1 /* 2 * Copyright 2013 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 #include <linux/firmware.h> 25 #include <drm/drmP.h> 26 #include "amdgpu.h" 27 #include "amdgpu_ucode.h" 28 #include "amdgpu_trace.h" 29 #include "cikd.h" 30 #include "cik.h" 31 32 #include "bif/bif_4_1_d.h" 33 #include "bif/bif_4_1_sh_mask.h" 34 35 #include "gca/gfx_7_2_d.h" 36 #include "gca/gfx_7_2_enum.h" 37 #include "gca/gfx_7_2_sh_mask.h" 38 39 #include "gmc/gmc_7_1_d.h" 40 #include "gmc/gmc_7_1_sh_mask.h" 41 42 #include "oss/oss_2_0_d.h" 43 #include "oss/oss_2_0_sh_mask.h" 44 45 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 46 { 47 SDMA0_REGISTER_OFFSET, 48 SDMA1_REGISTER_OFFSET 49 }; 50 51 static void cik_sdma_set_ring_funcs(struct amdgpu_device *adev); 52 static void cik_sdma_set_irq_funcs(struct amdgpu_device *adev); 53 static void cik_sdma_set_buffer_funcs(struct amdgpu_device *adev); 54 static void cik_sdma_set_vm_pte_funcs(struct amdgpu_device *adev); 55 static int cik_sdma_soft_reset(void *handle); 56 57 MODULE_FIRMWARE("amdgpu/bonaire_sdma.bin"); 58 MODULE_FIRMWARE("amdgpu/bonaire_sdma1.bin"); 59 MODULE_FIRMWARE("amdgpu/hawaii_sdma.bin"); 60 MODULE_FIRMWARE("amdgpu/hawaii_sdma1.bin"); 61 MODULE_FIRMWARE("amdgpu/kaveri_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/kaveri_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/kabini_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/kabini_sdma1.bin"); 65 MODULE_FIRMWARE("amdgpu/mullins_sdma.bin"); 66 MODULE_FIRMWARE("amdgpu/mullins_sdma1.bin"); 67 68 u32 amdgpu_cik_gpu_check_soft_reset(struct amdgpu_device *adev); 69 70 71 static void cik_sdma_free_microcode(struct amdgpu_device *adev) 72 { 73 int i; 74 for (i = 0; i < adev->sdma.num_instances; i++) { 75 release_firmware(adev->sdma.instance[i].fw); 76 adev->sdma.instance[i].fw = NULL; 77 } 78 } 79 80 /* 81 * sDMA - System DMA 82 * Starting with CIK, the GPU has new asynchronous 83 * DMA engines. These engines are used for compute 84 * and gfx. There are two DMA engines (SDMA0, SDMA1) 85 * and each one supports 1 ring buffer used for gfx 86 * and 2 queues used for compute. 87 * 88 * The programming model is very similar to the CP 89 * (ring buffer, IBs, etc.), but sDMA has it's own 90 * packet format that is different from the PM4 format 91 * used by the CP. sDMA supports copying data, writing 92 * embedded data, solid fills, and a number of other 93 * things. It also has support for tiling/detiling of 94 * buffers. 95 */ 96 97 /** 98 * cik_sdma_init_microcode - load ucode images from disk 99 * 100 * @adev: amdgpu_device pointer 101 * 102 * Use the firmware interface to load the ucode images into 103 * the driver (not loaded into hw). 104 * Returns 0 on success, error on failure. 105 */ 106 static int cik_sdma_init_microcode(struct amdgpu_device *adev) 107 { 108 const char *chip_name; 109 char fw_name[30]; 110 int err = 0, i; 111 112 DRM_DEBUG("\n"); 113 114 switch (adev->asic_type) { 115 case CHIP_BONAIRE: 116 chip_name = "bonaire"; 117 break; 118 case CHIP_HAWAII: 119 chip_name = "hawaii"; 120 break; 121 case CHIP_KAVERI: 122 chip_name = "kaveri"; 123 break; 124 case CHIP_KABINI: 125 chip_name = "kabini"; 126 break; 127 case CHIP_MULLINS: 128 chip_name = "mullins"; 129 break; 130 default: BUG(); 131 } 132 133 for (i = 0; i < adev->sdma.num_instances; i++) { 134 if (i == 0) 135 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 136 else 137 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 138 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 139 if (err) 140 goto out; 141 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 142 } 143 out: 144 if (err) { 145 pr_err("cik_sdma: Failed to load firmware \"%s\"\n", fw_name); 146 for (i = 0; i < adev->sdma.num_instances; i++) { 147 release_firmware(adev->sdma.instance[i].fw); 148 adev->sdma.instance[i].fw = NULL; 149 } 150 } 151 return err; 152 } 153 154 /** 155 * cik_sdma_ring_get_rptr - get the current read pointer 156 * 157 * @ring: amdgpu ring pointer 158 * 159 * Get the current rptr from the hardware (CIK+). 160 */ 161 static uint64_t cik_sdma_ring_get_rptr(struct amdgpu_ring *ring) 162 { 163 u32 rptr; 164 165 rptr = ring->adev->wb.wb[ring->rptr_offs]; 166 167 return (rptr & 0x3fffc) >> 2; 168 } 169 170 /** 171 * cik_sdma_ring_get_wptr - get the current write pointer 172 * 173 * @ring: amdgpu ring pointer 174 * 175 * Get the current wptr from the hardware (CIK+). 176 */ 177 static uint64_t cik_sdma_ring_get_wptr(struct amdgpu_ring *ring) 178 { 179 struct amdgpu_device *adev = ring->adev; 180 181 return (RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) & 0x3fffc) >> 2; 182 } 183 184 /** 185 * cik_sdma_ring_set_wptr - commit the write pointer 186 * 187 * @ring: amdgpu ring pointer 188 * 189 * Write the wptr back to the hardware (CIK+). 190 */ 191 static void cik_sdma_ring_set_wptr(struct amdgpu_ring *ring) 192 { 193 struct amdgpu_device *adev = ring->adev; 194 195 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], 196 (lower_32_bits(ring->wptr) << 2) & 0x3fffc); 197 } 198 199 static void cik_sdma_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 200 { 201 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); 202 int i; 203 204 for (i = 0; i < count; i++) 205 if (sdma && sdma->burst_nop && (i == 0)) 206 amdgpu_ring_write(ring, ring->funcs->nop | 207 SDMA_NOP_COUNT(count - 1)); 208 else 209 amdgpu_ring_write(ring, ring->funcs->nop); 210 } 211 212 /** 213 * cik_sdma_ring_emit_ib - Schedule an IB on the DMA engine 214 * 215 * @ring: amdgpu ring pointer 216 * @ib: IB object to schedule 217 * 218 * Schedule an IB in the DMA ring (CIK). 219 */ 220 static void cik_sdma_ring_emit_ib(struct amdgpu_ring *ring, 221 struct amdgpu_ib *ib, 222 unsigned vmid, bool ctx_switch) 223 { 224 u32 extra_bits = vmid & 0xf; 225 226 /* IB packet must end on a 8 DW boundary */ 227 cik_sdma_ring_insert_nop(ring, (12 - (lower_32_bits(ring->wptr) & 7)) % 8); 228 229 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); 230 amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ 231 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff); 232 amdgpu_ring_write(ring, ib->length_dw); 233 234 } 235 236 /** 237 * cik_sdma_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 238 * 239 * @ring: amdgpu ring pointer 240 * 241 * Emit an hdp flush packet on the requested DMA ring. 242 */ 243 static void cik_sdma_ring_emit_hdp_flush(struct amdgpu_ring *ring) 244 { 245 u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | 246 SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ 247 u32 ref_and_mask; 248 249 if (ring->me == 0) 250 ref_and_mask = GPU_HDP_FLUSH_DONE__SDMA0_MASK; 251 else 252 ref_and_mask = GPU_HDP_FLUSH_DONE__SDMA1_MASK; 253 254 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); 255 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 256 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 257 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 258 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 259 amdgpu_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ 260 } 261 262 /** 263 * cik_sdma_ring_emit_fence - emit a fence on the DMA ring 264 * 265 * @ring: amdgpu ring pointer 266 * @fence: amdgpu fence object 267 * 268 * Add a DMA fence packet to the ring to write 269 * the fence seq number and DMA trap packet to generate 270 * an interrupt if needed (CIK). 271 */ 272 static void cik_sdma_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 273 unsigned flags) 274 { 275 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 276 /* write the fence */ 277 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); 278 amdgpu_ring_write(ring, lower_32_bits(addr)); 279 amdgpu_ring_write(ring, upper_32_bits(addr)); 280 amdgpu_ring_write(ring, lower_32_bits(seq)); 281 282 /* optionally write high bits as well */ 283 if (write64bit) { 284 addr += 4; 285 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); 286 amdgpu_ring_write(ring, lower_32_bits(addr)); 287 amdgpu_ring_write(ring, upper_32_bits(addr)); 288 amdgpu_ring_write(ring, upper_32_bits(seq)); 289 } 290 291 /* generate an interrupt */ 292 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); 293 } 294 295 /** 296 * cik_sdma_gfx_stop - stop the gfx async dma engines 297 * 298 * @adev: amdgpu_device pointer 299 * 300 * Stop the gfx async dma ring buffers (CIK). 301 */ 302 static void cik_sdma_gfx_stop(struct amdgpu_device *adev) 303 { 304 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 305 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 306 u32 rb_cntl; 307 int i; 308 309 if ((adev->mman.buffer_funcs_ring == sdma0) || 310 (adev->mman.buffer_funcs_ring == sdma1)) 311 amdgpu_ttm_set_buffer_funcs_status(adev, false); 312 313 for (i = 0; i < adev->sdma.num_instances; i++) { 314 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 315 rb_cntl &= ~SDMA0_GFX_RB_CNTL__RB_ENABLE_MASK; 316 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 317 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], 0); 318 } 319 sdma0->ready = false; 320 sdma1->ready = false; 321 } 322 323 /** 324 * cik_sdma_rlc_stop - stop the compute async dma engines 325 * 326 * @adev: amdgpu_device pointer 327 * 328 * Stop the compute async dma queues (CIK). 329 */ 330 static void cik_sdma_rlc_stop(struct amdgpu_device *adev) 331 { 332 /* XXX todo */ 333 } 334 335 /** 336 * cik_ctx_switch_enable - stop the async dma engines context switch 337 * 338 * @adev: amdgpu_device pointer 339 * @enable: enable/disable the DMA MEs context switch. 340 * 341 * Halt or unhalt the async dma engines context switch (VI). 342 */ 343 static void cik_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 344 { 345 u32 f32_cntl, phase_quantum = 0; 346 int i; 347 348 if (amdgpu_sdma_phase_quantum) { 349 unsigned value = amdgpu_sdma_phase_quantum; 350 unsigned unit = 0; 351 352 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 353 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 354 value = (value + 1) >> 1; 355 unit++; 356 } 357 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 358 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 359 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 360 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 361 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 362 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 363 WARN_ONCE(1, 364 "clamping sdma_phase_quantum to %uK clock cycles\n", 365 value << unit); 366 } 367 phase_quantum = 368 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 369 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 370 } 371 372 for (i = 0; i < adev->sdma.num_instances; i++) { 373 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); 374 if (enable) { 375 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 376 AUTO_CTXSW_ENABLE, 1); 377 if (amdgpu_sdma_phase_quantum) { 378 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i], 379 phase_quantum); 380 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i], 381 phase_quantum); 382 } 383 } else { 384 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 385 AUTO_CTXSW_ENABLE, 0); 386 } 387 388 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); 389 } 390 } 391 392 /** 393 * cik_sdma_enable - stop the async dma engines 394 * 395 * @adev: amdgpu_device pointer 396 * @enable: enable/disable the DMA MEs. 397 * 398 * Halt or unhalt the async dma engines (CIK). 399 */ 400 static void cik_sdma_enable(struct amdgpu_device *adev, bool enable) 401 { 402 u32 me_cntl; 403 int i; 404 405 if (!enable) { 406 cik_sdma_gfx_stop(adev); 407 cik_sdma_rlc_stop(adev); 408 } 409 410 for (i = 0; i < adev->sdma.num_instances; i++) { 411 me_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 412 if (enable) 413 me_cntl &= ~SDMA0_F32_CNTL__HALT_MASK; 414 else 415 me_cntl |= SDMA0_F32_CNTL__HALT_MASK; 416 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], me_cntl); 417 } 418 } 419 420 /** 421 * cik_sdma_gfx_resume - setup and start the async dma engines 422 * 423 * @adev: amdgpu_device pointer 424 * 425 * Set up the gfx DMA ring buffers and enable them (CIK). 426 * Returns 0 for success, error for failure. 427 */ 428 static int cik_sdma_gfx_resume(struct amdgpu_device *adev) 429 { 430 struct amdgpu_ring *ring; 431 u32 rb_cntl, ib_cntl; 432 u32 rb_bufsz; 433 u32 wb_offset; 434 int i, j, r; 435 436 for (i = 0; i < adev->sdma.num_instances; i++) { 437 ring = &adev->sdma.instance[i].ring; 438 wb_offset = (ring->rptr_offs * 4); 439 440 mutex_lock(&adev->srbm_mutex); 441 for (j = 0; j < 16; j++) { 442 cik_srbm_select(adev, 0, 0, 0, j); 443 /* SDMA GFX */ 444 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 445 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 446 /* XXX SDMA RLC - todo */ 447 } 448 cik_srbm_select(adev, 0, 0, 0, 0); 449 mutex_unlock(&adev->srbm_mutex); 450 451 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], 452 adev->gfx.config.gb_addr_config & 0x70); 453 454 WREG32(mmSDMA0_SEM_INCOMPLETE_TIMER_CNTL + sdma_offsets[i], 0); 455 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 456 457 /* Set ring buffer size in dwords */ 458 rb_bufsz = order_base_2(ring->ring_size / 4); 459 rb_cntl = rb_bufsz << 1; 460 #ifdef __BIG_ENDIAN 461 rb_cntl |= SDMA0_GFX_RB_CNTL__RB_SWAP_ENABLE_MASK | 462 SDMA0_GFX_RB_CNTL__RPTR_WRITEBACK_SWAP_ENABLE_MASK; 463 #endif 464 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 465 466 /* Initialize the ring buffer's read and write pointers */ 467 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 468 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); 469 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); 470 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); 471 472 /* set the wb address whether it's enabled or not */ 473 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 474 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 475 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 476 ((adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); 477 478 rb_cntl |= SDMA0_GFX_RB_CNTL__RPTR_WRITEBACK_ENABLE_MASK; 479 480 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 481 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 482 483 ring->wptr = 0; 484 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], lower_32_bits(ring->wptr) << 2); 485 486 /* enable DMA RB */ 487 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], 488 rb_cntl | SDMA0_GFX_RB_CNTL__RB_ENABLE_MASK); 489 490 ib_cntl = SDMA0_GFX_IB_CNTL__IB_ENABLE_MASK; 491 #ifdef __BIG_ENDIAN 492 ib_cntl |= SDMA0_GFX_IB_CNTL__IB_SWAP_ENABLE_MASK; 493 #endif 494 /* enable DMA IBs */ 495 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 496 497 ring->ready = true; 498 } 499 500 cik_sdma_enable(adev, true); 501 502 for (i = 0; i < adev->sdma.num_instances; i++) { 503 ring = &adev->sdma.instance[i].ring; 504 r = amdgpu_ring_test_ring(ring); 505 if (r) { 506 ring->ready = false; 507 return r; 508 } 509 510 if (adev->mman.buffer_funcs_ring == ring) 511 amdgpu_ttm_set_buffer_funcs_status(adev, true); 512 } 513 514 return 0; 515 } 516 517 /** 518 * cik_sdma_rlc_resume - setup and start the async dma engines 519 * 520 * @adev: amdgpu_device pointer 521 * 522 * Set up the compute DMA queues and enable them (CIK). 523 * Returns 0 for success, error for failure. 524 */ 525 static int cik_sdma_rlc_resume(struct amdgpu_device *adev) 526 { 527 /* XXX todo */ 528 return 0; 529 } 530 531 /** 532 * cik_sdma_load_microcode - load the sDMA ME ucode 533 * 534 * @adev: amdgpu_device pointer 535 * 536 * Loads the sDMA0/1 ucode. 537 * Returns 0 for success, -EINVAL if the ucode is not available. 538 */ 539 static int cik_sdma_load_microcode(struct amdgpu_device *adev) 540 { 541 const struct sdma_firmware_header_v1_0 *hdr; 542 const __le32 *fw_data; 543 u32 fw_size; 544 int i, j; 545 546 /* halt the MEs */ 547 cik_sdma_enable(adev, false); 548 549 for (i = 0; i < adev->sdma.num_instances; i++) { 550 if (!adev->sdma.instance[i].fw) 551 return -EINVAL; 552 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 553 amdgpu_ucode_print_sdma_hdr(&hdr->header); 554 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 555 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 556 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 557 if (adev->sdma.instance[i].feature_version >= 20) 558 adev->sdma.instance[i].burst_nop = true; 559 fw_data = (const __le32 *) 560 (adev->sdma.instance[i].fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 561 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0); 562 for (j = 0; j < fw_size; j++) 563 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++)); 564 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version); 565 } 566 567 return 0; 568 } 569 570 /** 571 * cik_sdma_start - setup and start the async dma engines 572 * 573 * @adev: amdgpu_device pointer 574 * 575 * Set up the DMA engines and enable them (CIK). 576 * Returns 0 for success, error for failure. 577 */ 578 static int cik_sdma_start(struct amdgpu_device *adev) 579 { 580 int r; 581 582 r = cik_sdma_load_microcode(adev); 583 if (r) 584 return r; 585 586 /* halt the engine before programing */ 587 cik_sdma_enable(adev, false); 588 /* enable sdma ring preemption */ 589 cik_ctx_switch_enable(adev, true); 590 591 /* start the gfx rings and rlc compute queues */ 592 r = cik_sdma_gfx_resume(adev); 593 if (r) 594 return r; 595 r = cik_sdma_rlc_resume(adev); 596 if (r) 597 return r; 598 599 return 0; 600 } 601 602 /** 603 * cik_sdma_ring_test_ring - simple async dma engine test 604 * 605 * @ring: amdgpu_ring structure holding ring information 606 * 607 * Test the DMA engine by writing using it to write an 608 * value to memory. (CIK). 609 * Returns 0 for success, error for failure. 610 */ 611 static int cik_sdma_ring_test_ring(struct amdgpu_ring *ring) 612 { 613 struct amdgpu_device *adev = ring->adev; 614 unsigned i; 615 unsigned index; 616 int r; 617 u32 tmp; 618 u64 gpu_addr; 619 620 r = amdgpu_device_wb_get(adev, &index); 621 if (r) { 622 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 623 return r; 624 } 625 626 gpu_addr = adev->wb.gpu_addr + (index * 4); 627 tmp = 0xCAFEDEAD; 628 adev->wb.wb[index] = cpu_to_le32(tmp); 629 630 r = amdgpu_ring_alloc(ring, 5); 631 if (r) { 632 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 633 amdgpu_device_wb_free(adev, index); 634 return r; 635 } 636 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); 637 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 638 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 639 amdgpu_ring_write(ring, 1); /* number of DWs to follow */ 640 amdgpu_ring_write(ring, 0xDEADBEEF); 641 amdgpu_ring_commit(ring); 642 643 for (i = 0; i < adev->usec_timeout; i++) { 644 tmp = le32_to_cpu(adev->wb.wb[index]); 645 if (tmp == 0xDEADBEEF) 646 break; 647 DRM_UDELAY(1); 648 } 649 650 if (i < adev->usec_timeout) { 651 DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i); 652 } else { 653 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n", 654 ring->idx, tmp); 655 r = -EINVAL; 656 } 657 amdgpu_device_wb_free(adev, index); 658 659 return r; 660 } 661 662 /** 663 * cik_sdma_ring_test_ib - test an IB on the DMA engine 664 * 665 * @ring: amdgpu_ring structure holding ring information 666 * 667 * Test a simple IB in the DMA ring (CIK). 668 * Returns 0 on success, error on failure. 669 */ 670 static int cik_sdma_ring_test_ib(struct amdgpu_ring *ring, long timeout) 671 { 672 struct amdgpu_device *adev = ring->adev; 673 struct amdgpu_ib ib; 674 struct dma_fence *f = NULL; 675 unsigned index; 676 u32 tmp = 0; 677 u64 gpu_addr; 678 long r; 679 680 r = amdgpu_device_wb_get(adev, &index); 681 if (r) { 682 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 683 return r; 684 } 685 686 gpu_addr = adev->wb.gpu_addr + (index * 4); 687 tmp = 0xCAFEDEAD; 688 adev->wb.wb[index] = cpu_to_le32(tmp); 689 memset(&ib, 0, sizeof(ib)); 690 r = amdgpu_ib_get(adev, NULL, 256, &ib); 691 if (r) { 692 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 693 goto err0; 694 } 695 696 ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, 697 SDMA_WRITE_SUB_OPCODE_LINEAR, 0); 698 ib.ptr[1] = lower_32_bits(gpu_addr); 699 ib.ptr[2] = upper_32_bits(gpu_addr); 700 ib.ptr[3] = 1; 701 ib.ptr[4] = 0xDEADBEEF; 702 ib.length_dw = 5; 703 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 704 if (r) 705 goto err1; 706 707 r = dma_fence_wait_timeout(f, false, timeout); 708 if (r == 0) { 709 DRM_ERROR("amdgpu: IB test timed out\n"); 710 r = -ETIMEDOUT; 711 goto err1; 712 } else if (r < 0) { 713 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 714 goto err1; 715 } 716 tmp = le32_to_cpu(adev->wb.wb[index]); 717 if (tmp == 0xDEADBEEF) { 718 DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx); 719 r = 0; 720 } else { 721 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp); 722 r = -EINVAL; 723 } 724 725 err1: 726 amdgpu_ib_free(adev, &ib, NULL); 727 dma_fence_put(f); 728 err0: 729 amdgpu_device_wb_free(adev, index); 730 return r; 731 } 732 733 /** 734 * cik_sdma_vm_copy_pages - update PTEs by copying them from the GART 735 * 736 * @ib: indirect buffer to fill with commands 737 * @pe: addr of the page entry 738 * @src: src addr to copy from 739 * @count: number of page entries to update 740 * 741 * Update PTEs by copying them from the GART using sDMA (CIK). 742 */ 743 static void cik_sdma_vm_copy_pte(struct amdgpu_ib *ib, 744 uint64_t pe, uint64_t src, 745 unsigned count) 746 { 747 unsigned bytes = count * 8; 748 749 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, 750 SDMA_WRITE_SUB_OPCODE_LINEAR, 0); 751 ib->ptr[ib->length_dw++] = bytes; 752 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 753 ib->ptr[ib->length_dw++] = lower_32_bits(src); 754 ib->ptr[ib->length_dw++] = upper_32_bits(src); 755 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 756 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 757 } 758 759 /** 760 * cik_sdma_vm_write_pages - update PTEs by writing them manually 761 * 762 * @ib: indirect buffer to fill with commands 763 * @pe: addr of the page entry 764 * @value: dst addr to write into pe 765 * @count: number of page entries to update 766 * @incr: increase next addr by incr bytes 767 * 768 * Update PTEs by writing them manually using sDMA (CIK). 769 */ 770 static void cik_sdma_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 771 uint64_t value, unsigned count, 772 uint32_t incr) 773 { 774 unsigned ndw = count * 2; 775 776 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, 777 SDMA_WRITE_SUB_OPCODE_LINEAR, 0); 778 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 779 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 780 ib->ptr[ib->length_dw++] = ndw; 781 for (; ndw > 0; ndw -= 2) { 782 ib->ptr[ib->length_dw++] = lower_32_bits(value); 783 ib->ptr[ib->length_dw++] = upper_32_bits(value); 784 value += incr; 785 } 786 } 787 788 /** 789 * cik_sdma_vm_set_pages - update the page tables using sDMA 790 * 791 * @ib: indirect buffer to fill with commands 792 * @pe: addr of the page entry 793 * @addr: dst addr to write into pe 794 * @count: number of page entries to update 795 * @incr: increase next addr by incr bytes 796 * @flags: access flags 797 * 798 * Update the page tables using sDMA (CIK). 799 */ 800 static void cik_sdma_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, 801 uint64_t addr, unsigned count, 802 uint32_t incr, uint64_t flags) 803 { 804 /* for physically contiguous pages (vram) */ 805 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0); 806 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 807 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 808 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 809 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 810 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 811 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 812 ib->ptr[ib->length_dw++] = incr; /* increment size */ 813 ib->ptr[ib->length_dw++] = 0; 814 ib->ptr[ib->length_dw++] = count; /* number of entries */ 815 } 816 817 /** 818 * cik_sdma_vm_pad_ib - pad the IB to the required number of dw 819 * 820 * @ib: indirect buffer to fill with padding 821 * 822 */ 823 static void cik_sdma_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 824 { 825 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); 826 u32 pad_count; 827 int i; 828 829 pad_count = (8 - (ib->length_dw & 0x7)) % 8; 830 for (i = 0; i < pad_count; i++) 831 if (sdma && sdma->burst_nop && (i == 0)) 832 ib->ptr[ib->length_dw++] = 833 SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0) | 834 SDMA_NOP_COUNT(pad_count - 1); 835 else 836 ib->ptr[ib->length_dw++] = 837 SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0); 838 } 839 840 /** 841 * cik_sdma_ring_emit_pipeline_sync - sync the pipeline 842 * 843 * @ring: amdgpu_ring pointer 844 * 845 * Make sure all previous operations are completed (CIK). 846 */ 847 static void cik_sdma_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 848 { 849 uint32_t seq = ring->fence_drv.sync_seq; 850 uint64_t addr = ring->fence_drv.gpu_addr; 851 852 /* wait for idle */ 853 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, 854 SDMA_POLL_REG_MEM_EXTRA_OP(0) | 855 SDMA_POLL_REG_MEM_EXTRA_FUNC(3) | /* equal */ 856 SDMA_POLL_REG_MEM_EXTRA_M)); 857 amdgpu_ring_write(ring, addr & 0xfffffffc); 858 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 859 amdgpu_ring_write(ring, seq); /* reference */ 860 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 861 amdgpu_ring_write(ring, (0xfff << 16) | 4); /* retry count, poll interval */ 862 } 863 864 /** 865 * cik_sdma_ring_emit_vm_flush - cik vm flush using sDMA 866 * 867 * @ring: amdgpu_ring pointer 868 * @vm: amdgpu_vm pointer 869 * 870 * Update the page table base and flush the VM TLB 871 * using sDMA (CIK). 872 */ 873 static void cik_sdma_ring_emit_vm_flush(struct amdgpu_ring *ring, 874 unsigned vmid, uint64_t pd_addr) 875 { 876 u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) | 877 SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */ 878 879 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 880 881 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); 882 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 883 amdgpu_ring_write(ring, 0); 884 amdgpu_ring_write(ring, 0); /* reference */ 885 amdgpu_ring_write(ring, 0); /* mask */ 886 amdgpu_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ 887 } 888 889 static void cik_sdma_ring_emit_wreg(struct amdgpu_ring *ring, 890 uint32_t reg, uint32_t val) 891 { 892 amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 893 amdgpu_ring_write(ring, reg); 894 amdgpu_ring_write(ring, val); 895 } 896 897 static void cik_enable_sdma_mgcg(struct amdgpu_device *adev, 898 bool enable) 899 { 900 u32 orig, data; 901 902 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 903 WREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, 0x00000100); 904 WREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, 0x00000100); 905 } else { 906 orig = data = RREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET); 907 data |= 0xff000000; 908 if (data != orig) 909 WREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, data); 910 911 orig = data = RREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET); 912 data |= 0xff000000; 913 if (data != orig) 914 WREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, data); 915 } 916 } 917 918 static void cik_enable_sdma_mgls(struct amdgpu_device *adev, 919 bool enable) 920 { 921 u32 orig, data; 922 923 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 924 orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET); 925 data |= 0x100; 926 if (orig != data) 927 WREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data); 928 929 orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET); 930 data |= 0x100; 931 if (orig != data) 932 WREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data); 933 } else { 934 orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET); 935 data &= ~0x100; 936 if (orig != data) 937 WREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data); 938 939 orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET); 940 data &= ~0x100; 941 if (orig != data) 942 WREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data); 943 } 944 } 945 946 static int cik_sdma_early_init(void *handle) 947 { 948 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 949 950 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 951 952 cik_sdma_set_ring_funcs(adev); 953 cik_sdma_set_irq_funcs(adev); 954 cik_sdma_set_buffer_funcs(adev); 955 cik_sdma_set_vm_pte_funcs(adev); 956 957 return 0; 958 } 959 960 static int cik_sdma_sw_init(void *handle) 961 { 962 struct amdgpu_ring *ring; 963 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 964 int r, i; 965 966 r = cik_sdma_init_microcode(adev); 967 if (r) { 968 DRM_ERROR("Failed to load sdma firmware!\n"); 969 return r; 970 } 971 972 /* SDMA trap event */ 973 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 224, 974 &adev->sdma.trap_irq); 975 if (r) 976 return r; 977 978 /* SDMA Privileged inst */ 979 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241, 980 &adev->sdma.illegal_inst_irq); 981 if (r) 982 return r; 983 984 /* SDMA Privileged inst */ 985 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 247, 986 &adev->sdma.illegal_inst_irq); 987 if (r) 988 return r; 989 990 for (i = 0; i < adev->sdma.num_instances; i++) { 991 ring = &adev->sdma.instance[i].ring; 992 ring->ring_obj = NULL; 993 sprintf(ring->name, "sdma%d", i); 994 r = amdgpu_ring_init(adev, ring, 1024, 995 &adev->sdma.trap_irq, 996 (i == 0) ? 997 AMDGPU_SDMA_IRQ_TRAP0 : 998 AMDGPU_SDMA_IRQ_TRAP1); 999 if (r) 1000 return r; 1001 } 1002 1003 return r; 1004 } 1005 1006 static int cik_sdma_sw_fini(void *handle) 1007 { 1008 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1009 int i; 1010 1011 for (i = 0; i < adev->sdma.num_instances; i++) 1012 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1013 1014 cik_sdma_free_microcode(adev); 1015 return 0; 1016 } 1017 1018 static int cik_sdma_hw_init(void *handle) 1019 { 1020 int r; 1021 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1022 1023 r = cik_sdma_start(adev); 1024 if (r) 1025 return r; 1026 1027 return r; 1028 } 1029 1030 static int cik_sdma_hw_fini(void *handle) 1031 { 1032 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1033 1034 cik_ctx_switch_enable(adev, false); 1035 cik_sdma_enable(adev, false); 1036 1037 return 0; 1038 } 1039 1040 static int cik_sdma_suspend(void *handle) 1041 { 1042 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1043 1044 return cik_sdma_hw_fini(adev); 1045 } 1046 1047 static int cik_sdma_resume(void *handle) 1048 { 1049 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1050 1051 cik_sdma_soft_reset(handle); 1052 1053 return cik_sdma_hw_init(adev); 1054 } 1055 1056 static bool cik_sdma_is_idle(void *handle) 1057 { 1058 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1059 u32 tmp = RREG32(mmSRBM_STATUS2); 1060 1061 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 1062 SRBM_STATUS2__SDMA1_BUSY_MASK)) 1063 return false; 1064 1065 return true; 1066 } 1067 1068 static int cik_sdma_wait_for_idle(void *handle) 1069 { 1070 unsigned i; 1071 u32 tmp; 1072 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1073 1074 for (i = 0; i < adev->usec_timeout; i++) { 1075 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 1076 SRBM_STATUS2__SDMA1_BUSY_MASK); 1077 1078 if (!tmp) 1079 return 0; 1080 udelay(1); 1081 } 1082 return -ETIMEDOUT; 1083 } 1084 1085 static int cik_sdma_soft_reset(void *handle) 1086 { 1087 u32 srbm_soft_reset = 0; 1088 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1089 u32 tmp = RREG32(mmSRBM_STATUS2); 1090 1091 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) { 1092 /* sdma0 */ 1093 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET); 1094 tmp |= SDMA0_F32_CNTL__HALT_MASK; 1095 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp); 1096 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 1097 } 1098 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) { 1099 /* sdma1 */ 1100 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET); 1101 tmp |= SDMA0_F32_CNTL__HALT_MASK; 1102 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp); 1103 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 1104 } 1105 1106 if (srbm_soft_reset) { 1107 tmp = RREG32(mmSRBM_SOFT_RESET); 1108 tmp |= srbm_soft_reset; 1109 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1110 WREG32(mmSRBM_SOFT_RESET, tmp); 1111 tmp = RREG32(mmSRBM_SOFT_RESET); 1112 1113 udelay(50); 1114 1115 tmp &= ~srbm_soft_reset; 1116 WREG32(mmSRBM_SOFT_RESET, tmp); 1117 tmp = RREG32(mmSRBM_SOFT_RESET); 1118 1119 /* Wait a little for things to settle down */ 1120 udelay(50); 1121 } 1122 1123 return 0; 1124 } 1125 1126 static int cik_sdma_set_trap_irq_state(struct amdgpu_device *adev, 1127 struct amdgpu_irq_src *src, 1128 unsigned type, 1129 enum amdgpu_interrupt_state state) 1130 { 1131 u32 sdma_cntl; 1132 1133 switch (type) { 1134 case AMDGPU_SDMA_IRQ_TRAP0: 1135 switch (state) { 1136 case AMDGPU_IRQ_STATE_DISABLE: 1137 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1138 sdma_cntl &= ~SDMA0_CNTL__TRAP_ENABLE_MASK; 1139 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1140 break; 1141 case AMDGPU_IRQ_STATE_ENABLE: 1142 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1143 sdma_cntl |= SDMA0_CNTL__TRAP_ENABLE_MASK; 1144 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1145 break; 1146 default: 1147 break; 1148 } 1149 break; 1150 case AMDGPU_SDMA_IRQ_TRAP1: 1151 switch (state) { 1152 case AMDGPU_IRQ_STATE_DISABLE: 1153 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1154 sdma_cntl &= ~SDMA0_CNTL__TRAP_ENABLE_MASK; 1155 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1156 break; 1157 case AMDGPU_IRQ_STATE_ENABLE: 1158 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1159 sdma_cntl |= SDMA0_CNTL__TRAP_ENABLE_MASK; 1160 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1161 break; 1162 default: 1163 break; 1164 } 1165 break; 1166 default: 1167 break; 1168 } 1169 return 0; 1170 } 1171 1172 static int cik_sdma_process_trap_irq(struct amdgpu_device *adev, 1173 struct amdgpu_irq_src *source, 1174 struct amdgpu_iv_entry *entry) 1175 { 1176 u8 instance_id, queue_id; 1177 1178 instance_id = (entry->ring_id & 0x3) >> 0; 1179 queue_id = (entry->ring_id & 0xc) >> 2; 1180 DRM_DEBUG("IH: SDMA trap\n"); 1181 switch (instance_id) { 1182 case 0: 1183 switch (queue_id) { 1184 case 0: 1185 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1186 break; 1187 case 1: 1188 /* XXX compute */ 1189 break; 1190 case 2: 1191 /* XXX compute */ 1192 break; 1193 } 1194 break; 1195 case 1: 1196 switch (queue_id) { 1197 case 0: 1198 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1199 break; 1200 case 1: 1201 /* XXX compute */ 1202 break; 1203 case 2: 1204 /* XXX compute */ 1205 break; 1206 } 1207 break; 1208 } 1209 1210 return 0; 1211 } 1212 1213 static int cik_sdma_process_illegal_inst_irq(struct amdgpu_device *adev, 1214 struct amdgpu_irq_src *source, 1215 struct amdgpu_iv_entry *entry) 1216 { 1217 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1218 schedule_work(&adev->reset_work); 1219 return 0; 1220 } 1221 1222 static int cik_sdma_set_clockgating_state(void *handle, 1223 enum amd_clockgating_state state) 1224 { 1225 bool gate = false; 1226 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1227 1228 if (state == AMD_CG_STATE_GATE) 1229 gate = true; 1230 1231 cik_enable_sdma_mgcg(adev, gate); 1232 cik_enable_sdma_mgls(adev, gate); 1233 1234 return 0; 1235 } 1236 1237 static int cik_sdma_set_powergating_state(void *handle, 1238 enum amd_powergating_state state) 1239 { 1240 return 0; 1241 } 1242 1243 static const struct amd_ip_funcs cik_sdma_ip_funcs = { 1244 .name = "cik_sdma", 1245 .early_init = cik_sdma_early_init, 1246 .late_init = NULL, 1247 .sw_init = cik_sdma_sw_init, 1248 .sw_fini = cik_sdma_sw_fini, 1249 .hw_init = cik_sdma_hw_init, 1250 .hw_fini = cik_sdma_hw_fini, 1251 .suspend = cik_sdma_suspend, 1252 .resume = cik_sdma_resume, 1253 .is_idle = cik_sdma_is_idle, 1254 .wait_for_idle = cik_sdma_wait_for_idle, 1255 .soft_reset = cik_sdma_soft_reset, 1256 .set_clockgating_state = cik_sdma_set_clockgating_state, 1257 .set_powergating_state = cik_sdma_set_powergating_state, 1258 }; 1259 1260 static const struct amdgpu_ring_funcs cik_sdma_ring_funcs = { 1261 .type = AMDGPU_RING_TYPE_SDMA, 1262 .align_mask = 0xf, 1263 .nop = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0), 1264 .support_64bit_ptrs = false, 1265 .get_rptr = cik_sdma_ring_get_rptr, 1266 .get_wptr = cik_sdma_ring_get_wptr, 1267 .set_wptr = cik_sdma_ring_set_wptr, 1268 .emit_frame_size = 1269 6 + /* cik_sdma_ring_emit_hdp_flush */ 1270 3 + /* hdp invalidate */ 1271 6 + /* cik_sdma_ring_emit_pipeline_sync */ 1272 CIK_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* cik_sdma_ring_emit_vm_flush */ 1273 9 + 9 + 9, /* cik_sdma_ring_emit_fence x3 for user fence, vm fence */ 1274 .emit_ib_size = 7 + 4, /* cik_sdma_ring_emit_ib */ 1275 .emit_ib = cik_sdma_ring_emit_ib, 1276 .emit_fence = cik_sdma_ring_emit_fence, 1277 .emit_pipeline_sync = cik_sdma_ring_emit_pipeline_sync, 1278 .emit_vm_flush = cik_sdma_ring_emit_vm_flush, 1279 .emit_hdp_flush = cik_sdma_ring_emit_hdp_flush, 1280 .test_ring = cik_sdma_ring_test_ring, 1281 .test_ib = cik_sdma_ring_test_ib, 1282 .insert_nop = cik_sdma_ring_insert_nop, 1283 .pad_ib = cik_sdma_ring_pad_ib, 1284 .emit_wreg = cik_sdma_ring_emit_wreg, 1285 }; 1286 1287 static void cik_sdma_set_ring_funcs(struct amdgpu_device *adev) 1288 { 1289 int i; 1290 1291 for (i = 0; i < adev->sdma.num_instances; i++) { 1292 adev->sdma.instance[i].ring.funcs = &cik_sdma_ring_funcs; 1293 adev->sdma.instance[i].ring.me = i; 1294 } 1295 } 1296 1297 static const struct amdgpu_irq_src_funcs cik_sdma_trap_irq_funcs = { 1298 .set = cik_sdma_set_trap_irq_state, 1299 .process = cik_sdma_process_trap_irq, 1300 }; 1301 1302 static const struct amdgpu_irq_src_funcs cik_sdma_illegal_inst_irq_funcs = { 1303 .process = cik_sdma_process_illegal_inst_irq, 1304 }; 1305 1306 static void cik_sdma_set_irq_funcs(struct amdgpu_device *adev) 1307 { 1308 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1309 adev->sdma.trap_irq.funcs = &cik_sdma_trap_irq_funcs; 1310 adev->sdma.illegal_inst_irq.funcs = &cik_sdma_illegal_inst_irq_funcs; 1311 } 1312 1313 /** 1314 * cik_sdma_emit_copy_buffer - copy buffer using the sDMA engine 1315 * 1316 * @ring: amdgpu_ring structure holding ring information 1317 * @src_offset: src GPU address 1318 * @dst_offset: dst GPU address 1319 * @byte_count: number of bytes to xfer 1320 * 1321 * Copy GPU buffers using the DMA engine (CIK). 1322 * Used by the amdgpu ttm implementation to move pages if 1323 * registered as the asic copy callback. 1324 */ 1325 static void cik_sdma_emit_copy_buffer(struct amdgpu_ib *ib, 1326 uint64_t src_offset, 1327 uint64_t dst_offset, 1328 uint32_t byte_count) 1329 { 1330 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0); 1331 ib->ptr[ib->length_dw++] = byte_count; 1332 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1333 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1334 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1335 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1336 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1337 } 1338 1339 /** 1340 * cik_sdma_emit_fill_buffer - fill buffer using the sDMA engine 1341 * 1342 * @ring: amdgpu_ring structure holding ring information 1343 * @src_data: value to write to buffer 1344 * @dst_offset: dst GPU address 1345 * @byte_count: number of bytes to xfer 1346 * 1347 * Fill GPU buffers using the DMA engine (CIK). 1348 */ 1349 static void cik_sdma_emit_fill_buffer(struct amdgpu_ib *ib, 1350 uint32_t src_data, 1351 uint64_t dst_offset, 1352 uint32_t byte_count) 1353 { 1354 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_CONSTANT_FILL, 0, 0); 1355 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1356 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1357 ib->ptr[ib->length_dw++] = src_data; 1358 ib->ptr[ib->length_dw++] = byte_count; 1359 } 1360 1361 static const struct amdgpu_buffer_funcs cik_sdma_buffer_funcs = { 1362 .copy_max_bytes = 0x1fffff, 1363 .copy_num_dw = 7, 1364 .emit_copy_buffer = cik_sdma_emit_copy_buffer, 1365 1366 .fill_max_bytes = 0x1fffff, 1367 .fill_num_dw = 5, 1368 .emit_fill_buffer = cik_sdma_emit_fill_buffer, 1369 }; 1370 1371 static void cik_sdma_set_buffer_funcs(struct amdgpu_device *adev) 1372 { 1373 adev->mman.buffer_funcs = &cik_sdma_buffer_funcs; 1374 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1375 } 1376 1377 static const struct amdgpu_vm_pte_funcs cik_sdma_vm_pte_funcs = { 1378 .copy_pte_num_dw = 7, 1379 .copy_pte = cik_sdma_vm_copy_pte, 1380 1381 .write_pte = cik_sdma_vm_write_pte, 1382 .set_pte_pde = cik_sdma_vm_set_pte_pde, 1383 }; 1384 1385 static void cik_sdma_set_vm_pte_funcs(struct amdgpu_device *adev) 1386 { 1387 struct drm_gpu_scheduler *sched; 1388 unsigned i; 1389 1390 adev->vm_manager.vm_pte_funcs = &cik_sdma_vm_pte_funcs; 1391 for (i = 0; i < adev->sdma.num_instances; i++) { 1392 sched = &adev->sdma.instance[i].ring.sched; 1393 adev->vm_manager.vm_pte_rqs[i] = 1394 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1395 } 1396 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances; 1397 } 1398 1399 const struct amdgpu_ip_block_version cik_sdma_ip_block = 1400 { 1401 .type = AMD_IP_BLOCK_TYPE_SDMA, 1402 .major = 2, 1403 .minor = 0, 1404 .rev = 0, 1405 .funcs = &cik_sdma_ip_funcs, 1406 }; 1407