* FIXME start with 4G, once using 2 level pt switch to full 909 * vm size space 910 */ 911 /* set vm size, must be a multiple of 4 */ 912 WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); 913 WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1); 914 for (i = 1; i < 16; i++) { 915 if (i < 8) 916 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i, 917 table_addr >> 12); 918 else 919 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8, 920 table_addr >> 12); 921 } 922 923 /* enable context1-15 */ 924 WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, 925 (u32)(adev->dummy_page_addr >> 12)); 926 WREG32(mmVM_CONTEXT1_CNTL2, 4); 927 tmp = RREG32(mmVM_CONTEXT1_CNTL); 928 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1); 929 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1); 930 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 931 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 932 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 933 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 934 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 935 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 936 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 937 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE, 938 adev->vm_manager.block_size - 9); 939 WREG32(mmVM_CONTEXT1_CNTL, tmp); 940 if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) 941 gmc_v8_0_set_fault_enable_default(adev, false); 942 else 943 gmc_v8_0_set_fault_enable_default(adev, true); 944 945 gmc_v8_0_flush_gpu_tlb(adev, 0, 0); 946 DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", 947 (unsigned)(adev->gmc.gart_size >> 20), 948 (unsigned long long)table_addr); 949 adev->gart.ready = true; 950 return 0; 951 } 952 953 static int gmc_v8_0_gart_init(struct amdgpu_device *adev) 954 { 955 int r; 956 957 if (adev->gart.bo) { 958 WARN(1, "R600 PCIE GART already initialized\n"); 959 return 0; 960 } 961 /* Initialize common gart structure */ 962 r = amdgpu_gart_init(adev); 963 if (r) 964 return r; 965 adev->gart.table_size = adev->gart.num_gpu_pages * 8; 966 adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE; 967 return amdgpu_gart_table_vram_alloc(adev); 968 } 969 970 /** 971 * gmc_v8_0_gart_disable - gart disable 972 * 973 * @adev: amdgpu_device pointer 974 * 975 * This disables all VM page table (CIK). 976 */ 977 static void gmc_v8_0_gart_disable(struct amdgpu_device *adev) 978 { 979 u32 tmp; 980 981 /* Disable all tables */ 982 WREG32(mmVM_CONTEXT0_CNTL, 0); 983 WREG32(mmVM_CONTEXT1_CNTL, 0); 984 /* Setup TLB control */ 985 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); 986 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0); 987 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0); 988 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0); 989 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); 990 /* Setup L2 cache */ 991 tmp = RREG32(mmVM_L2_CNTL); 992 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0); 993 WREG32(mmVM_L2_CNTL, tmp); 994 WREG32(mmVM_L2_CNTL2, 0); 995 amdgpu_gart_table_vram_unpin(adev); 996 } 997 998 /** 999 * gmc_v8_0_vm_decode_fault - print human readable fault info 1000 * 1001 * @adev: amdgpu_device pointer 1002 * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value 1003 * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value 1004 * 1005 * Print human readable fault information (CIK). 1006 */ 1007 static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev, u32 status, 1008 u32 addr, u32 mc_client, unsigned pasid) 1009 { 1010 u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID); 1011 u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 1012 PROTECTIONS); 1013 char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff, 1014 (mc_client >> 8) & 0xff, mc_client & 0xff, 0 }; 1015 u32 mc_id; 1016 1017 mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 1018 MEMORY_CLIENT_ID); 1019 1020 dev_err(adev->dev, "VM fault (0x%02x, vmid %d, pasid %d) at page %u, %s from '%s' (0x%08x) (%d)\n", 1021 protections, vmid, pasid, addr, 1022 REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 1023 MEMORY_CLIENT_RW) ? 1024 "write" : "read", block, mc_client, mc_id); 1025 } 1026 1027 static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type) 1028 { 1029 switch (mc_seq_vram_type) { 1030 case MC_SEQ_MISC0__MT__GDDR1: 1031 return AMDGPU_VRAM_TYPE_GDDR1; 1032 case MC_SEQ_MISC0__MT__DDR2: 1033 return AMDGPU_VRAM_TYPE_DDR2; 1034 case MC_SEQ_MISC0__MT__GDDR3: 1035 return AMDGPU_VRAM_TYPE_GDDR3; 1036 case MC_SEQ_MISC0__MT__GDDR4: 1037 return AMDGPU_VRAM_TYPE_GDDR4; 1038 case MC_SEQ_MISC0__MT__GDDR5: 1039 return AMDGPU_VRAM_TYPE_GDDR5; 1040 case MC_SEQ_MISC0__MT__HBM: 1041 return AMDGPU_VRAM_TYPE_HBM; 1042 case MC_SEQ_MISC0__MT__DDR3: 1043 return AMDGPU_VRAM_TYPE_DDR3; 1044 default: 1045 return AMDGPU_VRAM_TYPE_UNKNOWN; 1046 } 1047 } 1048 1049 static int gmc_v8_0_early_init(void *handle) 1050 { 1051 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1052 1053 gmc_v8_0_set_gmc_funcs(adev); 1054 gmc_v8_0_set_irq_funcs(adev); 1055 1056 adev->gmc.shared_aperture_start = 0x2000000000000000ULL; 1057 adev->gmc.shared_aperture_end = 1058 adev->gmc.shared_aperture_start + (4ULL << 30) - 1; 1059 adev->gmc.private_aperture_start = 1060 adev->gmc.shared_aperture_end + 1; 1061 adev->gmc.private_aperture_end = 1062 adev->gmc.private_aperture_start + (4ULL << 30) - 1; 1063 1064 return 0; 1065 } 1066 1067 static int gmc_v8_0_late_init(void *handle) 1068 { 1069 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1070 1071 amdgpu_bo_late_init(adev); 1072 1073 if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS) 1074 return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0); 1075 else 1076 return 0; 1077 } 1078 1079 static unsigned gmc_v8_0_get_vbios_fb_size(struct amdgpu_device *adev) 1080 { 1081 u32 d1vga_control = RREG32(mmD1VGA_CONTROL); 1082 unsigned size; 1083 1084 if (REG_GET_FIELD(d1vga_control, D1VGA_CONTROL, D1VGA_MODE_ENABLE)) { 1085 size = 9 * 1024 * 1024; /* reserve 8MB for vga emulator and 1 MB for FB */ 1086 } else { 1087 u32 viewport = RREG32(mmVIEWPORT_SIZE); 1088 size = (REG_GET_FIELD(viewport, VIEWPORT_SIZE, VIEWPORT_HEIGHT) * 1089 REG_GET_FIELD(viewport, VIEWPORT_SIZE, VIEWPORT_WIDTH) * 1090 4); 1091 } 1092 /* return 0 if the pre-OS buffer uses up most of vram */ 1093 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 1094 return 0; 1095 return size; 1096 } 1097 1098 #define mmMC_SEQ_MISC0_FIJI 0xA71 1099 1100 static int gmc_v8_0_sw_init(void *handle) 1101 { 1102 int r; 1103 int dma_bits; 1104 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1105 1106 if (adev->flags & AMD_IS_APU) { 1107 adev->gmc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; 1108 } else { 1109 u32 tmp; 1110 1111 if ((adev->asic_type == CHIP_FIJI) || 1112 (adev->asic_type == CHIP_VEGAM)) 1113 tmp = RREG32(mmMC_SEQ_MISC0_FIJI); 1114 else 1115 tmp = RREG32(mmMC_SEQ_MISC0); 1116 tmp &= MC_SEQ_MISC0__MT__MASK; 1117 adev->gmc.vram_type = gmc_v8_0_convert_vram_type(tmp); 1118 } 1119 1120 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_GFX_PAGE_INV_FAULT, &adev->gmc.vm_fault); 1121 if (r) 1122 return r; 1123 1124 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_GFX_MEM_PROT_FAULT, &adev->gmc.vm_fault); 1125 if (r) 1126 return r; 1127 1128 /* Adjust VM size here. 1129 * Currently set to 4GB ((1 << 20) 4k pages). 1130 * Max GPUVM size for cayman and SI is 40 bits. 1131 */ 1132 amdgpu_vm_adjust_size(adev, 64, 9, 1, 40); 1133 1134 /* Set the internal MC address mask 1135 * This is the max address of the GPU's 1136 * internal address space. 1137 */ 1138 adev->gmc.mc_mask = 0xffffffffffULL; /* 40 bit MC */ 1139 1140 /* set DMA mask + need_dma32 flags. 1141 * PCIE - can handle 40-bits. 1142 * IGP - can handle 40-bits 1143 * PCI - dma32 for legacy pci gart, 40 bits on newer asics 1144 */ 1145 adev->need_dma32 = false; 1146 dma_bits = adev->need_dma32 ? 32 : 40; 1147 r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); 1148 if (r) { 1149 adev->need_dma32 = true; 1150 dma_bits = 32; 1151 pr_warn("amdgpu: No suitable DMA available\n"); 1152 } 1153 r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); 1154 if (r) { 1155 pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32)); 1156 pr_warn("amdgpu: No coherent DMA available\n"); 1157 } 1158 adev->need_swiotlb = drm_get_max_iomem() > ((u64)1 << dma_bits); 1159 1160 r = gmc_v8_0_init_microcode(adev); 1161 if (r) { 1162 DRM_ERROR("Failed to load mc firmware!\n"); 1163 return r; 1164 } 1165 1166 r = gmc_v8_0_mc_init(adev); 1167 if (r) 1168 return r; 1169 1170 adev->gmc.stolen_size = gmc_v8_0_get_vbios_fb_size(adev); 1171 1172 /* Memory manager */ 1173 r = amdgpu_bo_init(adev); 1174 if (r) 1175 return r; 1176 1177 r = gmc_v8_0_gart_init(adev); 1178 if (r) 1179 return r; 1180 1181 /* 1182 * number of VMs 1183 * VMID 0 is reserved for System 1184 * amdgpu graphics/compute will use VMIDs 1-7 1185 * amdkfd will use VMIDs 8-15 1186 */ 1187 adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS; 1188 amdgpu_vm_manager_init(adev); 1189 1190 /* base offset of vram pages */ 1191 if (adev->flags & AMD_IS_APU) { 1192 u64 tmp = RREG32(mmMC_VM_FB_OFFSET); 1193 1194 tmp <<= 22; 1195 adev->vm_manager.vram_base_offset = tmp; 1196 } else { 1197 adev->vm_manager.vram_base_offset = 0; 1198 } 1199 1200 adev->gmc.vm_fault_info = kmalloc(sizeof(struct kfd_vm_fault_info), 1201 GFP_KERNEL); 1202 if (!adev->gmc.vm_fault_info) 1203 return -ENOMEM; 1204 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 1205 1206 return 0; 1207 } 1208 1209 static int gmc_v8_0_sw_fini(void *handle) 1210 { 1211 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1212 1213 amdgpu_gem_force_release(adev); 1214 amdgpu_vm_manager_fini(adev); 1215 kfree(adev->gmc.vm_fault_info); 1216 amdgpu_gart_table_vram_free(adev); 1217 amdgpu_bo_fini(adev); 1218 amdgpu_gart_fini(adev); 1219 release_firmware(adev->gmc.fw); 1220 adev->gmc.fw = NULL; 1221 1222 return 0; 1223 } 1224 1225 static int gmc_v8_0_hw_init(void *handle) 1226 { 1227 int r; 1228 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1229 1230 gmc_v8_0_init_golden_registers(adev); 1231 1232 gmc_v8_0_mc_program(adev); 1233 1234 if (adev->asic_type == CHIP_TONGA) { 1235 r = gmc_v8_0_tonga_mc_load_microcode(adev); 1236 if (r) { 1237 DRM_ERROR("Failed to load MC firmware!\n"); 1238 return r; 1239 } 1240 } else if (adev->asic_type == CHIP_POLARIS11 || 1241 adev->asic_type == CHIP_POLARIS10 || 1242 adev->asic_type == CHIP_POLARIS12) { 1243 r = gmc_v8_0_polaris_mc_load_microcode(adev); 1244 if (r) { 1245 DRM_ERROR("Failed to load MC firmware!\n"); 1246 return r; 1247 } 1248 } 1249 1250 r = gmc_v8_0_gart_enable(adev); 1251 if (r) 1252 return r; 1253 1254 return r; 1255 } 1256 1257 static int gmc_v8_0_hw_fini(void *handle) 1258 { 1259 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1260 1261 amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0); 1262 gmc_v8_0_gart_disable(adev); 1263 1264 return 0; 1265 } 1266 1267 static int gmc_v8_0_suspend(void *handle) 1268 { 1269 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1270 1271 gmc_v8_0_hw_fini(adev); 1272 1273 return 0; 1274 } 1275 1276 static int gmc_v8_0_resume(void *handle) 1277 { 1278 int r; 1279 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1280 1281 r = gmc_v8_0_hw_init(adev); 1282 if (r) 1283 return r; 1284 1285 amdgpu_vmid_reset_all(adev); 1286 1287 return 0; 1288 } 1289 1290 static bool gmc_v8_0_is_idle(void *handle) 1291 { 1292 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1293 u32 tmp = RREG32(mmSRBM_STATUS); 1294 1295 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1296 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK)) 1297 return false; 1298 1299 return true; 1300 } 1301 1302 static int gmc_v8_0_wait_for_idle(void *handle) 1303 { 1304 unsigned i; 1305 u32 tmp; 1306 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1307 1308 for (i = 0; i < adev->usec_timeout; i++) { 1309 /* read MC_STATUS */ 1310 tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK | 1311 SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1312 SRBM_STATUS__MCC_BUSY_MASK | 1313 SRBM_STATUS__MCD_BUSY_MASK | 1314 SRBM_STATUS__VMC_BUSY_MASK | 1315 SRBM_STATUS__VMC1_BUSY_MASK); 1316 if (!tmp) 1317 return 0; 1318 udelay(1); 1319 } 1320 return -ETIMEDOUT; 1321 1322 } 1323 1324 static bool gmc_v8_0_check_soft_reset(void *handle) 1325 { 1326 u32 srbm_soft_reset = 0; 1327 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1328 u32 tmp = RREG32(mmSRBM_STATUS); 1329 1330 if (tmp & SRBM_STATUS__VMC_BUSY_MASK) 1331 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, 1332 SRBM_SOFT_RESET, SOFT_RESET_VMC, 1); 1333 1334 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1335 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) { 1336 if (!(adev->flags & AMD_IS_APU)) 1337 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, 1338 SRBM_SOFT_RESET, SOFT_RESET_MC, 1); 1339 } 1340 if (srbm_soft_reset) { 1341 adev->gmc.srbm_soft_reset = srbm_soft_reset; 1342 return true; 1343 } else { 1344 adev->gmc.srbm_soft_reset = 0; 1345 return false; 1346 } 1347 } 1348 1349 static int gmc_v8_0_pre_soft_reset(void *handle) 1350 { 1351 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1352 1353 if (!adev->gmc.srbm_soft_reset) 1354 return 0; 1355 1356 gmc_v8_0_mc_stop(adev); 1357 if (gmc_v8_0_wait_for_idle(adev)) { 1358 dev_warn(adev->dev, "Wait for GMC idle timed out !\n"); 1359 } 1360 1361 return 0; 1362 } 1363 1364 static int gmc_v8_0_soft_reset(void *handle) 1365 { 1366 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1367 u32 srbm_soft_reset; 1368 1369 if (!adev->gmc.srbm_soft_reset) 1370 return 0; 1371 srbm_soft_reset = adev->gmc.srbm_soft_reset; 1372 1373 if (srbm_soft_reset) { 1374 u32 tmp; 1375 1376 tmp = RREG32(mmSRBM_SOFT_RESET); 1377 tmp |= srbm_soft_reset; 1378 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1379 WREG32(mmSRBM_SOFT_RESET, tmp); 1380 tmp = RREG32(mmSRBM_SOFT_RESET); 1381 1382 udelay(50); 1383 1384 tmp &= ~srbm_soft_reset; 1385 WREG32(mmSRBM_SOFT_RESET, tmp); 1386 tmp = RREG32(mmSRBM_SOFT_RESET); 1387 1388 /* Wait a little for things to settle down */ 1389 udelay(50); 1390 } 1391 1392 return 0; 1393 } 1394 1395 static int gmc_v8_0_post_soft_reset(void *handle) 1396 { 1397 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1398 1399 if (!adev->gmc.srbm_soft_reset) 1400 return 0; 1401 1402 gmc_v8_0_mc_resume(adev); 1403 return 0; 1404 } 1405 1406 static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev, 1407 struct amdgpu_irq_src *src, 1408 unsigned type, 1409 enum amdgpu_interrupt_state state) 1410 { 1411 u32 tmp; 1412 u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1413 VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1414 VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1415 VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1416 VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1417 VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1418 VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK); 1419 1420 switch (state) { 1421 case AMDGPU_IRQ_STATE_DISABLE: 1422 /* system context */ 1423 tmp = RREG32(mmVM_CONTEXT0_CNTL); 1424 tmp &= ~bits; 1425 WREG32(mmVM_CONTEXT0_CNTL, tmp); 1426 /* VMs */ 1427 tmp = RREG32(mmVM_CONTEXT1_CNTL); 1428 tmp &= ~bits; 1429 WREG32(mmVM_CONTEXT1_CNTL, tmp); 1430 break; 1431 case AMDGPU_IRQ_STATE_ENABLE: 1432 /* system context */ 1433 tmp = RREG32(mmVM_CONTEXT0_CNTL); 1434 tmp |= bits; 1435 WREG32(mmVM_CONTEXT0_CNTL, tmp); 1436 /* VMs */ 1437 tmp = RREG32(mmVM_CONTEXT1_CNTL); 1438 tmp |= bits; 1439 WREG32(mmVM_CONTEXT1_CNTL, tmp); 1440 break; 1441 default: 1442 break; 1443 } 1444 1445 return 0; 1446 } 1447 1448 static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev, 1449 struct amdgpu_irq_src *source, 1450 struct amdgpu_iv_entry *entry) 1451 { 1452 u32 addr, status, mc_client, vmid; 1453 1454 if (amdgpu_sriov_vf(adev)) { 1455 dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n", 1456 entry->src_id, entry->src_data[0]); 1457 dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n"); 1458 return 0; 1459 } 1460 1461 addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR); 1462 status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS); 1463 mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT); 1464 /* reset addr and status */ 1465 WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1); 1466 1467 if (!addr && !status) 1468 return 0; 1469 1470 if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST) 1471 gmc_v8_0_set_fault_enable_default(adev, false); 1472 1473 if (printk_ratelimit()) { 1474 struct amdgpu_task_info task_info; 1475 1476 memset(&task_info, 0, sizeof(struct amdgpu_task_info)); 1477 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); 1478 1479 dev_err(adev->dev, "GPU fault detected: %d 0x%08x for process %s pid %d thread %s pid %d\n", 1480 entry->src_id, entry->src_data[0], task_info.process_name, 1481 task_info.tgid, task_info.task_name, task_info.pid); 1482 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", 1483 addr); 1484 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", 1485 status); 1486 gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client, 1487 entry->pasid); 1488 } 1489 1490 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 1491 VMID); 1492 if (amdgpu_amdkfd_is_kfd_vmid(adev, vmid) 1493 && !atomic_read(&adev->gmc.vm_fault_info_updated)) { 1494 struct kfd_vm_fault_info *info = adev->gmc.vm_fault_info; 1495 u32 protections = REG_GET_FIELD(status, 1496 VM_CONTEXT1_PROTECTION_FAULT_STATUS, 1497 PROTECTIONS); 1498 1499 info->vmid = vmid; 1500 info->mc_id = REG_GET_FIELD(status, 1501 VM_CONTEXT1_PROTECTION_FAULT_STATUS, 1502 MEMORY_CLIENT_ID); 1503 info->status = status; 1504 info->page_addr = addr; 1505 info->prot_valid = protections & 0x7 ? true : false; 1506 info->prot_read = protections & 0x8 ? true : false; 1507 info->prot_write = protections & 0x10 ? true : false; 1508 info->prot_exec = protections & 0x20 ? true : false; 1509 mb(); 1510 atomic_set(&adev->gmc.vm_fault_info_updated, 1); 1511 } 1512 1513 return 0; 1514 } 1515 1516 static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev, 1517 bool enable) 1518 { 1519 uint32_t data; 1520 1521 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) { 1522 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1523 data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK; 1524 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1525 1526 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1527 data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK; 1528 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1529 1530 data = RREG32(mmMC_HUB_MISC_VM_CG); 1531 data |= MC_HUB_MISC_VM_CG__ENABLE_MASK; 1532 WREG32(mmMC_HUB_MISC_VM_CG, data); 1533 1534 data = RREG32(mmMC_XPB_CLK_GAT); 1535 data |= MC_XPB_CLK_GAT__ENABLE_MASK; 1536 WREG32(mmMC_XPB_CLK_GAT, data); 1537 1538 data = RREG32(mmATC_MISC_CG); 1539 data |= ATC_MISC_CG__ENABLE_MASK; 1540 WREG32(mmATC_MISC_CG, data); 1541 1542 data = RREG32(mmMC_CITF_MISC_WR_CG); 1543 data |= MC_CITF_MISC_WR_CG__ENABLE_MASK; 1544 WREG32(mmMC_CITF_MISC_WR_CG, data); 1545 1546 data = RREG32(mmMC_CITF_MISC_RD_CG); 1547 data |= MC_CITF_MISC_RD_CG__ENABLE_MASK; 1548 WREG32(mmMC_CITF_MISC_RD_CG, data); 1549 1550 data = RREG32(mmMC_CITF_MISC_VM_CG); 1551 data |= MC_CITF_MISC_VM_CG__ENABLE_MASK; 1552 WREG32(mmMC_CITF_MISC_VM_CG, data); 1553 1554 data = RREG32(mmVM_L2_CG); 1555 data |= VM_L2_CG__ENABLE_MASK; 1556 WREG32(mmVM_L2_CG, data); 1557 } else { 1558 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1559 data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK; 1560 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1561 1562 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1563 data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK; 1564 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1565 1566 data = RREG32(mmMC_HUB_MISC_VM_CG); 1567 data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK; 1568 WREG32(mmMC_HUB_MISC_VM_CG, data); 1569 1570 data = RREG32(mmMC_XPB_CLK_GAT); 1571 data &= ~MC_XPB_CLK_GAT__ENABLE_MASK; 1572 WREG32(mmMC_XPB_CLK_GAT, data); 1573 1574 data = RREG32(mmATC_MISC_CG); 1575 data &= ~ATC_MISC_CG__ENABLE_MASK; 1576 WREG32(mmATC_MISC_CG, data); 1577 1578 data = RREG32(mmMC_CITF_MISC_WR_CG); 1579 data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK; 1580 WREG32(mmMC_CITF_MISC_WR_CG, data); 1581 1582 data = RREG32(mmMC_CITF_MISC_RD_CG); 1583 data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK; 1584 WREG32(mmMC_CITF_MISC_RD_CG, data); 1585 1586 data = RREG32(mmMC_CITF_MISC_VM_CG); 1587 data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK; 1588 WREG32(mmMC_CITF_MISC_VM_CG, data); 1589 1590 data = RREG32(mmVM_L2_CG); 1591 data &= ~VM_L2_CG__ENABLE_MASK; 1592 WREG32(mmVM_L2_CG, data); 1593 } 1594 } 1595 1596 static void fiji_update_mc_light_sleep(struct amdgpu_device *adev, 1597 bool enable) 1598 { 1599 uint32_t data; 1600 1601 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) { 1602 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1603 data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK; 1604 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1605 1606 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1607 data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK; 1608 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1609 1610 data = RREG32(mmMC_HUB_MISC_VM_CG); 1611 data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1612 WREG32(mmMC_HUB_MISC_VM_CG, data); 1613 1614 data = RREG32(mmMC_XPB_CLK_GAT); 1615 data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK; 1616 WREG32(mmMC_XPB_CLK_GAT, data); 1617 1618 data = RREG32(mmATC_MISC_CG); 1619 data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK; 1620 WREG32(mmATC_MISC_CG, data); 1621 1622 data = RREG32(mmMC_CITF_MISC_WR_CG); 1623 data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK; 1624 WREG32(mmMC_CITF_MISC_WR_CG, data); 1625 1626 data = RREG32(mmMC_CITF_MISC_RD_CG); 1627 data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK; 1628 WREG32(mmMC_CITF_MISC_RD_CG, data); 1629 1630 data = RREG32(mmMC_CITF_MISC_VM_CG); 1631 data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1632 WREG32(mmMC_CITF_MISC_VM_CG, data); 1633 1634 data = RREG32(mmVM_L2_CG); 1635 data |= VM_L2_CG__MEM_LS_ENABLE_MASK; 1636 WREG32(mmVM_L2_CG, data); 1637 } else { 1638 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1639 data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK; 1640 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1641 1642 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1643 data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK; 1644 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1645 1646 data = RREG32(mmMC_HUB_MISC_VM_CG); 1647 data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1648 WREG32(mmMC_HUB_MISC_VM_CG, data); 1649 1650 data = RREG32(mmMC_XPB_CLK_GAT); 1651 data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK; 1652 WREG32(mmMC_XPB_CLK_GAT, data); 1653 1654 data = RREG32(mmATC_MISC_CG); 1655 data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK; 1656 WREG32(mmATC_MISC_CG, data); 1657 1658 data = RREG32(mmMC_CITF_MISC_WR_CG); 1659 data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK; 1660 WREG32(mmMC_CITF_MISC_WR_CG, data); 1661 1662 data = RREG32(mmMC_CITF_MISC_RD_CG); 1663 data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK; 1664 WREG32(mmMC_CITF_MISC_RD_CG, data); 1665 1666 data = RREG32(mmMC_CITF_MISC_VM_CG); 1667 data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1668 WREG32(mmMC_CITF_MISC_VM_CG, data); 1669 1670 data = RREG32(mmVM_L2_CG); 1671 data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK; 1672 WREG32(mmVM_L2_CG, data); 1673 } 1674 } 1675 1676 static int gmc_v8_0_set_clockgating_state(void *handle, 1677 enum amd_clockgating_state state) 1678 { 1679 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1680 1681 if (amdgpu_sriov_vf(adev)) 1682 return 0; 1683 1684 switch (adev->asic_type) { 1685 case CHIP_FIJI: 1686 fiji_update_mc_medium_grain_clock_gating(adev, 1687 state == AMD_CG_STATE_GATE); 1688 fiji_update_mc_light_sleep(adev, 1689 state == AMD_CG_STATE_GATE); 1690 break; 1691 default: 1692 break; 1693 } 1694 return 0; 1695 } 1696 1697 static int gmc_v8_0_set_powergating_state(void *handle, 1698 enum amd_powergating_state state) 1699 { 1700 return 0; 1701 } 1702 1703 static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags) 1704 { 1705 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1706 int data; 1707 1708 if (amdgpu_sriov_vf(adev)) 1709 *flags = 0; 1710 1711 /* AMD_CG_SUPPORT_MC_MGCG */ 1712 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1713 if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK) 1714 *flags |= AMD_CG_SUPPORT_MC_MGCG; 1715 1716 /* AMD_CG_SUPPORT_MC_LS */ 1717 if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK) 1718 *flags |= AMD_CG_SUPPORT_MC_LS; 1719 } 1720 1721 static const struct amd_ip_funcs gmc_v8_0_ip_funcs = { 1722 .name = "gmc_v8_0", 1723 .early_init = gmc_v8_0_early_init, 1724 .late_init = gmc_v8_0_late_init, 1725 .sw_init = gmc_v8_0_sw_init, 1726 .sw_fini = gmc_v8_0_sw_fini, 1727 .hw_init = gmc_v8_0_hw_init, 1728 .hw_fini = gmc_v8_0_hw_fini, 1729 .suspend = gmc_v8_0_suspend, 1730 .resume = gmc_v8_0_resume, 1731 .is_idle = gmc_v8_0_is_idle, 1732 .wait_for_idle = gmc_v8_0_wait_for_idle, 1733 .check_soft_reset = gmc_v8_0_check_soft_reset, 1734 .pre_soft_reset = gmc_v8_0_pre_soft_reset, 1735 .soft_reset = gmc_v8_0_soft_reset, 1736 .post_soft_reset = gmc_v8_0_post_soft_reset, 1737 .set_clockgating_state = gmc_v8_0_set_clockgating_state, 1738 .set_powergating_state = gmc_v8_0_set_powergating_state, 1739 .get_clockgating_state = gmc_v8_0_get_clockgating_state, 1740 }; 1741 1742 static const struct amdgpu_gmc_funcs gmc_v8_0_gmc_funcs = { 1743 .flush_gpu_tlb = gmc_v8_0_flush_gpu_tlb, 1744 .emit_flush_gpu_tlb = gmc_v8_0_emit_flush_gpu_tlb, 1745 .emit_pasid_mapping = gmc_v8_0_emit_pasid_mapping, 1746 .set_pte_pde = gmc_v8_0_set_pte_pde, 1747 .set_prt = gmc_v8_0_set_prt, 1748 .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags, 1749 .get_vm_pde = gmc_v8_0_get_vm_pde 1750 }; 1751 1752 static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = { 1753 .set = gmc_v8_0_vm_fault_interrupt_state, 1754 .process = gmc_v8_0_process_interrupt, 1755 }; 1756 1757 static void gmc_v8_0_set_gmc_funcs(struct amdgpu_device *adev) 1758 { 1759 adev->gmc.gmc_funcs = &gmc_v8_0_gmc_funcs; 1760 } 1761 1762 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev) 1763 { 1764 adev->gmc.vm_fault.num_types = 1; 1765 adev->gmc.vm_fault.funcs = &gmc_v8_0_irq_funcs; 1766 } 1767 1768 const struct amdgpu_ip_block_version gmc_v8_0_ip_block = 1769 { 1770 .type = AMD_IP_BLOCK_TYPE_GMC, 1771 .major = 8, 1772 .minor = 0, 1773 .rev = 0, 1774 .funcs = &gmc_v8_0_ip_funcs, 1775 }; 1776 1777 const struct amdgpu_ip_block_version gmc_v8_1_ip_block = 1778 { 1779 .type = AMD_IP_BLOCK_TYPE_GMC, 1780 .major = 8, 1781 .minor = 1, 1782 .rev = 0, 1783 .funcs = &gmc_v8_0_ip_funcs, 1784 }; 1785 1786 const struct amdgpu_ip_block_version gmc_v8_5_ip_block = 1787 { 1788 .type = AMD_IP_BLOCK_TYPE_GMC, 1789 .major = 8, 1790 .minor = 5, 1791 .rev = 0, 1792 .funcs = &gmc_v8_0_ip_funcs, 1793 }; 1794