xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vram_mgr.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Christian König
23  */
24 
25 #include <linux/dma-mapping.h>
26 #include "amdgpu.h"
27 #include "amdgpu_vm.h"
28 #include "amdgpu_atomfirmware.h"
29 #include "atom.h"
30 
31 struct amdgpu_vram_mgr {
32 	struct drm_mm mm;
33 	spinlock_t lock;
34 	atomic64_t usage;
35 	atomic64_t vis_usage;
36 };
37 
38 /**
39  * DOC: mem_info_vram_total
40  *
41  * The amdgpu driver provides a sysfs API for reporting current total VRAM
42  * available on the device
43  * The file mem_info_vram_total is used for this and returns the total
44  * amount of VRAM in bytes
45  */
46 static ssize_t amdgpu_mem_info_vram_total_show(struct device *dev,
47 		struct device_attribute *attr, char *buf)
48 {
49 	struct drm_device *ddev = dev_get_drvdata(dev);
50 	struct amdgpu_device *adev = ddev->dev_private;
51 
52 	return snprintf(buf, PAGE_SIZE, "%llu\n", adev->gmc.real_vram_size);
53 }
54 
55 /**
56  * DOC: mem_info_vis_vram_total
57  *
58  * The amdgpu driver provides a sysfs API for reporting current total
59  * visible VRAM available on the device
60  * The file mem_info_vis_vram_total is used for this and returns the total
61  * amount of visible VRAM in bytes
62  */
63 static ssize_t amdgpu_mem_info_vis_vram_total_show(struct device *dev,
64 		struct device_attribute *attr, char *buf)
65 {
66 	struct drm_device *ddev = dev_get_drvdata(dev);
67 	struct amdgpu_device *adev = ddev->dev_private;
68 
69 	return snprintf(buf, PAGE_SIZE, "%llu\n", adev->gmc.visible_vram_size);
70 }
71 
72 /**
73  * DOC: mem_info_vram_used
74  *
75  * The amdgpu driver provides a sysfs API for reporting current total VRAM
76  * available on the device
77  * The file mem_info_vram_used is used for this and returns the total
78  * amount of currently used VRAM in bytes
79  */
80 static ssize_t amdgpu_mem_info_vram_used_show(struct device *dev,
81 		struct device_attribute *attr, char *buf)
82 {
83 	struct drm_device *ddev = dev_get_drvdata(dev);
84 	struct amdgpu_device *adev = ddev->dev_private;
85 
86 	return snprintf(buf, PAGE_SIZE, "%llu\n",
87 		amdgpu_vram_mgr_usage(&adev->mman.bdev.man[TTM_PL_VRAM]));
88 }
89 
90 /**
91  * DOC: mem_info_vis_vram_used
92  *
93  * The amdgpu driver provides a sysfs API for reporting current total of
94  * used visible VRAM
95  * The file mem_info_vis_vram_used is used for this and returns the total
96  * amount of currently used visible VRAM in bytes
97  */
98 static ssize_t amdgpu_mem_info_vis_vram_used_show(struct device *dev,
99 		struct device_attribute *attr, char *buf)
100 {
101 	struct drm_device *ddev = dev_get_drvdata(dev);
102 	struct amdgpu_device *adev = ddev->dev_private;
103 
104 	return snprintf(buf, PAGE_SIZE, "%llu\n",
105 		amdgpu_vram_mgr_vis_usage(&adev->mman.bdev.man[TTM_PL_VRAM]));
106 }
107 
108 static ssize_t amdgpu_mem_info_vram_vendor(struct device *dev,
109 						 struct device_attribute *attr,
110 						 char *buf)
111 {
112 	struct drm_device *ddev = dev_get_drvdata(dev);
113 	struct amdgpu_device *adev = ddev->dev_private;
114 
115 	switch (adev->gmc.vram_vendor) {
116 	case SAMSUNG:
117 		return snprintf(buf, PAGE_SIZE, "samsung\n");
118 	case INFINEON:
119 		return snprintf(buf, PAGE_SIZE, "infineon\n");
120 	case ELPIDA:
121 		return snprintf(buf, PAGE_SIZE, "elpida\n");
122 	case ETRON:
123 		return snprintf(buf, PAGE_SIZE, "etron\n");
124 	case NANYA:
125 		return snprintf(buf, PAGE_SIZE, "nanya\n");
126 	case HYNIX:
127 		return snprintf(buf, PAGE_SIZE, "hynix\n");
128 	case MOSEL:
129 		return snprintf(buf, PAGE_SIZE, "mosel\n");
130 	case WINBOND:
131 		return snprintf(buf, PAGE_SIZE, "winbond\n");
132 	case ESMT:
133 		return snprintf(buf, PAGE_SIZE, "esmt\n");
134 	case MICRON:
135 		return snprintf(buf, PAGE_SIZE, "micron\n");
136 	default:
137 		return snprintf(buf, PAGE_SIZE, "unknown\n");
138 	}
139 }
140 
141 static DEVICE_ATTR(mem_info_vram_total, S_IRUGO,
142 		   amdgpu_mem_info_vram_total_show, NULL);
143 static DEVICE_ATTR(mem_info_vis_vram_total, S_IRUGO,
144 		   amdgpu_mem_info_vis_vram_total_show,NULL);
145 static DEVICE_ATTR(mem_info_vram_used, S_IRUGO,
146 		   amdgpu_mem_info_vram_used_show, NULL);
147 static DEVICE_ATTR(mem_info_vis_vram_used, S_IRUGO,
148 		   amdgpu_mem_info_vis_vram_used_show, NULL);
149 static DEVICE_ATTR(mem_info_vram_vendor, S_IRUGO,
150 		   amdgpu_mem_info_vram_vendor, NULL);
151 
152 static const struct attribute *amdgpu_vram_mgr_attributes[] = {
153 	&dev_attr_mem_info_vram_total.attr,
154 	&dev_attr_mem_info_vis_vram_total.attr,
155 	&dev_attr_mem_info_vram_used.attr,
156 	&dev_attr_mem_info_vis_vram_used.attr,
157 	&dev_attr_mem_info_vram_vendor.attr,
158 	NULL
159 };
160 
161 /**
162  * amdgpu_vram_mgr_init - init VRAM manager and DRM MM
163  *
164  * @man: TTM memory type manager
165  * @p_size: maximum size of VRAM
166  *
167  * Allocate and initialize the VRAM manager.
168  */
169 static int amdgpu_vram_mgr_init(struct ttm_mem_type_manager *man,
170 				unsigned long p_size)
171 {
172 	struct amdgpu_device *adev = amdgpu_ttm_adev(man->bdev);
173 	struct amdgpu_vram_mgr *mgr;
174 	int ret;
175 
176 	mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
177 	if (!mgr)
178 		return -ENOMEM;
179 
180 	drm_mm_init(&mgr->mm, 0, p_size);
181 	spin_lock_init(&mgr->lock);
182 	man->priv = mgr;
183 
184 	/* Add the two VRAM-related sysfs files */
185 	ret = sysfs_create_files(&adev->dev->kobj, amdgpu_vram_mgr_attributes);
186 	if (ret)
187 		DRM_ERROR("Failed to register sysfs\n");
188 
189 	return 0;
190 }
191 
192 /**
193  * amdgpu_vram_mgr_fini - free and destroy VRAM manager
194  *
195  * @man: TTM memory type manager
196  *
197  * Destroy and free the VRAM manager, returns -EBUSY if ranges are still
198  * allocated inside it.
199  */
200 static int amdgpu_vram_mgr_fini(struct ttm_mem_type_manager *man)
201 {
202 	struct amdgpu_device *adev = amdgpu_ttm_adev(man->bdev);
203 	struct amdgpu_vram_mgr *mgr = man->priv;
204 
205 	spin_lock(&mgr->lock);
206 	drm_mm_takedown(&mgr->mm);
207 	spin_unlock(&mgr->lock);
208 	kfree(mgr);
209 	man->priv = NULL;
210 	sysfs_remove_files(&adev->dev->kobj, amdgpu_vram_mgr_attributes);
211 	return 0;
212 }
213 
214 /**
215  * amdgpu_vram_mgr_vis_size - Calculate visible node size
216  *
217  * @adev: amdgpu device structure
218  * @node: MM node structure
219  *
220  * Calculate how many bytes of the MM node are inside visible VRAM
221  */
222 static u64 amdgpu_vram_mgr_vis_size(struct amdgpu_device *adev,
223 				    struct drm_mm_node *node)
224 {
225 	uint64_t start = node->start << PAGE_SHIFT;
226 	uint64_t end = (node->size + node->start) << PAGE_SHIFT;
227 
228 	if (start >= adev->gmc.visible_vram_size)
229 		return 0;
230 
231 	return (end > adev->gmc.visible_vram_size ?
232 		adev->gmc.visible_vram_size : end) - start;
233 }
234 
235 /**
236  * amdgpu_vram_mgr_bo_visible_size - CPU visible BO size
237  *
238  * @bo: &amdgpu_bo buffer object (must be in VRAM)
239  *
240  * Returns:
241  * How much of the given &amdgpu_bo buffer object lies in CPU visible VRAM.
242  */
243 u64 amdgpu_vram_mgr_bo_visible_size(struct amdgpu_bo *bo)
244 {
245 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
246 	struct ttm_mem_reg *mem = &bo->tbo.mem;
247 	struct drm_mm_node *nodes = mem->mm_node;
248 	unsigned pages = mem->num_pages;
249 	u64 usage;
250 
251 	if (amdgpu_gmc_vram_full_visible(&adev->gmc))
252 		return amdgpu_bo_size(bo);
253 
254 	if (mem->start >= adev->gmc.visible_vram_size >> PAGE_SHIFT)
255 		return 0;
256 
257 	for (usage = 0; nodes && pages; pages -= nodes->size, nodes++)
258 		usage += amdgpu_vram_mgr_vis_size(adev, nodes);
259 
260 	return usage;
261 }
262 
263 /**
264  * amdgpu_vram_mgr_virt_start - update virtual start address
265  *
266  * @mem: ttm_mem_reg to update
267  * @node: just allocated node
268  *
269  * Calculate a virtual BO start address to easily check if everything is CPU
270  * accessible.
271  */
272 static void amdgpu_vram_mgr_virt_start(struct ttm_mem_reg *mem,
273 				       struct drm_mm_node *node)
274 {
275 	unsigned long start;
276 
277 	start = node->start + node->size;
278 	if (start > mem->num_pages)
279 		start -= mem->num_pages;
280 	else
281 		start = 0;
282 	mem->start = max(mem->start, start);
283 }
284 
285 /**
286  * amdgpu_vram_mgr_new - allocate new ranges
287  *
288  * @man: TTM memory type manager
289  * @tbo: TTM BO we need this range for
290  * @place: placement flags and restrictions
291  * @mem: the resulting mem object
292  *
293  * Allocate VRAM for the given BO.
294  */
295 static int amdgpu_vram_mgr_new(struct ttm_mem_type_manager *man,
296 			       struct ttm_buffer_object *tbo,
297 			       const struct ttm_place *place,
298 			       struct ttm_mem_reg *mem)
299 {
300 	struct amdgpu_device *adev = amdgpu_ttm_adev(man->bdev);
301 	struct amdgpu_vram_mgr *mgr = man->priv;
302 	struct drm_mm *mm = &mgr->mm;
303 	struct drm_mm_node *nodes;
304 	enum drm_mm_insert_mode mode;
305 	unsigned long lpfn, num_nodes, pages_per_node, pages_left;
306 	uint64_t vis_usage = 0, mem_bytes, max_bytes;
307 	unsigned i;
308 	int r;
309 
310 	lpfn = place->lpfn;
311 	if (!lpfn)
312 		lpfn = man->size;
313 
314 	max_bytes = adev->gmc.mc_vram_size;
315 	if (tbo->type != ttm_bo_type_kernel)
316 		max_bytes -= AMDGPU_VM_RESERVED_VRAM;
317 
318 	/* bail out quickly if there's likely not enough VRAM for this BO */
319 	mem_bytes = (u64)mem->num_pages << PAGE_SHIFT;
320 	if (atomic64_add_return(mem_bytes, &mgr->usage) > max_bytes) {
321 		atomic64_sub(mem_bytes, &mgr->usage);
322 		return -ENOSPC;
323 	}
324 
325 	if (place->flags & TTM_PL_FLAG_CONTIGUOUS) {
326 		pages_per_node = ~0ul;
327 		num_nodes = 1;
328 	} else {
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 		pages_per_node = HPAGE_PMD_NR;
331 #else
332 		/* default to 2MB */
333 		pages_per_node = (2UL << (20UL - PAGE_SHIFT));
334 #endif
335 		pages_per_node = max((uint32_t)pages_per_node, mem->page_alignment);
336 		num_nodes = DIV_ROUND_UP(mem->num_pages, pages_per_node);
337 	}
338 
339 	nodes = kvmalloc_array((uint32_t)num_nodes, sizeof(*nodes),
340 			       GFP_KERNEL | __GFP_ZERO);
341 	if (!nodes) {
342 		atomic64_sub(mem_bytes, &mgr->usage);
343 		return -ENOMEM;
344 	}
345 
346 	mode = DRM_MM_INSERT_BEST;
347 	if (place->flags & TTM_PL_FLAG_TOPDOWN)
348 		mode = DRM_MM_INSERT_HIGH;
349 
350 	mem->start = 0;
351 	pages_left = mem->num_pages;
352 
353 	spin_lock(&mgr->lock);
354 	for (i = 0; pages_left >= pages_per_node; ++i) {
355 		unsigned long pages = rounddown_pow_of_two(pages_left);
356 
357 		r = drm_mm_insert_node_in_range(mm, &nodes[i], pages,
358 						pages_per_node, 0,
359 						place->fpfn, lpfn,
360 						mode);
361 		if (unlikely(r))
362 			break;
363 
364 		vis_usage += amdgpu_vram_mgr_vis_size(adev, &nodes[i]);
365 		amdgpu_vram_mgr_virt_start(mem, &nodes[i]);
366 		pages_left -= pages;
367 	}
368 
369 	for (; pages_left; ++i) {
370 		unsigned long pages = min(pages_left, pages_per_node);
371 		uint32_t alignment = mem->page_alignment;
372 
373 		if (pages == pages_per_node)
374 			alignment = pages_per_node;
375 
376 		r = drm_mm_insert_node_in_range(mm, &nodes[i],
377 						pages, alignment, 0,
378 						place->fpfn, lpfn,
379 						mode);
380 		if (unlikely(r))
381 			goto error;
382 
383 		vis_usage += amdgpu_vram_mgr_vis_size(adev, &nodes[i]);
384 		amdgpu_vram_mgr_virt_start(mem, &nodes[i]);
385 		pages_left -= pages;
386 	}
387 	spin_unlock(&mgr->lock);
388 
389 	atomic64_add(vis_usage, &mgr->vis_usage);
390 
391 	mem->mm_node = nodes;
392 
393 	return 0;
394 
395 error:
396 	while (i--)
397 		drm_mm_remove_node(&nodes[i]);
398 	spin_unlock(&mgr->lock);
399 	atomic64_sub(mem->num_pages << PAGE_SHIFT, &mgr->usage);
400 
401 	kvfree(nodes);
402 	return r;
403 }
404 
405 /**
406  * amdgpu_vram_mgr_del - free ranges
407  *
408  * @man: TTM memory type manager
409  * @mem: TTM memory object
410  *
411  * Free the allocated VRAM again.
412  */
413 static void amdgpu_vram_mgr_del(struct ttm_mem_type_manager *man,
414 				struct ttm_mem_reg *mem)
415 {
416 	struct amdgpu_device *adev = amdgpu_ttm_adev(man->bdev);
417 	struct amdgpu_vram_mgr *mgr = man->priv;
418 	struct drm_mm_node *nodes = mem->mm_node;
419 	uint64_t usage = 0, vis_usage = 0;
420 	unsigned pages = mem->num_pages;
421 
422 	if (!mem->mm_node)
423 		return;
424 
425 	spin_lock(&mgr->lock);
426 	while (pages) {
427 		pages -= nodes->size;
428 		drm_mm_remove_node(nodes);
429 		usage += nodes->size << PAGE_SHIFT;
430 		vis_usage += amdgpu_vram_mgr_vis_size(adev, nodes);
431 		++nodes;
432 	}
433 	spin_unlock(&mgr->lock);
434 
435 	atomic64_sub(usage, &mgr->usage);
436 	atomic64_sub(vis_usage, &mgr->vis_usage);
437 
438 	kvfree(mem->mm_node);
439 	mem->mm_node = NULL;
440 }
441 
442 /**
443  * amdgpu_vram_mgr_alloc_sgt - allocate and fill a sg table
444  *
445  * @adev: amdgpu device pointer
446  * @mem: TTM memory object
447  * @dev: the other device
448  * @dir: dma direction
449  * @sgt: resulting sg table
450  *
451  * Allocate and fill a sg table from a VRAM allocation.
452  */
453 int amdgpu_vram_mgr_alloc_sgt(struct amdgpu_device *adev,
454 			      struct ttm_mem_reg *mem,
455 			      struct device *dev,
456 			      enum dma_data_direction dir,
457 			      struct sg_table **sgt)
458 {
459 	struct drm_mm_node *node;
460 	struct scatterlist *sg;
461 	int num_entries = 0;
462 	unsigned int pages;
463 	int i, r;
464 
465 	*sgt = kmalloc(sizeof(**sgt), GFP_KERNEL);
466 	if (!*sgt)
467 		return -ENOMEM;
468 
469 	for (pages = mem->num_pages, node = mem->mm_node;
470 	     pages; pages -= node->size, ++node)
471 		++num_entries;
472 
473 	r = sg_alloc_table(*sgt, num_entries, GFP_KERNEL);
474 	if (r)
475 		goto error_free;
476 
477 	for_each_sgtable_sg((*sgt), sg, i)
478 		sg->length = 0;
479 
480 	node = mem->mm_node;
481 	for_each_sgtable_sg((*sgt), sg, i) {
482 		phys_addr_t phys = (node->start << PAGE_SHIFT) +
483 			adev->gmc.aper_base;
484 		size_t size = node->size << PAGE_SHIFT;
485 		dma_addr_t addr;
486 
487 		++node;
488 		addr = dma_map_resource(dev, phys, size, dir,
489 					DMA_ATTR_SKIP_CPU_SYNC);
490 		r = dma_mapping_error(dev, addr);
491 		if (r)
492 			goto error_unmap;
493 
494 		sg_set_page(sg, NULL, size, 0);
495 		sg_dma_address(sg) = addr;
496 		sg_dma_len(sg) = size;
497 	}
498 	return 0;
499 
500 error_unmap:
501 	for_each_sgtable_sg((*sgt), sg, i) {
502 		if (!sg->length)
503 			continue;
504 
505 		dma_unmap_resource(dev, sg->dma_address,
506 				   sg->length, dir,
507 				   DMA_ATTR_SKIP_CPU_SYNC);
508 	}
509 	sg_free_table(*sgt);
510 
511 error_free:
512 	kfree(*sgt);
513 	return r;
514 }
515 
516 /**
517  * amdgpu_vram_mgr_alloc_sgt - allocate and fill a sg table
518  *
519  * @adev: amdgpu device pointer
520  * @sgt: sg table to free
521  *
522  * Free a previously allocate sg table.
523  */
524 void amdgpu_vram_mgr_free_sgt(struct amdgpu_device *adev,
525 			      struct device *dev,
526 			      enum dma_data_direction dir,
527 			      struct sg_table *sgt)
528 {
529 	struct scatterlist *sg;
530 	int i;
531 
532 	for_each_sgtable_sg(sgt, sg, i)
533 		dma_unmap_resource(dev, sg->dma_address,
534 				   sg->length, dir,
535 				   DMA_ATTR_SKIP_CPU_SYNC);
536 	sg_free_table(sgt);
537 	kfree(sgt);
538 }
539 
540 /**
541  * amdgpu_vram_mgr_usage - how many bytes are used in this domain
542  *
543  * @man: TTM memory type manager
544  *
545  * Returns how many bytes are used in this domain.
546  */
547 uint64_t amdgpu_vram_mgr_usage(struct ttm_mem_type_manager *man)
548 {
549 	struct amdgpu_vram_mgr *mgr = man->priv;
550 
551 	return atomic64_read(&mgr->usage);
552 }
553 
554 /**
555  * amdgpu_vram_mgr_vis_usage - how many bytes are used in the visible part
556  *
557  * @man: TTM memory type manager
558  *
559  * Returns how many bytes are used in the visible part of VRAM
560  */
561 uint64_t amdgpu_vram_mgr_vis_usage(struct ttm_mem_type_manager *man)
562 {
563 	struct amdgpu_vram_mgr *mgr = man->priv;
564 
565 	return atomic64_read(&mgr->vis_usage);
566 }
567 
568 /**
569  * amdgpu_vram_mgr_debug - dump VRAM table
570  *
571  * @man: TTM memory type manager
572  * @printer: DRM printer to use
573  *
574  * Dump the table content using printk.
575  */
576 static void amdgpu_vram_mgr_debug(struct ttm_mem_type_manager *man,
577 				  struct drm_printer *printer)
578 {
579 	struct amdgpu_vram_mgr *mgr = man->priv;
580 
581 	spin_lock(&mgr->lock);
582 	drm_mm_print(&mgr->mm, printer);
583 	spin_unlock(&mgr->lock);
584 
585 	drm_printf(printer, "man size:%llu pages, ram usage:%lluMB, vis usage:%lluMB\n",
586 		   man->size, amdgpu_vram_mgr_usage(man) >> 20,
587 		   amdgpu_vram_mgr_vis_usage(man) >> 20);
588 }
589 
590 const struct ttm_mem_type_manager_func amdgpu_vram_mgr_func = {
591 	.init		= amdgpu_vram_mgr_init,
592 	.takedown	= amdgpu_vram_mgr_fini,
593 	.get_node	= amdgpu_vram_mgr_new,
594 	.put_node	= amdgpu_vram_mgr_del,
595 	.debug		= amdgpu_vram_mgr_debug
596 };
597