1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include <drm/drmP.h> 24 #include "amdgpu.h" 25 #include "amdgpu_pm.h" 26 #include "amdgpu_i2c.h" 27 #include "cikd.h" 28 #include "atom.h" 29 #include "amdgpu_atombios.h" 30 #include "atombios_crtc.h" 31 #include "atombios_encoders.h" 32 #include "amdgpu_pll.h" 33 #include "amdgpu_connectors.h" 34 #include "amdgpu_display.h" 35 #include "dce_v8_0.h" 36 37 #include "dce/dce_8_0_d.h" 38 #include "dce/dce_8_0_sh_mask.h" 39 40 #include "gca/gfx_7_2_enum.h" 41 42 #include "gmc/gmc_7_1_d.h" 43 #include "gmc/gmc_7_1_sh_mask.h" 44 45 #include "oss/oss_2_0_d.h" 46 #include "oss/oss_2_0_sh_mask.h" 47 48 static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev); 49 static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev); 50 51 static const u32 crtc_offsets[6] = 52 { 53 CRTC0_REGISTER_OFFSET, 54 CRTC1_REGISTER_OFFSET, 55 CRTC2_REGISTER_OFFSET, 56 CRTC3_REGISTER_OFFSET, 57 CRTC4_REGISTER_OFFSET, 58 CRTC5_REGISTER_OFFSET 59 }; 60 61 static const u32 hpd_offsets[] = 62 { 63 HPD0_REGISTER_OFFSET, 64 HPD1_REGISTER_OFFSET, 65 HPD2_REGISTER_OFFSET, 66 HPD3_REGISTER_OFFSET, 67 HPD4_REGISTER_OFFSET, 68 HPD5_REGISTER_OFFSET 69 }; 70 71 static const uint32_t dig_offsets[] = { 72 CRTC0_REGISTER_OFFSET, 73 CRTC1_REGISTER_OFFSET, 74 CRTC2_REGISTER_OFFSET, 75 CRTC3_REGISTER_OFFSET, 76 CRTC4_REGISTER_OFFSET, 77 CRTC5_REGISTER_OFFSET, 78 (0x13830 - 0x7030) >> 2, 79 }; 80 81 static const struct { 82 uint32_t reg; 83 uint32_t vblank; 84 uint32_t vline; 85 uint32_t hpd; 86 87 } interrupt_status_offsets[6] = { { 88 .reg = mmDISP_INTERRUPT_STATUS, 89 .vblank = DISP_INTERRUPT_STATUS__LB_D1_VBLANK_INTERRUPT_MASK, 90 .vline = DISP_INTERRUPT_STATUS__LB_D1_VLINE_INTERRUPT_MASK, 91 .hpd = DISP_INTERRUPT_STATUS__DC_HPD1_INTERRUPT_MASK 92 }, { 93 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE, 94 .vblank = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VBLANK_INTERRUPT_MASK, 95 .vline = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VLINE_INTERRUPT_MASK, 96 .hpd = DISP_INTERRUPT_STATUS_CONTINUE__DC_HPD2_INTERRUPT_MASK 97 }, { 98 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE2, 99 .vblank = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VBLANK_INTERRUPT_MASK, 100 .vline = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VLINE_INTERRUPT_MASK, 101 .hpd = DISP_INTERRUPT_STATUS_CONTINUE2__DC_HPD3_INTERRUPT_MASK 102 }, { 103 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE3, 104 .vblank = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VBLANK_INTERRUPT_MASK, 105 .vline = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VLINE_INTERRUPT_MASK, 106 .hpd = DISP_INTERRUPT_STATUS_CONTINUE3__DC_HPD4_INTERRUPT_MASK 107 }, { 108 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE4, 109 .vblank = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VBLANK_INTERRUPT_MASK, 110 .vline = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VLINE_INTERRUPT_MASK, 111 .hpd = DISP_INTERRUPT_STATUS_CONTINUE4__DC_HPD5_INTERRUPT_MASK 112 }, { 113 .reg = mmDISP_INTERRUPT_STATUS_CONTINUE5, 114 .vblank = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VBLANK_INTERRUPT_MASK, 115 .vline = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VLINE_INTERRUPT_MASK, 116 .hpd = DISP_INTERRUPT_STATUS_CONTINUE5__DC_HPD6_INTERRUPT_MASK 117 } }; 118 119 static u32 dce_v8_0_audio_endpt_rreg(struct amdgpu_device *adev, 120 u32 block_offset, u32 reg) 121 { 122 unsigned long flags; 123 u32 r; 124 125 spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags); 126 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg); 127 r = RREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset); 128 spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags); 129 130 return r; 131 } 132 133 static void dce_v8_0_audio_endpt_wreg(struct amdgpu_device *adev, 134 u32 block_offset, u32 reg, u32 v) 135 { 136 unsigned long flags; 137 138 spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags); 139 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg); 140 WREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset, v); 141 spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags); 142 } 143 144 static u32 dce_v8_0_vblank_get_counter(struct amdgpu_device *adev, int crtc) 145 { 146 if (crtc >= adev->mode_info.num_crtc) 147 return 0; 148 else 149 return RREG32(mmCRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]); 150 } 151 152 static void dce_v8_0_pageflip_interrupt_init(struct amdgpu_device *adev) 153 { 154 unsigned i; 155 156 /* Enable pflip interrupts */ 157 for (i = 0; i < adev->mode_info.num_crtc; i++) 158 amdgpu_irq_get(adev, &adev->pageflip_irq, i); 159 } 160 161 static void dce_v8_0_pageflip_interrupt_fini(struct amdgpu_device *adev) 162 { 163 unsigned i; 164 165 /* Disable pflip interrupts */ 166 for (i = 0; i < adev->mode_info.num_crtc; i++) 167 amdgpu_irq_put(adev, &adev->pageflip_irq, i); 168 } 169 170 /** 171 * dce_v8_0_page_flip - pageflip callback. 172 * 173 * @adev: amdgpu_device pointer 174 * @crtc_id: crtc to cleanup pageflip on 175 * @crtc_base: new address of the crtc (GPU MC address) 176 * 177 * Triggers the actual pageflip by updating the primary 178 * surface base address. 179 */ 180 static void dce_v8_0_page_flip(struct amdgpu_device *adev, 181 int crtc_id, u64 crtc_base, bool async) 182 { 183 struct amdgpu_crtc *amdgpu_crtc = adev->mode_info.crtcs[crtc_id]; 184 185 /* flip at hsync for async, default is vsync */ 186 WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, async ? 187 GRPH_FLIP_CONTROL__GRPH_SURFACE_UPDATE_H_RETRACE_EN_MASK : 0); 188 /* update the primary scanout addresses */ 189 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 190 upper_32_bits(crtc_base)); 191 /* writing to the low address triggers the update */ 192 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 193 lower_32_bits(crtc_base)); 194 /* post the write */ 195 RREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset); 196 } 197 198 static int dce_v8_0_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc, 199 u32 *vbl, u32 *position) 200 { 201 if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc)) 202 return -EINVAL; 203 204 *vbl = RREG32(mmCRTC_V_BLANK_START_END + crtc_offsets[crtc]); 205 *position = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]); 206 207 return 0; 208 } 209 210 /** 211 * dce_v8_0_hpd_sense - hpd sense callback. 212 * 213 * @adev: amdgpu_device pointer 214 * @hpd: hpd (hotplug detect) pin 215 * 216 * Checks if a digital monitor is connected (evergreen+). 217 * Returns true if connected, false if not connected. 218 */ 219 static bool dce_v8_0_hpd_sense(struct amdgpu_device *adev, 220 enum amdgpu_hpd_id hpd) 221 { 222 bool connected = false; 223 224 if (hpd >= adev->mode_info.num_hpd) 225 return connected; 226 227 if (RREG32(mmDC_HPD1_INT_STATUS + hpd_offsets[hpd]) & 228 DC_HPD1_INT_STATUS__DC_HPD1_SENSE_MASK) 229 connected = true; 230 231 return connected; 232 } 233 234 /** 235 * dce_v8_0_hpd_set_polarity - hpd set polarity callback. 236 * 237 * @adev: amdgpu_device pointer 238 * @hpd: hpd (hotplug detect) pin 239 * 240 * Set the polarity of the hpd pin (evergreen+). 241 */ 242 static void dce_v8_0_hpd_set_polarity(struct amdgpu_device *adev, 243 enum amdgpu_hpd_id hpd) 244 { 245 u32 tmp; 246 bool connected = dce_v8_0_hpd_sense(adev, hpd); 247 248 if (hpd >= adev->mode_info.num_hpd) 249 return; 250 251 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]); 252 if (connected) 253 tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK; 254 else 255 tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK; 256 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp); 257 } 258 259 /** 260 * dce_v8_0_hpd_init - hpd setup callback. 261 * 262 * @adev: amdgpu_device pointer 263 * 264 * Setup the hpd pins used by the card (evergreen+). 265 * Enable the pin, set the polarity, and enable the hpd interrupts. 266 */ 267 static void dce_v8_0_hpd_init(struct amdgpu_device *adev) 268 { 269 struct drm_device *dev = adev->ddev; 270 struct drm_connector *connector; 271 u32 tmp; 272 273 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 274 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 275 276 if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd) 277 continue; 278 279 tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); 280 tmp |= DC_HPD1_CONTROL__DC_HPD1_EN_MASK; 281 WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp); 282 283 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP || 284 connector->connector_type == DRM_MODE_CONNECTOR_LVDS) { 285 /* don't try to enable hpd on eDP or LVDS avoid breaking the 286 * aux dp channel on imac and help (but not completely fix) 287 * https://bugzilla.redhat.com/show_bug.cgi?id=726143 288 * also avoid interrupt storms during dpms. 289 */ 290 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); 291 tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; 292 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp); 293 continue; 294 } 295 296 dce_v8_0_hpd_set_polarity(adev, amdgpu_connector->hpd.hpd); 297 amdgpu_irq_get(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd); 298 } 299 } 300 301 /** 302 * dce_v8_0_hpd_fini - hpd tear down callback. 303 * 304 * @adev: amdgpu_device pointer 305 * 306 * Tear down the hpd pins used by the card (evergreen+). 307 * Disable the hpd interrupts. 308 */ 309 static void dce_v8_0_hpd_fini(struct amdgpu_device *adev) 310 { 311 struct drm_device *dev = adev->ddev; 312 struct drm_connector *connector; 313 u32 tmp; 314 315 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 316 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 317 318 if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd) 319 continue; 320 321 tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); 322 tmp &= ~DC_HPD1_CONTROL__DC_HPD1_EN_MASK; 323 WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], 0); 324 325 amdgpu_irq_put(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd); 326 } 327 } 328 329 static u32 dce_v8_0_hpd_get_gpio_reg(struct amdgpu_device *adev) 330 { 331 return mmDC_GPIO_HPD_A; 332 } 333 334 static bool dce_v8_0_is_display_hung(struct amdgpu_device *adev) 335 { 336 u32 crtc_hung = 0; 337 u32 crtc_status[6]; 338 u32 i, j, tmp; 339 340 for (i = 0; i < adev->mode_info.num_crtc; i++) { 341 if (RREG32(mmCRTC_CONTROL + crtc_offsets[i]) & CRTC_CONTROL__CRTC_MASTER_EN_MASK) { 342 crtc_status[i] = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]); 343 crtc_hung |= (1 << i); 344 } 345 } 346 347 for (j = 0; j < 10; j++) { 348 for (i = 0; i < adev->mode_info.num_crtc; i++) { 349 if (crtc_hung & (1 << i)) { 350 tmp = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]); 351 if (tmp != crtc_status[i]) 352 crtc_hung &= ~(1 << i); 353 } 354 } 355 if (crtc_hung == 0) 356 return false; 357 udelay(100); 358 } 359 360 return true; 361 } 362 363 static void dce_v8_0_set_vga_render_state(struct amdgpu_device *adev, 364 bool render) 365 { 366 u32 tmp; 367 368 /* Lockout access through VGA aperture*/ 369 tmp = RREG32(mmVGA_HDP_CONTROL); 370 if (render) 371 tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 0); 372 else 373 tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1); 374 WREG32(mmVGA_HDP_CONTROL, tmp); 375 376 /* disable VGA render */ 377 tmp = RREG32(mmVGA_RENDER_CONTROL); 378 if (render) 379 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 1); 380 else 381 tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0); 382 WREG32(mmVGA_RENDER_CONTROL, tmp); 383 } 384 385 static int dce_v8_0_get_num_crtc(struct amdgpu_device *adev) 386 { 387 int num_crtc = 0; 388 389 switch (adev->asic_type) { 390 case CHIP_BONAIRE: 391 case CHIP_HAWAII: 392 num_crtc = 6; 393 break; 394 case CHIP_KAVERI: 395 num_crtc = 4; 396 break; 397 case CHIP_KABINI: 398 case CHIP_MULLINS: 399 num_crtc = 2; 400 break; 401 default: 402 num_crtc = 0; 403 } 404 return num_crtc; 405 } 406 407 void dce_v8_0_disable_dce(struct amdgpu_device *adev) 408 { 409 /*Disable VGA render and enabled crtc, if has DCE engine*/ 410 if (amdgpu_atombios_has_dce_engine_info(adev)) { 411 u32 tmp; 412 int crtc_enabled, i; 413 414 dce_v8_0_set_vga_render_state(adev, false); 415 416 /*Disable crtc*/ 417 for (i = 0; i < dce_v8_0_get_num_crtc(adev); i++) { 418 crtc_enabled = REG_GET_FIELD(RREG32(mmCRTC_CONTROL + crtc_offsets[i]), 419 CRTC_CONTROL, CRTC_MASTER_EN); 420 if (crtc_enabled) { 421 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1); 422 tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]); 423 tmp = REG_SET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN, 0); 424 WREG32(mmCRTC_CONTROL + crtc_offsets[i], tmp); 425 WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0); 426 } 427 } 428 } 429 } 430 431 static void dce_v8_0_program_fmt(struct drm_encoder *encoder) 432 { 433 struct drm_device *dev = encoder->dev; 434 struct amdgpu_device *adev = dev->dev_private; 435 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 436 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); 437 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); 438 int bpc = 0; 439 u32 tmp = 0; 440 enum amdgpu_connector_dither dither = AMDGPU_FMT_DITHER_DISABLE; 441 442 if (connector) { 443 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 444 bpc = amdgpu_connector_get_monitor_bpc(connector); 445 dither = amdgpu_connector->dither; 446 } 447 448 /* LVDS/eDP FMT is set up by atom */ 449 if (amdgpu_encoder->devices & ATOM_DEVICE_LCD_SUPPORT) 450 return; 451 452 /* not needed for analog */ 453 if ((amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) || 454 (amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2)) 455 return; 456 457 if (bpc == 0) 458 return; 459 460 switch (bpc) { 461 case 6: 462 if (dither == AMDGPU_FMT_DITHER_ENABLE) 463 /* XXX sort out optimal dither settings */ 464 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | 465 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | 466 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | 467 (0 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); 468 else 469 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | 470 (0 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); 471 break; 472 case 8: 473 if (dither == AMDGPU_FMT_DITHER_ENABLE) 474 /* XXX sort out optimal dither settings */ 475 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | 476 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | 477 FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK | 478 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | 479 (1 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); 480 else 481 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | 482 (1 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); 483 break; 484 case 10: 485 if (dither == AMDGPU_FMT_DITHER_ENABLE) 486 /* XXX sort out optimal dither settings */ 487 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | 488 FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | 489 FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK | 490 FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | 491 (2 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); 492 else 493 tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | 494 (2 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); 495 break; 496 default: 497 /* not needed */ 498 break; 499 } 500 501 WREG32(mmFMT_BIT_DEPTH_CONTROL + amdgpu_crtc->crtc_offset, tmp); 502 } 503 504 505 /* display watermark setup */ 506 /** 507 * dce_v8_0_line_buffer_adjust - Set up the line buffer 508 * 509 * @adev: amdgpu_device pointer 510 * @amdgpu_crtc: the selected display controller 511 * @mode: the current display mode on the selected display 512 * controller 513 * 514 * Setup up the line buffer allocation for 515 * the selected display controller (CIK). 516 * Returns the line buffer size in pixels. 517 */ 518 static u32 dce_v8_0_line_buffer_adjust(struct amdgpu_device *adev, 519 struct amdgpu_crtc *amdgpu_crtc, 520 struct drm_display_mode *mode) 521 { 522 u32 tmp, buffer_alloc, i; 523 u32 pipe_offset = amdgpu_crtc->crtc_id * 0x8; 524 /* 525 * Line Buffer Setup 526 * There are 6 line buffers, one for each display controllers. 527 * There are 3 partitions per LB. Select the number of partitions 528 * to enable based on the display width. For display widths larger 529 * than 4096, you need use to use 2 display controllers and combine 530 * them using the stereo blender. 531 */ 532 if (amdgpu_crtc->base.enabled && mode) { 533 if (mode->crtc_hdisplay < 1920) { 534 tmp = 1; 535 buffer_alloc = 2; 536 } else if (mode->crtc_hdisplay < 2560) { 537 tmp = 2; 538 buffer_alloc = 2; 539 } else if (mode->crtc_hdisplay < 4096) { 540 tmp = 0; 541 buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4; 542 } else { 543 DRM_DEBUG_KMS("Mode too big for LB!\n"); 544 tmp = 0; 545 buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4; 546 } 547 } else { 548 tmp = 1; 549 buffer_alloc = 0; 550 } 551 552 WREG32(mmLB_MEMORY_CTRL + amdgpu_crtc->crtc_offset, 553 (tmp << LB_MEMORY_CTRL__LB_MEMORY_CONFIG__SHIFT) | 554 (0x6B0 << LB_MEMORY_CTRL__LB_MEMORY_SIZE__SHIFT)); 555 556 WREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset, 557 (buffer_alloc << PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATED__SHIFT)); 558 for (i = 0; i < adev->usec_timeout; i++) { 559 if (RREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset) & 560 PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATION_COMPLETED_MASK) 561 break; 562 udelay(1); 563 } 564 565 if (amdgpu_crtc->base.enabled && mode) { 566 switch (tmp) { 567 case 0: 568 default: 569 return 4096 * 2; 570 case 1: 571 return 1920 * 2; 572 case 2: 573 return 2560 * 2; 574 } 575 } 576 577 /* controller not enabled, so no lb used */ 578 return 0; 579 } 580 581 /** 582 * cik_get_number_of_dram_channels - get the number of dram channels 583 * 584 * @adev: amdgpu_device pointer 585 * 586 * Look up the number of video ram channels (CIK). 587 * Used for display watermark bandwidth calculations 588 * Returns the number of dram channels 589 */ 590 static u32 cik_get_number_of_dram_channels(struct amdgpu_device *adev) 591 { 592 u32 tmp = RREG32(mmMC_SHARED_CHMAP); 593 594 switch ((tmp & MC_SHARED_CHMAP__NOOFCHAN_MASK) >> MC_SHARED_CHMAP__NOOFCHAN__SHIFT) { 595 case 0: 596 default: 597 return 1; 598 case 1: 599 return 2; 600 case 2: 601 return 4; 602 case 3: 603 return 8; 604 case 4: 605 return 3; 606 case 5: 607 return 6; 608 case 6: 609 return 10; 610 case 7: 611 return 12; 612 case 8: 613 return 16; 614 } 615 } 616 617 struct dce8_wm_params { 618 u32 dram_channels; /* number of dram channels */ 619 u32 yclk; /* bandwidth per dram data pin in kHz */ 620 u32 sclk; /* engine clock in kHz */ 621 u32 disp_clk; /* display clock in kHz */ 622 u32 src_width; /* viewport width */ 623 u32 active_time; /* active display time in ns */ 624 u32 blank_time; /* blank time in ns */ 625 bool interlaced; /* mode is interlaced */ 626 fixed20_12 vsc; /* vertical scale ratio */ 627 u32 num_heads; /* number of active crtcs */ 628 u32 bytes_per_pixel; /* bytes per pixel display + overlay */ 629 u32 lb_size; /* line buffer allocated to pipe */ 630 u32 vtaps; /* vertical scaler taps */ 631 }; 632 633 /** 634 * dce_v8_0_dram_bandwidth - get the dram bandwidth 635 * 636 * @wm: watermark calculation data 637 * 638 * Calculate the raw dram bandwidth (CIK). 639 * Used for display watermark bandwidth calculations 640 * Returns the dram bandwidth in MBytes/s 641 */ 642 static u32 dce_v8_0_dram_bandwidth(struct dce8_wm_params *wm) 643 { 644 /* Calculate raw DRAM Bandwidth */ 645 fixed20_12 dram_efficiency; /* 0.7 */ 646 fixed20_12 yclk, dram_channels, bandwidth; 647 fixed20_12 a; 648 649 a.full = dfixed_const(1000); 650 yclk.full = dfixed_const(wm->yclk); 651 yclk.full = dfixed_div(yclk, a); 652 dram_channels.full = dfixed_const(wm->dram_channels * 4); 653 a.full = dfixed_const(10); 654 dram_efficiency.full = dfixed_const(7); 655 dram_efficiency.full = dfixed_div(dram_efficiency, a); 656 bandwidth.full = dfixed_mul(dram_channels, yclk); 657 bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); 658 659 return dfixed_trunc(bandwidth); 660 } 661 662 /** 663 * dce_v8_0_dram_bandwidth_for_display - get the dram bandwidth for display 664 * 665 * @wm: watermark calculation data 666 * 667 * Calculate the dram bandwidth used for display (CIK). 668 * Used for display watermark bandwidth calculations 669 * Returns the dram bandwidth for display in MBytes/s 670 */ 671 static u32 dce_v8_0_dram_bandwidth_for_display(struct dce8_wm_params *wm) 672 { 673 /* Calculate DRAM Bandwidth and the part allocated to display. */ 674 fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ 675 fixed20_12 yclk, dram_channels, bandwidth; 676 fixed20_12 a; 677 678 a.full = dfixed_const(1000); 679 yclk.full = dfixed_const(wm->yclk); 680 yclk.full = dfixed_div(yclk, a); 681 dram_channels.full = dfixed_const(wm->dram_channels * 4); 682 a.full = dfixed_const(10); 683 disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ 684 disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); 685 bandwidth.full = dfixed_mul(dram_channels, yclk); 686 bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); 687 688 return dfixed_trunc(bandwidth); 689 } 690 691 /** 692 * dce_v8_0_data_return_bandwidth - get the data return bandwidth 693 * 694 * @wm: watermark calculation data 695 * 696 * Calculate the data return bandwidth used for display (CIK). 697 * Used for display watermark bandwidth calculations 698 * Returns the data return bandwidth in MBytes/s 699 */ 700 static u32 dce_v8_0_data_return_bandwidth(struct dce8_wm_params *wm) 701 { 702 /* Calculate the display Data return Bandwidth */ 703 fixed20_12 return_efficiency; /* 0.8 */ 704 fixed20_12 sclk, bandwidth; 705 fixed20_12 a; 706 707 a.full = dfixed_const(1000); 708 sclk.full = dfixed_const(wm->sclk); 709 sclk.full = dfixed_div(sclk, a); 710 a.full = dfixed_const(10); 711 return_efficiency.full = dfixed_const(8); 712 return_efficiency.full = dfixed_div(return_efficiency, a); 713 a.full = dfixed_const(32); 714 bandwidth.full = dfixed_mul(a, sclk); 715 bandwidth.full = dfixed_mul(bandwidth, return_efficiency); 716 717 return dfixed_trunc(bandwidth); 718 } 719 720 /** 721 * dce_v8_0_dmif_request_bandwidth - get the dmif bandwidth 722 * 723 * @wm: watermark calculation data 724 * 725 * Calculate the dmif bandwidth used for display (CIK). 726 * Used for display watermark bandwidth calculations 727 * Returns the dmif bandwidth in MBytes/s 728 */ 729 static u32 dce_v8_0_dmif_request_bandwidth(struct dce8_wm_params *wm) 730 { 731 /* Calculate the DMIF Request Bandwidth */ 732 fixed20_12 disp_clk_request_efficiency; /* 0.8 */ 733 fixed20_12 disp_clk, bandwidth; 734 fixed20_12 a, b; 735 736 a.full = dfixed_const(1000); 737 disp_clk.full = dfixed_const(wm->disp_clk); 738 disp_clk.full = dfixed_div(disp_clk, a); 739 a.full = dfixed_const(32); 740 b.full = dfixed_mul(a, disp_clk); 741 742 a.full = dfixed_const(10); 743 disp_clk_request_efficiency.full = dfixed_const(8); 744 disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); 745 746 bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency); 747 748 return dfixed_trunc(bandwidth); 749 } 750 751 /** 752 * dce_v8_0_available_bandwidth - get the min available bandwidth 753 * 754 * @wm: watermark calculation data 755 * 756 * Calculate the min available bandwidth used for display (CIK). 757 * Used for display watermark bandwidth calculations 758 * Returns the min available bandwidth in MBytes/s 759 */ 760 static u32 dce_v8_0_available_bandwidth(struct dce8_wm_params *wm) 761 { 762 /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ 763 u32 dram_bandwidth = dce_v8_0_dram_bandwidth(wm); 764 u32 data_return_bandwidth = dce_v8_0_data_return_bandwidth(wm); 765 u32 dmif_req_bandwidth = dce_v8_0_dmif_request_bandwidth(wm); 766 767 return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); 768 } 769 770 /** 771 * dce_v8_0_average_bandwidth - get the average available bandwidth 772 * 773 * @wm: watermark calculation data 774 * 775 * Calculate the average available bandwidth used for display (CIK). 776 * Used for display watermark bandwidth calculations 777 * Returns the average available bandwidth in MBytes/s 778 */ 779 static u32 dce_v8_0_average_bandwidth(struct dce8_wm_params *wm) 780 { 781 /* Calculate the display mode Average Bandwidth 782 * DisplayMode should contain the source and destination dimensions, 783 * timing, etc. 784 */ 785 fixed20_12 bpp; 786 fixed20_12 line_time; 787 fixed20_12 src_width; 788 fixed20_12 bandwidth; 789 fixed20_12 a; 790 791 a.full = dfixed_const(1000); 792 line_time.full = dfixed_const(wm->active_time + wm->blank_time); 793 line_time.full = dfixed_div(line_time, a); 794 bpp.full = dfixed_const(wm->bytes_per_pixel); 795 src_width.full = dfixed_const(wm->src_width); 796 bandwidth.full = dfixed_mul(src_width, bpp); 797 bandwidth.full = dfixed_mul(bandwidth, wm->vsc); 798 bandwidth.full = dfixed_div(bandwidth, line_time); 799 800 return dfixed_trunc(bandwidth); 801 } 802 803 /** 804 * dce_v8_0_latency_watermark - get the latency watermark 805 * 806 * @wm: watermark calculation data 807 * 808 * Calculate the latency watermark (CIK). 809 * Used for display watermark bandwidth calculations 810 * Returns the latency watermark in ns 811 */ 812 static u32 dce_v8_0_latency_watermark(struct dce8_wm_params *wm) 813 { 814 /* First calculate the latency in ns */ 815 u32 mc_latency = 2000; /* 2000 ns. */ 816 u32 available_bandwidth = dce_v8_0_available_bandwidth(wm); 817 u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; 818 u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; 819 u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ 820 u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + 821 (wm->num_heads * cursor_line_pair_return_time); 822 u32 latency = mc_latency + other_heads_data_return_time + dc_latency; 823 u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; 824 u32 tmp, dmif_size = 12288; 825 fixed20_12 a, b, c; 826 827 if (wm->num_heads == 0) 828 return 0; 829 830 a.full = dfixed_const(2); 831 b.full = dfixed_const(1); 832 if ((wm->vsc.full > a.full) || 833 ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || 834 (wm->vtaps >= 5) || 835 ((wm->vsc.full >= a.full) && wm->interlaced)) 836 max_src_lines_per_dst_line = 4; 837 else 838 max_src_lines_per_dst_line = 2; 839 840 a.full = dfixed_const(available_bandwidth); 841 b.full = dfixed_const(wm->num_heads); 842 a.full = dfixed_div(a, b); 843 tmp = div_u64((u64) dmif_size * (u64) wm->disp_clk, mc_latency + 512); 844 tmp = min(dfixed_trunc(a), tmp); 845 846 lb_fill_bw = min(tmp, wm->disp_clk * wm->bytes_per_pixel / 1000); 847 848 a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); 849 b.full = dfixed_const(1000); 850 c.full = dfixed_const(lb_fill_bw); 851 b.full = dfixed_div(c, b); 852 a.full = dfixed_div(a, b); 853 line_fill_time = dfixed_trunc(a); 854 855 if (line_fill_time < wm->active_time) 856 return latency; 857 else 858 return latency + (line_fill_time - wm->active_time); 859 860 } 861 862 /** 863 * dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display - check 864 * average and available dram bandwidth 865 * 866 * @wm: watermark calculation data 867 * 868 * Check if the display average bandwidth fits in the display 869 * dram bandwidth (CIK). 870 * Used for display watermark bandwidth calculations 871 * Returns true if the display fits, false if not. 872 */ 873 static bool dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm) 874 { 875 if (dce_v8_0_average_bandwidth(wm) <= 876 (dce_v8_0_dram_bandwidth_for_display(wm) / wm->num_heads)) 877 return true; 878 else 879 return false; 880 } 881 882 /** 883 * dce_v8_0_average_bandwidth_vs_available_bandwidth - check 884 * average and available bandwidth 885 * 886 * @wm: watermark calculation data 887 * 888 * Check if the display average bandwidth fits in the display 889 * available bandwidth (CIK). 890 * Used for display watermark bandwidth calculations 891 * Returns true if the display fits, false if not. 892 */ 893 static bool dce_v8_0_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm) 894 { 895 if (dce_v8_0_average_bandwidth(wm) <= 896 (dce_v8_0_available_bandwidth(wm) / wm->num_heads)) 897 return true; 898 else 899 return false; 900 } 901 902 /** 903 * dce_v8_0_check_latency_hiding - check latency hiding 904 * 905 * @wm: watermark calculation data 906 * 907 * Check latency hiding (CIK). 908 * Used for display watermark bandwidth calculations 909 * Returns true if the display fits, false if not. 910 */ 911 static bool dce_v8_0_check_latency_hiding(struct dce8_wm_params *wm) 912 { 913 u32 lb_partitions = wm->lb_size / wm->src_width; 914 u32 line_time = wm->active_time + wm->blank_time; 915 u32 latency_tolerant_lines; 916 u32 latency_hiding; 917 fixed20_12 a; 918 919 a.full = dfixed_const(1); 920 if (wm->vsc.full > a.full) 921 latency_tolerant_lines = 1; 922 else { 923 if (lb_partitions <= (wm->vtaps + 1)) 924 latency_tolerant_lines = 1; 925 else 926 latency_tolerant_lines = 2; 927 } 928 929 latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); 930 931 if (dce_v8_0_latency_watermark(wm) <= latency_hiding) 932 return true; 933 else 934 return false; 935 } 936 937 /** 938 * dce_v8_0_program_watermarks - program display watermarks 939 * 940 * @adev: amdgpu_device pointer 941 * @amdgpu_crtc: the selected display controller 942 * @lb_size: line buffer size 943 * @num_heads: number of display controllers in use 944 * 945 * Calculate and program the display watermarks for the 946 * selected display controller (CIK). 947 */ 948 static void dce_v8_0_program_watermarks(struct amdgpu_device *adev, 949 struct amdgpu_crtc *amdgpu_crtc, 950 u32 lb_size, u32 num_heads) 951 { 952 struct drm_display_mode *mode = &amdgpu_crtc->base.mode; 953 struct dce8_wm_params wm_low, wm_high; 954 u32 active_time; 955 u32 line_time = 0; 956 u32 latency_watermark_a = 0, latency_watermark_b = 0; 957 u32 tmp, wm_mask, lb_vblank_lead_lines = 0; 958 959 if (amdgpu_crtc->base.enabled && num_heads && mode) { 960 active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000, 961 (u32)mode->clock); 962 line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000, 963 (u32)mode->clock); 964 line_time = min(line_time, (u32)65535); 965 966 /* watermark for high clocks */ 967 if (adev->pm.dpm_enabled) { 968 wm_high.yclk = 969 amdgpu_dpm_get_mclk(adev, false) * 10; 970 wm_high.sclk = 971 amdgpu_dpm_get_sclk(adev, false) * 10; 972 } else { 973 wm_high.yclk = adev->pm.current_mclk * 10; 974 wm_high.sclk = adev->pm.current_sclk * 10; 975 } 976 977 wm_high.disp_clk = mode->clock; 978 wm_high.src_width = mode->crtc_hdisplay; 979 wm_high.active_time = active_time; 980 wm_high.blank_time = line_time - wm_high.active_time; 981 wm_high.interlaced = false; 982 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 983 wm_high.interlaced = true; 984 wm_high.vsc = amdgpu_crtc->vsc; 985 wm_high.vtaps = 1; 986 if (amdgpu_crtc->rmx_type != RMX_OFF) 987 wm_high.vtaps = 2; 988 wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */ 989 wm_high.lb_size = lb_size; 990 wm_high.dram_channels = cik_get_number_of_dram_channels(adev); 991 wm_high.num_heads = num_heads; 992 993 /* set for high clocks */ 994 latency_watermark_a = min(dce_v8_0_latency_watermark(&wm_high), (u32)65535); 995 996 /* possibly force display priority to high */ 997 /* should really do this at mode validation time... */ 998 if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) || 999 !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_high) || 1000 !dce_v8_0_check_latency_hiding(&wm_high) || 1001 (adev->mode_info.disp_priority == 2)) { 1002 DRM_DEBUG_KMS("force priority to high\n"); 1003 } 1004 1005 /* watermark for low clocks */ 1006 if (adev->pm.dpm_enabled) { 1007 wm_low.yclk = 1008 amdgpu_dpm_get_mclk(adev, true) * 10; 1009 wm_low.sclk = 1010 amdgpu_dpm_get_sclk(adev, true) * 10; 1011 } else { 1012 wm_low.yclk = adev->pm.current_mclk * 10; 1013 wm_low.sclk = adev->pm.current_sclk * 10; 1014 } 1015 1016 wm_low.disp_clk = mode->clock; 1017 wm_low.src_width = mode->crtc_hdisplay; 1018 wm_low.active_time = active_time; 1019 wm_low.blank_time = line_time - wm_low.active_time; 1020 wm_low.interlaced = false; 1021 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1022 wm_low.interlaced = true; 1023 wm_low.vsc = amdgpu_crtc->vsc; 1024 wm_low.vtaps = 1; 1025 if (amdgpu_crtc->rmx_type != RMX_OFF) 1026 wm_low.vtaps = 2; 1027 wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */ 1028 wm_low.lb_size = lb_size; 1029 wm_low.dram_channels = cik_get_number_of_dram_channels(adev); 1030 wm_low.num_heads = num_heads; 1031 1032 /* set for low clocks */ 1033 latency_watermark_b = min(dce_v8_0_latency_watermark(&wm_low), (u32)65535); 1034 1035 /* possibly force display priority to high */ 1036 /* should really do this at mode validation time... */ 1037 if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) || 1038 !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_low) || 1039 !dce_v8_0_check_latency_hiding(&wm_low) || 1040 (adev->mode_info.disp_priority == 2)) { 1041 DRM_DEBUG_KMS("force priority to high\n"); 1042 } 1043 lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay); 1044 } 1045 1046 /* select wm A */ 1047 wm_mask = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset); 1048 tmp = wm_mask; 1049 tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1050 tmp |= (1 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1051 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp); 1052 WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, 1053 ((latency_watermark_a << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) | 1054 (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT))); 1055 /* select wm B */ 1056 tmp = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset); 1057 tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1058 tmp |= (2 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); 1059 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp); 1060 WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, 1061 ((latency_watermark_b << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) | 1062 (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT))); 1063 /* restore original selection */ 1064 WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, wm_mask); 1065 1066 /* save values for DPM */ 1067 amdgpu_crtc->line_time = line_time; 1068 amdgpu_crtc->wm_high = latency_watermark_a; 1069 amdgpu_crtc->wm_low = latency_watermark_b; 1070 /* Save number of lines the linebuffer leads before the scanout */ 1071 amdgpu_crtc->lb_vblank_lead_lines = lb_vblank_lead_lines; 1072 } 1073 1074 /** 1075 * dce_v8_0_bandwidth_update - program display watermarks 1076 * 1077 * @adev: amdgpu_device pointer 1078 * 1079 * Calculate and program the display watermarks and line 1080 * buffer allocation (CIK). 1081 */ 1082 static void dce_v8_0_bandwidth_update(struct amdgpu_device *adev) 1083 { 1084 struct drm_display_mode *mode = NULL; 1085 u32 num_heads = 0, lb_size; 1086 int i; 1087 1088 amdgpu_display_update_priority(adev); 1089 1090 for (i = 0; i < adev->mode_info.num_crtc; i++) { 1091 if (adev->mode_info.crtcs[i]->base.enabled) 1092 num_heads++; 1093 } 1094 for (i = 0; i < adev->mode_info.num_crtc; i++) { 1095 mode = &adev->mode_info.crtcs[i]->base.mode; 1096 lb_size = dce_v8_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i], mode); 1097 dce_v8_0_program_watermarks(adev, adev->mode_info.crtcs[i], 1098 lb_size, num_heads); 1099 } 1100 } 1101 1102 static void dce_v8_0_audio_get_connected_pins(struct amdgpu_device *adev) 1103 { 1104 int i; 1105 u32 offset, tmp; 1106 1107 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 1108 offset = adev->mode_info.audio.pin[i].offset; 1109 tmp = RREG32_AUDIO_ENDPT(offset, 1110 ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT); 1111 if (((tmp & 1112 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY_MASK) >> 1113 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY__SHIFT) == 1) 1114 adev->mode_info.audio.pin[i].connected = false; 1115 else 1116 adev->mode_info.audio.pin[i].connected = true; 1117 } 1118 } 1119 1120 static struct amdgpu_audio_pin *dce_v8_0_audio_get_pin(struct amdgpu_device *adev) 1121 { 1122 int i; 1123 1124 dce_v8_0_audio_get_connected_pins(adev); 1125 1126 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 1127 if (adev->mode_info.audio.pin[i].connected) 1128 return &adev->mode_info.audio.pin[i]; 1129 } 1130 DRM_ERROR("No connected audio pins found!\n"); 1131 return NULL; 1132 } 1133 1134 static void dce_v8_0_afmt_audio_select_pin(struct drm_encoder *encoder) 1135 { 1136 struct amdgpu_device *adev = encoder->dev->dev_private; 1137 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1138 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1139 u32 offset; 1140 1141 if (!dig || !dig->afmt || !dig->afmt->pin) 1142 return; 1143 1144 offset = dig->afmt->offset; 1145 1146 WREG32(mmAFMT_AUDIO_SRC_CONTROL + offset, 1147 (dig->afmt->pin->id << AFMT_AUDIO_SRC_CONTROL__AFMT_AUDIO_SRC_SELECT__SHIFT)); 1148 } 1149 1150 static void dce_v8_0_audio_write_latency_fields(struct drm_encoder *encoder, 1151 struct drm_display_mode *mode) 1152 { 1153 struct amdgpu_device *adev = encoder->dev->dev_private; 1154 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1155 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1156 struct drm_connector *connector; 1157 struct amdgpu_connector *amdgpu_connector = NULL; 1158 u32 tmp = 0, offset; 1159 1160 if (!dig || !dig->afmt || !dig->afmt->pin) 1161 return; 1162 1163 offset = dig->afmt->pin->offset; 1164 1165 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) { 1166 if (connector->encoder == encoder) { 1167 amdgpu_connector = to_amdgpu_connector(connector); 1168 break; 1169 } 1170 } 1171 1172 if (!amdgpu_connector) { 1173 DRM_ERROR("Couldn't find encoder's connector\n"); 1174 return; 1175 } 1176 1177 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 1178 if (connector->latency_present[1]) 1179 tmp = 1180 (connector->video_latency[1] << 1181 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1182 (connector->audio_latency[1] << 1183 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1184 else 1185 tmp = 1186 (0 << 1187 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1188 (0 << 1189 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1190 } else { 1191 if (connector->latency_present[0]) 1192 tmp = 1193 (connector->video_latency[0] << 1194 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1195 (connector->audio_latency[0] << 1196 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1197 else 1198 tmp = 1199 (0 << 1200 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | 1201 (0 << 1202 AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); 1203 1204 } 1205 WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC, tmp); 1206 } 1207 1208 static void dce_v8_0_audio_write_speaker_allocation(struct drm_encoder *encoder) 1209 { 1210 struct amdgpu_device *adev = encoder->dev->dev_private; 1211 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1212 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1213 struct drm_connector *connector; 1214 struct amdgpu_connector *amdgpu_connector = NULL; 1215 u32 offset, tmp; 1216 u8 *sadb = NULL; 1217 int sad_count; 1218 1219 if (!dig || !dig->afmt || !dig->afmt->pin) 1220 return; 1221 1222 offset = dig->afmt->pin->offset; 1223 1224 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) { 1225 if (connector->encoder == encoder) { 1226 amdgpu_connector = to_amdgpu_connector(connector); 1227 break; 1228 } 1229 } 1230 1231 if (!amdgpu_connector) { 1232 DRM_ERROR("Couldn't find encoder's connector\n"); 1233 return; 1234 } 1235 1236 sad_count = drm_edid_to_speaker_allocation(amdgpu_connector_edid(connector), &sadb); 1237 if (sad_count < 0) { 1238 DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sad_count); 1239 sad_count = 0; 1240 } 1241 1242 /* program the speaker allocation */ 1243 tmp = RREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER); 1244 tmp &= ~(AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__DP_CONNECTION_MASK | 1245 AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION_MASK); 1246 /* set HDMI mode */ 1247 tmp |= AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__HDMI_CONNECTION_MASK; 1248 if (sad_count) 1249 tmp |= (sadb[0] << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); 1250 else 1251 tmp |= (5 << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); /* stereo */ 1252 WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER, tmp); 1253 1254 kfree(sadb); 1255 } 1256 1257 static void dce_v8_0_audio_write_sad_regs(struct drm_encoder *encoder) 1258 { 1259 struct amdgpu_device *adev = encoder->dev->dev_private; 1260 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1261 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1262 u32 offset; 1263 struct drm_connector *connector; 1264 struct amdgpu_connector *amdgpu_connector = NULL; 1265 struct cea_sad *sads; 1266 int i, sad_count; 1267 1268 static const u16 eld_reg_to_type[][2] = { 1269 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0, HDMI_AUDIO_CODING_TYPE_PCM }, 1270 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR1, HDMI_AUDIO_CODING_TYPE_AC3 }, 1271 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR2, HDMI_AUDIO_CODING_TYPE_MPEG1 }, 1272 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR3, HDMI_AUDIO_CODING_TYPE_MP3 }, 1273 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR4, HDMI_AUDIO_CODING_TYPE_MPEG2 }, 1274 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR5, HDMI_AUDIO_CODING_TYPE_AAC_LC }, 1275 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR6, HDMI_AUDIO_CODING_TYPE_DTS }, 1276 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR7, HDMI_AUDIO_CODING_TYPE_ATRAC }, 1277 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR9, HDMI_AUDIO_CODING_TYPE_EAC3 }, 1278 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR10, HDMI_AUDIO_CODING_TYPE_DTS_HD }, 1279 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR11, HDMI_AUDIO_CODING_TYPE_MLP }, 1280 { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR13, HDMI_AUDIO_CODING_TYPE_WMA_PRO }, 1281 }; 1282 1283 if (!dig || !dig->afmt || !dig->afmt->pin) 1284 return; 1285 1286 offset = dig->afmt->pin->offset; 1287 1288 list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) { 1289 if (connector->encoder == encoder) { 1290 amdgpu_connector = to_amdgpu_connector(connector); 1291 break; 1292 } 1293 } 1294 1295 if (!amdgpu_connector) { 1296 DRM_ERROR("Couldn't find encoder's connector\n"); 1297 return; 1298 } 1299 1300 sad_count = drm_edid_to_sad(amdgpu_connector_edid(connector), &sads); 1301 if (sad_count <= 0) { 1302 DRM_ERROR("Couldn't read SADs: %d\n", sad_count); 1303 return; 1304 } 1305 BUG_ON(!sads); 1306 1307 for (i = 0; i < ARRAY_SIZE(eld_reg_to_type); i++) { 1308 u32 value = 0; 1309 u8 stereo_freqs = 0; 1310 int max_channels = -1; 1311 int j; 1312 1313 for (j = 0; j < sad_count; j++) { 1314 struct cea_sad *sad = &sads[j]; 1315 1316 if (sad->format == eld_reg_to_type[i][1]) { 1317 if (sad->channels > max_channels) { 1318 value = (sad->channels << 1319 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__MAX_CHANNELS__SHIFT) | 1320 (sad->byte2 << 1321 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__DESCRIPTOR_BYTE_2__SHIFT) | 1322 (sad->freq << 1323 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES__SHIFT); 1324 max_channels = sad->channels; 1325 } 1326 1327 if (sad->format == HDMI_AUDIO_CODING_TYPE_PCM) 1328 stereo_freqs |= sad->freq; 1329 else 1330 break; 1331 } 1332 } 1333 1334 value |= (stereo_freqs << 1335 AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES_STEREO__SHIFT); 1336 1337 WREG32_AUDIO_ENDPT(offset, eld_reg_to_type[i][0], value); 1338 } 1339 1340 kfree(sads); 1341 } 1342 1343 static void dce_v8_0_audio_enable(struct amdgpu_device *adev, 1344 struct amdgpu_audio_pin *pin, 1345 bool enable) 1346 { 1347 if (!pin) 1348 return; 1349 1350 WREG32_AUDIO_ENDPT(pin->offset, ixAZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, 1351 enable ? AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL__AUDIO_ENABLED_MASK : 0); 1352 } 1353 1354 static const u32 pin_offsets[7] = 1355 { 1356 (0x1780 - 0x1780), 1357 (0x1786 - 0x1780), 1358 (0x178c - 0x1780), 1359 (0x1792 - 0x1780), 1360 (0x1798 - 0x1780), 1361 (0x179d - 0x1780), 1362 (0x17a4 - 0x1780), 1363 }; 1364 1365 static int dce_v8_0_audio_init(struct amdgpu_device *adev) 1366 { 1367 int i; 1368 1369 if (!amdgpu_audio) 1370 return 0; 1371 1372 adev->mode_info.audio.enabled = true; 1373 1374 if (adev->asic_type == CHIP_KAVERI) /* KV: 4 streams, 7 endpoints */ 1375 adev->mode_info.audio.num_pins = 7; 1376 else if ((adev->asic_type == CHIP_KABINI) || 1377 (adev->asic_type == CHIP_MULLINS)) /* KB/ML: 2 streams, 3 endpoints */ 1378 adev->mode_info.audio.num_pins = 3; 1379 else if ((adev->asic_type == CHIP_BONAIRE) || 1380 (adev->asic_type == CHIP_HAWAII))/* BN/HW: 6 streams, 7 endpoints */ 1381 adev->mode_info.audio.num_pins = 7; 1382 else 1383 adev->mode_info.audio.num_pins = 3; 1384 1385 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 1386 adev->mode_info.audio.pin[i].channels = -1; 1387 adev->mode_info.audio.pin[i].rate = -1; 1388 adev->mode_info.audio.pin[i].bits_per_sample = -1; 1389 adev->mode_info.audio.pin[i].status_bits = 0; 1390 adev->mode_info.audio.pin[i].category_code = 0; 1391 adev->mode_info.audio.pin[i].connected = false; 1392 adev->mode_info.audio.pin[i].offset = pin_offsets[i]; 1393 adev->mode_info.audio.pin[i].id = i; 1394 /* disable audio. it will be set up later */ 1395 /* XXX remove once we switch to ip funcs */ 1396 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 1397 } 1398 1399 return 0; 1400 } 1401 1402 static void dce_v8_0_audio_fini(struct amdgpu_device *adev) 1403 { 1404 int i; 1405 1406 if (!amdgpu_audio) 1407 return; 1408 1409 if (!adev->mode_info.audio.enabled) 1410 return; 1411 1412 for (i = 0; i < adev->mode_info.audio.num_pins; i++) 1413 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 1414 1415 adev->mode_info.audio.enabled = false; 1416 } 1417 1418 /* 1419 * update the N and CTS parameters for a given pixel clock rate 1420 */ 1421 static void dce_v8_0_afmt_update_ACR(struct drm_encoder *encoder, uint32_t clock) 1422 { 1423 struct drm_device *dev = encoder->dev; 1424 struct amdgpu_device *adev = dev->dev_private; 1425 struct amdgpu_afmt_acr acr = amdgpu_afmt_acr(clock); 1426 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1427 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1428 uint32_t offset = dig->afmt->offset; 1429 1430 WREG32(mmHDMI_ACR_32_0 + offset, (acr.cts_32khz << HDMI_ACR_32_0__HDMI_ACR_CTS_32__SHIFT)); 1431 WREG32(mmHDMI_ACR_32_1 + offset, acr.n_32khz); 1432 1433 WREG32(mmHDMI_ACR_44_0 + offset, (acr.cts_44_1khz << HDMI_ACR_44_0__HDMI_ACR_CTS_44__SHIFT)); 1434 WREG32(mmHDMI_ACR_44_1 + offset, acr.n_44_1khz); 1435 1436 WREG32(mmHDMI_ACR_48_0 + offset, (acr.cts_48khz << HDMI_ACR_48_0__HDMI_ACR_CTS_48__SHIFT)); 1437 WREG32(mmHDMI_ACR_48_1 + offset, acr.n_48khz); 1438 } 1439 1440 /* 1441 * build a HDMI Video Info Frame 1442 */ 1443 static void dce_v8_0_afmt_update_avi_infoframe(struct drm_encoder *encoder, 1444 void *buffer, size_t size) 1445 { 1446 struct drm_device *dev = encoder->dev; 1447 struct amdgpu_device *adev = dev->dev_private; 1448 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1449 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1450 uint32_t offset = dig->afmt->offset; 1451 uint8_t *frame = buffer + 3; 1452 uint8_t *header = buffer; 1453 1454 WREG32(mmAFMT_AVI_INFO0 + offset, 1455 frame[0x0] | (frame[0x1] << 8) | (frame[0x2] << 16) | (frame[0x3] << 24)); 1456 WREG32(mmAFMT_AVI_INFO1 + offset, 1457 frame[0x4] | (frame[0x5] << 8) | (frame[0x6] << 16) | (frame[0x7] << 24)); 1458 WREG32(mmAFMT_AVI_INFO2 + offset, 1459 frame[0x8] | (frame[0x9] << 8) | (frame[0xA] << 16) | (frame[0xB] << 24)); 1460 WREG32(mmAFMT_AVI_INFO3 + offset, 1461 frame[0xC] | (frame[0xD] << 8) | (header[1] << 24)); 1462 } 1463 1464 static void dce_v8_0_audio_set_dto(struct drm_encoder *encoder, u32 clock) 1465 { 1466 struct drm_device *dev = encoder->dev; 1467 struct amdgpu_device *adev = dev->dev_private; 1468 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1469 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1470 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); 1471 u32 dto_phase = 24 * 1000; 1472 u32 dto_modulo = clock; 1473 1474 if (!dig || !dig->afmt) 1475 return; 1476 1477 /* XXX two dtos; generally use dto0 for hdmi */ 1478 /* Express [24MHz / target pixel clock] as an exact rational 1479 * number (coefficient of two integer numbers. DCCG_AUDIO_DTOx_PHASE 1480 * is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator 1481 */ 1482 WREG32(mmDCCG_AUDIO_DTO_SOURCE, (amdgpu_crtc->crtc_id << DCCG_AUDIO_DTO_SOURCE__DCCG_AUDIO_DTO0_SOURCE_SEL__SHIFT)); 1483 WREG32(mmDCCG_AUDIO_DTO0_PHASE, dto_phase); 1484 WREG32(mmDCCG_AUDIO_DTO0_MODULE, dto_modulo); 1485 } 1486 1487 /* 1488 * update the info frames with the data from the current display mode 1489 */ 1490 static void dce_v8_0_afmt_setmode(struct drm_encoder *encoder, 1491 struct drm_display_mode *mode) 1492 { 1493 struct drm_device *dev = encoder->dev; 1494 struct amdgpu_device *adev = dev->dev_private; 1495 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1496 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1497 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); 1498 u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE]; 1499 struct hdmi_avi_infoframe frame; 1500 uint32_t offset, val; 1501 ssize_t err; 1502 int bpc = 8; 1503 1504 if (!dig || !dig->afmt) 1505 return; 1506 1507 /* Silent, r600_hdmi_enable will raise WARN for us */ 1508 if (!dig->afmt->enabled) 1509 return; 1510 1511 offset = dig->afmt->offset; 1512 1513 /* hdmi deep color mode general control packets setup, if bpc > 8 */ 1514 if (encoder->crtc) { 1515 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); 1516 bpc = amdgpu_crtc->bpc; 1517 } 1518 1519 /* disable audio prior to setting up hw */ 1520 dig->afmt->pin = dce_v8_0_audio_get_pin(adev); 1521 dce_v8_0_audio_enable(adev, dig->afmt->pin, false); 1522 1523 dce_v8_0_audio_set_dto(encoder, mode->clock); 1524 1525 WREG32(mmHDMI_VBI_PACKET_CONTROL + offset, 1526 HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK); /* send null packets when required */ 1527 1528 WREG32(mmAFMT_AUDIO_CRC_CONTROL + offset, 0x1000); 1529 1530 val = RREG32(mmHDMI_CONTROL + offset); 1531 val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; 1532 val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH_MASK; 1533 1534 switch (bpc) { 1535 case 0: 1536 case 6: 1537 case 8: 1538 case 16: 1539 default: 1540 DRM_DEBUG("%s: Disabling hdmi deep color for %d bpc.\n", 1541 connector->name, bpc); 1542 break; 1543 case 10: 1544 val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; 1545 val |= 1 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT; 1546 DRM_DEBUG("%s: Enabling hdmi deep color 30 for 10 bpc.\n", 1547 connector->name); 1548 break; 1549 case 12: 1550 val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; 1551 val |= 2 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT; 1552 DRM_DEBUG("%s: Enabling hdmi deep color 36 for 12 bpc.\n", 1553 connector->name); 1554 break; 1555 } 1556 1557 WREG32(mmHDMI_CONTROL + offset, val); 1558 1559 WREG32(mmHDMI_VBI_PACKET_CONTROL + offset, 1560 HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK | /* send null packets when required */ 1561 HDMI_VBI_PACKET_CONTROL__HDMI_GC_SEND_MASK | /* send general control packets */ 1562 HDMI_VBI_PACKET_CONTROL__HDMI_GC_CONT_MASK); /* send general control packets every frame */ 1563 1564 WREG32(mmHDMI_INFOFRAME_CONTROL0 + offset, 1565 HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_SEND_MASK | /* enable audio info frames (frames won't be set until audio is enabled) */ 1566 HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_CONT_MASK); /* required for audio info values to be updated */ 1567 1568 WREG32(mmAFMT_INFOFRAME_CONTROL0 + offset, 1569 AFMT_INFOFRAME_CONTROL0__AFMT_AUDIO_INFO_UPDATE_MASK); /* required for audio info values to be updated */ 1570 1571 WREG32(mmHDMI_INFOFRAME_CONTROL1 + offset, 1572 (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AUDIO_INFO_LINE__SHIFT)); /* anything other than 0 */ 1573 1574 WREG32(mmHDMI_GC + offset, 0); /* unset HDMI_GC_AVMUTE */ 1575 1576 WREG32(mmHDMI_AUDIO_PACKET_CONTROL + offset, 1577 (1 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_DELAY_EN__SHIFT) | /* set the default audio delay */ 1578 (3 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_PACKETS_PER_LINE__SHIFT)); /* should be suffient for all audio modes and small enough for all hblanks */ 1579 1580 WREG32(mmAFMT_AUDIO_PACKET_CONTROL + offset, 1581 AFMT_AUDIO_PACKET_CONTROL__AFMT_60958_CS_UPDATE_MASK); /* allow 60958 channel status fields to be updated */ 1582 1583 /* fglrx clears sth in AFMT_AUDIO_PACKET_CONTROL2 here */ 1584 1585 if (bpc > 8) 1586 WREG32(mmHDMI_ACR_PACKET_CONTROL + offset, 1587 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */ 1588 else 1589 WREG32(mmHDMI_ACR_PACKET_CONTROL + offset, 1590 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_SOURCE_MASK | /* select SW CTS value */ 1591 HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */ 1592 1593 dce_v8_0_afmt_update_ACR(encoder, mode->clock); 1594 1595 WREG32(mmAFMT_60958_0 + offset, 1596 (1 << AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L__SHIFT)); 1597 1598 WREG32(mmAFMT_60958_1 + offset, 1599 (2 << AFMT_60958_1__AFMT_60958_CS_CHANNEL_NUMBER_R__SHIFT)); 1600 1601 WREG32(mmAFMT_60958_2 + offset, 1602 (3 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_2__SHIFT) | 1603 (4 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_3__SHIFT) | 1604 (5 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_4__SHIFT) | 1605 (6 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_5__SHIFT) | 1606 (7 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_6__SHIFT) | 1607 (8 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_7__SHIFT)); 1608 1609 dce_v8_0_audio_write_speaker_allocation(encoder); 1610 1611 1612 WREG32(mmAFMT_AUDIO_PACKET_CONTROL2 + offset, 1613 (0xff << AFMT_AUDIO_PACKET_CONTROL2__AFMT_AUDIO_CHANNEL_ENABLE__SHIFT)); 1614 1615 dce_v8_0_afmt_audio_select_pin(encoder); 1616 dce_v8_0_audio_write_sad_regs(encoder); 1617 dce_v8_0_audio_write_latency_fields(encoder, mode); 1618 1619 err = drm_hdmi_avi_infoframe_from_display_mode(&frame, connector, mode); 1620 if (err < 0) { 1621 DRM_ERROR("failed to setup AVI infoframe: %zd\n", err); 1622 return; 1623 } 1624 1625 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer)); 1626 if (err < 0) { 1627 DRM_ERROR("failed to pack AVI infoframe: %zd\n", err); 1628 return; 1629 } 1630 1631 dce_v8_0_afmt_update_avi_infoframe(encoder, buffer, sizeof(buffer)); 1632 1633 WREG32_OR(mmHDMI_INFOFRAME_CONTROL0 + offset, 1634 HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_SEND_MASK | /* enable AVI info frames */ 1635 HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_CONT_MASK); /* required for audio info values to be updated */ 1636 1637 WREG32_P(mmHDMI_INFOFRAME_CONTROL1 + offset, 1638 (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE__SHIFT), /* anything other than 0 */ 1639 ~HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE_MASK); 1640 1641 WREG32_OR(mmAFMT_AUDIO_PACKET_CONTROL + offset, 1642 AFMT_AUDIO_PACKET_CONTROL__AFMT_AUDIO_SAMPLE_SEND_MASK); /* send audio packets */ 1643 1644 WREG32(mmAFMT_RAMP_CONTROL0 + offset, 0x00FFFFFF); 1645 WREG32(mmAFMT_RAMP_CONTROL1 + offset, 0x007FFFFF); 1646 WREG32(mmAFMT_RAMP_CONTROL2 + offset, 0x00000001); 1647 WREG32(mmAFMT_RAMP_CONTROL3 + offset, 0x00000001); 1648 1649 /* enable audio after setting up hw */ 1650 dce_v8_0_audio_enable(adev, dig->afmt->pin, true); 1651 } 1652 1653 static void dce_v8_0_afmt_enable(struct drm_encoder *encoder, bool enable) 1654 { 1655 struct drm_device *dev = encoder->dev; 1656 struct amdgpu_device *adev = dev->dev_private; 1657 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 1658 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 1659 1660 if (!dig || !dig->afmt) 1661 return; 1662 1663 /* Silent, r600_hdmi_enable will raise WARN for us */ 1664 if (enable && dig->afmt->enabled) 1665 return; 1666 if (!enable && !dig->afmt->enabled) 1667 return; 1668 1669 if (!enable && dig->afmt->pin) { 1670 dce_v8_0_audio_enable(adev, dig->afmt->pin, false); 1671 dig->afmt->pin = NULL; 1672 } 1673 1674 dig->afmt->enabled = enable; 1675 1676 DRM_DEBUG("%sabling AFMT interface @ 0x%04X for encoder 0x%x\n", 1677 enable ? "En" : "Dis", dig->afmt->offset, amdgpu_encoder->encoder_id); 1678 } 1679 1680 static int dce_v8_0_afmt_init(struct amdgpu_device *adev) 1681 { 1682 int i; 1683 1684 for (i = 0; i < adev->mode_info.num_dig; i++) 1685 adev->mode_info.afmt[i] = NULL; 1686 1687 /* DCE8 has audio blocks tied to DIG encoders */ 1688 for (i = 0; i < adev->mode_info.num_dig; i++) { 1689 adev->mode_info.afmt[i] = kzalloc(sizeof(struct amdgpu_afmt), GFP_KERNEL); 1690 if (adev->mode_info.afmt[i]) { 1691 adev->mode_info.afmt[i]->offset = dig_offsets[i]; 1692 adev->mode_info.afmt[i]->id = i; 1693 } else { 1694 int j; 1695 for (j = 0; j < i; j++) { 1696 kfree(adev->mode_info.afmt[j]); 1697 adev->mode_info.afmt[j] = NULL; 1698 } 1699 return -ENOMEM; 1700 } 1701 } 1702 return 0; 1703 } 1704 1705 static void dce_v8_0_afmt_fini(struct amdgpu_device *adev) 1706 { 1707 int i; 1708 1709 for (i = 0; i < adev->mode_info.num_dig; i++) { 1710 kfree(adev->mode_info.afmt[i]); 1711 adev->mode_info.afmt[i] = NULL; 1712 } 1713 } 1714 1715 static const u32 vga_control_regs[6] = 1716 { 1717 mmD1VGA_CONTROL, 1718 mmD2VGA_CONTROL, 1719 mmD3VGA_CONTROL, 1720 mmD4VGA_CONTROL, 1721 mmD5VGA_CONTROL, 1722 mmD6VGA_CONTROL, 1723 }; 1724 1725 static void dce_v8_0_vga_enable(struct drm_crtc *crtc, bool enable) 1726 { 1727 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1728 struct drm_device *dev = crtc->dev; 1729 struct amdgpu_device *adev = dev->dev_private; 1730 u32 vga_control; 1731 1732 vga_control = RREG32(vga_control_regs[amdgpu_crtc->crtc_id]) & ~1; 1733 if (enable) 1734 WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control | 1); 1735 else 1736 WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control); 1737 } 1738 1739 static void dce_v8_0_grph_enable(struct drm_crtc *crtc, bool enable) 1740 { 1741 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1742 struct drm_device *dev = crtc->dev; 1743 struct amdgpu_device *adev = dev->dev_private; 1744 1745 if (enable) 1746 WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 1); 1747 else 1748 WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 0); 1749 } 1750 1751 static int dce_v8_0_crtc_do_set_base(struct drm_crtc *crtc, 1752 struct drm_framebuffer *fb, 1753 int x, int y, int atomic) 1754 { 1755 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1756 struct drm_device *dev = crtc->dev; 1757 struct amdgpu_device *adev = dev->dev_private; 1758 struct drm_framebuffer *target_fb; 1759 struct drm_gem_object *obj; 1760 struct amdgpu_bo *abo; 1761 uint64_t fb_location, tiling_flags; 1762 uint32_t fb_format, fb_pitch_pixels; 1763 u32 fb_swap = (GRPH_ENDIAN_NONE << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1764 u32 pipe_config; 1765 u32 viewport_w, viewport_h; 1766 int r; 1767 bool bypass_lut = false; 1768 struct drm_format_name_buf format_name; 1769 1770 /* no fb bound */ 1771 if (!atomic && !crtc->primary->fb) { 1772 DRM_DEBUG_KMS("No FB bound\n"); 1773 return 0; 1774 } 1775 1776 if (atomic) 1777 target_fb = fb; 1778 else 1779 target_fb = crtc->primary->fb; 1780 1781 /* If atomic, assume fb object is pinned & idle & fenced and 1782 * just update base pointers 1783 */ 1784 obj = target_fb->obj[0]; 1785 abo = gem_to_amdgpu_bo(obj); 1786 r = amdgpu_bo_reserve(abo, false); 1787 if (unlikely(r != 0)) 1788 return r; 1789 1790 if (!atomic) { 1791 r = amdgpu_bo_pin(abo, AMDGPU_GEM_DOMAIN_VRAM); 1792 if (unlikely(r != 0)) { 1793 amdgpu_bo_unreserve(abo); 1794 return -EINVAL; 1795 } 1796 } 1797 fb_location = amdgpu_bo_gpu_offset(abo); 1798 1799 amdgpu_bo_get_tiling_flags(abo, &tiling_flags); 1800 amdgpu_bo_unreserve(abo); 1801 1802 pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG); 1803 1804 switch (target_fb->format->format) { 1805 case DRM_FORMAT_C8: 1806 fb_format = ((GRPH_DEPTH_8BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1807 (GRPH_FORMAT_INDEXED << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1808 break; 1809 case DRM_FORMAT_XRGB4444: 1810 case DRM_FORMAT_ARGB4444: 1811 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1812 (GRPH_FORMAT_ARGB4444 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1813 #ifdef __BIG_ENDIAN 1814 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1815 #endif 1816 break; 1817 case DRM_FORMAT_XRGB1555: 1818 case DRM_FORMAT_ARGB1555: 1819 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1820 (GRPH_FORMAT_ARGB1555 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1821 #ifdef __BIG_ENDIAN 1822 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1823 #endif 1824 break; 1825 case DRM_FORMAT_BGRX5551: 1826 case DRM_FORMAT_BGRA5551: 1827 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1828 (GRPH_FORMAT_BGRA5551 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1829 #ifdef __BIG_ENDIAN 1830 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1831 #endif 1832 break; 1833 case DRM_FORMAT_RGB565: 1834 fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1835 (GRPH_FORMAT_ARGB565 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1836 #ifdef __BIG_ENDIAN 1837 fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1838 #endif 1839 break; 1840 case DRM_FORMAT_XRGB8888: 1841 case DRM_FORMAT_ARGB8888: 1842 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1843 (GRPH_FORMAT_ARGB8888 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1844 #ifdef __BIG_ENDIAN 1845 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1846 #endif 1847 break; 1848 case DRM_FORMAT_XRGB2101010: 1849 case DRM_FORMAT_ARGB2101010: 1850 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1851 (GRPH_FORMAT_ARGB2101010 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1852 #ifdef __BIG_ENDIAN 1853 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1854 #endif 1855 /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ 1856 bypass_lut = true; 1857 break; 1858 case DRM_FORMAT_BGRX1010102: 1859 case DRM_FORMAT_BGRA1010102: 1860 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1861 (GRPH_FORMAT_BGRA1010102 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1862 #ifdef __BIG_ENDIAN 1863 fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1864 #endif 1865 /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ 1866 bypass_lut = true; 1867 break; 1868 case DRM_FORMAT_XBGR8888: 1869 case DRM_FORMAT_ABGR8888: 1870 fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | 1871 (GRPH_FORMAT_ARGB8888 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); 1872 fb_swap = ((GRPH_RED_SEL_B << GRPH_SWAP_CNTL__GRPH_RED_CROSSBAR__SHIFT) | 1873 (GRPH_BLUE_SEL_R << GRPH_SWAP_CNTL__GRPH_BLUE_CROSSBAR__SHIFT)); 1874 #ifdef __BIG_ENDIAN 1875 fb_swap |= (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); 1876 #endif 1877 break; 1878 default: 1879 DRM_ERROR("Unsupported screen format %s\n", 1880 drm_get_format_name(target_fb->format->format, &format_name)); 1881 return -EINVAL; 1882 } 1883 1884 if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_2D_TILED_THIN1) { 1885 unsigned bankw, bankh, mtaspect, tile_split, num_banks; 1886 1887 bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH); 1888 bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT); 1889 mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT); 1890 tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT); 1891 num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS); 1892 1893 fb_format |= (num_banks << GRPH_CONTROL__GRPH_NUM_BANKS__SHIFT); 1894 fb_format |= (GRPH_ARRAY_2D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT); 1895 fb_format |= (tile_split << GRPH_CONTROL__GRPH_TILE_SPLIT__SHIFT); 1896 fb_format |= (bankw << GRPH_CONTROL__GRPH_BANK_WIDTH__SHIFT); 1897 fb_format |= (bankh << GRPH_CONTROL__GRPH_BANK_HEIGHT__SHIFT); 1898 fb_format |= (mtaspect << GRPH_CONTROL__GRPH_MACRO_TILE_ASPECT__SHIFT); 1899 fb_format |= (DISPLAY_MICRO_TILING << GRPH_CONTROL__GRPH_MICRO_TILE_MODE__SHIFT); 1900 } else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_1D_TILED_THIN1) { 1901 fb_format |= (GRPH_ARRAY_1D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT); 1902 } 1903 1904 fb_format |= (pipe_config << GRPH_CONTROL__GRPH_PIPE_CONFIG__SHIFT); 1905 1906 dce_v8_0_vga_enable(crtc, false); 1907 1908 /* Make sure surface address is updated at vertical blank rather than 1909 * horizontal blank 1910 */ 1911 WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, 0); 1912 1913 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 1914 upper_32_bits(fb_location)); 1915 WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 1916 upper_32_bits(fb_location)); 1917 WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 1918 (u32)fb_location & GRPH_PRIMARY_SURFACE_ADDRESS__GRPH_PRIMARY_SURFACE_ADDRESS_MASK); 1919 WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 1920 (u32) fb_location & GRPH_SECONDARY_SURFACE_ADDRESS__GRPH_SECONDARY_SURFACE_ADDRESS_MASK); 1921 WREG32(mmGRPH_CONTROL + amdgpu_crtc->crtc_offset, fb_format); 1922 WREG32(mmGRPH_SWAP_CNTL + amdgpu_crtc->crtc_offset, fb_swap); 1923 1924 /* 1925 * The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT 1926 * for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to 1927 * retain the full precision throughout the pipeline. 1928 */ 1929 WREG32_P(mmGRPH_LUT_10BIT_BYPASS_CONTROL + amdgpu_crtc->crtc_offset, 1930 (bypass_lut ? LUT_10BIT_BYPASS_EN : 0), 1931 ~LUT_10BIT_BYPASS_EN); 1932 1933 if (bypass_lut) 1934 DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n"); 1935 1936 WREG32(mmGRPH_SURFACE_OFFSET_X + amdgpu_crtc->crtc_offset, 0); 1937 WREG32(mmGRPH_SURFACE_OFFSET_Y + amdgpu_crtc->crtc_offset, 0); 1938 WREG32(mmGRPH_X_START + amdgpu_crtc->crtc_offset, 0); 1939 WREG32(mmGRPH_Y_START + amdgpu_crtc->crtc_offset, 0); 1940 WREG32(mmGRPH_X_END + amdgpu_crtc->crtc_offset, target_fb->width); 1941 WREG32(mmGRPH_Y_END + amdgpu_crtc->crtc_offset, target_fb->height); 1942 1943 fb_pitch_pixels = target_fb->pitches[0] / target_fb->format->cpp[0]; 1944 WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset, fb_pitch_pixels); 1945 1946 dce_v8_0_grph_enable(crtc, true); 1947 1948 WREG32(mmLB_DESKTOP_HEIGHT + amdgpu_crtc->crtc_offset, 1949 target_fb->height); 1950 1951 x &= ~3; 1952 y &= ~1; 1953 WREG32(mmVIEWPORT_START + amdgpu_crtc->crtc_offset, 1954 (x << 16) | y); 1955 viewport_w = crtc->mode.hdisplay; 1956 viewport_h = (crtc->mode.vdisplay + 1) & ~1; 1957 WREG32(mmVIEWPORT_SIZE + amdgpu_crtc->crtc_offset, 1958 (viewport_w << 16) | viewport_h); 1959 1960 /* set pageflip to happen anywhere in vblank interval */ 1961 WREG32(mmMASTER_UPDATE_MODE + amdgpu_crtc->crtc_offset, 0); 1962 1963 if (!atomic && fb && fb != crtc->primary->fb) { 1964 abo = gem_to_amdgpu_bo(fb->obj[0]); 1965 r = amdgpu_bo_reserve(abo, true); 1966 if (unlikely(r != 0)) 1967 return r; 1968 amdgpu_bo_unpin(abo); 1969 amdgpu_bo_unreserve(abo); 1970 } 1971 1972 /* Bytes per pixel may have changed */ 1973 dce_v8_0_bandwidth_update(adev); 1974 1975 return 0; 1976 } 1977 1978 static void dce_v8_0_set_interleave(struct drm_crtc *crtc, 1979 struct drm_display_mode *mode) 1980 { 1981 struct drm_device *dev = crtc->dev; 1982 struct amdgpu_device *adev = dev->dev_private; 1983 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1984 1985 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1986 WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, 1987 LB_DATA_FORMAT__INTERLEAVE_EN__SHIFT); 1988 else 1989 WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, 0); 1990 } 1991 1992 static void dce_v8_0_crtc_load_lut(struct drm_crtc *crtc) 1993 { 1994 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 1995 struct drm_device *dev = crtc->dev; 1996 struct amdgpu_device *adev = dev->dev_private; 1997 u16 *r, *g, *b; 1998 int i; 1999 2000 DRM_DEBUG_KMS("%d\n", amdgpu_crtc->crtc_id); 2001 2002 WREG32(mmINPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, 2003 ((INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_GRPH_MODE__SHIFT) | 2004 (INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_OVL_MODE__SHIFT))); 2005 WREG32(mmPRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset, 2006 PRESCALE_GRPH_CONTROL__GRPH_PRESCALE_BYPASS_MASK); 2007 WREG32(mmPRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset, 2008 PRESCALE_OVL_CONTROL__OVL_PRESCALE_BYPASS_MASK); 2009 WREG32(mmINPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset, 2010 ((INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__GRPH_INPUT_GAMMA_MODE__SHIFT) | 2011 (INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__OVL_INPUT_GAMMA_MODE__SHIFT))); 2012 2013 WREG32(mmDC_LUT_CONTROL + amdgpu_crtc->crtc_offset, 0); 2014 2015 WREG32(mmDC_LUT_BLACK_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0); 2016 WREG32(mmDC_LUT_BLACK_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0); 2017 WREG32(mmDC_LUT_BLACK_OFFSET_RED + amdgpu_crtc->crtc_offset, 0); 2018 2019 WREG32(mmDC_LUT_WHITE_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0xffff); 2020 WREG32(mmDC_LUT_WHITE_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0xffff); 2021 WREG32(mmDC_LUT_WHITE_OFFSET_RED + amdgpu_crtc->crtc_offset, 0xffff); 2022 2023 WREG32(mmDC_LUT_RW_MODE + amdgpu_crtc->crtc_offset, 0); 2024 WREG32(mmDC_LUT_WRITE_EN_MASK + amdgpu_crtc->crtc_offset, 0x00000007); 2025 2026 WREG32(mmDC_LUT_RW_INDEX + amdgpu_crtc->crtc_offset, 0); 2027 r = crtc->gamma_store; 2028 g = r + crtc->gamma_size; 2029 b = g + crtc->gamma_size; 2030 for (i = 0; i < 256; i++) { 2031 WREG32(mmDC_LUT_30_COLOR + amdgpu_crtc->crtc_offset, 2032 ((*r++ & 0xffc0) << 14) | 2033 ((*g++ & 0xffc0) << 4) | 2034 (*b++ >> 6)); 2035 } 2036 2037 WREG32(mmDEGAMMA_CONTROL + amdgpu_crtc->crtc_offset, 2038 ((DEGAMMA_BYPASS << DEGAMMA_CONTROL__GRPH_DEGAMMA_MODE__SHIFT) | 2039 (DEGAMMA_BYPASS << DEGAMMA_CONTROL__OVL_DEGAMMA_MODE__SHIFT) | 2040 (DEGAMMA_BYPASS << DEGAMMA_CONTROL__CURSOR_DEGAMMA_MODE__SHIFT))); 2041 WREG32(mmGAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset, 2042 ((GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__GRPH_GAMUT_REMAP_MODE__SHIFT) | 2043 (GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__OVL_GAMUT_REMAP_MODE__SHIFT))); 2044 WREG32(mmREGAMMA_CONTROL + amdgpu_crtc->crtc_offset, 2045 ((REGAMMA_BYPASS << REGAMMA_CONTROL__GRPH_REGAMMA_MODE__SHIFT) | 2046 (REGAMMA_BYPASS << REGAMMA_CONTROL__OVL_REGAMMA_MODE__SHIFT))); 2047 WREG32(mmOUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, 2048 ((OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_GRPH_MODE__SHIFT) | 2049 (OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_OVL_MODE__SHIFT))); 2050 /* XXX match this to the depth of the crtc fmt block, move to modeset? */ 2051 WREG32(0x1a50 + amdgpu_crtc->crtc_offset, 0); 2052 /* XXX this only needs to be programmed once per crtc at startup, 2053 * not sure where the best place for it is 2054 */ 2055 WREG32(mmALPHA_CONTROL + amdgpu_crtc->crtc_offset, 2056 ALPHA_CONTROL__CURSOR_ALPHA_BLND_ENA_MASK); 2057 } 2058 2059 static int dce_v8_0_pick_dig_encoder(struct drm_encoder *encoder) 2060 { 2061 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 2062 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 2063 2064 switch (amdgpu_encoder->encoder_id) { 2065 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY: 2066 if (dig->linkb) 2067 return 1; 2068 else 2069 return 0; 2070 break; 2071 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1: 2072 if (dig->linkb) 2073 return 3; 2074 else 2075 return 2; 2076 break; 2077 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2: 2078 if (dig->linkb) 2079 return 5; 2080 else 2081 return 4; 2082 break; 2083 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3: 2084 return 6; 2085 break; 2086 default: 2087 DRM_ERROR("invalid encoder_id: 0x%x\n", amdgpu_encoder->encoder_id); 2088 return 0; 2089 } 2090 } 2091 2092 /** 2093 * dce_v8_0_pick_pll - Allocate a PPLL for use by the crtc. 2094 * 2095 * @crtc: drm crtc 2096 * 2097 * Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors 2098 * a single PPLL can be used for all DP crtcs/encoders. For non-DP 2099 * monitors a dedicated PPLL must be used. If a particular board has 2100 * an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming 2101 * as there is no need to program the PLL itself. If we are not able to 2102 * allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to 2103 * avoid messing up an existing monitor. 2104 * 2105 * Asic specific PLL information 2106 * 2107 * DCE 8.x 2108 * KB/KV 2109 * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) 2110 * CI 2111 * - PPLL0, PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC 2112 * 2113 */ 2114 static u32 dce_v8_0_pick_pll(struct drm_crtc *crtc) 2115 { 2116 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2117 struct drm_device *dev = crtc->dev; 2118 struct amdgpu_device *adev = dev->dev_private; 2119 u32 pll_in_use; 2120 int pll; 2121 2122 if (ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) { 2123 if (adev->clock.dp_extclk) 2124 /* skip PPLL programming if using ext clock */ 2125 return ATOM_PPLL_INVALID; 2126 else { 2127 /* use the same PPLL for all DP monitors */ 2128 pll = amdgpu_pll_get_shared_dp_ppll(crtc); 2129 if (pll != ATOM_PPLL_INVALID) 2130 return pll; 2131 } 2132 } else { 2133 /* use the same PPLL for all monitors with the same clock */ 2134 pll = amdgpu_pll_get_shared_nondp_ppll(crtc); 2135 if (pll != ATOM_PPLL_INVALID) 2136 return pll; 2137 } 2138 /* otherwise, pick one of the plls */ 2139 if ((adev->asic_type == CHIP_KABINI) || 2140 (adev->asic_type == CHIP_MULLINS)) { 2141 /* KB/ML has PPLL1 and PPLL2 */ 2142 pll_in_use = amdgpu_pll_get_use_mask(crtc); 2143 if (!(pll_in_use & (1 << ATOM_PPLL2))) 2144 return ATOM_PPLL2; 2145 if (!(pll_in_use & (1 << ATOM_PPLL1))) 2146 return ATOM_PPLL1; 2147 DRM_ERROR("unable to allocate a PPLL\n"); 2148 return ATOM_PPLL_INVALID; 2149 } else { 2150 /* CI/KV has PPLL0, PPLL1, and PPLL2 */ 2151 pll_in_use = amdgpu_pll_get_use_mask(crtc); 2152 if (!(pll_in_use & (1 << ATOM_PPLL2))) 2153 return ATOM_PPLL2; 2154 if (!(pll_in_use & (1 << ATOM_PPLL1))) 2155 return ATOM_PPLL1; 2156 if (!(pll_in_use & (1 << ATOM_PPLL0))) 2157 return ATOM_PPLL0; 2158 DRM_ERROR("unable to allocate a PPLL\n"); 2159 return ATOM_PPLL_INVALID; 2160 } 2161 return ATOM_PPLL_INVALID; 2162 } 2163 2164 static void dce_v8_0_lock_cursor(struct drm_crtc *crtc, bool lock) 2165 { 2166 struct amdgpu_device *adev = crtc->dev->dev_private; 2167 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2168 uint32_t cur_lock; 2169 2170 cur_lock = RREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset); 2171 if (lock) 2172 cur_lock |= CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK; 2173 else 2174 cur_lock &= ~CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK; 2175 WREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset, cur_lock); 2176 } 2177 2178 static void dce_v8_0_hide_cursor(struct drm_crtc *crtc) 2179 { 2180 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2181 struct amdgpu_device *adev = crtc->dev->dev_private; 2182 2183 WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, 2184 (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) | 2185 (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT)); 2186 } 2187 2188 static void dce_v8_0_show_cursor(struct drm_crtc *crtc) 2189 { 2190 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2191 struct amdgpu_device *adev = crtc->dev->dev_private; 2192 2193 WREG32(mmCUR_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, 2194 upper_32_bits(amdgpu_crtc->cursor_addr)); 2195 WREG32(mmCUR_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, 2196 lower_32_bits(amdgpu_crtc->cursor_addr)); 2197 2198 WREG32_IDX(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, 2199 CUR_CONTROL__CURSOR_EN_MASK | 2200 (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) | 2201 (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT)); 2202 } 2203 2204 static int dce_v8_0_cursor_move_locked(struct drm_crtc *crtc, 2205 int x, int y) 2206 { 2207 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2208 struct amdgpu_device *adev = crtc->dev->dev_private; 2209 int xorigin = 0, yorigin = 0; 2210 2211 amdgpu_crtc->cursor_x = x; 2212 amdgpu_crtc->cursor_y = y; 2213 2214 /* avivo cursor are offset into the total surface */ 2215 x += crtc->x; 2216 y += crtc->y; 2217 DRM_DEBUG("x %d y %d c->x %d c->y %d\n", x, y, crtc->x, crtc->y); 2218 2219 if (x < 0) { 2220 xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1); 2221 x = 0; 2222 } 2223 if (y < 0) { 2224 yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1); 2225 y = 0; 2226 } 2227 2228 WREG32(mmCUR_POSITION + amdgpu_crtc->crtc_offset, (x << 16) | y); 2229 WREG32(mmCUR_HOT_SPOT + amdgpu_crtc->crtc_offset, (xorigin << 16) | yorigin); 2230 WREG32(mmCUR_SIZE + amdgpu_crtc->crtc_offset, 2231 ((amdgpu_crtc->cursor_width - 1) << 16) | (amdgpu_crtc->cursor_height - 1)); 2232 2233 return 0; 2234 } 2235 2236 static int dce_v8_0_crtc_cursor_move(struct drm_crtc *crtc, 2237 int x, int y) 2238 { 2239 int ret; 2240 2241 dce_v8_0_lock_cursor(crtc, true); 2242 ret = dce_v8_0_cursor_move_locked(crtc, x, y); 2243 dce_v8_0_lock_cursor(crtc, false); 2244 2245 return ret; 2246 } 2247 2248 static int dce_v8_0_crtc_cursor_set2(struct drm_crtc *crtc, 2249 struct drm_file *file_priv, 2250 uint32_t handle, 2251 uint32_t width, 2252 uint32_t height, 2253 int32_t hot_x, 2254 int32_t hot_y) 2255 { 2256 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2257 struct drm_gem_object *obj; 2258 struct amdgpu_bo *aobj; 2259 int ret; 2260 2261 if (!handle) { 2262 /* turn off cursor */ 2263 dce_v8_0_hide_cursor(crtc); 2264 obj = NULL; 2265 goto unpin; 2266 } 2267 2268 if ((width > amdgpu_crtc->max_cursor_width) || 2269 (height > amdgpu_crtc->max_cursor_height)) { 2270 DRM_ERROR("bad cursor width or height %d x %d\n", width, height); 2271 return -EINVAL; 2272 } 2273 2274 obj = drm_gem_object_lookup(file_priv, handle); 2275 if (!obj) { 2276 DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, amdgpu_crtc->crtc_id); 2277 return -ENOENT; 2278 } 2279 2280 aobj = gem_to_amdgpu_bo(obj); 2281 ret = amdgpu_bo_reserve(aobj, false); 2282 if (ret != 0) { 2283 drm_gem_object_put_unlocked(obj); 2284 return ret; 2285 } 2286 2287 ret = amdgpu_bo_pin(aobj, AMDGPU_GEM_DOMAIN_VRAM); 2288 amdgpu_bo_unreserve(aobj); 2289 if (ret) { 2290 DRM_ERROR("Failed to pin new cursor BO (%d)\n", ret); 2291 drm_gem_object_put_unlocked(obj); 2292 return ret; 2293 } 2294 amdgpu_crtc->cursor_addr = amdgpu_bo_gpu_offset(aobj); 2295 2296 dce_v8_0_lock_cursor(crtc, true); 2297 2298 if (width != amdgpu_crtc->cursor_width || 2299 height != amdgpu_crtc->cursor_height || 2300 hot_x != amdgpu_crtc->cursor_hot_x || 2301 hot_y != amdgpu_crtc->cursor_hot_y) { 2302 int x, y; 2303 2304 x = amdgpu_crtc->cursor_x + amdgpu_crtc->cursor_hot_x - hot_x; 2305 y = amdgpu_crtc->cursor_y + amdgpu_crtc->cursor_hot_y - hot_y; 2306 2307 dce_v8_0_cursor_move_locked(crtc, x, y); 2308 2309 amdgpu_crtc->cursor_width = width; 2310 amdgpu_crtc->cursor_height = height; 2311 amdgpu_crtc->cursor_hot_x = hot_x; 2312 amdgpu_crtc->cursor_hot_y = hot_y; 2313 } 2314 2315 dce_v8_0_show_cursor(crtc); 2316 dce_v8_0_lock_cursor(crtc, false); 2317 2318 unpin: 2319 if (amdgpu_crtc->cursor_bo) { 2320 struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo); 2321 ret = amdgpu_bo_reserve(aobj, true); 2322 if (likely(ret == 0)) { 2323 amdgpu_bo_unpin(aobj); 2324 amdgpu_bo_unreserve(aobj); 2325 } 2326 drm_gem_object_put_unlocked(amdgpu_crtc->cursor_bo); 2327 } 2328 2329 amdgpu_crtc->cursor_bo = obj; 2330 return 0; 2331 } 2332 2333 static void dce_v8_0_cursor_reset(struct drm_crtc *crtc) 2334 { 2335 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2336 2337 if (amdgpu_crtc->cursor_bo) { 2338 dce_v8_0_lock_cursor(crtc, true); 2339 2340 dce_v8_0_cursor_move_locked(crtc, amdgpu_crtc->cursor_x, 2341 amdgpu_crtc->cursor_y); 2342 2343 dce_v8_0_show_cursor(crtc); 2344 2345 dce_v8_0_lock_cursor(crtc, false); 2346 } 2347 } 2348 2349 static int dce_v8_0_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 2350 u16 *blue, uint32_t size, 2351 struct drm_modeset_acquire_ctx *ctx) 2352 { 2353 dce_v8_0_crtc_load_lut(crtc); 2354 2355 return 0; 2356 } 2357 2358 static void dce_v8_0_crtc_destroy(struct drm_crtc *crtc) 2359 { 2360 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2361 2362 drm_crtc_cleanup(crtc); 2363 kfree(amdgpu_crtc); 2364 } 2365 2366 static const struct drm_crtc_funcs dce_v8_0_crtc_funcs = { 2367 .cursor_set2 = dce_v8_0_crtc_cursor_set2, 2368 .cursor_move = dce_v8_0_crtc_cursor_move, 2369 .gamma_set = dce_v8_0_crtc_gamma_set, 2370 .set_config = amdgpu_display_crtc_set_config, 2371 .destroy = dce_v8_0_crtc_destroy, 2372 .page_flip_target = amdgpu_display_crtc_page_flip_target, 2373 }; 2374 2375 static void dce_v8_0_crtc_dpms(struct drm_crtc *crtc, int mode) 2376 { 2377 struct drm_device *dev = crtc->dev; 2378 struct amdgpu_device *adev = dev->dev_private; 2379 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2380 unsigned type; 2381 2382 switch (mode) { 2383 case DRM_MODE_DPMS_ON: 2384 amdgpu_crtc->enabled = true; 2385 amdgpu_atombios_crtc_enable(crtc, ATOM_ENABLE); 2386 dce_v8_0_vga_enable(crtc, true); 2387 amdgpu_atombios_crtc_blank(crtc, ATOM_DISABLE); 2388 dce_v8_0_vga_enable(crtc, false); 2389 /* Make sure VBLANK and PFLIP interrupts are still enabled */ 2390 type = amdgpu_display_crtc_idx_to_irq_type(adev, 2391 amdgpu_crtc->crtc_id); 2392 amdgpu_irq_update(adev, &adev->crtc_irq, type); 2393 amdgpu_irq_update(adev, &adev->pageflip_irq, type); 2394 drm_crtc_vblank_on(crtc); 2395 dce_v8_0_crtc_load_lut(crtc); 2396 break; 2397 case DRM_MODE_DPMS_STANDBY: 2398 case DRM_MODE_DPMS_SUSPEND: 2399 case DRM_MODE_DPMS_OFF: 2400 drm_crtc_vblank_off(crtc); 2401 if (amdgpu_crtc->enabled) { 2402 dce_v8_0_vga_enable(crtc, true); 2403 amdgpu_atombios_crtc_blank(crtc, ATOM_ENABLE); 2404 dce_v8_0_vga_enable(crtc, false); 2405 } 2406 amdgpu_atombios_crtc_enable(crtc, ATOM_DISABLE); 2407 amdgpu_crtc->enabled = false; 2408 break; 2409 } 2410 /* adjust pm to dpms */ 2411 amdgpu_pm_compute_clocks(adev); 2412 } 2413 2414 static void dce_v8_0_crtc_prepare(struct drm_crtc *crtc) 2415 { 2416 /* disable crtc pair power gating before programming */ 2417 amdgpu_atombios_crtc_powergate(crtc, ATOM_DISABLE); 2418 amdgpu_atombios_crtc_lock(crtc, ATOM_ENABLE); 2419 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); 2420 } 2421 2422 static void dce_v8_0_crtc_commit(struct drm_crtc *crtc) 2423 { 2424 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_ON); 2425 amdgpu_atombios_crtc_lock(crtc, ATOM_DISABLE); 2426 } 2427 2428 static void dce_v8_0_crtc_disable(struct drm_crtc *crtc) 2429 { 2430 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2431 struct drm_device *dev = crtc->dev; 2432 struct amdgpu_device *adev = dev->dev_private; 2433 struct amdgpu_atom_ss ss; 2434 int i; 2435 2436 dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); 2437 if (crtc->primary->fb) { 2438 int r; 2439 struct amdgpu_bo *abo; 2440 2441 abo = gem_to_amdgpu_bo(crtc->primary->fb->obj[0]); 2442 r = amdgpu_bo_reserve(abo, true); 2443 if (unlikely(r)) 2444 DRM_ERROR("failed to reserve abo before unpin\n"); 2445 else { 2446 amdgpu_bo_unpin(abo); 2447 amdgpu_bo_unreserve(abo); 2448 } 2449 } 2450 /* disable the GRPH */ 2451 dce_v8_0_grph_enable(crtc, false); 2452 2453 amdgpu_atombios_crtc_powergate(crtc, ATOM_ENABLE); 2454 2455 for (i = 0; i < adev->mode_info.num_crtc; i++) { 2456 if (adev->mode_info.crtcs[i] && 2457 adev->mode_info.crtcs[i]->enabled && 2458 i != amdgpu_crtc->crtc_id && 2459 amdgpu_crtc->pll_id == adev->mode_info.crtcs[i]->pll_id) { 2460 /* one other crtc is using this pll don't turn 2461 * off the pll 2462 */ 2463 goto done; 2464 } 2465 } 2466 2467 switch (amdgpu_crtc->pll_id) { 2468 case ATOM_PPLL1: 2469 case ATOM_PPLL2: 2470 /* disable the ppll */ 2471 amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id, 2472 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); 2473 break; 2474 case ATOM_PPLL0: 2475 /* disable the ppll */ 2476 if ((adev->asic_type == CHIP_KAVERI) || 2477 (adev->asic_type == CHIP_BONAIRE) || 2478 (adev->asic_type == CHIP_HAWAII)) 2479 amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id, 2480 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); 2481 break; 2482 default: 2483 break; 2484 } 2485 done: 2486 amdgpu_crtc->pll_id = ATOM_PPLL_INVALID; 2487 amdgpu_crtc->adjusted_clock = 0; 2488 amdgpu_crtc->encoder = NULL; 2489 amdgpu_crtc->connector = NULL; 2490 } 2491 2492 static int dce_v8_0_crtc_mode_set(struct drm_crtc *crtc, 2493 struct drm_display_mode *mode, 2494 struct drm_display_mode *adjusted_mode, 2495 int x, int y, struct drm_framebuffer *old_fb) 2496 { 2497 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2498 2499 if (!amdgpu_crtc->adjusted_clock) 2500 return -EINVAL; 2501 2502 amdgpu_atombios_crtc_set_pll(crtc, adjusted_mode); 2503 amdgpu_atombios_crtc_set_dtd_timing(crtc, adjusted_mode); 2504 dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0); 2505 amdgpu_atombios_crtc_overscan_setup(crtc, mode, adjusted_mode); 2506 amdgpu_atombios_crtc_scaler_setup(crtc); 2507 dce_v8_0_cursor_reset(crtc); 2508 /* update the hw version fpr dpm */ 2509 amdgpu_crtc->hw_mode = *adjusted_mode; 2510 2511 return 0; 2512 } 2513 2514 static bool dce_v8_0_crtc_mode_fixup(struct drm_crtc *crtc, 2515 const struct drm_display_mode *mode, 2516 struct drm_display_mode *adjusted_mode) 2517 { 2518 struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); 2519 struct drm_device *dev = crtc->dev; 2520 struct drm_encoder *encoder; 2521 2522 /* assign the encoder to the amdgpu crtc to avoid repeated lookups later */ 2523 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2524 if (encoder->crtc == crtc) { 2525 amdgpu_crtc->encoder = encoder; 2526 amdgpu_crtc->connector = amdgpu_get_connector_for_encoder(encoder); 2527 break; 2528 } 2529 } 2530 if ((amdgpu_crtc->encoder == NULL) || (amdgpu_crtc->connector == NULL)) { 2531 amdgpu_crtc->encoder = NULL; 2532 amdgpu_crtc->connector = NULL; 2533 return false; 2534 } 2535 if (!amdgpu_display_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode)) 2536 return false; 2537 if (amdgpu_atombios_crtc_prepare_pll(crtc, adjusted_mode)) 2538 return false; 2539 /* pick pll */ 2540 amdgpu_crtc->pll_id = dce_v8_0_pick_pll(crtc); 2541 /* if we can't get a PPLL for a non-DP encoder, fail */ 2542 if ((amdgpu_crtc->pll_id == ATOM_PPLL_INVALID) && 2543 !ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) 2544 return false; 2545 2546 return true; 2547 } 2548 2549 static int dce_v8_0_crtc_set_base(struct drm_crtc *crtc, int x, int y, 2550 struct drm_framebuffer *old_fb) 2551 { 2552 return dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0); 2553 } 2554 2555 static int dce_v8_0_crtc_set_base_atomic(struct drm_crtc *crtc, 2556 struct drm_framebuffer *fb, 2557 int x, int y, enum mode_set_atomic state) 2558 { 2559 return dce_v8_0_crtc_do_set_base(crtc, fb, x, y, 1); 2560 } 2561 2562 static const struct drm_crtc_helper_funcs dce_v8_0_crtc_helper_funcs = { 2563 .dpms = dce_v8_0_crtc_dpms, 2564 .mode_fixup = dce_v8_0_crtc_mode_fixup, 2565 .mode_set = dce_v8_0_crtc_mode_set, 2566 .mode_set_base = dce_v8_0_crtc_set_base, 2567 .mode_set_base_atomic = dce_v8_0_crtc_set_base_atomic, 2568 .prepare = dce_v8_0_crtc_prepare, 2569 .commit = dce_v8_0_crtc_commit, 2570 .disable = dce_v8_0_crtc_disable, 2571 }; 2572 2573 static int dce_v8_0_crtc_init(struct amdgpu_device *adev, int index) 2574 { 2575 struct amdgpu_crtc *amdgpu_crtc; 2576 2577 amdgpu_crtc = kzalloc(sizeof(struct amdgpu_crtc) + 2578 (AMDGPUFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); 2579 if (amdgpu_crtc == NULL) 2580 return -ENOMEM; 2581 2582 drm_crtc_init(adev->ddev, &amdgpu_crtc->base, &dce_v8_0_crtc_funcs); 2583 2584 drm_mode_crtc_set_gamma_size(&amdgpu_crtc->base, 256); 2585 amdgpu_crtc->crtc_id = index; 2586 adev->mode_info.crtcs[index] = amdgpu_crtc; 2587 2588 amdgpu_crtc->max_cursor_width = CIK_CURSOR_WIDTH; 2589 amdgpu_crtc->max_cursor_height = CIK_CURSOR_HEIGHT; 2590 adev->ddev->mode_config.cursor_width = amdgpu_crtc->max_cursor_width; 2591 adev->ddev->mode_config.cursor_height = amdgpu_crtc->max_cursor_height; 2592 2593 amdgpu_crtc->crtc_offset = crtc_offsets[amdgpu_crtc->crtc_id]; 2594 2595 amdgpu_crtc->pll_id = ATOM_PPLL_INVALID; 2596 amdgpu_crtc->adjusted_clock = 0; 2597 amdgpu_crtc->encoder = NULL; 2598 amdgpu_crtc->connector = NULL; 2599 drm_crtc_helper_add(&amdgpu_crtc->base, &dce_v8_0_crtc_helper_funcs); 2600 2601 return 0; 2602 } 2603 2604 static int dce_v8_0_early_init(void *handle) 2605 { 2606 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2607 2608 adev->audio_endpt_rreg = &dce_v8_0_audio_endpt_rreg; 2609 adev->audio_endpt_wreg = &dce_v8_0_audio_endpt_wreg; 2610 2611 dce_v8_0_set_display_funcs(adev); 2612 2613 adev->mode_info.num_crtc = dce_v8_0_get_num_crtc(adev); 2614 2615 switch (adev->asic_type) { 2616 case CHIP_BONAIRE: 2617 case CHIP_HAWAII: 2618 adev->mode_info.num_hpd = 6; 2619 adev->mode_info.num_dig = 6; 2620 break; 2621 case CHIP_KAVERI: 2622 adev->mode_info.num_hpd = 6; 2623 adev->mode_info.num_dig = 7; 2624 break; 2625 case CHIP_KABINI: 2626 case CHIP_MULLINS: 2627 adev->mode_info.num_hpd = 6; 2628 adev->mode_info.num_dig = 6; /* ? */ 2629 break; 2630 default: 2631 /* FIXME: not supported yet */ 2632 return -EINVAL; 2633 } 2634 2635 dce_v8_0_set_irq_funcs(adev); 2636 2637 return 0; 2638 } 2639 2640 static int dce_v8_0_sw_init(void *handle) 2641 { 2642 int r, i; 2643 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2644 2645 for (i = 0; i < adev->mode_info.num_crtc; i++) { 2646 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, i + 1, &adev->crtc_irq); 2647 if (r) 2648 return r; 2649 } 2650 2651 for (i = 8; i < 20; i += 2) { 2652 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, i, &adev->pageflip_irq); 2653 if (r) 2654 return r; 2655 } 2656 2657 /* HPD hotplug */ 2658 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 42, &adev->hpd_irq); 2659 if (r) 2660 return r; 2661 2662 adev->ddev->mode_config.funcs = &amdgpu_mode_funcs; 2663 2664 adev->ddev->mode_config.async_page_flip = true; 2665 2666 adev->ddev->mode_config.max_width = 16384; 2667 adev->ddev->mode_config.max_height = 16384; 2668 2669 adev->ddev->mode_config.preferred_depth = 24; 2670 adev->ddev->mode_config.prefer_shadow = 1; 2671 2672 adev->ddev->mode_config.fb_base = adev->gmc.aper_base; 2673 2674 r = amdgpu_display_modeset_create_props(adev); 2675 if (r) 2676 return r; 2677 2678 adev->ddev->mode_config.max_width = 16384; 2679 adev->ddev->mode_config.max_height = 16384; 2680 2681 /* allocate crtcs */ 2682 for (i = 0; i < adev->mode_info.num_crtc; i++) { 2683 r = dce_v8_0_crtc_init(adev, i); 2684 if (r) 2685 return r; 2686 } 2687 2688 if (amdgpu_atombios_get_connector_info_from_object_table(adev)) 2689 amdgpu_display_print_display_setup(adev->ddev); 2690 else 2691 return -EINVAL; 2692 2693 /* setup afmt */ 2694 r = dce_v8_0_afmt_init(adev); 2695 if (r) 2696 return r; 2697 2698 r = dce_v8_0_audio_init(adev); 2699 if (r) 2700 return r; 2701 2702 drm_kms_helper_poll_init(adev->ddev); 2703 2704 adev->mode_info.mode_config_initialized = true; 2705 return 0; 2706 } 2707 2708 static int dce_v8_0_sw_fini(void *handle) 2709 { 2710 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2711 2712 kfree(adev->mode_info.bios_hardcoded_edid); 2713 2714 drm_kms_helper_poll_fini(adev->ddev); 2715 2716 dce_v8_0_audio_fini(adev); 2717 2718 dce_v8_0_afmt_fini(adev); 2719 2720 drm_mode_config_cleanup(adev->ddev); 2721 adev->mode_info.mode_config_initialized = false; 2722 2723 return 0; 2724 } 2725 2726 static int dce_v8_0_hw_init(void *handle) 2727 { 2728 int i; 2729 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2730 2731 /* disable vga render */ 2732 dce_v8_0_set_vga_render_state(adev, false); 2733 /* init dig PHYs, disp eng pll */ 2734 amdgpu_atombios_encoder_init_dig(adev); 2735 amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk); 2736 2737 /* initialize hpd */ 2738 dce_v8_0_hpd_init(adev); 2739 2740 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 2741 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 2742 } 2743 2744 dce_v8_0_pageflip_interrupt_init(adev); 2745 2746 return 0; 2747 } 2748 2749 static int dce_v8_0_hw_fini(void *handle) 2750 { 2751 int i; 2752 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2753 2754 dce_v8_0_hpd_fini(adev); 2755 2756 for (i = 0; i < adev->mode_info.audio.num_pins; i++) { 2757 dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); 2758 } 2759 2760 dce_v8_0_pageflip_interrupt_fini(adev); 2761 2762 return 0; 2763 } 2764 2765 static int dce_v8_0_suspend(void *handle) 2766 { 2767 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2768 2769 adev->mode_info.bl_level = 2770 amdgpu_atombios_encoder_get_backlight_level_from_reg(adev); 2771 2772 return dce_v8_0_hw_fini(handle); 2773 } 2774 2775 static int dce_v8_0_resume(void *handle) 2776 { 2777 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2778 int ret; 2779 2780 amdgpu_atombios_encoder_set_backlight_level_to_reg(adev, 2781 adev->mode_info.bl_level); 2782 2783 ret = dce_v8_0_hw_init(handle); 2784 2785 /* turn on the BL */ 2786 if (adev->mode_info.bl_encoder) { 2787 u8 bl_level = amdgpu_display_backlight_get_level(adev, 2788 adev->mode_info.bl_encoder); 2789 amdgpu_display_backlight_set_level(adev, adev->mode_info.bl_encoder, 2790 bl_level); 2791 } 2792 2793 return ret; 2794 } 2795 2796 static bool dce_v8_0_is_idle(void *handle) 2797 { 2798 return true; 2799 } 2800 2801 static int dce_v8_0_wait_for_idle(void *handle) 2802 { 2803 return 0; 2804 } 2805 2806 static int dce_v8_0_soft_reset(void *handle) 2807 { 2808 u32 srbm_soft_reset = 0, tmp; 2809 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2810 2811 if (dce_v8_0_is_display_hung(adev)) 2812 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_DC_MASK; 2813 2814 if (srbm_soft_reset) { 2815 tmp = RREG32(mmSRBM_SOFT_RESET); 2816 tmp |= srbm_soft_reset; 2817 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 2818 WREG32(mmSRBM_SOFT_RESET, tmp); 2819 tmp = RREG32(mmSRBM_SOFT_RESET); 2820 2821 udelay(50); 2822 2823 tmp &= ~srbm_soft_reset; 2824 WREG32(mmSRBM_SOFT_RESET, tmp); 2825 tmp = RREG32(mmSRBM_SOFT_RESET); 2826 2827 /* Wait a little for things to settle down */ 2828 udelay(50); 2829 } 2830 return 0; 2831 } 2832 2833 static void dce_v8_0_set_crtc_vblank_interrupt_state(struct amdgpu_device *adev, 2834 int crtc, 2835 enum amdgpu_interrupt_state state) 2836 { 2837 u32 reg_block, lb_interrupt_mask; 2838 2839 if (crtc >= adev->mode_info.num_crtc) { 2840 DRM_DEBUG("invalid crtc %d\n", crtc); 2841 return; 2842 } 2843 2844 switch (crtc) { 2845 case 0: 2846 reg_block = CRTC0_REGISTER_OFFSET; 2847 break; 2848 case 1: 2849 reg_block = CRTC1_REGISTER_OFFSET; 2850 break; 2851 case 2: 2852 reg_block = CRTC2_REGISTER_OFFSET; 2853 break; 2854 case 3: 2855 reg_block = CRTC3_REGISTER_OFFSET; 2856 break; 2857 case 4: 2858 reg_block = CRTC4_REGISTER_OFFSET; 2859 break; 2860 case 5: 2861 reg_block = CRTC5_REGISTER_OFFSET; 2862 break; 2863 default: 2864 DRM_DEBUG("invalid crtc %d\n", crtc); 2865 return; 2866 } 2867 2868 switch (state) { 2869 case AMDGPU_IRQ_STATE_DISABLE: 2870 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2871 lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK; 2872 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2873 break; 2874 case AMDGPU_IRQ_STATE_ENABLE: 2875 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2876 lb_interrupt_mask |= LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK; 2877 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2878 break; 2879 default: 2880 break; 2881 } 2882 } 2883 2884 static void dce_v8_0_set_crtc_vline_interrupt_state(struct amdgpu_device *adev, 2885 int crtc, 2886 enum amdgpu_interrupt_state state) 2887 { 2888 u32 reg_block, lb_interrupt_mask; 2889 2890 if (crtc >= adev->mode_info.num_crtc) { 2891 DRM_DEBUG("invalid crtc %d\n", crtc); 2892 return; 2893 } 2894 2895 switch (crtc) { 2896 case 0: 2897 reg_block = CRTC0_REGISTER_OFFSET; 2898 break; 2899 case 1: 2900 reg_block = CRTC1_REGISTER_OFFSET; 2901 break; 2902 case 2: 2903 reg_block = CRTC2_REGISTER_OFFSET; 2904 break; 2905 case 3: 2906 reg_block = CRTC3_REGISTER_OFFSET; 2907 break; 2908 case 4: 2909 reg_block = CRTC4_REGISTER_OFFSET; 2910 break; 2911 case 5: 2912 reg_block = CRTC5_REGISTER_OFFSET; 2913 break; 2914 default: 2915 DRM_DEBUG("invalid crtc %d\n", crtc); 2916 return; 2917 } 2918 2919 switch (state) { 2920 case AMDGPU_IRQ_STATE_DISABLE: 2921 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2922 lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK; 2923 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2924 break; 2925 case AMDGPU_IRQ_STATE_ENABLE: 2926 lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); 2927 lb_interrupt_mask |= LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK; 2928 WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); 2929 break; 2930 default: 2931 break; 2932 } 2933 } 2934 2935 static int dce_v8_0_set_hpd_interrupt_state(struct amdgpu_device *adev, 2936 struct amdgpu_irq_src *src, 2937 unsigned type, 2938 enum amdgpu_interrupt_state state) 2939 { 2940 u32 dc_hpd_int_cntl; 2941 2942 if (type >= adev->mode_info.num_hpd) { 2943 DRM_DEBUG("invalid hdp %d\n", type); 2944 return 0; 2945 } 2946 2947 switch (state) { 2948 case AMDGPU_IRQ_STATE_DISABLE: 2949 dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]); 2950 dc_hpd_int_cntl &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; 2951 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl); 2952 break; 2953 case AMDGPU_IRQ_STATE_ENABLE: 2954 dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]); 2955 dc_hpd_int_cntl |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; 2956 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl); 2957 break; 2958 default: 2959 break; 2960 } 2961 2962 return 0; 2963 } 2964 2965 static int dce_v8_0_set_crtc_interrupt_state(struct amdgpu_device *adev, 2966 struct amdgpu_irq_src *src, 2967 unsigned type, 2968 enum amdgpu_interrupt_state state) 2969 { 2970 switch (type) { 2971 case AMDGPU_CRTC_IRQ_VBLANK1: 2972 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 0, state); 2973 break; 2974 case AMDGPU_CRTC_IRQ_VBLANK2: 2975 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 1, state); 2976 break; 2977 case AMDGPU_CRTC_IRQ_VBLANK3: 2978 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 2, state); 2979 break; 2980 case AMDGPU_CRTC_IRQ_VBLANK4: 2981 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 3, state); 2982 break; 2983 case AMDGPU_CRTC_IRQ_VBLANK5: 2984 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 4, state); 2985 break; 2986 case AMDGPU_CRTC_IRQ_VBLANK6: 2987 dce_v8_0_set_crtc_vblank_interrupt_state(adev, 5, state); 2988 break; 2989 case AMDGPU_CRTC_IRQ_VLINE1: 2990 dce_v8_0_set_crtc_vline_interrupt_state(adev, 0, state); 2991 break; 2992 case AMDGPU_CRTC_IRQ_VLINE2: 2993 dce_v8_0_set_crtc_vline_interrupt_state(adev, 1, state); 2994 break; 2995 case AMDGPU_CRTC_IRQ_VLINE3: 2996 dce_v8_0_set_crtc_vline_interrupt_state(adev, 2, state); 2997 break; 2998 case AMDGPU_CRTC_IRQ_VLINE4: 2999 dce_v8_0_set_crtc_vline_interrupt_state(adev, 3, state); 3000 break; 3001 case AMDGPU_CRTC_IRQ_VLINE5: 3002 dce_v8_0_set_crtc_vline_interrupt_state(adev, 4, state); 3003 break; 3004 case AMDGPU_CRTC_IRQ_VLINE6: 3005 dce_v8_0_set_crtc_vline_interrupt_state(adev, 5, state); 3006 break; 3007 default: 3008 break; 3009 } 3010 return 0; 3011 } 3012 3013 static int dce_v8_0_crtc_irq(struct amdgpu_device *adev, 3014 struct amdgpu_irq_src *source, 3015 struct amdgpu_iv_entry *entry) 3016 { 3017 unsigned crtc = entry->src_id - 1; 3018 uint32_t disp_int = RREG32(interrupt_status_offsets[crtc].reg); 3019 unsigned int irq_type = amdgpu_display_crtc_idx_to_irq_type(adev, 3020 crtc); 3021 3022 switch (entry->src_data[0]) { 3023 case 0: /* vblank */ 3024 if (disp_int & interrupt_status_offsets[crtc].vblank) 3025 WREG32(mmLB_VBLANK_STATUS + crtc_offsets[crtc], LB_VBLANK_STATUS__VBLANK_ACK_MASK); 3026 else 3027 DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); 3028 3029 if (amdgpu_irq_enabled(adev, source, irq_type)) { 3030 drm_handle_vblank(adev->ddev, crtc); 3031 } 3032 DRM_DEBUG("IH: D%d vblank\n", crtc + 1); 3033 break; 3034 case 1: /* vline */ 3035 if (disp_int & interrupt_status_offsets[crtc].vline) 3036 WREG32(mmLB_VLINE_STATUS + crtc_offsets[crtc], LB_VLINE_STATUS__VLINE_ACK_MASK); 3037 else 3038 DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); 3039 3040 DRM_DEBUG("IH: D%d vline\n", crtc + 1); 3041 break; 3042 default: 3043 DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); 3044 break; 3045 } 3046 3047 return 0; 3048 } 3049 3050 static int dce_v8_0_set_pageflip_interrupt_state(struct amdgpu_device *adev, 3051 struct amdgpu_irq_src *src, 3052 unsigned type, 3053 enum amdgpu_interrupt_state state) 3054 { 3055 u32 reg; 3056 3057 if (type >= adev->mode_info.num_crtc) { 3058 DRM_ERROR("invalid pageflip crtc %d\n", type); 3059 return -EINVAL; 3060 } 3061 3062 reg = RREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type]); 3063 if (state == AMDGPU_IRQ_STATE_DISABLE) 3064 WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type], 3065 reg & ~GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK); 3066 else 3067 WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type], 3068 reg | GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK); 3069 3070 return 0; 3071 } 3072 3073 static int dce_v8_0_pageflip_irq(struct amdgpu_device *adev, 3074 struct amdgpu_irq_src *source, 3075 struct amdgpu_iv_entry *entry) 3076 { 3077 unsigned long flags; 3078 unsigned crtc_id; 3079 struct amdgpu_crtc *amdgpu_crtc; 3080 struct amdgpu_flip_work *works; 3081 3082 crtc_id = (entry->src_id - 8) >> 1; 3083 amdgpu_crtc = adev->mode_info.crtcs[crtc_id]; 3084 3085 if (crtc_id >= adev->mode_info.num_crtc) { 3086 DRM_ERROR("invalid pageflip crtc %d\n", crtc_id); 3087 return -EINVAL; 3088 } 3089 3090 if (RREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id]) & 3091 GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_OCCURRED_MASK) 3092 WREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id], 3093 GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_CLEAR_MASK); 3094 3095 /* IRQ could occur when in initial stage */ 3096 if (amdgpu_crtc == NULL) 3097 return 0; 3098 3099 spin_lock_irqsave(&adev->ddev->event_lock, flags); 3100 works = amdgpu_crtc->pflip_works; 3101 if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){ 3102 DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d != " 3103 "AMDGPU_FLIP_SUBMITTED(%d)\n", 3104 amdgpu_crtc->pflip_status, 3105 AMDGPU_FLIP_SUBMITTED); 3106 spin_unlock_irqrestore(&adev->ddev->event_lock, flags); 3107 return 0; 3108 } 3109 3110 /* page flip completed. clean up */ 3111 amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE; 3112 amdgpu_crtc->pflip_works = NULL; 3113 3114 /* wakeup usersapce */ 3115 if (works->event) 3116 drm_crtc_send_vblank_event(&amdgpu_crtc->base, works->event); 3117 3118 spin_unlock_irqrestore(&adev->ddev->event_lock, flags); 3119 3120 drm_crtc_vblank_put(&amdgpu_crtc->base); 3121 schedule_work(&works->unpin_work); 3122 3123 return 0; 3124 } 3125 3126 static int dce_v8_0_hpd_irq(struct amdgpu_device *adev, 3127 struct amdgpu_irq_src *source, 3128 struct amdgpu_iv_entry *entry) 3129 { 3130 uint32_t disp_int, mask, tmp; 3131 unsigned hpd; 3132 3133 if (entry->src_data[0] >= adev->mode_info.num_hpd) { 3134 DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); 3135 return 0; 3136 } 3137 3138 hpd = entry->src_data[0]; 3139 disp_int = RREG32(interrupt_status_offsets[hpd].reg); 3140 mask = interrupt_status_offsets[hpd].hpd; 3141 3142 if (disp_int & mask) { 3143 tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]); 3144 tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_ACK_MASK; 3145 WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp); 3146 schedule_work(&adev->hotplug_work); 3147 DRM_DEBUG("IH: HPD%d\n", hpd + 1); 3148 } 3149 3150 return 0; 3151 3152 } 3153 3154 static int dce_v8_0_set_clockgating_state(void *handle, 3155 enum amd_clockgating_state state) 3156 { 3157 return 0; 3158 } 3159 3160 static int dce_v8_0_set_powergating_state(void *handle, 3161 enum amd_powergating_state state) 3162 { 3163 return 0; 3164 } 3165 3166 static const struct amd_ip_funcs dce_v8_0_ip_funcs = { 3167 .name = "dce_v8_0", 3168 .early_init = dce_v8_0_early_init, 3169 .late_init = NULL, 3170 .sw_init = dce_v8_0_sw_init, 3171 .sw_fini = dce_v8_0_sw_fini, 3172 .hw_init = dce_v8_0_hw_init, 3173 .hw_fini = dce_v8_0_hw_fini, 3174 .suspend = dce_v8_0_suspend, 3175 .resume = dce_v8_0_resume, 3176 .is_idle = dce_v8_0_is_idle, 3177 .wait_for_idle = dce_v8_0_wait_for_idle, 3178 .soft_reset = dce_v8_0_soft_reset, 3179 .set_clockgating_state = dce_v8_0_set_clockgating_state, 3180 .set_powergating_state = dce_v8_0_set_powergating_state, 3181 }; 3182 3183 static void 3184 dce_v8_0_encoder_mode_set(struct drm_encoder *encoder, 3185 struct drm_display_mode *mode, 3186 struct drm_display_mode *adjusted_mode) 3187 { 3188 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3189 3190 amdgpu_encoder->pixel_clock = adjusted_mode->clock; 3191 3192 /* need to call this here rather than in prepare() since we need some crtc info */ 3193 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); 3194 3195 /* set scaler clears this on some chips */ 3196 dce_v8_0_set_interleave(encoder->crtc, mode); 3197 3198 if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) { 3199 dce_v8_0_afmt_enable(encoder, true); 3200 dce_v8_0_afmt_setmode(encoder, adjusted_mode); 3201 } 3202 } 3203 3204 static void dce_v8_0_encoder_prepare(struct drm_encoder *encoder) 3205 { 3206 struct amdgpu_device *adev = encoder->dev->dev_private; 3207 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3208 struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); 3209 3210 if ((amdgpu_encoder->active_device & 3211 (ATOM_DEVICE_DFP_SUPPORT | ATOM_DEVICE_LCD_SUPPORT)) || 3212 (amdgpu_encoder_get_dp_bridge_encoder_id(encoder) != 3213 ENCODER_OBJECT_ID_NONE)) { 3214 struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; 3215 if (dig) { 3216 dig->dig_encoder = dce_v8_0_pick_dig_encoder(encoder); 3217 if (amdgpu_encoder->active_device & ATOM_DEVICE_DFP_SUPPORT) 3218 dig->afmt = adev->mode_info.afmt[dig->dig_encoder]; 3219 } 3220 } 3221 3222 amdgpu_atombios_scratch_regs_lock(adev, true); 3223 3224 if (connector) { 3225 struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); 3226 3227 /* select the clock/data port if it uses a router */ 3228 if (amdgpu_connector->router.cd_valid) 3229 amdgpu_i2c_router_select_cd_port(amdgpu_connector); 3230 3231 /* turn eDP panel on for mode set */ 3232 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) 3233 amdgpu_atombios_encoder_set_edp_panel_power(connector, 3234 ATOM_TRANSMITTER_ACTION_POWER_ON); 3235 } 3236 3237 /* this is needed for the pll/ss setup to work correctly in some cases */ 3238 amdgpu_atombios_encoder_set_crtc_source(encoder); 3239 /* set up the FMT blocks */ 3240 dce_v8_0_program_fmt(encoder); 3241 } 3242 3243 static void dce_v8_0_encoder_commit(struct drm_encoder *encoder) 3244 { 3245 struct drm_device *dev = encoder->dev; 3246 struct amdgpu_device *adev = dev->dev_private; 3247 3248 /* need to call this here as we need the crtc set up */ 3249 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_ON); 3250 amdgpu_atombios_scratch_regs_lock(adev, false); 3251 } 3252 3253 static void dce_v8_0_encoder_disable(struct drm_encoder *encoder) 3254 { 3255 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3256 struct amdgpu_encoder_atom_dig *dig; 3257 3258 amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); 3259 3260 if (amdgpu_atombios_encoder_is_digital(encoder)) { 3261 if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) 3262 dce_v8_0_afmt_enable(encoder, false); 3263 dig = amdgpu_encoder->enc_priv; 3264 dig->dig_encoder = -1; 3265 } 3266 amdgpu_encoder->active_device = 0; 3267 } 3268 3269 /* these are handled by the primary encoders */ 3270 static void dce_v8_0_ext_prepare(struct drm_encoder *encoder) 3271 { 3272 3273 } 3274 3275 static void dce_v8_0_ext_commit(struct drm_encoder *encoder) 3276 { 3277 3278 } 3279 3280 static void 3281 dce_v8_0_ext_mode_set(struct drm_encoder *encoder, 3282 struct drm_display_mode *mode, 3283 struct drm_display_mode *adjusted_mode) 3284 { 3285 3286 } 3287 3288 static void dce_v8_0_ext_disable(struct drm_encoder *encoder) 3289 { 3290 3291 } 3292 3293 static void 3294 dce_v8_0_ext_dpms(struct drm_encoder *encoder, int mode) 3295 { 3296 3297 } 3298 3299 static const struct drm_encoder_helper_funcs dce_v8_0_ext_helper_funcs = { 3300 .dpms = dce_v8_0_ext_dpms, 3301 .prepare = dce_v8_0_ext_prepare, 3302 .mode_set = dce_v8_0_ext_mode_set, 3303 .commit = dce_v8_0_ext_commit, 3304 .disable = dce_v8_0_ext_disable, 3305 /* no detect for TMDS/LVDS yet */ 3306 }; 3307 3308 static const struct drm_encoder_helper_funcs dce_v8_0_dig_helper_funcs = { 3309 .dpms = amdgpu_atombios_encoder_dpms, 3310 .mode_fixup = amdgpu_atombios_encoder_mode_fixup, 3311 .prepare = dce_v8_0_encoder_prepare, 3312 .mode_set = dce_v8_0_encoder_mode_set, 3313 .commit = dce_v8_0_encoder_commit, 3314 .disable = dce_v8_0_encoder_disable, 3315 .detect = amdgpu_atombios_encoder_dig_detect, 3316 }; 3317 3318 static const struct drm_encoder_helper_funcs dce_v8_0_dac_helper_funcs = { 3319 .dpms = amdgpu_atombios_encoder_dpms, 3320 .mode_fixup = amdgpu_atombios_encoder_mode_fixup, 3321 .prepare = dce_v8_0_encoder_prepare, 3322 .mode_set = dce_v8_0_encoder_mode_set, 3323 .commit = dce_v8_0_encoder_commit, 3324 .detect = amdgpu_atombios_encoder_dac_detect, 3325 }; 3326 3327 static void dce_v8_0_encoder_destroy(struct drm_encoder *encoder) 3328 { 3329 struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); 3330 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) 3331 amdgpu_atombios_encoder_fini_backlight(amdgpu_encoder); 3332 kfree(amdgpu_encoder->enc_priv); 3333 drm_encoder_cleanup(encoder); 3334 kfree(amdgpu_encoder); 3335 } 3336 3337 static const struct drm_encoder_funcs dce_v8_0_encoder_funcs = { 3338 .destroy = dce_v8_0_encoder_destroy, 3339 }; 3340 3341 static void dce_v8_0_encoder_add(struct amdgpu_device *adev, 3342 uint32_t encoder_enum, 3343 uint32_t supported_device, 3344 u16 caps) 3345 { 3346 struct drm_device *dev = adev->ddev; 3347 struct drm_encoder *encoder; 3348 struct amdgpu_encoder *amdgpu_encoder; 3349 3350 /* see if we already added it */ 3351 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 3352 amdgpu_encoder = to_amdgpu_encoder(encoder); 3353 if (amdgpu_encoder->encoder_enum == encoder_enum) { 3354 amdgpu_encoder->devices |= supported_device; 3355 return; 3356 } 3357 3358 } 3359 3360 /* add a new one */ 3361 amdgpu_encoder = kzalloc(sizeof(struct amdgpu_encoder), GFP_KERNEL); 3362 if (!amdgpu_encoder) 3363 return; 3364 3365 encoder = &amdgpu_encoder->base; 3366 switch (adev->mode_info.num_crtc) { 3367 case 1: 3368 encoder->possible_crtcs = 0x1; 3369 break; 3370 case 2: 3371 default: 3372 encoder->possible_crtcs = 0x3; 3373 break; 3374 case 4: 3375 encoder->possible_crtcs = 0xf; 3376 break; 3377 case 6: 3378 encoder->possible_crtcs = 0x3f; 3379 break; 3380 } 3381 3382 amdgpu_encoder->enc_priv = NULL; 3383 3384 amdgpu_encoder->encoder_enum = encoder_enum; 3385 amdgpu_encoder->encoder_id = (encoder_enum & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; 3386 amdgpu_encoder->devices = supported_device; 3387 amdgpu_encoder->rmx_type = RMX_OFF; 3388 amdgpu_encoder->underscan_type = UNDERSCAN_OFF; 3389 amdgpu_encoder->is_ext_encoder = false; 3390 amdgpu_encoder->caps = caps; 3391 3392 switch (amdgpu_encoder->encoder_id) { 3393 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1: 3394 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2: 3395 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3396 DRM_MODE_ENCODER_DAC, NULL); 3397 drm_encoder_helper_add(encoder, &dce_v8_0_dac_helper_funcs); 3398 break; 3399 case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1: 3400 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY: 3401 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1: 3402 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2: 3403 case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3: 3404 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) { 3405 amdgpu_encoder->rmx_type = RMX_FULL; 3406 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3407 DRM_MODE_ENCODER_LVDS, NULL); 3408 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_lcd_info(amdgpu_encoder); 3409 } else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) { 3410 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3411 DRM_MODE_ENCODER_DAC, NULL); 3412 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder); 3413 } else { 3414 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3415 DRM_MODE_ENCODER_TMDS, NULL); 3416 amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder); 3417 } 3418 drm_encoder_helper_add(encoder, &dce_v8_0_dig_helper_funcs); 3419 break; 3420 case ENCODER_OBJECT_ID_SI170B: 3421 case ENCODER_OBJECT_ID_CH7303: 3422 case ENCODER_OBJECT_ID_EXTERNAL_SDVOA: 3423 case ENCODER_OBJECT_ID_EXTERNAL_SDVOB: 3424 case ENCODER_OBJECT_ID_TITFP513: 3425 case ENCODER_OBJECT_ID_VT1623: 3426 case ENCODER_OBJECT_ID_HDMI_SI1930: 3427 case ENCODER_OBJECT_ID_TRAVIS: 3428 case ENCODER_OBJECT_ID_NUTMEG: 3429 /* these are handled by the primary encoders */ 3430 amdgpu_encoder->is_ext_encoder = true; 3431 if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) 3432 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3433 DRM_MODE_ENCODER_LVDS, NULL); 3434 else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) 3435 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3436 DRM_MODE_ENCODER_DAC, NULL); 3437 else 3438 drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, 3439 DRM_MODE_ENCODER_TMDS, NULL); 3440 drm_encoder_helper_add(encoder, &dce_v8_0_ext_helper_funcs); 3441 break; 3442 } 3443 } 3444 3445 static const struct amdgpu_display_funcs dce_v8_0_display_funcs = { 3446 .bandwidth_update = &dce_v8_0_bandwidth_update, 3447 .vblank_get_counter = &dce_v8_0_vblank_get_counter, 3448 .backlight_set_level = &amdgpu_atombios_encoder_set_backlight_level, 3449 .backlight_get_level = &amdgpu_atombios_encoder_get_backlight_level, 3450 .hpd_sense = &dce_v8_0_hpd_sense, 3451 .hpd_set_polarity = &dce_v8_0_hpd_set_polarity, 3452 .hpd_get_gpio_reg = &dce_v8_0_hpd_get_gpio_reg, 3453 .page_flip = &dce_v8_0_page_flip, 3454 .page_flip_get_scanoutpos = &dce_v8_0_crtc_get_scanoutpos, 3455 .add_encoder = &dce_v8_0_encoder_add, 3456 .add_connector = &amdgpu_connector_add, 3457 }; 3458 3459 static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev) 3460 { 3461 adev->mode_info.funcs = &dce_v8_0_display_funcs; 3462 } 3463 3464 static const struct amdgpu_irq_src_funcs dce_v8_0_crtc_irq_funcs = { 3465 .set = dce_v8_0_set_crtc_interrupt_state, 3466 .process = dce_v8_0_crtc_irq, 3467 }; 3468 3469 static const struct amdgpu_irq_src_funcs dce_v8_0_pageflip_irq_funcs = { 3470 .set = dce_v8_0_set_pageflip_interrupt_state, 3471 .process = dce_v8_0_pageflip_irq, 3472 }; 3473 3474 static const struct amdgpu_irq_src_funcs dce_v8_0_hpd_irq_funcs = { 3475 .set = dce_v8_0_set_hpd_interrupt_state, 3476 .process = dce_v8_0_hpd_irq, 3477 }; 3478 3479 static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev) 3480 { 3481 if (adev->mode_info.num_crtc > 0) 3482 adev->crtc_irq.num_types = AMDGPU_CRTC_IRQ_VLINE1 + adev->mode_info.num_crtc; 3483 else 3484 adev->crtc_irq.num_types = 0; 3485 adev->crtc_irq.funcs = &dce_v8_0_crtc_irq_funcs; 3486 3487 adev->pageflip_irq.num_types = adev->mode_info.num_crtc; 3488 adev->pageflip_irq.funcs = &dce_v8_0_pageflip_irq_funcs; 3489 3490 adev->hpd_irq.num_types = adev->mode_info.num_hpd; 3491 adev->hpd_irq.funcs = &dce_v8_0_hpd_irq_funcs; 3492 } 3493 3494 const struct amdgpu_ip_block_version dce_v8_0_ip_block = 3495 { 3496 .type = AMD_IP_BLOCK_TYPE_DCE, 3497 .major = 8, 3498 .minor = 0, 3499 .rev = 0, 3500 .funcs = &dce_v8_0_ip_funcs, 3501 }; 3502 3503 const struct amdgpu_ip_block_version dce_v8_1_ip_block = 3504 { 3505 .type = AMD_IP_BLOCK_TYPE_DCE, 3506 .major = 8, 3507 .minor = 1, 3508 .rev = 0, 3509 .funcs = &dce_v8_0_ip_funcs, 3510 }; 3511 3512 const struct amdgpu_ip_block_version dce_v8_2_ip_block = 3513 { 3514 .type = AMD_IP_BLOCK_TYPE_DCE, 3515 .major = 8, 3516 .minor = 2, 3517 .rev = 0, 3518 .funcs = &dce_v8_0_ip_funcs, 3519 }; 3520 3521 const struct amdgpu_ip_block_version dce_v8_3_ip_block = 3522 { 3523 .type = AMD_IP_BLOCK_TYPE_DCE, 3524 .major = 8, 3525 .minor = 3, 3526 .rev = 0, 3527 .funcs = &dce_v8_0_ip_funcs, 3528 }; 3529 3530 const struct amdgpu_ip_block_version dce_v8_5_ip_block = 3531 { 3532 .type = AMD_IP_BLOCK_TYPE_DCE, 3533 .major = 8, 3534 .minor = 5, 3535 .rev = 0, 3536 .funcs = &dce_v8_0_ip_funcs, 3537 }; 3538