1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include <drm/drmP.h> 24 #include "amdgpu.h" 25 #include "amdgpu_pm.h" 26 #include "amdgpu_i2c.h" 27 #include "cikd.h" 28 #include "atom.h" 29 #include "amdgpu_atombios.h" 30 #include "atombios_crtc.h" 31 #include "atombios_encoders.h" 32 #include "amdgpu_pll.h" 33 #include "amdgpu_connectors.h" 34 #include "dce_v8_0.h" 35 36 #include "dce/dce_8_0_d.h" 37 #include "dce/dce_8_0_sh_mask.h" 38 39 #include "gca/gfx_7_2_enum.h" 40 41 #include "gmc/gmc_7_1_d.h" 42 #include "gmc/gmc_7_1_sh_mask.h" 43 44 #include "oss/oss_2_0_d.h" 45 #include "oss/oss_2_0_sh_mask.h" 46 47 static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev); 48 static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev); 49 50 static const u32 crtc_offsets[6] = 51 { 52 CRTC0_REGISTER_OFFSET, 53 CRTC1_REGISTER_OFFSET, 54 CRTC2_REGISTER_OFFSET, 55 CRTC3_REGISTER_OFFSET, 56 CRTC4_REGISTER_OFFSET, 57 CRTC5_REGISTER_OFFSET 58 }; 59 60 static const u32 hpd_offsets[] = 61 { 62 HPD0_REGISTER_OFFSET, 63 HPD1_REGISTER_OFFSET, 64 HPD2_REGISTER_OFFSET, 65 HPD3_REGISTER_OFFSET, 66 HPD4_REGISTER_OFFSET, 67 HPD5_REGISTER_OFFSET 68 }; 69 70 static const uint32_t dig_offsets[] = { 71 CRTC0_REGISTER_OFFSET, 72 CRTC1_REGISTER_OFFSET, 73 CRTC2_REGISTER_OFFSET, 74 CRTC3_REGISTER_OFFSET, 75 CRTC4_REGISTER_OFFSET, 76 CRTC5_REGISTER_OFFSET, 77 (0x13830 - 0x7030) >> 2, 78 }; 79 80 static const struct { 81 uint32_t reg; 82 uint32_t vblank; 83 uint32_t vline; 84 uint32_t hpd; 85 86 } interrupt_status_offsets[6] = { { 87 .reg = mmDISP_INTERRUPT_STATUS, 88 .vblank = DISP_INTERRUPT_STATUS__LB_D1_VBLANK_INTERRUPT_MASK, 89 .vline = DISP_INTERRUPT_STATUS__LB_D1_VLINE_INTERRUPT_MASK, 90 .hpd = DISP_INTERRUPT_STATUS__DC_HPD1_INTERRUPT_MASK 91 }, { 92 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE, 93 .vblank = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VBLANK_INTERRUPT_MASK, 94 .vline = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VLINE_INTERRUPT_MASK, 95 .hpd = DISP_INTERRUPT_STATUS_CONTINUE__DC_HPD2_INTERRUPT_MASK 96 }, { 97 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE2, 98 .vblank = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VBLANK_INTERRUPT_MASK, 99 .vline = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VLINE_INTERRUPT_MASK, 100 .hpd = DISP_INTERRUPT_STATUS_CONTINUE2__DC_HPD3_INTERRUPT_MASK 101 }, { 102 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE3, 103 .vblank = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VBLANK_INTERRUPT_MASK, 104 .vline = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VLINE_INTERRUPT_MASK, 105 .hpd = DISP_INTERRUPT_STATUS_CONTINUE3__DC_HPD4_INTERRUPT_MASK 106 }, { 107 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE4, 108 .vblank = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VBLANK_INTERRUPT_MASK, 109 .vline = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VLINE_INTERRUPT_MASK, 110 .hpd = DISP_INTERRUPT_STATUS_CONTINUE4__DC_HPD5_INTERRUPT_MASK 111 }, { 112 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE5, 113 .vblank = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VBLANK_INTERRUPT_MASK, 114 .vline = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VLINE_INTERRUPT_MASK, 115 .hpd = DISP_INTERRUPT_STATUS_CONTINUE5__DC_HPD6_INTERRUPT_MASK 116 } }; 117 118 static u32 dce_v8_0_audio_endpt_rreg(struct amdgpu_device *adev, 119 u32 block_offset, u32 reg) 120 { 121 unsigned long flags; 122 u32 r; 123 124 spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags); 125 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg); 126 r = RREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset); 127 spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags); 128 129 return r; 130 } 131 132 static void dce_v8_0_audio_endpt_wreg(struct amdgpu_device *adev, 133 u32 block_offset, u32 reg, u32 v) 134 { 135 unsigned long flags; 136 137 spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags); 138 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg); 139 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset, v); 140 spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags); 141 } 142 143 static u32 dce_v8_0_vblank_get_counter(struct amdgpu_device *adev, int crtc) 144 { 145 if (crtc >= adev->mode_info.num_crtc) 146 return 0; 147 else 148 return RREG32(mmCRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]); 149 } 150 151 static void dce_v8_0_pageflip_interrupt_init(struct amdgpu_device *adev) 152 { 153 unsigned i; 154 155 /* Enable pflip interrupts */ 156 for (i = 0; i < adev->mode_info.num_crtc; i++) 157 amdgpu_irq_get(adev, &adev->pageflip_irq, i); 158 } 159 160 static void dce_v8_0_pageflip_interrupt_fini(struct amdgpu_device *adev) 161 { 162 unsigned i; 163 164 /* Disable pflip interrupts */ 165 for (i = 0; i < adev->mode_info.num_crtc; i++) 166 amdgpu_irq_put(adev, &adev->pageflip_irq, i); 167 } 168 169 /** 170 * dce_v8_0_page_flip - pageflip callback. 171 * 172 * @adev: amdgpu_device pointer 173 * @crtc_id: crtc to cleanup pageflip on 174 * @crtc_base: new address of the crtc (GPU MC address) 175 * 176 * Triggers the actual pageflip by updating the primary 177 * surface base address. 178 */ 179 static void dce_v8_0_page_flip(struct amdgpu_device *adev, 180 int crtc_id, u64 crtc_base, bool async) 181 { 182 struct amdgpu_crtc *amdgpu_crtc = adev->mode_info.crtcs[crtc_id]; 183 184 /* flip at hsync for async, default is vsync */ 185 WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, async ? 186 GRPH_FLIP_CONTROL__GRPH_SURFACE_UPDATE_H_RETRACE_EN_MASK : 0); 187 /* update the primary scanout addresses */ 188 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 189 upper_32_bits(crtc_base)); 190 /* writing to the low address triggers the update */ 191 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 192 lower_32_bits(crtc_base)); 193 /* post the write */ 194 RREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset); 195 } 196 197 static int dce_v8_0_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc, 198 u32 *vbl, u32 *position) 199 { 200 if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc)) 201 return -EINVAL; 202 203 *vbl = RREG32(mmCRTC_V_BLANK_START_END + crtc_offsets[crtc]); 204 *position = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]); 205 206 return 0; 207 } 208 209 /** 210 * dce_v8_0_hpd_sense - hpd sense callback. 211 * 212 * @adev: amdgpu_device pointer 213 * @hpd: hpd (hotplug detect) pin 214 * 215 * Checks if a digital monitor is connected (evergreen+). 216 * Returns true if connected, false if not connected. 217 */ 218 static bool dce_v8_0_hpd_sense(struct amdgpu_device *adev, 219 enum amdgpu_hpd_id hpd) 220 { 221 bool connected = false; 222 223 if (hpd >= adev->mode_info.num_hpd) 224 return connected; 225 226 if (RREG32(mmDC_HPD1_INT_STATUS + hpd_offsets[hpd]) & 227 DC_HPD1_INT_STATUS__DC_HPD1_SENSE_MASK) 228 connected = true; 229 230 return connected; 231 } 232 233 /** 234 * dce_v8_0_hpd_set_polarity - hpd set polarity callback. 235 * 236 * @adev: amdgpu_device pointer 237 * @hpd: hpd (hotplug detect) pin 238 * 239 * Set the polarity of the hpd pin (evergreen+). 240 */ 241 static void dce_v8_0_hpd_set_polarity(struct amdgpu_device *adev, 242 enum amdgpu_hpd_id hpd) 243 { 244 u32 tmp; 245 bool connected = dce_v8_0_hpd_sense(adev, hpd); 246 247 if (hpd >= adev->mode_info.num_hpd) 248 return; 249 250 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]); 251 if (connected) 252 tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK; 253 else 254 tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK; 255 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp); 256 } 257 258 /** 259 * dce_v8_0_hpd_init - hpd setup callback. 260 * 261 * @adev: amdgpu_device pointer 262 * 263 * Setup the hpd pins used by the card (evergreen+). 264 * Enable the pin, set the polarity, and enable the hpd interrupts. 265 */ 266 static void dce_v8_0_hpd_init(struct amdgpu_device *adev) 267 { 268 struct drm_device *dev = adev->ddev; 269 struct drm_connector *connector; 270 u32 tmp; 271 272 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 273 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 274 275 if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd) 276 continue; 277 278 tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); 279 tmp |= DC_HPD1_CONTROL__DC_HPD1_EN_MASK; 280 WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp); 281 282 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP || 283 connector->connector_type == DRM_MODE_CONNECTOR_LVDS) { 284 /* don't try to enable hpd on eDP or LVDS avoid breaking the 285 * aux dp channel on imac and help (but not completely fix) 286 * https://bugzilla.redhat.com/show_bug.cgi?id=726143 287 * also avoid interrupt storms during dpms. 288 */ 289 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); 290 tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; 291 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp); 292 continue; 293 } 294 295 dce_v8_0_hpd_set_polarity(adev, amdgpu_connector->hpd.hpd); 296 amdgpu_irq_get(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd); 297 } 298 } 299 300 /** 301 * dce_v8_0_hpd_fini - hpd tear down callback. 302 * 303 * @adev: amdgpu_device pointer 304 * 305 * Tear down the hpd pins used by the card (evergreen+). 306 * Disable the hpd interrupts. 307 */ 308 static void dce_v8_0_hpd_fini(struct amdgpu_device *adev) 309 { 310 struct drm_device *dev = adev->ddev; 311 struct drm_connector *connector; 312 u32 tmp; 313 314 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 315 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 316 317 if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd) 318 continue; 319 320 tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); 321 tmp &= ~DC_HPD1_CONTROL__DC_HPD1_EN_MASK; 322 WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], 0); 323 324 amdgpu_irq_put(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd); 325 } 326 } 327 328 static u32 dce_v8_0_hpd_get_gpio_reg(struct amdgpu_device *adev) 329 { 330 return mmDC_GPIO_HPD_A; 331 } 332 333 static bool dce_v8_0_is_display_hung(struct amdgpu_device *adev) 334 { 335 u32 crtc_hung = 0; 336 u32 crtc_status[6]; 337 u32 i, j, tmp; 338 339 for (i = 0; i < adev->mode_info.num_crtc; i++) { 340 if (RREG32(mmCRTC_CONTROL + crtc_offsets[i]) & CRTC_CONTROL__CRTC_MASTER_EN_MASK) { 341 crtc_status[i] = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]); 342 crtc_hung |= (1 << i); 343 } 344 } 345 346 for (j = 0; j < 10; j++) { 347 for (i = 0; i < adev->mode_info.num_crtc; i++) { 348 if (crtc_hung & (1 << i)) { 349 tmp = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]); 350 if (tmp != crtc_status[i]) 351 crtc_hung &= ~(1 << i); 352 } 353 } 354 if (crtc_hung == 0) 355 return false; 356 udelay(100); 357 } 358 359 return true; 360 } 361 362 static void dce_v8_0_set_vga_render_state(struct amdgpu_device *adev, 363 bool render) 364 { 365 u32 tmp; 366 367 /* Lockout access through VGA aperture*/ 368 tmp = RREG32(mmVGA_HDP_CONTROL); 369 if (render) 370 tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 0); 371 else 372 tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1); 373 WREG32(mmVGA_HDP_CONTROL, tmp); 374 375 /* disable VGA render */ 376 tmp = RREG32(mmVGA_RENDER_CONTROL); 377 if (render) 378 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 1); 379 else 380 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0); 381 WREG32(mmVGA_RENDER_CONTROL, tmp); 382 } 383 384 static int dce_v8_0_get_num_crtc(struct amdgpu_device *adev) 385 { 386 int num_crtc = 0; 387 388 switch (adev->asic_type) { 389 case CHIP_BONAIRE: 390 case CHIP_HAWAII: 391 num_crtc = 6; 392 break; 393 case CHIP_KAVERI: 394 num_crtc = 4; 395 break; 396 case CHIP_KABINI: 397 case CHIP_MULLINS: 398 num_crtc = 2; 399 break; 400 default: 401 num_crtc = 0; 402 } 403 return num_crtc; 404 } 405 406 void dce_v8_0_disable_dce(struct amdgpu_device *adev) 407 { 408 /*Disable VGA render and enabled crtc, if has DCE engine*/ 409 if (amdgpu_atombios_has_dce_engine_info(adev)) { 410 u32 tmp; 411 int crtc_enabled, i; 412 413 dce_v8_0_set_vga_render_state(adev, false); 414 415 /*Disable crtc*/ 416 for (i = 0; i < dce_v8_0_get_num_crtc(adev); i++) { 417 crtc_enabled = REG_GET_FIELD(RREG32(mmCRTC_CONTROL + crtc_offsets[i]), 418 CRTC_CONTROL, CRTC_MASTER_EN); 419 if (crtc_enabled) { 420 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1); 421 tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]); 422 tmp = REG_SET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN, 0); 423 WREG32(mmCRTC_CONTROL + crtc_offsets[i], tmp); 424 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0); 425 } 426 } 427 } 428 } 429 430 static void dce_v8_0_program_fmt(struct drm_encoder *encoder) 431 { 432 struct drm_device *dev = encoder->dev; 433 struct amdgpu_device *adev = dev->dev_private; 434 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 435 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); 436 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); 437 int bpc = 0; 438 u32 tmp = 0; 439 enum amdgpu_connector_dither dither = AMDGPU_FMT_DITHER_DISABLE; 440 441 if (connector) { 442 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 443 bpc = amdgpu_connector_get_monitor_bpc(connector); 444 dither = amdgpu_connector->dither; 445 } 446 447 /* LVDS/eDP FMT is set up by atom */ 448 if (amdgpu_encoder->devices & ATOM_DEVICE_LCD_SUPPORT) 449 return; 450 451 /* not needed for analog */ 452 if ((amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) || 453 (amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2)) 454 return; 455 456 if (bpc == 0) 457 return; 458 459 switch (bpc) { 460 case 6: 461 if (dither == AMDGPU_FMT_DITHER_ENABLE) 462 /* XXX sort out optimal dither settings */ 463 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | 464 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | 465 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | 466 (0 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); 467 else 468 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | 469 (0 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); 470 break; 471 case 8: 472 if (dither == AMDGPU_FMT_DITHER_ENABLE) 473 /* XXX sort out optimal dither settings */ 474 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | 475 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | 476 FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK | 477 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | 478 (1 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); 479 else 480 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | 481 (1 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); 482 break; 483 case 10: 484 if (dither == AMDGPU_FMT_DITHER_ENABLE) 485 /* XXX sort out optimal dither settings */ 486 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | 487 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | 488 FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK | 489 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | 490 (2 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); 491 else 492 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | 493 (2 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); 494 break; 495 default: 496 /* not needed */ 497 break; 498 } 499 500 WREG32(mmFMT_BIT_DEPTH_CONTROL + amdgpu_crtc->crtc_offset, tmp); 501 } 502 503 504 /* display watermark setup */ 505 /** 506 * dce_v8_0_line_buffer_adjust - Set up the line buffer 507 * 508 * @adev: amdgpu_device pointer 509 * @amdgpu_crtc: the selected display controller 510 * @mode: the current display mode on the selected display 511 * controller 512 * 513 * Setup up the line buffer allocation for 514 * the selected display controller (CIK). 515 * Returns the line buffer size in pixels. 516 */ 517 static u32 dce_v8_0_line_buffer_adjust(struct amdgpu_device *adev, 518 struct amdgpu_crtc *amdgpu_crtc, 519 struct drm_display_mode *mode) 520 { 521 u32 tmp, buffer_alloc, i; 522 u32 pipe_offset = amdgpu_crtc->crtc_id * 0x8; 523 /* 524 * Line Buffer Setup 525 * There are 6 line buffers, one for each display controllers. 526 * There are 3 partitions per LB. Select the number of partitions 527 * to enable based on the display width. For display widths larger 528 * than 4096, you need use to use 2 display controllers and combine 529 * them using the stereo blender. 530 */ 531 if (amdgpu_crtc->base.enabled && mode) { 532 if (mode->crtc_hdisplay < 1920) { 533 tmp = 1; 534 buffer_alloc = 2; 535 } else if (mode->crtc_hdisplay < 2560) { 536 tmp = 2; 537 buffer_alloc = 2; 538 } else if (mode->crtc_hdisplay < 4096) { 539 tmp = 0; 540 buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4; 541 } else { 542 DRM_DEBUG_KMS("Mode too big for LB!\n"); 543 tmp = 0; 544 buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4; 545 } 546 } else { 547 tmp = 1; 548 buffer_alloc = 0; 549 } 550 551 WREG32(mmLB_MEMORY_CTRL + amdgpu_crtc->crtc_offset, 552 (tmp << LB_MEMORY_CTRL__LB_MEMORY_CONFIG__SHIFT) | 553 (0x6B0 << LB_MEMORY_CTRL__LB_MEMORY_SIZE__SHIFT)); 554 555 WREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset, 556 (buffer_alloc << PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATED__SHIFT)); 557 for (i = 0; i < adev->usec_timeout; i++) { 558 if (RREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset) & 559 PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATION_COMPLETED_MASK) 560 break; 561 udelay(1); 562 } 563 564 if (amdgpu_crtc->base.enabled && mode) { 565 switch (tmp) { 566 case 0: 567 default: 568 return 4096 * 2; 569 case 1: 570 return 1920 * 2; 571 case 2: 572 return 2560 * 2; 573 } 574 } 575 576 /* controller not enabled, so no lb used */ 577 return 0; 578 } 579 580 /** 581 * cik_get_number_of_dram_channels - get the number of dram channels 582 * 583 * @adev: amdgpu_device pointer 584 * 585 * Look up the number of video ram channels (CIK). 586 * Used for display watermark bandwidth calculations 587 * Returns the number of dram channels 588 */ 589 static u32 cik_get_number_of_dram_channels(struct amdgpu_device *adev) 590 { 591 u32 tmp = RREG32(mmMC_SHARED_CHMAP); 592 593 switch ((tmp & MC_SHARED_CHMAP__NOOFCHAN_MASK) >> MC_SHARED_CHMAP__NOOFCHAN__SHIFT) { 594 case 0: 595 default: 596 return 1; 597 case 1: 598 return 2; 599 case 2: 600 return 4; 601 case 3: 602 return 8; 603 case 4: 604 return 3; 605 case 5: 606 return 6; 607 case 6: 608 return 10; 609 case 7: 610 return 12; 611 case 8: 612 return 16; 613 } 614 } 615 616 struct dce8_wm_params { 617 u32 dram_channels; /* number of dram channels */ 618 u32 yclk; /* bandwidth per dram data pin in kHz */ 619 u32 sclk; /* engine clock in kHz */ 620 u32 disp_clk; /* display clock in kHz */ 621 u32 src_width; /* viewport width */ 622 u32 active_time; /* active display time in ns */ 623 u32 blank_time; /* blank time in ns */ 624 bool interlaced; /* mode is interlaced */ 625 fixed20_12 vsc; /* vertical scale ratio */ 626 u32 num_heads; /* number of active crtcs */ 627 u32 bytes_per_pixel; /* bytes per pixel display + overlay */ 628 u32 lb_size; /* line buffer allocated to pipe */ 629 u32 vtaps; /* vertical scaler taps */ 630 }; 631 632 /** 633 * dce_v8_0_dram_bandwidth - get the dram bandwidth 634 * 635 * @wm: watermark calculation data 636 * 637 * Calculate the raw dram bandwidth (CIK). 638 * Used for display watermark bandwidth calculations 639 * Returns the dram bandwidth in MBytes/s 640 */ 641 static u32 dce_v8_0_dram_bandwidth(struct dce8_wm_params *wm) 642 { 643 /* Calculate raw DRAM Bandwidth */ 644 fixed20_12 dram_efficiency; /* 0.7 */ 645 fixed20_12 yclk, dram_channels, bandwidth; 646 fixed20_12 a; 647 648 a.full = dfixed_const(1000); 649 yclk.full = dfixed_const(wm->yclk); 650 yclk.full = dfixed_div(yclk, a); 651 dram_channels.full = dfixed_const(wm->dram_channels * 4); 652 a.full = dfixed_const(10); 653 dram_efficiency.full = dfixed_const(7); 654 dram_efficiency.full = dfixed_div(dram_efficiency, a); 655 bandwidth.full = dfixed_mul(dram_channels, yclk); 656 bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); 657 658 return dfixed_trunc(bandwidth); 659 } 660 661 /** 662 * dce_v8_0_dram_bandwidth_for_display - get the dram bandwidth for display 663 * 664 * @wm: watermark calculation data 665 * 666 * Calculate the dram bandwidth used for display (CIK). 667 * Used for display watermark bandwidth calculations 668 * Returns the dram bandwidth for display in MBytes/s 669 */ 670 static u32 dce_v8_0_dram_bandwidth_for_display(struct dce8_wm_params *wm) 671 { 672 /* Calculate DRAM Bandwidth and the part allocated to display. */ 673 fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ 674 fixed20_12 yclk, dram_channels, bandwidth; 675 fixed20_12 a; 676 677 a.full = dfixed_const(1000); 678 yclk.full = dfixed_const(wm->yclk); 679 yclk.full = dfixed_div(yclk, a); 680 dram_channels.full = dfixed_const(wm->dram_channels * 4); 681 a.full = dfixed_const(10); 682 disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ 683 disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); 684 bandwidth.full = dfixed_mul(dram_channels, yclk); 685 bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); 686 687 return dfixed_trunc(bandwidth); 688 } 689 690 /** 691 * dce_v8_0_data_return_bandwidth - get the data return bandwidth 692 * 693 * @wm: watermark calculation data 694 * 695 * Calculate the data return bandwidth used for display (CIK). 696 * Used for display watermark bandwidth calculations 697 * Returns the data return bandwidth in MBytes/s 698 */ 699 static u32 dce_v8_0_data_return_bandwidth(struct dce8_wm_params *wm) 700 { 701 /* Calculate the display Data return Bandwidth */ 702 fixed20_12 return_efficiency; /* 0.8 */ 703 fixed20_12 sclk, bandwidth; 704 fixed20_12 a; 705 706 a.full = dfixed_const(1000); 707 sclk.full = dfixed_const(wm->sclk); 708 sclk.full = dfixed_div(sclk, a); 709 a.full = dfixed_const(10); 710 return_efficiency.full = dfixed_const(8); 711 return_efficiency.full = dfixed_div(return_efficiency, a); 712 a.full = dfixed_const(32); 713 bandwidth.full = dfixed_mul(a, sclk); 714 bandwidth.full = dfixed_mul(bandwidth, return_efficiency); 715 716 return dfixed_trunc(bandwidth); 717 } 718 719 /** 720 * dce_v8_0_dmif_request_bandwidth - get the dmif bandwidth 721 * 722 * @wm: watermark calculation data 723 * 724 * Calculate the dmif bandwidth used for display (CIK). 725 * Used for display watermark bandwidth calculations 726 * Returns the dmif bandwidth in MBytes/s 727 */ 728 static u32 dce_v8_0_dmif_request_bandwidth(struct dce8_wm_params *wm) 729 { 730 /* Calculate the DMIF Request Bandwidth */ 731 fixed20_12 disp_clk_request_efficiency; /* 0.8 */ 732 fixed20_12 disp_clk, bandwidth; 733 fixed20_12 a, b; 734 735 a.full = dfixed_const(1000); 736 disp_clk.full = dfixed_const(wm->disp_clk); 737 disp_clk.full = dfixed_div(disp_clk, a); 738 a.full = dfixed_const(32); 739 b.full = dfixed_mul(a, disp_clk); 740 741 a.full = dfixed_const(10); 742 disp_clk_request_efficiency.full = dfixed_const(8); 743 disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); 744 745 bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency); 746 747 return dfixed_trunc(bandwidth); 748 } 749 750 /** 751 * dce_v8_0_available_bandwidth - get the min available bandwidth 752 * 753 * @wm: watermark calculation data 754 * 755 * Calculate the min available bandwidth used for display (CIK). 756 * Used for display watermark bandwidth calculations 757 * Returns the min available bandwidth in MBytes/s 758 */ 759 static u32 dce_v8_0_available_bandwidth(struct dce8_wm_params *wm) 760 { 761 /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ 762 u32 dram_bandwidth = dce_v8_0_dram_bandwidth(wm); 763 u32 data_return_bandwidth = dce_v8_0_data_return_bandwidth(wm); 764 u32 dmif_req_bandwidth = dce_v8_0_dmif_request_bandwidth(wm); 765 766 return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); 767 } 768 769 /** 770 * dce_v8_0_average_bandwidth - get the average available bandwidth 771 * 772 * @wm: watermark calculation data 773 * 774 * Calculate the average available bandwidth used for display (CIK). 775 * Used for display watermark bandwidth calculations 776 * Returns the average available bandwidth in MBytes/s 777 */ 778 static u32 dce_v8_0_average_bandwidth(struct dce8_wm_params *wm) 779 { 780 /* Calculate the display mode Average Bandwidth 781 * DisplayMode should contain the source and destination dimensions, 782 * timing, etc. 783 */ 784 fixed20_12 bpp; 785 fixed20_12 line_time; 786 fixed20_12 src_width; 787 fixed20_12 bandwidth; 788 fixed20_12 a; 789 790 a.full = dfixed_const(1000); 791 line_time.full = dfixed_const(wm->active_time + wm->blank_time); 792 line_time.full = dfixed_div(line_time, a); 793 bpp.full = dfixed_const(wm->bytes_per_pixel); 794 src_width.full = dfixed_const(wm->src_width); 795 bandwidth.full = dfixed_mul(src_width, bpp); 796 bandwidth.full = dfixed_mul(bandwidth, wm->vsc); 797 bandwidth.full = dfixed_div(bandwidth, line_time); 798 799 return dfixed_trunc(bandwidth); 800 } 801 802 /** 803 * dce_v8_0_latency_watermark - get the latency watermark 804 * 805 * @wm: watermark calculation data 806 * 807 * Calculate the latency watermark (CIK). 808 * Used for display watermark bandwidth calculations 809 * Returns the latency watermark in ns 810 */ 811 static u32 dce_v8_0_latency_watermark(struct dce8_wm_params *wm) 812 { 813 /* First calculate the latency in ns */ 814 u32 mc_latency = 2000; /* 2000 ns. */ 815 u32 available_bandwidth = dce_v8_0_available_bandwidth(wm); 816 u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; 817 u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; 818 u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ 819 u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + 820 (wm->num_heads * cursor_line_pair_return_time); 821 u32 latency = mc_latency + other_heads_data_return_time + dc_latency; 822 u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; 823 u32 tmp, dmif_size = 12288; 824 fixed20_12 a, b, c; 825 826 if (wm->num_heads == 0) 827 return 0; 828 829 a.full = dfixed_const(2); 830 b.full = dfixed_const(1); 831 if ((wm->vsc.full > a.full) || 832 ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || 833 (wm->vtaps >= 5) || 834 ((wm->vsc.full >= a.full) && wm->interlaced)) 835 max_src_lines_per_dst_line = 4; 836 else 837 max_src_lines_per_dst_line = 2; 838 839 a.full = dfixed_const(available_bandwidth); 840 b.full = dfixed_const(wm->num_heads); 841 a.full = dfixed_div(a, b); 842 tmp = div_u64((u64) dmif_size * (u64) wm->disp_clk, mc_latency + 512); 843 tmp = min(dfixed_trunc(a), tmp); 844 845 lb_fill_bw = min(tmp, wm->disp_clk * wm->bytes_per_pixel / 1000); 846 847 a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); 848 b.full = dfixed_const(1000); 849 c.full = dfixed_const(lb_fill_bw); 850 b.full = dfixed_div(c, b); 851 a.full = dfixed_div(a, b); 852 line_fill_time = dfixed_trunc(a); 853 854 if (line_fill_time < wm->active_time) 855 return latency; 856 else 857 return latency + (line_fill_time - wm->active_time); 858 859 } 860 861 /** 862 * dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display - check 863 * average and available dram bandwidth 864 * 865 * @wm: watermark calculation data 866 * 867 * Check if the display average bandwidth fits in the display 868 * dram bandwidth (CIK). 869 * Used for display watermark bandwidth calculations 870 * Returns true if the display fits, false if not. 871 */ 872 static bool dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm) 873 { 874 if (dce_v8_0_average_bandwidth(wm) <= 875 (dce_v8_0_dram_bandwidth_for_display(wm) / wm->num_heads)) 876 return true; 877 else 878 return false; 879 } 880 881 /** 882 * dce_v8_0_average_bandwidth_vs_available_bandwidth - check 883 * average and available bandwidth 884 * 885 * @wm: watermark calculation data 886 * 887 * Check if the display average bandwidth fits in the display 888 * available bandwidth (CIK). 889 * Used for display watermark bandwidth calculations 890 * Returns true if the display fits, false if not. 891 */ 892 static bool dce_v8_0_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm) 893 { 894 if (dce_v8_0_average_bandwidth(wm) <= 895 (dce_v8_0_available_bandwidth(wm) / wm->num_heads)) 896 return true; 897 else 898 return false; 899 } 900 901 /** 902 * dce_v8_0_check_latency_hiding - check latency hiding 903 * 904 * @wm: watermark calculation data 905 * 906 * Check latency hiding (CIK). 907 * Used for display watermark bandwidth calculations 908 * Returns true if the display fits, false if not. 909 */ 910 static bool dce_v8_0_check_latency_hiding(struct dce8_wm_params *wm) 911 { 912 u32 lb_partitions = wm->lb_size / wm->src_width; 913 u32 line_time = wm->active_time + wm->blank_time; 914 u32 latency_tolerant_lines; 915 u32 latency_hiding; 916 fixed20_12 a; 917 918 a.full = dfixed_const(1); 919 if (wm->vsc.full > a.full) 920 latency_tolerant_lines = 1; 921 else { 922 if (lb_partitions <= (wm->vtaps + 1)) 923 latency_tolerant_lines = 1; 924 else 925 latency_tolerant_lines = 2; 926 } 927 928 latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); 929 930 if (dce_v8_0_latency_watermark(wm) <= latency_hiding) 931 return true; 932 else 933 return false; 934 } 935 936 /** 937 * dce_v8_0_program_watermarks - program display watermarks 938 * 939 * @adev: amdgpu_device pointer 940 * @amdgpu_crtc: the selected display controller 941 * @lb_size: line buffer size 942 * @num_heads: number of display controllers in use 943 * 944 * Calculate and program the display watermarks for the 945 * selected display controller (CIK). 946 */ 947 static void dce_v8_0_program_watermarks(struct amdgpu_device *adev, 948 struct amdgpu_crtc *amdgpu_crtc, 949 u32 lb_size, u32 num_heads) 950 { 951 struct drm_display_mode *mode = &amdgpu_crtc->base.mode; 952 struct dce8_wm_params wm_low, wm_high; 953 u32 active_time; 954 u32 line_time = 0; 955 u32 latency_watermark_a = 0, latency_watermark_b = 0; 956 u32 tmp, wm_mask, lb_vblank_lead_lines = 0; 957 958 if (amdgpu_crtc->base.enabled && num_heads && mode) { 959 active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000, 960 (u32)mode->clock); 961 line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000, 962 (u32)mode->clock); 963 line_time = min(line_time, (u32)65535); 964 965 /* watermark for high clocks */ 966 if (adev->pm.dpm_enabled) { 967 wm_high.yclk = 968 amdgpu_dpm_get_mclk(adev, false) * 10; 969 wm_high.sclk = 970 amdgpu_dpm_get_sclk(adev, false) * 10; 971 } else { 972 wm_high.yclk = adev->pm.current_mclk * 10; 973 wm_high.sclk = adev->pm.current_sclk * 10; 974 } 975 976 wm_high.disp_clk = mode->clock; 977 wm_high.src_width = mode->crtc_hdisplay; 978 wm_high.active_time = active_time; 979 wm_high.blank_time = line_time - wm_high.active_time; 980 wm_high.interlaced = false; 981 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 982 wm_high.interlaced = true; 983 wm_high.vsc = amdgpu_crtc->vsc; 984 wm_high.vtaps = 1; 985 if (amdgpu_crtc->rmx_type != RMX_OFF) 986 wm_high.vtaps = 2; 987 wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */ 988 wm_high.lb_size = lb_size; 989 wm_high.dram_channels = cik_get_number_of_dram_channels(adev); 990 wm_high.num_heads = num_heads; 991 992 /* set for high clocks */ 993 latency_watermark_a = min(dce_v8_0_latency_watermark(&wm_high), (u32)65535); 994 995 /* possibly force display priority to high */ 996 /* should really do this at mode validation time... */ 997 if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) || 998 !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_high) || 999 !dce_v8_0_check_latency_hiding(&wm_high) || 1000 (adev->mode_info.disp_priority == 2)) { 1001 DRM_DEBUG_KMS("force priority to high\n"); 1002 } 1003 1004 /* watermark for low clocks */ 1005 if (adev->pm.dpm_enabled) { 1006 wm_low.yclk = 1007 amdgpu_dpm_get_mclk(adev, true) * 10; 1008 wm_low.sclk = 1009 amdgpu_dpm_get_sclk(adev, true) * 10; 1010 } else { 1011 wm_low.yclk = adev->pm.current_mclk * 10; 1012 wm_low.sclk = adev->pm.current_sclk * 10; 1013 } 1014 1015 wm_low.disp_clk = mode->clock; 1016 wm_low.src_width = mode->crtc_hdisplay; 1017 wm_low.active_time = active_time; 1018 wm_low.blank_time = line_time - wm_low.active_time; 1019 wm_low.interlaced = false; 1020 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1021 wm_low.interlaced = true; 1022 wm_low.vsc = amdgpu_crtc->vsc; 1023 wm_low.vtaps = 1; 1024 if (amdgpu_crtc->rmx_type != RMX_OFF) 1025 wm_low.vtaps = 2; 1026 wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */ 1027 wm_low.lb_size = lb_size; 1028 wm_low.dram_channels = cik_get_number_of_dram_channels(adev); 1029 wm_low.num_heads = num_heads; 1030 1031 /* set for low clocks */ 1032 latency_watermark_b = min(dce_v8_0_latency_watermark(&wm_low), (u32)65535); 1033 1034 /* possibly force display priority to high */ 1035 /* should really do this at mode validation time... */ 1036 if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) || 1037 !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_low) || 1038 !dce_v8_0_check_latency_hiding(&wm_low) || 1039 (adev->mode_info.disp_priority == 2)) { 1040 DRM_DEBUG_KMS("force priority to high\n"); 1041 } 1042 lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay); 1043 } 1044 1045 /* select wm A */ 1046 wm_mask = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset); 1047 tmp = wm_mask; 1048 tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1049 tmp |= (1 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1050 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp); 1051 WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, 1052 ((latency_watermark_a << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) | 1053 (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT))); 1054 /* select wm B */ 1055 tmp = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset); 1056 tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1057 tmp |= (2 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1058 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp); 1059 WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, 1060 ((latency_watermark_b << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) | 1061 (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT))); 1062 /* restore original selection */ 1063 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, wm_mask); 1064 1065 /* save values for DPM */ 1066 amdgpu_crtc->line_time = line_time; 1067 amdgpu_crtc->wm_high = latency_watermark_a; 1068 amdgpu_crtc->wm_low = latency_watermark_b; 1069 /* Save number of lines the linebuffer leads before the scanout */ 1070 amdgpu_crtc->lb_vblank_lead_lines = lb_vblank_lead_lines; 1071 } 1072 1073 /** 1074 * dce_v8_0_bandwidth_update - program display watermarks 1075 * 1076 * @adev: amdgpu_device pointer 1077 * 1078 * Calculate and program the display watermarks and line 1079 * buffer allocation (CIK). 1080 */ 1081 static void dce_v8_0_bandwidth_update(struct amdgpu_device *adev) 1082 { 1083 struct drm_display_mode *mode = NULL; 1084 u32 num_heads = 0, lb_size; 1085 int i; 1086 1087 amdgpu_display_update_priority(adev); 1088 1089 for (i = 0; i < adev->mode_info.num_crtc; i++) { 1090 if (adev->mode_info.crtcs[i]->base.enabled) 1091 num_heads++; 1092 } 1093 for (i = 0; i < adev->mode_info.num_crtc; i++) { 1094 mode = &adev->mode_info.crtcs[i]->base.mode; 1095 lb_size = dce_v8_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i], mode); 1096 dce_v8_0_program_watermarks(adev, adev->mode_info.crtcs[i], 1097 lb_size, num_heads); 1098 } 1099 } 1100 1101 static void dce_v8_0_audio_get_connected_pins(struct amdgpu_device *adev) 1102 { 1103 int i; 1104 u32 offset, tmp; 1105 1106 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 1107 offset = adev->mode_info.audio.pin[i].offset; 1108 tmp = RREG32_AUDIO_ENDPT(offset, 1109 ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT); 1110 if (((tmp & 1111 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY_MASK) >> 1112 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY__SHIFT) == 1) 1113 adev->mode_info.audio.pin[i].connected = false; 1114 else 1115 adev->mode_info.audio.pin[i].connected = true; 1116 } 1117 } 1118 1119 static struct amdgpu_audio_pin *dce_v8_0_audio_get_pin(struct amdgpu_device *adev) 1120 { 1121 int i; 1122 1123 dce_v8_0_audio_get_connected_pins(adev); 1124 1125 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 1126 if (adev->mode_info.audio.pin[i].connected) 1127 return &adev->mode_info.audio.pin[i]; 1128 } 1129 DRM_ERROR("No connected audio pins found!\n"); 1130 return NULL; 1131 } 1132 1133 static void dce_v8_0_afmt_audio_select_pin(struct drm_encoder *encoder) 1134 { 1135 struct amdgpu_device *adev = encoder->dev->dev_private; 1136 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1137 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1138 u32 offset; 1139 1140 if (!dig || !dig->afmt || !dig->afmt->pin) 1141 return; 1142 1143 offset = dig->afmt->offset; 1144 1145 WREG32(mmAFMT_AUDIO_SRC_CONTROL + offset, 1146 (dig->afmt->pin->id << AFMT_AUDIO_SRC_CONTROL__AFMT_AUDIO_SRC_SELECT__SHIFT)); 1147 } 1148 1149 static void dce_v8_0_audio_write_latency_fields(struct drm_encoder *encoder, 1150 struct drm_display_mode *mode) 1151 { 1152 struct amdgpu_device *adev = encoder->dev->dev_private; 1153 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1154 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1155 struct drm_connector *connector; 1156 struct amdgpu_connector *amdgpu_connector = NULL; 1157 u32 tmp = 0, offset; 1158 1159 if (!dig || !dig->afmt || !dig->afmt->pin) 1160 return; 1161 1162 offset = dig->afmt->pin->offset; 1163 1164 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) { 1165 if (connector->encoder == encoder) { 1166 amdgpu_connector = to_amdgpu_connector(connector); 1167 break; 1168 } 1169 } 1170 1171 if (!amdgpu_connector) { 1172 DRM_ERROR("Couldn't find encoder's connector\n"); 1173 return; 1174 } 1175 1176 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 1177 if (connector->latency_present[1]) 1178 tmp = 1179 (connector->video_latency[1] << 1180 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1181 (connector->audio_latency[1] << 1182 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1183 else 1184 tmp = 1185 (0 << 1186 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1187 (0 << 1188 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1189 } else { 1190 if (connector->latency_present[0]) 1191 tmp = 1192 (connector->video_latency[0] << 1193 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1194 (connector->audio_latency[0] << 1195 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1196 else 1197 tmp = 1198 (0 << 1199 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1200 (0 << 1201 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1202 1203 } 1204 WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC, tmp); 1205 } 1206 1207 static void dce_v8_0_audio_write_speaker_allocation(struct drm_encoder *encoder) 1208 { 1209 struct amdgpu_device *adev = encoder->dev->dev_private; 1210 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1211 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1212 struct drm_connector *connector; 1213 struct amdgpu_connector *amdgpu_connector = NULL; 1214 u32 offset, tmp; 1215 u8 *sadb = NULL; 1216 int sad_count; 1217 1218 if (!dig || !dig->afmt || !dig->afmt->pin) 1219 return; 1220 1221 offset = dig->afmt->pin->offset; 1222 1223 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) { 1224 if (connector->encoder == encoder) { 1225 amdgpu_connector = to_amdgpu_connector(connector); 1226 break; 1227 } 1228 } 1229 1230 if (!amdgpu_connector) { 1231 DRM_ERROR("Couldn't find encoder's connector\n"); 1232 return; 1233 } 1234 1235 sad_count = drm_edid_to_speaker_allocation(amdgpu_connector_edid(connector), &sadb); 1236 if (sad_count < 0) { 1237 DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sad_count); 1238 sad_count = 0; 1239 } 1240 1241 /* program the speaker allocation */ 1242 tmp = RREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER); 1243 tmp &= ~(AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__DP_CONNECTION_MASK | 1244 AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION_MASK); 1245 /* set HDMI mode */ 1246 tmp |= AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__HDMI_CONNECTION_MASK; 1247 if (sad_count) 1248 tmp |= (sadb[0] << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); 1249 else 1250 tmp |= (5 << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); /* stereo */ 1251 WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER, tmp); 1252 1253 kfree(sadb); 1254 } 1255 1256 static void dce_v8_0_audio_write_sad_regs(struct drm_encoder *encoder) 1257 { 1258 struct amdgpu_device *adev = encoder->dev->dev_private; 1259 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1260 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1261 u32 offset; 1262 struct drm_connector *connector; 1263 struct amdgpu_connector *amdgpu_connector = NULL; 1264 struct cea_sad *sads; 1265 int i, sad_count; 1266 1267 static const u16 eld_reg_to_type[][2] = { 1268 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0, HDMI_AUDIO_CODING_TYPE_PCM }, 1269 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR1, HDMI_AUDIO_CODING_TYPE_AC3 }, 1270 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR2, HDMI_AUDIO_CODING_TYPE_MPEG1 }, 1271 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR3, HDMI_AUDIO_CODING_TYPE_MP3 }, 1272 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR4, HDMI_AUDIO_CODING_TYPE_MPEG2 }, 1273 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR5, HDMI_AUDIO_CODING_TYPE_AAC_LC }, 1274 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR6, HDMI_AUDIO_CODING_TYPE_DTS }, 1275 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR7, HDMI_AUDIO_CODING_TYPE_ATRAC }, 1276 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR9, HDMI_AUDIO_CODING_TYPE_EAC3 }, 1277 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR10, HDMI_AUDIO_CODING_TYPE_DTS_HD }, 1278 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR11, HDMI_AUDIO_CODING_TYPE_MLP }, 1279 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR13, HDMI_AUDIO_CODING_TYPE_WMA_PRO }, 1280 }; 1281 1282 if (!dig || !dig->afmt || !dig->afmt->pin) 1283 return; 1284 1285 offset = dig->afmt->pin->offset; 1286 1287 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) { 1288 if (connector->encoder == encoder) { 1289 amdgpu_connector = to_amdgpu_connector(connector); 1290 break; 1291 } 1292 } 1293 1294 if (!amdgpu_connector) { 1295 DRM_ERROR("Couldn't find encoder's connector\n"); 1296 return; 1297 } 1298 1299 sad_count = drm_edid_to_sad(amdgpu_connector_edid(connector), &sads); 1300 if (sad_count <= 0) { 1301 DRM_ERROR("Couldn't read SADs: %d\n", sad_count); 1302 return; 1303 } 1304 BUG_ON(!sads); 1305 1306 for (i = 0; i < ARRAY_SIZE(eld_reg_to_type); i++) { 1307 u32 value = 0; 1308 u8 stereo_freqs = 0; 1309 int max_channels = -1; 1310 int j; 1311 1312 for (j = 0; j < sad_count; j++) { 1313 struct cea_sad *sad = &sads[j]; 1314 1315 if (sad->format == eld_reg_to_type[i][1]) { 1316 if (sad->channels > max_channels) { 1317 value = (sad->channels << 1318 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__MAX_CHANNELS__SHIFT) | 1319 (sad->byte2 << 1320 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__DESCRIPTOR_BYTE_2__SHIFT) | 1321 (sad->freq << 1322 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES__SHIFT); 1323 max_channels = sad->channels; 1324 } 1325 1326 if (sad->format == HDMI_AUDIO_CODING_TYPE_PCM) 1327 stereo_freqs |= sad->freq; 1328 else 1329 break; 1330 } 1331 } 1332 1333 value |= (stereo_freqs << 1334 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES_STEREO__SHIFT); 1335 1336 WREG32_AUDIO_ENDPT(offset, eld_reg_to_type[i][0], value); 1337 } 1338 1339 kfree(sads); 1340 } 1341 1342 static void dce_v8_0_audio_enable(struct amdgpu_device *adev, 1343 struct amdgpu_audio_pin *pin, 1344 bool enable) 1345 { 1346 if (!pin) 1347 return; 1348 1349 WREG32_AUDIO_ENDPT(pin->offset, ixAZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, 1350 enable ? AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL__AUDIO_ENABLED_MASK : 0); 1351 } 1352 1353 static const u32 pin_offsets[7] = 1354 { 1355 (0x1780 - 0x1780), 1356 (0x1786 - 0x1780), 1357 (0x178c - 0x1780), 1358 (0x1792 - 0x1780), 1359 (0x1798 - 0x1780), 1360 (0x179d - 0x1780), 1361 (0x17a4 - 0x1780), 1362 }; 1363 1364 static int dce_v8_0_audio_init(struct amdgpu_device *adev) 1365 { 1366 int i; 1367 1368 if (!amdgpu_audio) 1369 return 0; 1370 1371 adev->mode_info.audio.enabled = true; 1372 1373 if (adev->asic_type == CHIP_KAVERI) /* KV: 4 streams, 7 endpoints */ 1374 adev->mode_info.audio.num_pins = 7; 1375 else if ((adev->asic_type == CHIP_KABINI) || 1376 (adev->asic_type == CHIP_MULLINS)) /* KB/ML: 2 streams, 3 endpoints */ 1377 adev->mode_info.audio.num_pins = 3; 1378 else if ((adev->asic_type == CHIP_BONAIRE) || 1379 (adev->asic_type == CHIP_HAWAII))/* BN/HW: 6 streams, 7 endpoints */ 1380 adev->mode_info.audio.num_pins = 7; 1381 else 1382 adev->mode_info.audio.num_pins = 3; 1383 1384 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 1385 adev->mode_info.audio.pin[i].channels = -1; 1386 adev->mode_info.audio.pin[i].rate = -1; 1387 adev->mode_info.audio.pin[i].bits_per_sample = -1; 1388 adev->mode_info.audio.pin[i].status_bits = 0; 1389 adev->mode_info.audio.pin[i].category_code = 0; 1390 adev->mode_info.audio.pin[i].connected = false; 1391 adev->mode_info.audio.pin[i].offset = pin_offsets[i]; 1392 adev->mode_info.audio.pin[i].id = i; 1393 /* disable audio. it will be set up later */ 1394 /* XXX remove once we switch to ip funcs */ 1395 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 1396 } 1397 1398 return 0; 1399 } 1400 1401 static void dce_v8_0_audio_fini(struct amdgpu_device *adev) 1402 { 1403 int i; 1404 1405 if (!amdgpu_audio) 1406 return; 1407 1408 if (!adev->mode_info.audio.enabled) 1409 return; 1410 1411 for (i = 0; i < adev->mode_info.audio.num_pins; i++) 1412 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 1413 1414 adev->mode_info.audio.enabled = false; 1415 } 1416 1417 /* 1418 * update the N and CTS parameters for a given pixel clock rate 1419 */ 1420 static void dce_v8_0_afmt_update_ACR(struct drm_encoder *encoder, uint32_t clock) 1421 { 1422 struct drm_device *dev = encoder->dev; 1423 struct amdgpu_device *adev = dev->dev_private; 1424 struct amdgpu_afmt_acr acr = amdgpu_afmt_acr(clock); 1425 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1426 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1427 uint32_t offset = dig->afmt->offset; 1428 1429 WREG32(mmHDMI_ACR_32_0 + offset, (acr.cts_32khz << HDMI_ACR_32_0__HDMI_ACR_CTS_32__SHIFT)); 1430 WREG32(mmHDMI_ACR_32_1 + offset, acr.n_32khz); 1431 1432 WREG32(mmHDMI_ACR_44_0 + offset, (acr.cts_44_1khz << HDMI_ACR_44_0__HDMI_ACR_CTS_44__SHIFT)); 1433 WREG32(mmHDMI_ACR_44_1 + offset, acr.n_44_1khz); 1434 1435 WREG32(mmHDMI_ACR_48_0 + offset, (acr.cts_48khz << HDMI_ACR_48_0__HDMI_ACR_CTS_48__SHIFT)); 1436 WREG32(mmHDMI_ACR_48_1 + offset, acr.n_48khz); 1437 } 1438 1439 /* 1440 * build a HDMI Video Info Frame 1441 */ 1442 static void dce_v8_0_afmt_update_avi_infoframe(struct drm_encoder *encoder, 1443 void *buffer, size_t size) 1444 { 1445 struct drm_device *dev = encoder->dev; 1446 struct amdgpu_device *adev = dev->dev_private; 1447 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1448 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1449 uint32_t offset = dig->afmt->offset; 1450 uint8_t *frame = buffer + 3; 1451 uint8_t *header = buffer; 1452 1453 WREG32(mmAFMT_AVI_INFO0 + offset, 1454 frame[0x0] | (frame[0x1] << 8) | (frame[0x2] << 16) | (frame[0x3] << 24)); 1455 WREG32(mmAFMT_AVI_INFO1 + offset, 1456 frame[0x4] | (frame[0x5] << 8) | (frame[0x6] << 16) | (frame[0x7] << 24)); 1457 WREG32(mmAFMT_AVI_INFO2 + offset, 1458 frame[0x8] | (frame[0x9] << 8) | (frame[0xA] << 16) | (frame[0xB] << 24)); 1459 WREG32(mmAFMT_AVI_INFO3 + offset, 1460 frame[0xC] | (frame[0xD] << 8) | (header[1] << 24)); 1461 } 1462 1463 static void dce_v8_0_audio_set_dto(struct drm_encoder *encoder, u32 clock) 1464 { 1465 struct drm_device *dev = encoder->dev; 1466 struct amdgpu_device *adev = dev->dev_private; 1467 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1468 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1469 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); 1470 u32 dto_phase = 24 * 1000; 1471 u32 dto_modulo = clock; 1472 1473 if (!dig || !dig->afmt) 1474 return; 1475 1476 /* XXX two dtos; generally use dto0 for hdmi */ 1477 /* Express [24MHz / target pixel clock] as an exact rational 1478 * number (coefficient of two integer numbers. DCCG_AUDIO_DTOx_PHASE 1479 * is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator 1480 */ 1481 WREG32(mmDCCG_AUDIO_DTO_SOURCE, (amdgpu_crtc->crtc_id << DCCG_AUDIO_DTO_SOURCE__DCCG_AUDIO_DTO0_SOURCE_SEL__SHIFT)); 1482 WREG32(mmDCCG_AUDIO_DTO0_PHASE, dto_phase); 1483 WREG32(mmDCCG_AUDIO_DTO0_MODULE, dto_modulo); 1484 } 1485 1486 /* 1487 * update the info frames with the data from the current display mode 1488 */ 1489 static void dce_v8_0_afmt_setmode(struct drm_encoder *encoder, 1490 struct drm_display_mode *mode) 1491 { 1492 struct drm_device *dev = encoder->dev; 1493 struct amdgpu_device *adev = dev->dev_private; 1494 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1495 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1496 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); 1497 u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE]; 1498 struct hdmi_avi_infoframe frame; 1499 uint32_t offset, val; 1500 ssize_t err; 1501 int bpc = 8; 1502 1503 if (!dig || !dig->afmt) 1504 return; 1505 1506 /* Silent, r600_hdmi_enable will raise WARN for us */ 1507 if (!dig->afmt->enabled) 1508 return; 1509 1510 offset = dig->afmt->offset; 1511 1512 /* hdmi deep color mode general control packets setup, if bpc > 8 */ 1513 if (encoder->crtc) { 1514 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); 1515 bpc = amdgpu_crtc->bpc; 1516 } 1517 1518 /* disable audio prior to setting up hw */ 1519 dig->afmt->pin = dce_v8_0_audio_get_pin(adev); 1520 dce_v8_0_audio_enable(adev, dig->afmt->pin, false); 1521 1522 dce_v8_0_audio_set_dto(encoder, mode->clock); 1523 1524 WREG32(mmHDMI_VBI_PACKET_CONTROL + offset, 1525 HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK); /* send null packets when required */ 1526 1527 WREG32(mmAFMT_AUDIO_CRC_CONTROL + offset, 0x1000); 1528 1529 val = RREG32(mmHDMI_CONTROL + offset); 1530 val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; 1531 val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH_MASK; 1532 1533 switch (bpc) { 1534 case 0: 1535 case 6: 1536 case 8: 1537 case 16: 1538 default: 1539 DRM_DEBUG("%s: Disabling hdmi deep color for %d bpc.\n", 1540 connector->name, bpc); 1541 break; 1542 case 10: 1543 val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; 1544 val |= 1 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT; 1545 DRM_DEBUG("%s: Enabling hdmi deep color 30 for 10 bpc.\n", 1546 connector->name); 1547 break; 1548 case 12: 1549 val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; 1550 val |= 2 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT; 1551 DRM_DEBUG("%s: Enabling hdmi deep color 36 for 12 bpc.\n", 1552 connector->name); 1553 break; 1554 } 1555 1556 WREG32(mmHDMI_CONTROL + offset, val); 1557 1558 WREG32(mmHDMI_VBI_PACKET_CONTROL + offset, 1559 HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK | /* send null packets when required */ 1560 HDMI_VBI_PACKET_CONTROL__HDMI_GC_SEND_MASK | /* send general control packets */ 1561 HDMI_VBI_PACKET_CONTROL__HDMI_GC_CONT_MASK); /* send general control packets every frame */ 1562 1563 WREG32(mmHDMI_INFOFRAME_CONTROL0 + offset, 1564 HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_SEND_MASK | /* enable audio info frames (frames won't be set until audio is enabled) */ 1565 HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_CONT_MASK); /* required for audio info values to be updated */ 1566 1567 WREG32(mmAFMT_INFOFRAME_CONTROL0 + offset, 1568 AFMT_INFOFRAME_CONTROL0__AFMT_AUDIO_INFO_UPDATE_MASK); /* required for audio info values to be updated */ 1569 1570 WREG32(mmHDMI_INFOFRAME_CONTROL1 + offset, 1571 (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AUDIO_INFO_LINE__SHIFT)); /* anything other than 0 */ 1572 1573 WREG32(mmHDMI_GC + offset, 0); /* unset HDMI_GC_AVMUTE */ 1574 1575 WREG32(mmHDMI_AUDIO_PACKET_CONTROL + offset, 1576 (1 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_DELAY_EN__SHIFT) | /* set the default audio delay */ 1577 (3 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_PACKETS_PER_LINE__SHIFT)); /* should be suffient for all audio modes and small enough for all hblanks */ 1578 1579 WREG32(mmAFMT_AUDIO_PACKET_CONTROL + offset, 1580 AFMT_AUDIO_PACKET_CONTROL__AFMT_60958_CS_UPDATE_MASK); /* allow 60958 channel status fields to be updated */ 1581 1582 /* fglrx clears sth in AFMT_AUDIO_PACKET_CONTROL2 here */ 1583 1584 if (bpc > 8) 1585 WREG32(mmHDMI_ACR_PACKET_CONTROL + offset, 1586 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */ 1587 else 1588 WREG32(mmHDMI_ACR_PACKET_CONTROL + offset, 1589 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_SOURCE_MASK | /* select SW CTS value */ 1590 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */ 1591 1592 dce_v8_0_afmt_update_ACR(encoder, mode->clock); 1593 1594 WREG32(mmAFMT_60958_0 + offset, 1595 (1 << AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L__SHIFT)); 1596 1597 WREG32(mmAFMT_60958_1 + offset, 1598 (2 << AFMT_60958_1__AFMT_60958_CS_CHANNEL_NUMBER_R__SHIFT)); 1599 1600 WREG32(mmAFMT_60958_2 + offset, 1601 (3 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_2__SHIFT) | 1602 (4 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_3__SHIFT) | 1603 (5 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_4__SHIFT) | 1604 (6 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_5__SHIFT) | 1605 (7 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_6__SHIFT) | 1606 (8 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_7__SHIFT)); 1607 1608 dce_v8_0_audio_write_speaker_allocation(encoder); 1609 1610 1611 WREG32(mmAFMT_AUDIO_PACKET_CONTROL2 + offset, 1612 (0xff << AFMT_AUDIO_PACKET_CONTROL2__AFMT_AUDIO_CHANNEL_ENABLE__SHIFT)); 1613 1614 dce_v8_0_afmt_audio_select_pin(encoder); 1615 dce_v8_0_audio_write_sad_regs(encoder); 1616 dce_v8_0_audio_write_latency_fields(encoder, mode); 1617 1618 err = drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, false); 1619 if (err < 0) { 1620 DRM_ERROR("failed to setup AVI infoframe: %zd\n", err); 1621 return; 1622 } 1623 1624 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer)); 1625 if (err < 0) { 1626 DRM_ERROR("failed to pack AVI infoframe: %zd\n", err); 1627 return; 1628 } 1629 1630 dce_v8_0_afmt_update_avi_infoframe(encoder, buffer, sizeof(buffer)); 1631 1632 WREG32_OR(mmHDMI_INFOFRAME_CONTROL0 + offset, 1633 HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_SEND_MASK | /* enable AVI info frames */ 1634 HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_CONT_MASK); /* required for audio info values to be updated */ 1635 1636 WREG32_P(mmHDMI_INFOFRAME_CONTROL1 + offset, 1637 (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE__SHIFT), /* anything other than 0 */ 1638 ~HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE_MASK); 1639 1640 WREG32_OR(mmAFMT_AUDIO_PACKET_CONTROL + offset, 1641 AFMT_AUDIO_PACKET_CONTROL__AFMT_AUDIO_SAMPLE_SEND_MASK); /* send audio packets */ 1642 1643 WREG32(mmAFMT_RAMP_CONTROL0 + offset, 0x00FFFFFF); 1644 WREG32(mmAFMT_RAMP_CONTROL1 + offset, 0x007FFFFF); 1645 WREG32(mmAFMT_RAMP_CONTROL2 + offset, 0x00000001); 1646 WREG32(mmAFMT_RAMP_CONTROL3 + offset, 0x00000001); 1647 1648 /* enable audio after setting up hw */ 1649 dce_v8_0_audio_enable(adev, dig->afmt->pin, true); 1650 } 1651 1652 static void dce_v8_0_afmt_enable(struct drm_encoder *encoder, bool enable) 1653 { 1654 struct drm_device *dev = encoder->dev; 1655 struct amdgpu_device *adev = dev->dev_private; 1656 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1657 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1658 1659 if (!dig || !dig->afmt) 1660 return; 1661 1662 /* Silent, r600_hdmi_enable will raise WARN for us */ 1663 if (enable && dig->afmt->enabled) 1664 return; 1665 if (!enable && !dig->afmt->enabled) 1666 return; 1667 1668 if (!enable && dig->afmt->pin) { 1669 dce_v8_0_audio_enable(adev, dig->afmt->pin, false); 1670 dig->afmt->pin = NULL; 1671 } 1672 1673 dig->afmt->enabled = enable; 1674 1675 DRM_DEBUG("%sabling AFMT interface @ 0x%04X for encoder 0x%x\n", 1676 enable ? "En" : "Dis", dig->afmt->offset, amdgpu_encoder->encoder_id); 1677 } 1678 1679 static int dce_v8_0_afmt_init(struct amdgpu_device *adev) 1680 { 1681 int i; 1682 1683 for (i = 0; i < adev->mode_info.num_dig; i++) 1684 adev->mode_info.afmt[i] = NULL; 1685 1686 /* DCE8 has audio blocks tied to DIG encoders */ 1687 for (i = 0; i < adev->mode_info.num_dig; i++) { 1688 adev->mode_info.afmt[i] = kzalloc(sizeof(struct amdgpu_afmt), GFP_KERNEL); 1689 if (adev->mode_info.afmt[i]) { 1690 adev->mode_info.afmt[i]->offset = dig_offsets[i]; 1691 adev->mode_info.afmt[i]->id = i; 1692 } else { 1693 int j; 1694 for (j = 0; j < i; j++) { 1695 kfree(adev->mode_info.afmt[j]); 1696 adev->mode_info.afmt[j] = NULL; 1697 } 1698 return -ENOMEM; 1699 } 1700 } 1701 return 0; 1702 } 1703 1704 static void dce_v8_0_afmt_fini(struct amdgpu_device *adev) 1705 { 1706 int i; 1707 1708 for (i = 0; i < adev->mode_info.num_dig; i++) { 1709 kfree(adev->mode_info.afmt[i]); 1710 adev->mode_info.afmt[i] = NULL; 1711 } 1712 } 1713 1714 static const u32 vga_control_regs[6] = 1715 { 1716 mmD1VGA_CONTROL, 1717 mmD2VGA_CONTROL, 1718 mmD3VGA_CONTROL, 1719 mmD4VGA_CONTROL, 1720 mmD5VGA_CONTROL, 1721 mmD6VGA_CONTROL, 1722 }; 1723 1724 static void dce_v8_0_vga_enable(struct drm_crtc *crtc, bool enable) 1725 { 1726 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1727 struct drm_device *dev = crtc->dev; 1728 struct amdgpu_device *adev = dev->dev_private; 1729 u32 vga_control; 1730 1731 vga_control = RREG32(vga_control_regs[amdgpu_crtc->crtc_id]) & ~1; 1732 if (enable) 1733 WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control | 1); 1734 else 1735 WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control); 1736 } 1737 1738 static void dce_v8_0_grph_enable(struct drm_crtc *crtc, bool enable) 1739 { 1740 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1741 struct drm_device *dev = crtc->dev; 1742 struct amdgpu_device *adev = dev->dev_private; 1743 1744 if (enable) 1745 WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 1); 1746 else 1747 WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 0); 1748 } 1749 1750 static int dce_v8_0_crtc_do_set_base(struct drm_crtc *crtc, 1751 struct drm_framebuffer *fb, 1752 int x, int y, int atomic) 1753 { 1754 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1755 struct drm_device *dev = crtc->dev; 1756 struct amdgpu_device *adev = dev->dev_private; 1757 struct amdgpu_framebuffer *amdgpu_fb; 1758 struct drm_framebuffer *target_fb; 1759 struct drm_gem_object *obj; 1760 struct amdgpu_bo *abo; 1761 uint64_t fb_location, tiling_flags; 1762 uint32_t fb_format, fb_pitch_pixels; 1763 u32 fb_swap = (GRPH_ENDIAN_NONE << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1764 u32 pipe_config; 1765 u32 viewport_w, viewport_h; 1766 int r; 1767 bool bypass_lut = false; 1768 struct drm_format_name_buf format_name; 1769 1770 /* no fb bound */ 1771 if (!atomic && !crtc->primary->fb) { 1772 DRM_DEBUG_KMS("No FB bound\n"); 1773 return 0; 1774 } 1775 1776 if (atomic) { 1777 amdgpu_fb = to_amdgpu_framebuffer(fb); 1778 target_fb = fb; 1779 } else { 1780 amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb); 1781 target_fb = crtc->primary->fb; 1782 } 1783 1784 /* If atomic, assume fb object is pinned & idle & fenced and 1785 * just update base pointers 1786 */ 1787 obj = amdgpu_fb->obj; 1788 abo = gem_to_amdgpu_bo(obj); 1789 r = amdgpu_bo_reserve(abo, false); 1790 if (unlikely(r != 0)) 1791 return r; 1792 1793 if (atomic) { 1794 fb_location = amdgpu_bo_gpu_offset(abo); 1795 } else { 1796 r = amdgpu_bo_pin(abo, AMDGPU_GEM_DOMAIN_VRAM, &fb_location); 1797 if (unlikely(r != 0)) { 1798 amdgpu_bo_unreserve(abo); 1799 return -EINVAL; 1800 } 1801 } 1802 1803 amdgpu_bo_get_tiling_flags(abo, &tiling_flags); 1804 amdgpu_bo_unreserve(abo); 1805 1806 pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG); 1807 1808 switch (target_fb->format->format) { 1809 case DRM_FORMAT_C8: 1810 fb_format = ((GRPH_DEPTH_8BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1811 (GRPH_FORMAT_INDEXED << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1812 break; 1813 case DRM_FORMAT_XRGB4444: 1814 case DRM_FORMAT_ARGB4444: 1815 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1816 (GRPH_FORMAT_ARGB4444 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1817 #ifdef __BIG_ENDIAN 1818 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1819 #endif 1820 break; 1821 case DRM_FORMAT_XRGB1555: 1822 case DRM_FORMAT_ARGB1555: 1823 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1824 (GRPH_FORMAT_ARGB1555 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1825 #ifdef __BIG_ENDIAN 1826 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1827 #endif 1828 break; 1829 case DRM_FORMAT_BGRX5551: 1830 case DRM_FORMAT_BGRA5551: 1831 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1832 (GRPH_FORMAT_BGRA5551 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1833 #ifdef __BIG_ENDIAN 1834 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1835 #endif 1836 break; 1837 case DRM_FORMAT_RGB565: 1838 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1839 (GRPH_FORMAT_ARGB565 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1840 #ifdef __BIG_ENDIAN 1841 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1842 #endif 1843 break; 1844 case DRM_FORMAT_XRGB8888: 1845 case DRM_FORMAT_ARGB8888: 1846 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1847 (GRPH_FORMAT_ARGB8888 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1848 #ifdef __BIG_ENDIAN 1849 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1850 #endif 1851 break; 1852 case DRM_FORMAT_XRGB2101010: 1853 case DRM_FORMAT_ARGB2101010: 1854 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1855 (GRPH_FORMAT_ARGB2101010 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1856 #ifdef __BIG_ENDIAN 1857 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1858 #endif 1859 /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ 1860 bypass_lut = true; 1861 break; 1862 case DRM_FORMAT_BGRX1010102: 1863 case DRM_FORMAT_BGRA1010102: 1864 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1865 (GRPH_FORMAT_BGRA1010102 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1866 #ifdef __BIG_ENDIAN 1867 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1868 #endif 1869 /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ 1870 bypass_lut = true; 1871 break; 1872 default: 1873 DRM_ERROR("Unsupported screen format %s\n", 1874 drm_get_format_name(target_fb->format->format, &format_name)); 1875 return -EINVAL; 1876 } 1877 1878 if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_2D_TILED_THIN1) { 1879 unsigned bankw, bankh, mtaspect, tile_split, num_banks; 1880 1881 bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH); 1882 bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT); 1883 mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT); 1884 tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT); 1885 num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS); 1886 1887 fb_format |= (num_banks << GRPH_CONTROL__GRPH_NUM_BANKS__SHIFT); 1888 fb_format |= (GRPH_ARRAY_2D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT); 1889 fb_format |= (tile_split << GRPH_CONTROL__GRPH_TILE_SPLIT__SHIFT); 1890 fb_format |= (bankw << GRPH_CONTROL__GRPH_BANK_WIDTH__SHIFT); 1891 fb_format |= (bankh << GRPH_CONTROL__GRPH_BANK_HEIGHT__SHIFT); 1892 fb_format |= (mtaspect << GRPH_CONTROL__GRPH_MACRO_TILE_ASPECT__SHIFT); 1893 fb_format |= (DISPLAY_MICRO_TILING << GRPH_CONTROL__GRPH_MICRO_TILE_MODE__SHIFT); 1894 } else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_1D_TILED_THIN1) { 1895 fb_format |= (GRPH_ARRAY_1D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT); 1896 } 1897 1898 fb_format |= (pipe_config << GRPH_CONTROL__GRPH_PIPE_CONFIG__SHIFT); 1899 1900 dce_v8_0_vga_enable(crtc, false); 1901 1902 /* Make sure surface address is updated at vertical blank rather than 1903 * horizontal blank 1904 */ 1905 WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, 0); 1906 1907 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 1908 upper_32_bits(fb_location)); 1909 WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 1910 upper_32_bits(fb_location)); 1911 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 1912 (u32)fb_location & GRPH_PRIMARY_SURFACE_ADDRESS__GRPH_PRIMARY_SURFACE_ADDRESS_MASK); 1913 WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 1914 (u32) fb_location & GRPH_SECONDARY_SURFACE_ADDRESS__GRPH_SECONDARY_SURFACE_ADDRESS_MASK); 1915 WREG32(mmGRPH_CONTROL + amdgpu_crtc->crtc_offset, fb_format); 1916 WREG32(mmGRPH_SWAP_CNTL + amdgpu_crtc->crtc_offset, fb_swap); 1917 1918 /* 1919 * The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT 1920 * for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to 1921 * retain the full precision throughout the pipeline. 1922 */ 1923 WREG32_P(mmGRPH_LUT_10BIT_BYPASS_CONTROL + amdgpu_crtc->crtc_offset, 1924 (bypass_lut ? LUT_10BIT_BYPASS_EN : 0), 1925 ~LUT_10BIT_BYPASS_EN); 1926 1927 if (bypass_lut) 1928 DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n"); 1929 1930 WREG32(mmGRPH_SURFACE_OFFSET_X + amdgpu_crtc->crtc_offset, 0); 1931 WREG32(mmGRPH_SURFACE_OFFSET_Y + amdgpu_crtc->crtc_offset, 0); 1932 WREG32(mmGRPH_X_START + amdgpu_crtc->crtc_offset, 0); 1933 WREG32(mmGRPH_Y_START + amdgpu_crtc->crtc_offset, 0); 1934 WREG32(mmGRPH_X_END + amdgpu_crtc->crtc_offset, target_fb->width); 1935 WREG32(mmGRPH_Y_END + amdgpu_crtc->crtc_offset, target_fb->height); 1936 1937 fb_pitch_pixels = target_fb->pitches[0] / target_fb->format->cpp[0]; 1938 WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset, fb_pitch_pixels); 1939 1940 dce_v8_0_grph_enable(crtc, true); 1941 1942 WREG32(mmLB_DESKTOP_HEIGHT + amdgpu_crtc->crtc_offset, 1943 target_fb->height); 1944 1945 x &= ~3; 1946 y &= ~1; 1947 WREG32(mmVIEWPORT_START + amdgpu_crtc->crtc_offset, 1948 (x << 16) | y); 1949 viewport_w = crtc->mode.hdisplay; 1950 viewport_h = (crtc->mode.vdisplay + 1) & ~1; 1951 WREG32(mmVIEWPORT_SIZE + amdgpu_crtc->crtc_offset, 1952 (viewport_w << 16) | viewport_h); 1953 1954 /* set pageflip to happen anywhere in vblank interval */ 1955 WREG32(mmMASTER_UPDATE_MODE + amdgpu_crtc->crtc_offset, 0); 1956 1957 if (!atomic && fb && fb != crtc->primary->fb) { 1958 amdgpu_fb = to_amdgpu_framebuffer(fb); 1959 abo = gem_to_amdgpu_bo(amdgpu_fb->obj); 1960 r = amdgpu_bo_reserve(abo, true); 1961 if (unlikely(r != 0)) 1962 return r; 1963 amdgpu_bo_unpin(abo); 1964 amdgpu_bo_unreserve(abo); 1965 } 1966 1967 /* Bytes per pixel may have changed */ 1968 dce_v8_0_bandwidth_update(adev); 1969 1970 return 0; 1971 } 1972 1973 static void dce_v8_0_set_interleave(struct drm_crtc *crtc, 1974 struct drm_display_mode *mode) 1975 { 1976 struct drm_device *dev = crtc->dev; 1977 struct amdgpu_device *adev = dev->dev_private; 1978 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1979 1980 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1981 WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, 1982 LB_DATA_FORMAT__INTERLEAVE_EN__SHIFT); 1983 else 1984 WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, 0); 1985 } 1986 1987 static void dce_v8_0_crtc_load_lut(struct drm_crtc *crtc) 1988 { 1989 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1990 struct drm_device *dev = crtc->dev; 1991 struct amdgpu_device *adev = dev->dev_private; 1992 u16 *r, *g, *b; 1993 int i; 1994 1995 DRM_DEBUG_KMS("%d\n", amdgpu_crtc->crtc_id); 1996 1997 WREG32(mmINPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, 1998 ((INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_GRPH_MODE__SHIFT) | 1999 (INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_OVL_MODE__SHIFT))); 2000 WREG32(mmPRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset, 2001 PRESCALE_GRPH_CONTROL__GRPH_PRESCALE_BYPASS_MASK); 2002 WREG32(mmPRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset, 2003 PRESCALE_OVL_CONTROL__OVL_PRESCALE_BYPASS_MASK); 2004 WREG32(mmINPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset, 2005 ((INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__GRPH_INPUT_GAMMA_MODE__SHIFT) | 2006 (INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__OVL_INPUT_GAMMA_MODE__SHIFT))); 2007 2008 WREG32(mmDC_LUT_CONTROL + amdgpu_crtc->crtc_offset, 0); 2009 2010 WREG32(mmDC_LUT_BLACK_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0); 2011 WREG32(mmDC_LUT_BLACK_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0); 2012 WREG32(mmDC_LUT_BLACK_OFFSET_RED + amdgpu_crtc->crtc_offset, 0); 2013 2014 WREG32(mmDC_LUT_WHITE_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0xffff); 2015 WREG32(mmDC_LUT_WHITE_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0xffff); 2016 WREG32(mmDC_LUT_WHITE_OFFSET_RED + amdgpu_crtc->crtc_offset, 0xffff); 2017 2018 WREG32(mmDC_LUT_RW_MODE + amdgpu_crtc->crtc_offset, 0); 2019 WREG32(mmDC_LUT_WRITE_EN_MASK + amdgpu_crtc->crtc_offset, 0x00000007); 2020 2021 WREG32(mmDC_LUT_RW_INDEX + amdgpu_crtc->crtc_offset, 0); 2022 r = crtc->gamma_store; 2023 g = r + crtc->gamma_size; 2024 b = g + crtc->gamma_size; 2025 for (i = 0; i < 256; i++) { 2026 WREG32(mmDC_LUT_30_COLOR + amdgpu_crtc->crtc_offset, 2027 ((*r++ & 0xffc0) << 14) | 2028 ((*g++ & 0xffc0) << 4) | 2029 (*b++ >> 6)); 2030 } 2031 2032 WREG32(mmDEGAMMA_CONTROL + amdgpu_crtc->crtc_offset, 2033 ((DEGAMMA_BYPASS << DEGAMMA_CONTROL__GRPH_DEGAMMA_MODE__SHIFT) | 2034 (DEGAMMA_BYPASS << DEGAMMA_CONTROL__OVL_DEGAMMA_MODE__SHIFT) | 2035 (DEGAMMA_BYPASS << DEGAMMA_CONTROL__CURSOR_DEGAMMA_MODE__SHIFT))); 2036 WREG32(mmGAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset, 2037 ((GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__GRPH_GAMUT_REMAP_MODE__SHIFT) | 2038 (GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__OVL_GAMUT_REMAP_MODE__SHIFT))); 2039 WREG32(mmREGAMMA_CONTROL + amdgpu_crtc->crtc_offset, 2040 ((REGAMMA_BYPASS << REGAMMA_CONTROL__GRPH_REGAMMA_MODE__SHIFT) | 2041 (REGAMMA_BYPASS << REGAMMA_CONTROL__OVL_REGAMMA_MODE__SHIFT))); 2042 WREG32(mmOUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, 2043 ((OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_GRPH_MODE__SHIFT) | 2044 (OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_OVL_MODE__SHIFT))); 2045 /* XXX match this to the depth of the crtc fmt block, move to modeset? */ 2046 WREG32(0x1a50 + amdgpu_crtc->crtc_offset, 0); 2047 /* XXX this only needs to be programmed once per crtc at startup, 2048 * not sure where the best place for it is 2049 */ 2050 WREG32(mmALPHA_CONTROL + amdgpu_crtc->crtc_offset, 2051 ALPHA_CONTROL__CURSOR_ALPHA_BLND_ENA_MASK); 2052 } 2053 2054 static int dce_v8_0_pick_dig_encoder(struct drm_encoder *encoder) 2055 { 2056 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 2057 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 2058 2059 switch (amdgpu_encoder->encoder_id) { 2060 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY: 2061 if (dig->linkb) 2062 return 1; 2063 else 2064 return 0; 2065 break; 2066 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1: 2067 if (dig->linkb) 2068 return 3; 2069 else 2070 return 2; 2071 break; 2072 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2: 2073 if (dig->linkb) 2074 return 5; 2075 else 2076 return 4; 2077 break; 2078 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3: 2079 return 6; 2080 break; 2081 default: 2082 DRM_ERROR("invalid encoder_id: 0x%x\n", amdgpu_encoder->encoder_id); 2083 return 0; 2084 } 2085 } 2086 2087 /** 2088 * dce_v8_0_pick_pll - Allocate a PPLL for use by the crtc. 2089 * 2090 * @crtc: drm crtc 2091 * 2092 * Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors 2093 * a single PPLL can be used for all DP crtcs/encoders. For non-DP 2094 * monitors a dedicated PPLL must be used. If a particular board has 2095 * an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming 2096 * as there is no need to program the PLL itself. If we are not able to 2097 * allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to 2098 * avoid messing up an existing monitor. 2099 * 2100 * Asic specific PLL information 2101 * 2102 * DCE 8.x 2103 * KB/KV 2104 * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) 2105 * CI 2106 * - PPLL0, PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC 2107 * 2108 */ 2109 static u32 dce_v8_0_pick_pll(struct drm_crtc *crtc) 2110 { 2111 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2112 struct drm_device *dev = crtc->dev; 2113 struct amdgpu_device *adev = dev->dev_private; 2114 u32 pll_in_use; 2115 int pll; 2116 2117 if (ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) { 2118 if (adev->clock.dp_extclk) 2119 /* skip PPLL programming if using ext clock */ 2120 return ATOM_PPLL_INVALID; 2121 else { 2122 /* use the same PPLL for all DP monitors */ 2123 pll = amdgpu_pll_get_shared_dp_ppll(crtc); 2124 if (pll != ATOM_PPLL_INVALID) 2125 return pll; 2126 } 2127 } else { 2128 /* use the same PPLL for all monitors with the same clock */ 2129 pll = amdgpu_pll_get_shared_nondp_ppll(crtc); 2130 if (pll != ATOM_PPLL_INVALID) 2131 return pll; 2132 } 2133 /* otherwise, pick one of the plls */ 2134 if ((adev->asic_type == CHIP_KABINI) || 2135 (adev->asic_type == CHIP_MULLINS)) { 2136 /* KB/ML has PPLL1 and PPLL2 */ 2137 pll_in_use = amdgpu_pll_get_use_mask(crtc); 2138 if (!(pll_in_use & (1 << ATOM_PPLL2))) 2139 return ATOM_PPLL2; 2140 if (!(pll_in_use & (1 << ATOM_PPLL1))) 2141 return ATOM_PPLL1; 2142 DRM_ERROR("unable to allocate a PPLL\n"); 2143 return ATOM_PPLL_INVALID; 2144 } else { 2145 /* CI/KV has PPLL0, PPLL1, and PPLL2 */ 2146 pll_in_use = amdgpu_pll_get_use_mask(crtc); 2147 if (!(pll_in_use & (1 << ATOM_PPLL2))) 2148 return ATOM_PPLL2; 2149 if (!(pll_in_use & (1 << ATOM_PPLL1))) 2150 return ATOM_PPLL1; 2151 if (!(pll_in_use & (1 << ATOM_PPLL0))) 2152 return ATOM_PPLL0; 2153 DRM_ERROR("unable to allocate a PPLL\n"); 2154 return ATOM_PPLL_INVALID; 2155 } 2156 return ATOM_PPLL_INVALID; 2157 } 2158 2159 static void dce_v8_0_lock_cursor(struct drm_crtc *crtc, bool lock) 2160 { 2161 struct amdgpu_device *adev = crtc->dev->dev_private; 2162 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2163 uint32_t cur_lock; 2164 2165 cur_lock = RREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset); 2166 if (lock) 2167 cur_lock |= CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK; 2168 else 2169 cur_lock &= ~CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK; 2170 WREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset, cur_lock); 2171 } 2172 2173 static void dce_v8_0_hide_cursor(struct drm_crtc *crtc) 2174 { 2175 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2176 struct amdgpu_device *adev = crtc->dev->dev_private; 2177 2178 WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, 2179 (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) | 2180 (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT)); 2181 } 2182 2183 static void dce_v8_0_show_cursor(struct drm_crtc *crtc) 2184 { 2185 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2186 struct amdgpu_device *adev = crtc->dev->dev_private; 2187 2188 WREG32(mmCUR_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 2189 upper_32_bits(amdgpu_crtc->cursor_addr)); 2190 WREG32(mmCUR_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 2191 lower_32_bits(amdgpu_crtc->cursor_addr)); 2192 2193 WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, 2194 CUR_CONTROL__CURSOR_EN_MASK | 2195 (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) | 2196 (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT)); 2197 } 2198 2199 static int dce_v8_0_cursor_move_locked(struct drm_crtc *crtc, 2200 int x, int y) 2201 { 2202 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2203 struct amdgpu_device *adev = crtc->dev->dev_private; 2204 int xorigin = 0, yorigin = 0; 2205 2206 amdgpu_crtc->cursor_x = x; 2207 amdgpu_crtc->cursor_y = y; 2208 2209 /* avivo cursor are offset into the total surface */ 2210 x += crtc->x; 2211 y += crtc->y; 2212 DRM_DEBUG("x %d y %d c->x %d c->y %d\n", x, y, crtc->x, crtc->y); 2213 2214 if (x < 0) { 2215 xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1); 2216 x = 0; 2217 } 2218 if (y < 0) { 2219 yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1); 2220 y = 0; 2221 } 2222 2223 WREG32(mmCUR_POSITION + amdgpu_crtc->crtc_offset, (x << 16) | y); 2224 WREG32(mmCUR_HOT_SPOT + amdgpu_crtc->crtc_offset, (xorigin << 16) | yorigin); 2225 WREG32(mmCUR_SIZE + amdgpu_crtc->crtc_offset, 2226 ((amdgpu_crtc->cursor_width - 1) << 16) | (amdgpu_crtc->cursor_height - 1)); 2227 2228 return 0; 2229 } 2230 2231 static int dce_v8_0_crtc_cursor_move(struct drm_crtc *crtc, 2232 int x, int y) 2233 { 2234 int ret; 2235 2236 dce_v8_0_lock_cursor(crtc, true); 2237 ret = dce_v8_0_cursor_move_locked(crtc, x, y); 2238 dce_v8_0_lock_cursor(crtc, false); 2239 2240 return ret; 2241 } 2242 2243 static int dce_v8_0_crtc_cursor_set2(struct drm_crtc *crtc, 2244 struct drm_file *file_priv, 2245 uint32_t handle, 2246 uint32_t width, 2247 uint32_t height, 2248 int32_t hot_x, 2249 int32_t hot_y) 2250 { 2251 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2252 struct drm_gem_object *obj; 2253 struct amdgpu_bo *aobj; 2254 int ret; 2255 2256 if (!handle) { 2257 /* turn off cursor */ 2258 dce_v8_0_hide_cursor(crtc); 2259 obj = NULL; 2260 goto unpin; 2261 } 2262 2263 if ((width > amdgpu_crtc->max_cursor_width) || 2264 (height > amdgpu_crtc->max_cursor_height)) { 2265 DRM_ERROR("bad cursor width or height %d x %d\n", width, height); 2266 return -EINVAL; 2267 } 2268 2269 obj = drm_gem_object_lookup(file_priv, handle); 2270 if (!obj) { 2271 DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, amdgpu_crtc->crtc_id); 2272 return -ENOENT; 2273 } 2274 2275 aobj = gem_to_amdgpu_bo(obj); 2276 ret = amdgpu_bo_reserve(aobj, false); 2277 if (ret != 0) { 2278 drm_gem_object_put_unlocked(obj); 2279 return ret; 2280 } 2281 2282 ret = amdgpu_bo_pin(aobj, AMDGPU_GEM_DOMAIN_VRAM, &amdgpu_crtc->cursor_addr); 2283 amdgpu_bo_unreserve(aobj); 2284 if (ret) { 2285 DRM_ERROR("Failed to pin new cursor BO (%d)\n", ret); 2286 drm_gem_object_put_unlocked(obj); 2287 return ret; 2288 } 2289 2290 dce_v8_0_lock_cursor(crtc, true); 2291 2292 if (width != amdgpu_crtc->cursor_width || 2293 height != amdgpu_crtc->cursor_height || 2294 hot_x != amdgpu_crtc->cursor_hot_x || 2295 hot_y != amdgpu_crtc->cursor_hot_y) { 2296 int x, y; 2297 2298 x = amdgpu_crtc->cursor_x + amdgpu_crtc->cursor_hot_x - hot_x; 2299 y = amdgpu_crtc->cursor_y + amdgpu_crtc->cursor_hot_y - hot_y; 2300 2301 dce_v8_0_cursor_move_locked(crtc, x, y); 2302 2303 amdgpu_crtc->cursor_width = width; 2304 amdgpu_crtc->cursor_height = height; 2305 amdgpu_crtc->cursor_hot_x = hot_x; 2306 amdgpu_crtc->cursor_hot_y = hot_y; 2307 } 2308 2309 dce_v8_0_show_cursor(crtc); 2310 dce_v8_0_lock_cursor(crtc, false); 2311 2312 unpin: 2313 if (amdgpu_crtc->cursor_bo) { 2314 struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo); 2315 ret = amdgpu_bo_reserve(aobj, true); 2316 if (likely(ret == 0)) { 2317 amdgpu_bo_unpin(aobj); 2318 amdgpu_bo_unreserve(aobj); 2319 } 2320 drm_gem_object_put_unlocked(amdgpu_crtc->cursor_bo); 2321 } 2322 2323 amdgpu_crtc->cursor_bo = obj; 2324 return 0; 2325 } 2326 2327 static void dce_v8_0_cursor_reset(struct drm_crtc *crtc) 2328 { 2329 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2330 2331 if (amdgpu_crtc->cursor_bo) { 2332 dce_v8_0_lock_cursor(crtc, true); 2333 2334 dce_v8_0_cursor_move_locked(crtc, amdgpu_crtc->cursor_x, 2335 amdgpu_crtc->cursor_y); 2336 2337 dce_v8_0_show_cursor(crtc); 2338 2339 dce_v8_0_lock_cursor(crtc, false); 2340 } 2341 } 2342 2343 static int dce_v8_0_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 2344 u16 *blue, uint32_t size, 2345 struct drm_modeset_acquire_ctx *ctx) 2346 { 2347 dce_v8_0_crtc_load_lut(crtc); 2348 2349 return 0; 2350 } 2351 2352 static void dce_v8_0_crtc_destroy(struct drm_crtc *crtc) 2353 { 2354 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2355 2356 drm_crtc_cleanup(crtc); 2357 kfree(amdgpu_crtc); 2358 } 2359 2360 static const struct drm_crtc_funcs dce_v8_0_crtc_funcs = { 2361 .cursor_set2 = dce_v8_0_crtc_cursor_set2, 2362 .cursor_move = dce_v8_0_crtc_cursor_move, 2363 .gamma_set = dce_v8_0_crtc_gamma_set, 2364 .set_config = amdgpu_display_crtc_set_config, 2365 .destroy = dce_v8_0_crtc_destroy, 2366 .page_flip_target = amdgpu_display_crtc_page_flip_target, 2367 }; 2368 2369 static void dce_v8_0_crtc_dpms(struct drm_crtc *crtc, int mode) 2370 { 2371 struct drm_device *dev = crtc->dev; 2372 struct amdgpu_device *adev = dev->dev_private; 2373 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2374 unsigned type; 2375 2376 switch (mode) { 2377 case DRM_MODE_DPMS_ON: 2378 amdgpu_crtc->enabled = true; 2379 amdgpu_atombios_crtc_enable(crtc, ATOM_ENABLE); 2380 dce_v8_0_vga_enable(crtc, true); 2381 amdgpu_atombios_crtc_blank(crtc, ATOM_DISABLE); 2382 dce_v8_0_vga_enable(crtc, false); 2383 /* Make sure VBLANK and PFLIP interrupts are still enabled */ 2384 type = amdgpu_display_crtc_idx_to_irq_type(adev, 2385 amdgpu_crtc->crtc_id); 2386 amdgpu_irq_update(adev, &adev->crtc_irq, type); 2387 amdgpu_irq_update(adev, &adev->pageflip_irq, type); 2388 drm_crtc_vblank_on(crtc); 2389 dce_v8_0_crtc_load_lut(crtc); 2390 break; 2391 case DRM_MODE_DPMS_STANDBY: 2392 case DRM_MODE_DPMS_SUSPEND: 2393 case DRM_MODE_DPMS_OFF: 2394 drm_crtc_vblank_off(crtc); 2395 if (amdgpu_crtc->enabled) { 2396 dce_v8_0_vga_enable(crtc, true); 2397 amdgpu_atombios_crtc_blank(crtc, ATOM_ENABLE); 2398 dce_v8_0_vga_enable(crtc, false); 2399 } 2400 amdgpu_atombios_crtc_enable(crtc, ATOM_DISABLE); 2401 amdgpu_crtc->enabled = false; 2402 break; 2403 } 2404 /* adjust pm to dpms */ 2405 amdgpu_pm_compute_clocks(adev); 2406 } 2407 2408 static void dce_v8_0_crtc_prepare(struct drm_crtc *crtc) 2409 { 2410 /* disable crtc pair power gating before programming */ 2411 amdgpu_atombios_crtc_powergate(crtc, ATOM_DISABLE); 2412 amdgpu_atombios_crtc_lock(crtc, ATOM_ENABLE); 2413 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); 2414 } 2415 2416 static void dce_v8_0_crtc_commit(struct drm_crtc *crtc) 2417 { 2418 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_ON); 2419 amdgpu_atombios_crtc_lock(crtc, ATOM_DISABLE); 2420 } 2421 2422 static void dce_v8_0_crtc_disable(struct drm_crtc *crtc) 2423 { 2424 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2425 struct drm_device *dev = crtc->dev; 2426 struct amdgpu_device *adev = dev->dev_private; 2427 struct amdgpu_atom_ss ss; 2428 int i; 2429 2430 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); 2431 if (crtc->primary->fb) { 2432 int r; 2433 struct amdgpu_framebuffer *amdgpu_fb; 2434 struct amdgpu_bo *abo; 2435 2436 amdgpu_fb = to_amdgpu_framebuffer(crtc->primary->fb); 2437 abo = gem_to_amdgpu_bo(amdgpu_fb->obj); 2438 r = amdgpu_bo_reserve(abo, true); 2439 if (unlikely(r)) 2440 DRM_ERROR("failed to reserve abo before unpin\n"); 2441 else { 2442 amdgpu_bo_unpin(abo); 2443 amdgpu_bo_unreserve(abo); 2444 } 2445 } 2446 /* disable the GRPH */ 2447 dce_v8_0_grph_enable(crtc, false); 2448 2449 amdgpu_atombios_crtc_powergate(crtc, ATOM_ENABLE); 2450 2451 for (i = 0; i < adev->mode_info.num_crtc; i++) { 2452 if (adev->mode_info.crtcs[i] && 2453 adev->mode_info.crtcs[i]->enabled && 2454 i != amdgpu_crtc->crtc_id && 2455 amdgpu_crtc->pll_id == adev->mode_info.crtcs[i]->pll_id) { 2456 /* one other crtc is using this pll don't turn 2457 * off the pll 2458 */ 2459 goto done; 2460 } 2461 } 2462 2463 switch (amdgpu_crtc->pll_id) { 2464 case ATOM_PPLL1: 2465 case ATOM_PPLL2: 2466 /* disable the ppll */ 2467 amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id, 2468 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); 2469 break; 2470 case ATOM_PPLL0: 2471 /* disable the ppll */ 2472 if ((adev->asic_type == CHIP_KAVERI) || 2473 (adev->asic_type == CHIP_BONAIRE) || 2474 (adev->asic_type == CHIP_HAWAII)) 2475 amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id, 2476 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); 2477 break; 2478 default: 2479 break; 2480 } 2481 done: 2482 amdgpu_crtc->pll_id = ATOM_PPLL_INVALID; 2483 amdgpu_crtc->adjusted_clock = 0; 2484 amdgpu_crtc->encoder = NULL; 2485 amdgpu_crtc->connector = NULL; 2486 } 2487 2488 static int dce_v8_0_crtc_mode_set(struct drm_crtc *crtc, 2489 struct drm_display_mode *mode, 2490 struct drm_display_mode *adjusted_mode, 2491 int x, int y, struct drm_framebuffer *old_fb) 2492 { 2493 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2494 2495 if (!amdgpu_crtc->adjusted_clock) 2496 return -EINVAL; 2497 2498 amdgpu_atombios_crtc_set_pll(crtc, adjusted_mode); 2499 amdgpu_atombios_crtc_set_dtd_timing(crtc, adjusted_mode); 2500 dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0); 2501 amdgpu_atombios_crtc_overscan_setup(crtc, mode, adjusted_mode); 2502 amdgpu_atombios_crtc_scaler_setup(crtc); 2503 dce_v8_0_cursor_reset(crtc); 2504 /* update the hw version fpr dpm */ 2505 amdgpu_crtc->hw_mode = *adjusted_mode; 2506 2507 return 0; 2508 } 2509 2510 static bool dce_v8_0_crtc_mode_fixup(struct drm_crtc *crtc, 2511 const struct drm_display_mode *mode, 2512 struct drm_display_mode *adjusted_mode) 2513 { 2514 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2515 struct drm_device *dev = crtc->dev; 2516 struct drm_encoder *encoder; 2517 2518 /* assign the encoder to the amdgpu crtc to avoid repeated lookups later */ 2519 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2520 if (encoder->crtc == crtc) { 2521 amdgpu_crtc->encoder = encoder; 2522 amdgpu_crtc->connector = amdgpu_get_connector_for_encoder(encoder); 2523 break; 2524 } 2525 } 2526 if ((amdgpu_crtc->encoder == NULL) || (amdgpu_crtc->connector == NULL)) { 2527 amdgpu_crtc->encoder = NULL; 2528 amdgpu_crtc->connector = NULL; 2529 return false; 2530 } 2531 if (!amdgpu_display_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode)) 2532 return false; 2533 if (amdgpu_atombios_crtc_prepare_pll(crtc, adjusted_mode)) 2534 return false; 2535 /* pick pll */ 2536 amdgpu_crtc->pll_id = dce_v8_0_pick_pll(crtc); 2537 /* if we can't get a PPLL for a non-DP encoder, fail */ 2538 if ((amdgpu_crtc->pll_id == ATOM_PPLL_INVALID) && 2539 !ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) 2540 return false; 2541 2542 return true; 2543 } 2544 2545 static int dce_v8_0_crtc_set_base(struct drm_crtc *crtc, int x, int y, 2546 struct drm_framebuffer *old_fb) 2547 { 2548 return dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0); 2549 } 2550 2551 static int dce_v8_0_crtc_set_base_atomic(struct drm_crtc *crtc, 2552 struct drm_framebuffer *fb, 2553 int x, int y, enum mode_set_atomic state) 2554 { 2555 return dce_v8_0_crtc_do_set_base(crtc, fb, x, y, 1); 2556 } 2557 2558 static const struct drm_crtc_helper_funcs dce_v8_0_crtc_helper_funcs = { 2559 .dpms = dce_v8_0_crtc_dpms, 2560 .mode_fixup = dce_v8_0_crtc_mode_fixup, 2561 .mode_set = dce_v8_0_crtc_mode_set, 2562 .mode_set_base = dce_v8_0_crtc_set_base, 2563 .mode_set_base_atomic = dce_v8_0_crtc_set_base_atomic, 2564 .prepare = dce_v8_0_crtc_prepare, 2565 .commit = dce_v8_0_crtc_commit, 2566 .disable = dce_v8_0_crtc_disable, 2567 }; 2568 2569 static int dce_v8_0_crtc_init(struct amdgpu_device *adev, int index) 2570 { 2571 struct amdgpu_crtc *amdgpu_crtc; 2572 2573 amdgpu_crtc = kzalloc(sizeof(struct amdgpu_crtc) + 2574 (AMDGPUFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); 2575 if (amdgpu_crtc == NULL) 2576 return -ENOMEM; 2577 2578 drm_crtc_init(adev->ddev, &amdgpu_crtc->base, &dce_v8_0_crtc_funcs); 2579 2580 drm_mode_crtc_set_gamma_size(&amdgpu_crtc->base, 256); 2581 amdgpu_crtc->crtc_id = index; 2582 adev->mode_info.crtcs[index] = amdgpu_crtc; 2583 2584 amdgpu_crtc->max_cursor_width = CIK_CURSOR_WIDTH; 2585 amdgpu_crtc->max_cursor_height = CIK_CURSOR_HEIGHT; 2586 adev->ddev->mode_config.cursor_width = amdgpu_crtc->max_cursor_width; 2587 adev->ddev->mode_config.cursor_height = amdgpu_crtc->max_cursor_height; 2588 2589 amdgpu_crtc->crtc_offset = crtc_offsets[amdgpu_crtc->crtc_id]; 2590 2591 amdgpu_crtc->pll_id = ATOM_PPLL_INVALID; 2592 amdgpu_crtc->adjusted_clock = 0; 2593 amdgpu_crtc->encoder = NULL; 2594 amdgpu_crtc->connector = NULL; 2595 drm_crtc_helper_add(&amdgpu_crtc->base, &dce_v8_0_crtc_helper_funcs); 2596 2597 return 0; 2598 } 2599 2600 static int dce_v8_0_early_init(void *handle) 2601 { 2602 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2603 2604 adev->audio_endpt_rreg = &dce_v8_0_audio_endpt_rreg; 2605 adev->audio_endpt_wreg = &dce_v8_0_audio_endpt_wreg; 2606 2607 dce_v8_0_set_display_funcs(adev); 2608 2609 adev->mode_info.num_crtc = dce_v8_0_get_num_crtc(adev); 2610 2611 switch (adev->asic_type) { 2612 case CHIP_BONAIRE: 2613 case CHIP_HAWAII: 2614 adev->mode_info.num_hpd = 6; 2615 adev->mode_info.num_dig = 6; 2616 break; 2617 case CHIP_KAVERI: 2618 adev->mode_info.num_hpd = 6; 2619 adev->mode_info.num_dig = 7; 2620 break; 2621 case CHIP_KABINI: 2622 case CHIP_MULLINS: 2623 adev->mode_info.num_hpd = 6; 2624 adev->mode_info.num_dig = 6; /* ? */ 2625 break; 2626 default: 2627 /* FIXME: not supported yet */ 2628 return -EINVAL; 2629 } 2630 2631 dce_v8_0_set_irq_funcs(adev); 2632 2633 return 0; 2634 } 2635 2636 static int dce_v8_0_sw_init(void *handle) 2637 { 2638 int r, i; 2639 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2640 2641 for (i = 0; i < adev->mode_info.num_crtc; i++) { 2642 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, i + 1, &adev->crtc_irq); 2643 if (r) 2644 return r; 2645 } 2646 2647 for (i = 8; i < 20; i += 2) { 2648 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, i, &adev->pageflip_irq); 2649 if (r) 2650 return r; 2651 } 2652 2653 /* HPD hotplug */ 2654 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 42, &adev->hpd_irq); 2655 if (r) 2656 return r; 2657 2658 adev->ddev->mode_config.funcs = &amdgpu_mode_funcs; 2659 2660 adev->ddev->mode_config.async_page_flip = true; 2661 2662 adev->ddev->mode_config.max_width = 16384; 2663 adev->ddev->mode_config.max_height = 16384; 2664 2665 adev->ddev->mode_config.preferred_depth = 24; 2666 adev->ddev->mode_config.prefer_shadow = 1; 2667 2668 adev->ddev->mode_config.fb_base = adev->gmc.aper_base; 2669 2670 r = amdgpu_display_modeset_create_props(adev); 2671 if (r) 2672 return r; 2673 2674 adev->ddev->mode_config.max_width = 16384; 2675 adev->ddev->mode_config.max_height = 16384; 2676 2677 /* allocate crtcs */ 2678 for (i = 0; i < adev->mode_info.num_crtc; i++) { 2679 r = dce_v8_0_crtc_init(adev, i); 2680 if (r) 2681 return r; 2682 } 2683 2684 if (amdgpu_atombios_get_connector_info_from_object_table(adev)) 2685 amdgpu_display_print_display_setup(adev->ddev); 2686 else 2687 return -EINVAL; 2688 2689 /* setup afmt */ 2690 r = dce_v8_0_afmt_init(adev); 2691 if (r) 2692 return r; 2693 2694 r = dce_v8_0_audio_init(adev); 2695 if (r) 2696 return r; 2697 2698 drm_kms_helper_poll_init(adev->ddev); 2699 2700 adev->mode_info.mode_config_initialized = true; 2701 return 0; 2702 } 2703 2704 static int dce_v8_0_sw_fini(void *handle) 2705 { 2706 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2707 2708 kfree(adev->mode_info.bios_hardcoded_edid); 2709 2710 drm_kms_helper_poll_fini(adev->ddev); 2711 2712 dce_v8_0_audio_fini(adev); 2713 2714 dce_v8_0_afmt_fini(adev); 2715 2716 drm_mode_config_cleanup(adev->ddev); 2717 adev->mode_info.mode_config_initialized = false; 2718 2719 return 0; 2720 } 2721 2722 static int dce_v8_0_hw_init(void *handle) 2723 { 2724 int i; 2725 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2726 2727 /* disable vga render */ 2728 dce_v8_0_set_vga_render_state(adev, false); 2729 /* init dig PHYs, disp eng pll */ 2730 amdgpu_atombios_encoder_init_dig(adev); 2731 amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk); 2732 2733 /* initialize hpd */ 2734 dce_v8_0_hpd_init(adev); 2735 2736 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 2737 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 2738 } 2739 2740 dce_v8_0_pageflip_interrupt_init(adev); 2741 2742 return 0; 2743 } 2744 2745 static int dce_v8_0_hw_fini(void *handle) 2746 { 2747 int i; 2748 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2749 2750 dce_v8_0_hpd_fini(adev); 2751 2752 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 2753 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 2754 } 2755 2756 dce_v8_0_pageflip_interrupt_fini(adev); 2757 2758 return 0; 2759 } 2760 2761 static int dce_v8_0_suspend(void *handle) 2762 { 2763 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2764 2765 adev->mode_info.bl_level = 2766 amdgpu_atombios_encoder_get_backlight_level_from_reg(adev); 2767 2768 return dce_v8_0_hw_fini(handle); 2769 } 2770 2771 static int dce_v8_0_resume(void *handle) 2772 { 2773 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2774 int ret; 2775 2776 amdgpu_atombios_encoder_set_backlight_level_to_reg(adev, 2777 adev->mode_info.bl_level); 2778 2779 ret = dce_v8_0_hw_init(handle); 2780 2781 /* turn on the BL */ 2782 if (adev->mode_info.bl_encoder) { 2783 u8 bl_level = amdgpu_display_backlight_get_level(adev, 2784 adev->mode_info.bl_encoder); 2785 amdgpu_display_backlight_set_level(adev, adev->mode_info.bl_encoder, 2786 bl_level); 2787 } 2788 2789 return ret; 2790 } 2791 2792 static bool dce_v8_0_is_idle(void *handle) 2793 { 2794 return true; 2795 } 2796 2797 static int dce_v8_0_wait_for_idle(void *handle) 2798 { 2799 return 0; 2800 } 2801 2802 static int dce_v8_0_soft_reset(void *handle) 2803 { 2804 u32 srbm_soft_reset = 0, tmp; 2805 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2806 2807 if (dce_v8_0_is_display_hung(adev)) 2808 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_DC_MASK; 2809 2810 if (srbm_soft_reset) { 2811 tmp = RREG32(mmSRBM_SOFT_RESET); 2812 tmp |= srbm_soft_reset; 2813 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 2814 WREG32(mmSRBM_SOFT_RESET, tmp); 2815 tmp = RREG32(mmSRBM_SOFT_RESET); 2816 2817 udelay(50); 2818 2819 tmp &= ~srbm_soft_reset; 2820 WREG32(mmSRBM_SOFT_RESET, tmp); 2821 tmp = RREG32(mmSRBM_SOFT_RESET); 2822 2823 /* Wait a little for things to settle down */ 2824 udelay(50); 2825 } 2826 return 0; 2827 } 2828 2829 static void dce_v8_0_set_crtc_vblank_interrupt_state(struct amdgpu_device *adev, 2830 int crtc, 2831 enum amdgpu_interrupt_state state) 2832 { 2833 u32 reg_block, lb_interrupt_mask; 2834 2835 if (crtc >= adev->mode_info.num_crtc) { 2836 DRM_DEBUG("invalid crtc %d\n", crtc); 2837 return; 2838 } 2839 2840 switch (crtc) { 2841 case 0: 2842 reg_block = CRTC0_REGISTER_OFFSET; 2843 break; 2844 case 1: 2845 reg_block = CRTC1_REGISTER_OFFSET; 2846 break; 2847 case 2: 2848 reg_block = CRTC2_REGISTER_OFFSET; 2849 break; 2850 case 3: 2851 reg_block = CRTC3_REGISTER_OFFSET; 2852 break; 2853 case 4: 2854 reg_block = CRTC4_REGISTER_OFFSET; 2855 break; 2856 case 5: 2857 reg_block = CRTC5_REGISTER_OFFSET; 2858 break; 2859 default: 2860 DRM_DEBUG("invalid crtc %d\n", crtc); 2861 return; 2862 } 2863 2864 switch (state) { 2865 case AMDGPU_IRQ_STATE_DISABLE: 2866 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2867 lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK; 2868 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2869 break; 2870 case AMDGPU_IRQ_STATE_ENABLE: 2871 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2872 lb_interrupt_mask |= LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK; 2873 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2874 break; 2875 default: 2876 break; 2877 } 2878 } 2879 2880 static void dce_v8_0_set_crtc_vline_interrupt_state(struct amdgpu_device *adev, 2881 int crtc, 2882 enum amdgpu_interrupt_state state) 2883 { 2884 u32 reg_block, lb_interrupt_mask; 2885 2886 if (crtc >= adev->mode_info.num_crtc) { 2887 DRM_DEBUG("invalid crtc %d\n", crtc); 2888 return; 2889 } 2890 2891 switch (crtc) { 2892 case 0: 2893 reg_block = CRTC0_REGISTER_OFFSET; 2894 break; 2895 case 1: 2896 reg_block = CRTC1_REGISTER_OFFSET; 2897 break; 2898 case 2: 2899 reg_block = CRTC2_REGISTER_OFFSET; 2900 break; 2901 case 3: 2902 reg_block = CRTC3_REGISTER_OFFSET; 2903 break; 2904 case 4: 2905 reg_block = CRTC4_REGISTER_OFFSET; 2906 break; 2907 case 5: 2908 reg_block = CRTC5_REGISTER_OFFSET; 2909 break; 2910 default: 2911 DRM_DEBUG("invalid crtc %d\n", crtc); 2912 return; 2913 } 2914 2915 switch (state) { 2916 case AMDGPU_IRQ_STATE_DISABLE: 2917 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2918 lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK; 2919 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2920 break; 2921 case AMDGPU_IRQ_STATE_ENABLE: 2922 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2923 lb_interrupt_mask |= LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK; 2924 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2925 break; 2926 default: 2927 break; 2928 } 2929 } 2930 2931 static int dce_v8_0_set_hpd_interrupt_state(struct amdgpu_device *adev, 2932 struct amdgpu_irq_src *src, 2933 unsigned type, 2934 enum amdgpu_interrupt_state state) 2935 { 2936 u32 dc_hpd_int_cntl; 2937 2938 if (type >= adev->mode_info.num_hpd) { 2939 DRM_DEBUG("invalid hdp %d\n", type); 2940 return 0; 2941 } 2942 2943 switch (state) { 2944 case AMDGPU_IRQ_STATE_DISABLE: 2945 dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]); 2946 dc_hpd_int_cntl &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; 2947 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl); 2948 break; 2949 case AMDGPU_IRQ_STATE_ENABLE: 2950 dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]); 2951 dc_hpd_int_cntl |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; 2952 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl); 2953 break; 2954 default: 2955 break; 2956 } 2957 2958 return 0; 2959 } 2960 2961 static int dce_v8_0_set_crtc_interrupt_state(struct amdgpu_device *adev, 2962 struct amdgpu_irq_src *src, 2963 unsigned type, 2964 enum amdgpu_interrupt_state state) 2965 { 2966 switch (type) { 2967 case AMDGPU_CRTC_IRQ_VBLANK1: 2968 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 0, state); 2969 break; 2970 case AMDGPU_CRTC_IRQ_VBLANK2: 2971 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 1, state); 2972 break; 2973 case AMDGPU_CRTC_IRQ_VBLANK3: 2974 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 2, state); 2975 break; 2976 case AMDGPU_CRTC_IRQ_VBLANK4: 2977 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 3, state); 2978 break; 2979 case AMDGPU_CRTC_IRQ_VBLANK5: 2980 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 4, state); 2981 break; 2982 case AMDGPU_CRTC_IRQ_VBLANK6: 2983 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 5, state); 2984 break; 2985 case AMDGPU_CRTC_IRQ_VLINE1: 2986 dce_v8_0_set_crtc_vline_interrupt_state(adev, 0, state); 2987 break; 2988 case AMDGPU_CRTC_IRQ_VLINE2: 2989 dce_v8_0_set_crtc_vline_interrupt_state(adev, 1, state); 2990 break; 2991 case AMDGPU_CRTC_IRQ_VLINE3: 2992 dce_v8_0_set_crtc_vline_interrupt_state(adev, 2, state); 2993 break; 2994 case AMDGPU_CRTC_IRQ_VLINE4: 2995 dce_v8_0_set_crtc_vline_interrupt_state(adev, 3, state); 2996 break; 2997 case AMDGPU_CRTC_IRQ_VLINE5: 2998 dce_v8_0_set_crtc_vline_interrupt_state(adev, 4, state); 2999 break; 3000 case AMDGPU_CRTC_IRQ_VLINE6: 3001 dce_v8_0_set_crtc_vline_interrupt_state(adev, 5, state); 3002 break; 3003 default: 3004 break; 3005 } 3006 return 0; 3007 } 3008 3009 static int dce_v8_0_crtc_irq(struct amdgpu_device *adev, 3010 struct amdgpu_irq_src *source, 3011 struct amdgpu_iv_entry *entry) 3012 { 3013 unsigned crtc = entry->src_id - 1; 3014 uint32_t disp_int = RREG32(interrupt_status_offsets[crtc].reg); 3015 unsigned int irq_type = amdgpu_display_crtc_idx_to_irq_type(adev, 3016 crtc); 3017 3018 switch (entry->src_data[0]) { 3019 case 0: /* vblank */ 3020 if (disp_int & interrupt_status_offsets[crtc].vblank) 3021 WREG32(mmLB_VBLANK_STATUS + crtc_offsets[crtc], LB_VBLANK_STATUS__VBLANK_ACK_MASK); 3022 else 3023 DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); 3024 3025 if (amdgpu_irq_enabled(adev, source, irq_type)) { 3026 drm_handle_vblank(adev->ddev, crtc); 3027 } 3028 DRM_DEBUG("IH: D%d vblank\n", crtc + 1); 3029 break; 3030 case 1: /* vline */ 3031 if (disp_int & interrupt_status_offsets[crtc].vline) 3032 WREG32(mmLB_VLINE_STATUS + crtc_offsets[crtc], LB_VLINE_STATUS__VLINE_ACK_MASK); 3033 else 3034 DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); 3035 3036 DRM_DEBUG("IH: D%d vline\n", crtc + 1); 3037 break; 3038 default: 3039 DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); 3040 break; 3041 } 3042 3043 return 0; 3044 } 3045 3046 static int dce_v8_0_set_pageflip_interrupt_state(struct amdgpu_device *adev, 3047 struct amdgpu_irq_src *src, 3048 unsigned type, 3049 enum amdgpu_interrupt_state state) 3050 { 3051 u32 reg; 3052 3053 if (type >= adev->mode_info.num_crtc) { 3054 DRM_ERROR("invalid pageflip crtc %d\n", type); 3055 return -EINVAL; 3056 } 3057 3058 reg = RREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type]); 3059 if (state == AMDGPU_IRQ_STATE_DISABLE) 3060 WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type], 3061 reg & ~GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK); 3062 else 3063 WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type], 3064 reg | GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK); 3065 3066 return 0; 3067 } 3068 3069 static int dce_v8_0_pageflip_irq(struct amdgpu_device *adev, 3070 struct amdgpu_irq_src *source, 3071 struct amdgpu_iv_entry *entry) 3072 { 3073 unsigned long flags; 3074 unsigned crtc_id; 3075 struct amdgpu_crtc *amdgpu_crtc; 3076 struct amdgpu_flip_work *works; 3077 3078 crtc_id = (entry->src_id - 8) >> 1; 3079 amdgpu_crtc = adev->mode_info.crtcs[crtc_id]; 3080 3081 if (crtc_id >= adev->mode_info.num_crtc) { 3082 DRM_ERROR("invalid pageflip crtc %d\n", crtc_id); 3083 return -EINVAL; 3084 } 3085 3086 if (RREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id]) & 3087 GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_OCCURRED_MASK) 3088 WREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id], 3089 GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_CLEAR_MASK); 3090 3091 /* IRQ could occur when in initial stage */ 3092 if (amdgpu_crtc == NULL) 3093 return 0; 3094 3095 spin_lock_irqsave(&adev->ddev->event_lock, flags); 3096 works = amdgpu_crtc->pflip_works; 3097 if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){ 3098 DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d != " 3099 "AMDGPU_FLIP_SUBMITTED(%d)\n", 3100 amdgpu_crtc->pflip_status, 3101 AMDGPU_FLIP_SUBMITTED); 3102 spin_unlock_irqrestore(&adev->ddev->event_lock, flags); 3103 return 0; 3104 } 3105 3106 /* page flip completed. clean up */ 3107 amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE; 3108 amdgpu_crtc->pflip_works = NULL; 3109 3110 /* wakeup usersapce */ 3111 if (works->event) 3112 drm_crtc_send_vblank_event(&amdgpu_crtc->base, works->event); 3113 3114 spin_unlock_irqrestore(&adev->ddev->event_lock, flags); 3115 3116 drm_crtc_vblank_put(&amdgpu_crtc->base); 3117 schedule_work(&works->unpin_work); 3118 3119 return 0; 3120 } 3121 3122 static int dce_v8_0_hpd_irq(struct amdgpu_device *adev, 3123 struct amdgpu_irq_src *source, 3124 struct amdgpu_iv_entry *entry) 3125 { 3126 uint32_t disp_int, mask, tmp; 3127 unsigned hpd; 3128 3129 if (entry->src_data[0] >= adev->mode_info.num_hpd) { 3130 DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); 3131 return 0; 3132 } 3133 3134 hpd = entry->src_data[0]; 3135 disp_int = RREG32(interrupt_status_offsets[hpd].reg); 3136 mask = interrupt_status_offsets[hpd].hpd; 3137 3138 if (disp_int & mask) { 3139 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]); 3140 tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_ACK_MASK; 3141 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp); 3142 schedule_work(&adev->hotplug_work); 3143 DRM_DEBUG("IH: HPD%d\n", hpd + 1); 3144 } 3145 3146 return 0; 3147 3148 } 3149 3150 static int dce_v8_0_set_clockgating_state(void *handle, 3151 enum amd_clockgating_state state) 3152 { 3153 return 0; 3154 } 3155 3156 static int dce_v8_0_set_powergating_state(void *handle, 3157 enum amd_powergating_state state) 3158 { 3159 return 0; 3160 } 3161 3162 static const struct amd_ip_funcs dce_v8_0_ip_funcs = { 3163 .name = "dce_v8_0", 3164 .early_init = dce_v8_0_early_init, 3165 .late_init = NULL, 3166 .sw_init = dce_v8_0_sw_init, 3167 .sw_fini = dce_v8_0_sw_fini, 3168 .hw_init = dce_v8_0_hw_init, 3169 .hw_fini = dce_v8_0_hw_fini, 3170 .suspend = dce_v8_0_suspend, 3171 .resume = dce_v8_0_resume, 3172 .is_idle = dce_v8_0_is_idle, 3173 .wait_for_idle = dce_v8_0_wait_for_idle, 3174 .soft_reset = dce_v8_0_soft_reset, 3175 .set_clockgating_state = dce_v8_0_set_clockgating_state, 3176 .set_powergating_state = dce_v8_0_set_powergating_state, 3177 }; 3178 3179 static void 3180 dce_v8_0_encoder_mode_set(struct drm_encoder *encoder, 3181 struct drm_display_mode *mode, 3182 struct drm_display_mode *adjusted_mode) 3183 { 3184 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3185 3186 amdgpu_encoder->pixel_clock = adjusted_mode->clock; 3187 3188 /* need to call this here rather than in prepare() since we need some crtc info */ 3189 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); 3190 3191 /* set scaler clears this on some chips */ 3192 dce_v8_0_set_interleave(encoder->crtc, mode); 3193 3194 if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) { 3195 dce_v8_0_afmt_enable(encoder, true); 3196 dce_v8_0_afmt_setmode(encoder, adjusted_mode); 3197 } 3198 } 3199 3200 static void dce_v8_0_encoder_prepare(struct drm_encoder *encoder) 3201 { 3202 struct amdgpu_device *adev = encoder->dev->dev_private; 3203 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3204 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); 3205 3206 if ((amdgpu_encoder->active_device & 3207 (ATOM_DEVICE_DFP_SUPPORT | ATOM_DEVICE_LCD_SUPPORT)) || 3208 (amdgpu_encoder_get_dp_bridge_encoder_id(encoder) != 3209 ENCODER_OBJECT_ID_NONE)) { 3210 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 3211 if (dig) { 3212 dig->dig_encoder = dce_v8_0_pick_dig_encoder(encoder); 3213 if (amdgpu_encoder->active_device & ATOM_DEVICE_DFP_SUPPORT) 3214 dig->afmt = adev->mode_info.afmt[dig->dig_encoder]; 3215 } 3216 } 3217 3218 amdgpu_atombios_scratch_regs_lock(adev, true); 3219 3220 if (connector) { 3221 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 3222 3223 /* select the clock/data port if it uses a router */ 3224 if (amdgpu_connector->router.cd_valid) 3225 amdgpu_i2c_router_select_cd_port(amdgpu_connector); 3226 3227 /* turn eDP panel on for mode set */ 3228 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) 3229 amdgpu_atombios_encoder_set_edp_panel_power(connector, 3230 ATOM_TRANSMITTER_ACTION_POWER_ON); 3231 } 3232 3233 /* this is needed for the pll/ss setup to work correctly in some cases */ 3234 amdgpu_atombios_encoder_set_crtc_source(encoder); 3235 /* set up the FMT blocks */ 3236 dce_v8_0_program_fmt(encoder); 3237 } 3238 3239 static void dce_v8_0_encoder_commit(struct drm_encoder *encoder) 3240 { 3241 struct drm_device *dev = encoder->dev; 3242 struct amdgpu_device *adev = dev->dev_private; 3243 3244 /* need to call this here as we need the crtc set up */ 3245 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_ON); 3246 amdgpu_atombios_scratch_regs_lock(adev, false); 3247 } 3248 3249 static void dce_v8_0_encoder_disable(struct drm_encoder *encoder) 3250 { 3251 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3252 struct amdgpu_encoder_atom_dig *dig; 3253 3254 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); 3255 3256 if (amdgpu_atombios_encoder_is_digital(encoder)) { 3257 if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) 3258 dce_v8_0_afmt_enable(encoder, false); 3259 dig = amdgpu_encoder->enc_priv; 3260 dig->dig_encoder = -1; 3261 } 3262 amdgpu_encoder->active_device = 0; 3263 } 3264 3265 /* these are handled by the primary encoders */ 3266 static void dce_v8_0_ext_prepare(struct drm_encoder *encoder) 3267 { 3268 3269 } 3270 3271 static void dce_v8_0_ext_commit(struct drm_encoder *encoder) 3272 { 3273 3274 } 3275 3276 static void 3277 dce_v8_0_ext_mode_set(struct drm_encoder *encoder, 3278 struct drm_display_mode *mode, 3279 struct drm_display_mode *adjusted_mode) 3280 { 3281 3282 } 3283 3284 static void dce_v8_0_ext_disable(struct drm_encoder *encoder) 3285 { 3286 3287 } 3288 3289 static void 3290 dce_v8_0_ext_dpms(struct drm_encoder *encoder, int mode) 3291 { 3292 3293 } 3294 3295 static const struct drm_encoder_helper_funcs dce_v8_0_ext_helper_funcs = { 3296 .dpms = dce_v8_0_ext_dpms, 3297 .prepare = dce_v8_0_ext_prepare, 3298 .mode_set = dce_v8_0_ext_mode_set, 3299 .commit = dce_v8_0_ext_commit, 3300 .disable = dce_v8_0_ext_disable, 3301 /* no detect for TMDS/LVDS yet */ 3302 }; 3303 3304 static const struct drm_encoder_helper_funcs dce_v8_0_dig_helper_funcs = { 3305 .dpms = amdgpu_atombios_encoder_dpms, 3306 .mode_fixup = amdgpu_atombios_encoder_mode_fixup, 3307 .prepare = dce_v8_0_encoder_prepare, 3308 .mode_set = dce_v8_0_encoder_mode_set, 3309 .commit = dce_v8_0_encoder_commit, 3310 .disable = dce_v8_0_encoder_disable, 3311 .detect = amdgpu_atombios_encoder_dig_detect, 3312 }; 3313 3314 static const struct drm_encoder_helper_funcs dce_v8_0_dac_helper_funcs = { 3315 .dpms = amdgpu_atombios_encoder_dpms, 3316 .mode_fixup = amdgpu_atombios_encoder_mode_fixup, 3317 .prepare = dce_v8_0_encoder_prepare, 3318 .mode_set = dce_v8_0_encoder_mode_set, 3319 .commit = dce_v8_0_encoder_commit, 3320 .detect = amdgpu_atombios_encoder_dac_detect, 3321 }; 3322 3323 static void dce_v8_0_encoder_destroy(struct drm_encoder *encoder) 3324 { 3325 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3326 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) 3327 amdgpu_atombios_encoder_fini_backlight(amdgpu_encoder); 3328 kfree(amdgpu_encoder->enc_priv); 3329 drm_encoder_cleanup(encoder); 3330 kfree(amdgpu_encoder); 3331 } 3332 3333 static const struct drm_encoder_funcs dce_v8_0_encoder_funcs = { 3334 .destroy = dce_v8_0_encoder_destroy, 3335 }; 3336 3337 static void dce_v8_0_encoder_add(struct amdgpu_device *adev, 3338 uint32_t encoder_enum, 3339 uint32_t supported_device, 3340 u16 caps) 3341 { 3342 struct drm_device *dev = adev->ddev; 3343 struct drm_encoder *encoder; 3344 struct amdgpu_encoder *amdgpu_encoder; 3345 3346 /* see if we already added it */ 3347 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 3348 amdgpu_encoder = to_amdgpu_encoder(encoder); 3349 if (amdgpu_encoder->encoder_enum == encoder_enum) { 3350 amdgpu_encoder->devices |= supported_device; 3351 return; 3352 } 3353 3354 } 3355 3356 /* add a new one */ 3357 amdgpu_encoder = kzalloc(sizeof(struct amdgpu_encoder), GFP_KERNEL); 3358 if (!amdgpu_encoder) 3359 return; 3360 3361 encoder = &amdgpu_encoder->base; 3362 switch (adev->mode_info.num_crtc) { 3363 case 1: 3364 encoder->possible_crtcs = 0x1; 3365 break; 3366 case 2: 3367 default: 3368 encoder->possible_crtcs = 0x3; 3369 break; 3370 case 4: 3371 encoder->possible_crtcs = 0xf; 3372 break; 3373 case 6: 3374 encoder->possible_crtcs = 0x3f; 3375 break; 3376 } 3377 3378 amdgpu_encoder->enc_priv = NULL; 3379 3380 amdgpu_encoder->encoder_enum = encoder_enum; 3381 amdgpu_encoder->encoder_id = (encoder_enum & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; 3382 amdgpu_encoder->devices = supported_device; 3383 amdgpu_encoder->rmx_type = RMX_OFF; 3384 amdgpu_encoder->underscan_type = UNDERSCAN_OFF; 3385 amdgpu_encoder->is_ext_encoder = false; 3386 amdgpu_encoder->caps = caps; 3387 3388 switch (amdgpu_encoder->encoder_id) { 3389 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1: 3390 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2: 3391 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3392 DRM_MODE_ENCODER_DAC, NULL); 3393 drm_encoder_helper_add(encoder, &dce_v8_0_dac_helper_funcs); 3394 break; 3395 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1: 3396 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY: 3397 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1: 3398 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2: 3399 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3: 3400 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) { 3401 amdgpu_encoder->rmx_type = RMX_FULL; 3402 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3403 DRM_MODE_ENCODER_LVDS, NULL); 3404 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_lcd_info(amdgpu_encoder); 3405 } else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) { 3406 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3407 DRM_MODE_ENCODER_DAC, NULL); 3408 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder); 3409 } else { 3410 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3411 DRM_MODE_ENCODER_TMDS, NULL); 3412 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder); 3413 } 3414 drm_encoder_helper_add(encoder, &dce_v8_0_dig_helper_funcs); 3415 break; 3416 case ENCODER_OBJECT_ID_SI170B: 3417 case ENCODER_OBJECT_ID_CH7303: 3418 case ENCODER_OBJECT_ID_EXTERNAL_SDVOA: 3419 case ENCODER_OBJECT_ID_EXTERNAL_SDVOB: 3420 case ENCODER_OBJECT_ID_TITFP513: 3421 case ENCODER_OBJECT_ID_VT1623: 3422 case ENCODER_OBJECT_ID_HDMI_SI1930: 3423 case ENCODER_OBJECT_ID_TRAVIS: 3424 case ENCODER_OBJECT_ID_NUTMEG: 3425 /* these are handled by the primary encoders */ 3426 amdgpu_encoder->is_ext_encoder = true; 3427 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) 3428 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3429 DRM_MODE_ENCODER_LVDS, NULL); 3430 else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) 3431 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3432 DRM_MODE_ENCODER_DAC, NULL); 3433 else 3434 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3435 DRM_MODE_ENCODER_TMDS, NULL); 3436 drm_encoder_helper_add(encoder, &dce_v8_0_ext_helper_funcs); 3437 break; 3438 } 3439 } 3440 3441 static const struct amdgpu_display_funcs dce_v8_0_display_funcs = { 3442 .bandwidth_update = &dce_v8_0_bandwidth_update, 3443 .vblank_get_counter = &dce_v8_0_vblank_get_counter, 3444 .backlight_set_level = &amdgpu_atombios_encoder_set_backlight_level, 3445 .backlight_get_level = &amdgpu_atombios_encoder_get_backlight_level, 3446 .hpd_sense = &dce_v8_0_hpd_sense, 3447 .hpd_set_polarity = &dce_v8_0_hpd_set_polarity, 3448 .hpd_get_gpio_reg = &dce_v8_0_hpd_get_gpio_reg, 3449 .page_flip = &dce_v8_0_page_flip, 3450 .page_flip_get_scanoutpos = &dce_v8_0_crtc_get_scanoutpos, 3451 .add_encoder = &dce_v8_0_encoder_add, 3452 .add_connector = &amdgpu_connector_add, 3453 }; 3454 3455 static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev) 3456 { 3457 if (adev->mode_info.funcs == NULL) 3458 adev->mode_info.funcs = &dce_v8_0_display_funcs; 3459 } 3460 3461 static const struct amdgpu_irq_src_funcs dce_v8_0_crtc_irq_funcs = { 3462 .set = dce_v8_0_set_crtc_interrupt_state, 3463 .process = dce_v8_0_crtc_irq, 3464 }; 3465 3466 static const struct amdgpu_irq_src_funcs dce_v8_0_pageflip_irq_funcs = { 3467 .set = dce_v8_0_set_pageflip_interrupt_state, 3468 .process = dce_v8_0_pageflip_irq, 3469 }; 3470 3471 static const struct amdgpu_irq_src_funcs dce_v8_0_hpd_irq_funcs = { 3472 .set = dce_v8_0_set_hpd_interrupt_state, 3473 .process = dce_v8_0_hpd_irq, 3474 }; 3475 3476 static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev) 3477 { 3478 if (adev->mode_info.num_crtc > 0) 3479 adev->crtc_irq.num_types = AMDGPU_CRTC_IRQ_VLINE1 + adev->mode_info.num_crtc; 3480 else 3481 adev->crtc_irq.num_types = 0; 3482 adev->crtc_irq.funcs = &dce_v8_0_crtc_irq_funcs; 3483 3484 adev->pageflip_irq.num_types = adev->mode_info.num_crtc; 3485 adev->pageflip_irq.funcs = &dce_v8_0_pageflip_irq_funcs; 3486 3487 adev->hpd_irq.num_types = adev->mode_info.num_hpd; 3488 adev->hpd_irq.funcs = &dce_v8_0_hpd_irq_funcs; 3489 } 3490 3491 const struct amdgpu_ip_block_version dce_v8_0_ip_block = 3492 { 3493 .type = AMD_IP_BLOCK_TYPE_DCE, 3494 .major = 8, 3495 .minor = 0, 3496 .rev = 0, 3497 .funcs = &dce_v8_0_ip_funcs, 3498 }; 3499 3500 const struct amdgpu_ip_block_version dce_v8_1_ip_block = 3501 { 3502 .type = AMD_IP_BLOCK_TYPE_DCE, 3503 .major = 8, 3504 .minor = 1, 3505 .rev = 0, 3506 .funcs = &dce_v8_0_ip_funcs, 3507 }; 3508 3509 const struct amdgpu_ip_block_version dce_v8_2_ip_block = 3510 { 3511 .type = AMD_IP_BLOCK_TYPE_DCE, 3512 .major = 8, 3513 .minor = 2, 3514 .rev = 0, 3515 .funcs = &dce_v8_0_ip_funcs, 3516 }; 3517 3518 const struct amdgpu_ip_block_version dce_v8_3_ip_block = 3519 { 3520 .type = AMD_IP_BLOCK_TYPE_DCE, 3521 .major = 8, 3522 .minor = 3, 3523 .rev = 0, 3524 .funcs = &dce_v8_0_ip_funcs, 3525 }; 3526 3527 const struct amdgpu_ip_block_version dce_v8_5_ip_block = 3528 { 3529 .type = AMD_IP_BLOCK_TYPE_DCE, 3530 .major = 8, 3531 .minor = 5, 3532 .rev = 0, 3533 .funcs = &dce_v8_0_ip_funcs, 3534 }; 3535