1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Christian König
23  */
24 
25 #include <linux/dma-mapping.h>
26 #include "amdgpu.h"
27 #include "amdgpu_vm.h"
28 #include "amdgpu_atomfirmware.h"
29 #include "atom.h"
30 
31 static inline struct amdgpu_vram_mgr *to_vram_mgr(struct ttm_resource_manager *man)
32 {
33 	return container_of(man, struct amdgpu_vram_mgr, manager);
34 }
35 
36 static inline struct amdgpu_device *to_amdgpu_device(struct amdgpu_vram_mgr *mgr)
37 {
38 	return container_of(mgr, struct amdgpu_device, mman.vram_mgr);
39 }
40 
41 /**
42  * DOC: mem_info_vram_total
43  *
44  * The amdgpu driver provides a sysfs API for reporting current total VRAM
45  * available on the device
46  * The file mem_info_vram_total is used for this and returns the total
47  * amount of VRAM in bytes
48  */
49 static ssize_t amdgpu_mem_info_vram_total_show(struct device *dev,
50 		struct device_attribute *attr, char *buf)
51 {
52 	struct drm_device *ddev = dev_get_drvdata(dev);
53 	struct amdgpu_device *adev = drm_to_adev(ddev);
54 
55 	return sysfs_emit(buf, "%llu\n", adev->gmc.real_vram_size);
56 }
57 
58 /**
59  * DOC: mem_info_vis_vram_total
60  *
61  * The amdgpu driver provides a sysfs API for reporting current total
62  * visible VRAM available on the device
63  * The file mem_info_vis_vram_total is used for this and returns the total
64  * amount of visible VRAM in bytes
65  */
66 static ssize_t amdgpu_mem_info_vis_vram_total_show(struct device *dev,
67 		struct device_attribute *attr, char *buf)
68 {
69 	struct drm_device *ddev = dev_get_drvdata(dev);
70 	struct amdgpu_device *adev = drm_to_adev(ddev);
71 
72 	return sysfs_emit(buf, "%llu\n", adev->gmc.visible_vram_size);
73 }
74 
75 /**
76  * DOC: mem_info_vram_used
77  *
78  * The amdgpu driver provides a sysfs API for reporting current total VRAM
79  * available on the device
80  * The file mem_info_vram_used is used for this and returns the total
81  * amount of currently used VRAM in bytes
82  */
83 static ssize_t amdgpu_mem_info_vram_used_show(struct device *dev,
84 		struct device_attribute *attr, char *buf)
85 {
86 	struct drm_device *ddev = dev_get_drvdata(dev);
87 	struct amdgpu_device *adev = drm_to_adev(ddev);
88 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
89 
90 	return sysfs_emit(buf, "%llu\n", amdgpu_vram_mgr_usage(man));
91 }
92 
93 /**
94  * DOC: mem_info_vis_vram_used
95  *
96  * The amdgpu driver provides a sysfs API for reporting current total of
97  * used visible VRAM
98  * The file mem_info_vis_vram_used is used for this and returns the total
99  * amount of currently used visible VRAM in bytes
100  */
101 static ssize_t amdgpu_mem_info_vis_vram_used_show(struct device *dev,
102 		struct device_attribute *attr, char *buf)
103 {
104 	struct drm_device *ddev = dev_get_drvdata(dev);
105 	struct amdgpu_device *adev = drm_to_adev(ddev);
106 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
107 
108 	return sysfs_emit(buf, "%llu\n", amdgpu_vram_mgr_vis_usage(man));
109 }
110 
111 static ssize_t amdgpu_mem_info_vram_vendor(struct device *dev,
112 						 struct device_attribute *attr,
113 						 char *buf)
114 {
115 	struct drm_device *ddev = dev_get_drvdata(dev);
116 	struct amdgpu_device *adev = drm_to_adev(ddev);
117 
118 	switch (adev->gmc.vram_vendor) {
119 	case SAMSUNG:
120 		return sysfs_emit(buf, "samsung\n");
121 	case INFINEON:
122 		return sysfs_emit(buf, "infineon\n");
123 	case ELPIDA:
124 		return sysfs_emit(buf, "elpida\n");
125 	case ETRON:
126 		return sysfs_emit(buf, "etron\n");
127 	case NANYA:
128 		return sysfs_emit(buf, "nanya\n");
129 	case HYNIX:
130 		return sysfs_emit(buf, "hynix\n");
131 	case MOSEL:
132 		return sysfs_emit(buf, "mosel\n");
133 	case WINBOND:
134 		return sysfs_emit(buf, "winbond\n");
135 	case ESMT:
136 		return sysfs_emit(buf, "esmt\n");
137 	case MICRON:
138 		return sysfs_emit(buf, "micron\n");
139 	default:
140 		return sysfs_emit(buf, "unknown\n");
141 	}
142 }
143 
144 static DEVICE_ATTR(mem_info_vram_total, S_IRUGO,
145 		   amdgpu_mem_info_vram_total_show, NULL);
146 static DEVICE_ATTR(mem_info_vis_vram_total, S_IRUGO,
147 		   amdgpu_mem_info_vis_vram_total_show,NULL);
148 static DEVICE_ATTR(mem_info_vram_used, S_IRUGO,
149 		   amdgpu_mem_info_vram_used_show, NULL);
150 static DEVICE_ATTR(mem_info_vis_vram_used, S_IRUGO,
151 		   amdgpu_mem_info_vis_vram_used_show, NULL);
152 static DEVICE_ATTR(mem_info_vram_vendor, S_IRUGO,
153 		   amdgpu_mem_info_vram_vendor, NULL);
154 
155 static const struct attribute *amdgpu_vram_mgr_attributes[] = {
156 	&dev_attr_mem_info_vram_total.attr,
157 	&dev_attr_mem_info_vis_vram_total.attr,
158 	&dev_attr_mem_info_vram_used.attr,
159 	&dev_attr_mem_info_vis_vram_used.attr,
160 	&dev_attr_mem_info_vram_vendor.attr,
161 	NULL
162 };
163 
164 static const struct ttm_resource_manager_func amdgpu_vram_mgr_func;
165 
166 /**
167  * amdgpu_vram_mgr_init - init VRAM manager and DRM MM
168  *
169  * @adev: amdgpu_device pointer
170  *
171  * Allocate and initialize the VRAM manager.
172  */
173 int amdgpu_vram_mgr_init(struct amdgpu_device *adev)
174 {
175 	struct amdgpu_vram_mgr *mgr = &adev->mman.vram_mgr;
176 	struct ttm_resource_manager *man = &mgr->manager;
177 	int ret;
178 
179 	ttm_resource_manager_init(man, adev->gmc.real_vram_size >> PAGE_SHIFT);
180 
181 	man->func = &amdgpu_vram_mgr_func;
182 
183 	drm_mm_init(&mgr->mm, 0, man->size);
184 	spin_lock_init(&mgr->lock);
185 	INIT_LIST_HEAD(&mgr->reservations_pending);
186 	INIT_LIST_HEAD(&mgr->reserved_pages);
187 
188 	/* Add the two VRAM-related sysfs files */
189 	ret = sysfs_create_files(&adev->dev->kobj, amdgpu_vram_mgr_attributes);
190 	if (ret)
191 		DRM_ERROR("Failed to register sysfs\n");
192 
193 	ttm_set_driver_manager(&adev->mman.bdev, TTM_PL_VRAM, &mgr->manager);
194 	ttm_resource_manager_set_used(man, true);
195 	return 0;
196 }
197 
198 /**
199  * amdgpu_vram_mgr_fini - free and destroy VRAM manager
200  *
201  * @adev: amdgpu_device pointer
202  *
203  * Destroy and free the VRAM manager, returns -EBUSY if ranges are still
204  * allocated inside it.
205  */
206 void amdgpu_vram_mgr_fini(struct amdgpu_device *adev)
207 {
208 	struct amdgpu_vram_mgr *mgr = &adev->mman.vram_mgr;
209 	struct ttm_resource_manager *man = &mgr->manager;
210 	int ret;
211 	struct amdgpu_vram_reservation *rsv, *temp;
212 
213 	ttm_resource_manager_set_used(man, false);
214 
215 	ret = ttm_resource_manager_evict_all(&adev->mman.bdev, man);
216 	if (ret)
217 		return;
218 
219 	spin_lock(&mgr->lock);
220 	list_for_each_entry_safe(rsv, temp, &mgr->reservations_pending, node)
221 		kfree(rsv);
222 
223 	list_for_each_entry_safe(rsv, temp, &mgr->reserved_pages, node) {
224 		drm_mm_remove_node(&rsv->mm_node);
225 		kfree(rsv);
226 	}
227 	drm_mm_takedown(&mgr->mm);
228 	spin_unlock(&mgr->lock);
229 
230 	sysfs_remove_files(&adev->dev->kobj, amdgpu_vram_mgr_attributes);
231 
232 	ttm_resource_manager_cleanup(man);
233 	ttm_set_driver_manager(&adev->mman.bdev, TTM_PL_VRAM, NULL);
234 }
235 
236 /**
237  * amdgpu_vram_mgr_vis_size - Calculate visible node size
238  *
239  * @adev: amdgpu_device pointer
240  * @node: MM node structure
241  *
242  * Calculate how many bytes of the MM node are inside visible VRAM
243  */
244 static u64 amdgpu_vram_mgr_vis_size(struct amdgpu_device *adev,
245 				    struct drm_mm_node *node)
246 {
247 	uint64_t start = node->start << PAGE_SHIFT;
248 	uint64_t end = (node->size + node->start) << PAGE_SHIFT;
249 
250 	if (start >= adev->gmc.visible_vram_size)
251 		return 0;
252 
253 	return (end > adev->gmc.visible_vram_size ?
254 		adev->gmc.visible_vram_size : end) - start;
255 }
256 
257 /**
258  * amdgpu_vram_mgr_bo_visible_size - CPU visible BO size
259  *
260  * @bo: &amdgpu_bo buffer object (must be in VRAM)
261  *
262  * Returns:
263  * How much of the given &amdgpu_bo buffer object lies in CPU visible VRAM.
264  */
265 u64 amdgpu_vram_mgr_bo_visible_size(struct amdgpu_bo *bo)
266 {
267 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
268 	struct ttm_resource *mem = &bo->tbo.mem;
269 	struct drm_mm_node *nodes = mem->mm_node;
270 	unsigned pages = mem->num_pages;
271 	u64 usage;
272 
273 	if (amdgpu_gmc_vram_full_visible(&adev->gmc))
274 		return amdgpu_bo_size(bo);
275 
276 	if (mem->start >= adev->gmc.visible_vram_size >> PAGE_SHIFT)
277 		return 0;
278 
279 	for (usage = 0; nodes && pages; pages -= nodes->size, nodes++)
280 		usage += amdgpu_vram_mgr_vis_size(adev, nodes);
281 
282 	return usage;
283 }
284 
285 static void amdgpu_vram_mgr_do_reserve(struct ttm_resource_manager *man)
286 {
287 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
288 	struct amdgpu_device *adev = to_amdgpu_device(mgr);
289 	struct drm_mm *mm = &mgr->mm;
290 	struct amdgpu_vram_reservation *rsv, *temp;
291 	uint64_t vis_usage;
292 
293 	list_for_each_entry_safe(rsv, temp, &mgr->reservations_pending, node) {
294 		if (drm_mm_reserve_node(mm, &rsv->mm_node))
295 			continue;
296 
297 		dev_dbg(adev->dev, "Reservation 0x%llx - %lld, Succeeded\n",
298 			rsv->mm_node.start, rsv->mm_node.size);
299 
300 		vis_usage = amdgpu_vram_mgr_vis_size(adev, &rsv->mm_node);
301 		atomic64_add(vis_usage, &mgr->vis_usage);
302 		atomic64_add(rsv->mm_node.size << PAGE_SHIFT, &mgr->usage);
303 		list_move(&rsv->node, &mgr->reserved_pages);
304 	}
305 }
306 
307 /**
308  * amdgpu_vram_mgr_reserve_range - Reserve a range from VRAM
309  *
310  * @man: TTM memory type manager
311  * @start: start address of the range in VRAM
312  * @size: size of the range
313  *
314  * Reserve memory from start addess with the specified size in VRAM
315  */
316 int amdgpu_vram_mgr_reserve_range(struct ttm_resource_manager *man,
317 				  uint64_t start, uint64_t size)
318 {
319 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
320 	struct amdgpu_vram_reservation *rsv;
321 
322 	rsv = kzalloc(sizeof(*rsv), GFP_KERNEL);
323 	if (!rsv)
324 		return -ENOMEM;
325 
326 	INIT_LIST_HEAD(&rsv->node);
327 	rsv->mm_node.start = start >> PAGE_SHIFT;
328 	rsv->mm_node.size = size >> PAGE_SHIFT;
329 
330 	spin_lock(&mgr->lock);
331 	list_add_tail(&mgr->reservations_pending, &rsv->node);
332 	amdgpu_vram_mgr_do_reserve(man);
333 	spin_unlock(&mgr->lock);
334 
335 	return 0;
336 }
337 
338 /**
339  * amdgpu_vram_mgr_query_page_status - query the reservation status
340  *
341  * @man: TTM memory type manager
342  * @start: start address of a page in VRAM
343  *
344  * Returns:
345  *	-EBUSY: the page is still hold and in pending list
346  *	0: the page has been reserved
347  *	-ENOENT: the input page is not a reservation
348  */
349 int amdgpu_vram_mgr_query_page_status(struct ttm_resource_manager *man,
350 				      uint64_t start)
351 {
352 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
353 	struct amdgpu_vram_reservation *rsv;
354 	int ret;
355 
356 	spin_lock(&mgr->lock);
357 
358 	list_for_each_entry(rsv, &mgr->reservations_pending, node) {
359 		if ((rsv->mm_node.start <= start) &&
360 		    (start < (rsv->mm_node.start + rsv->mm_node.size))) {
361 			ret = -EBUSY;
362 			goto out;
363 		}
364 	}
365 
366 	list_for_each_entry(rsv, &mgr->reserved_pages, node) {
367 		if ((rsv->mm_node.start <= start) &&
368 		    (start < (rsv->mm_node.start + rsv->mm_node.size))) {
369 			ret = 0;
370 			goto out;
371 		}
372 	}
373 
374 	ret = -ENOENT;
375 out:
376 	spin_unlock(&mgr->lock);
377 	return ret;
378 }
379 
380 /**
381  * amdgpu_vram_mgr_virt_start - update virtual start address
382  *
383  * @mem: ttm_resource to update
384  * @node: just allocated node
385  *
386  * Calculate a virtual BO start address to easily check if everything is CPU
387  * accessible.
388  */
389 static void amdgpu_vram_mgr_virt_start(struct ttm_resource *mem,
390 				       struct drm_mm_node *node)
391 {
392 	unsigned long start;
393 
394 	start = node->start + node->size;
395 	if (start > mem->num_pages)
396 		start -= mem->num_pages;
397 	else
398 		start = 0;
399 	mem->start = max(mem->start, start);
400 }
401 
402 /**
403  * amdgpu_vram_mgr_new - allocate new ranges
404  *
405  * @man: TTM memory type manager
406  * @tbo: TTM BO we need this range for
407  * @place: placement flags and restrictions
408  * @mem: the resulting mem object
409  *
410  * Allocate VRAM for the given BO.
411  */
412 static int amdgpu_vram_mgr_new(struct ttm_resource_manager *man,
413 			       struct ttm_buffer_object *tbo,
414 			       const struct ttm_place *place,
415 			       struct ttm_resource *mem)
416 {
417 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
418 	struct amdgpu_device *adev = to_amdgpu_device(mgr);
419 	struct drm_mm *mm = &mgr->mm;
420 	struct drm_mm_node *nodes;
421 	enum drm_mm_insert_mode mode;
422 	unsigned long lpfn, num_nodes, pages_per_node, pages_left;
423 	uint64_t vis_usage = 0, mem_bytes, max_bytes;
424 	unsigned i;
425 	int r;
426 
427 	lpfn = place->lpfn;
428 	if (!lpfn)
429 		lpfn = man->size;
430 
431 	max_bytes = adev->gmc.mc_vram_size;
432 	if (tbo->type != ttm_bo_type_kernel)
433 		max_bytes -= AMDGPU_VM_RESERVED_VRAM;
434 
435 	/* bail out quickly if there's likely not enough VRAM for this BO */
436 	mem_bytes = (u64)mem->num_pages << PAGE_SHIFT;
437 	if (atomic64_add_return(mem_bytes, &mgr->usage) > max_bytes) {
438 		atomic64_sub(mem_bytes, &mgr->usage);
439 		return -ENOSPC;
440 	}
441 
442 	if (place->flags & TTM_PL_FLAG_CONTIGUOUS) {
443 		pages_per_node = ~0ul;
444 		num_nodes = 1;
445 	} else {
446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
447 		pages_per_node = HPAGE_PMD_NR;
448 #else
449 		/* default to 2MB */
450 		pages_per_node = (2UL << (20UL - PAGE_SHIFT));
451 #endif
452 		pages_per_node = max((uint32_t)pages_per_node, mem->page_alignment);
453 		num_nodes = DIV_ROUND_UP(mem->num_pages, pages_per_node);
454 	}
455 
456 	nodes = kvmalloc_array((uint32_t)num_nodes, sizeof(*nodes),
457 			       GFP_KERNEL | __GFP_ZERO);
458 	if (!nodes) {
459 		atomic64_sub(mem_bytes, &mgr->usage);
460 		return -ENOMEM;
461 	}
462 
463 	mode = DRM_MM_INSERT_BEST;
464 	if (place->flags & TTM_PL_FLAG_TOPDOWN)
465 		mode = DRM_MM_INSERT_HIGH;
466 
467 	mem->start = 0;
468 	pages_left = mem->num_pages;
469 
470 	spin_lock(&mgr->lock);
471 	for (i = 0; pages_left >= pages_per_node; ++i) {
472 		unsigned long pages = rounddown_pow_of_two(pages_left);
473 
474 		/* Limit maximum size to 2GB due to SG table limitations */
475 		pages = min(pages, (2UL << (30 - PAGE_SHIFT)));
476 
477 		r = drm_mm_insert_node_in_range(mm, &nodes[i], pages,
478 						pages_per_node, 0,
479 						place->fpfn, lpfn,
480 						mode);
481 		if (unlikely(r))
482 			break;
483 
484 		vis_usage += amdgpu_vram_mgr_vis_size(adev, &nodes[i]);
485 		amdgpu_vram_mgr_virt_start(mem, &nodes[i]);
486 		pages_left -= pages;
487 	}
488 
489 	for (; pages_left; ++i) {
490 		unsigned long pages = min(pages_left, pages_per_node);
491 		uint32_t alignment = mem->page_alignment;
492 
493 		if (pages == pages_per_node)
494 			alignment = pages_per_node;
495 
496 		r = drm_mm_insert_node_in_range(mm, &nodes[i],
497 						pages, alignment, 0,
498 						place->fpfn, lpfn,
499 						mode);
500 		if (unlikely(r))
501 			goto error;
502 
503 		vis_usage += amdgpu_vram_mgr_vis_size(adev, &nodes[i]);
504 		amdgpu_vram_mgr_virt_start(mem, &nodes[i]);
505 		pages_left -= pages;
506 	}
507 	spin_unlock(&mgr->lock);
508 
509 	atomic64_add(vis_usage, &mgr->vis_usage);
510 
511 	mem->mm_node = nodes;
512 
513 	return 0;
514 
515 error:
516 	while (i--)
517 		drm_mm_remove_node(&nodes[i]);
518 	spin_unlock(&mgr->lock);
519 	atomic64_sub(mem->num_pages << PAGE_SHIFT, &mgr->usage);
520 
521 	kvfree(nodes);
522 	return r;
523 }
524 
525 /**
526  * amdgpu_vram_mgr_del - free ranges
527  *
528  * @man: TTM memory type manager
529  * @mem: TTM memory object
530  *
531  * Free the allocated VRAM again.
532  */
533 static void amdgpu_vram_mgr_del(struct ttm_resource_manager *man,
534 				struct ttm_resource *mem)
535 {
536 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
537 	struct amdgpu_device *adev = to_amdgpu_device(mgr);
538 	struct drm_mm_node *nodes = mem->mm_node;
539 	uint64_t usage = 0, vis_usage = 0;
540 	unsigned pages = mem->num_pages;
541 
542 	if (!mem->mm_node)
543 		return;
544 
545 	spin_lock(&mgr->lock);
546 	while (pages) {
547 		pages -= nodes->size;
548 		drm_mm_remove_node(nodes);
549 		usage += nodes->size << PAGE_SHIFT;
550 		vis_usage += amdgpu_vram_mgr_vis_size(adev, nodes);
551 		++nodes;
552 	}
553 	amdgpu_vram_mgr_do_reserve(man);
554 	spin_unlock(&mgr->lock);
555 
556 	atomic64_sub(usage, &mgr->usage);
557 	atomic64_sub(vis_usage, &mgr->vis_usage);
558 
559 	kvfree(mem->mm_node);
560 	mem->mm_node = NULL;
561 }
562 
563 /**
564  * amdgpu_vram_mgr_alloc_sgt - allocate and fill a sg table
565  *
566  * @adev: amdgpu device pointer
567  * @mem: TTM memory object
568  * @dev: the other device
569  * @dir: dma direction
570  * @sgt: resulting sg table
571  *
572  * Allocate and fill a sg table from a VRAM allocation.
573  */
574 int amdgpu_vram_mgr_alloc_sgt(struct amdgpu_device *adev,
575 			      struct ttm_resource *mem,
576 			      struct device *dev,
577 			      enum dma_data_direction dir,
578 			      struct sg_table **sgt)
579 {
580 	struct drm_mm_node *node;
581 	struct scatterlist *sg;
582 	int num_entries = 0;
583 	unsigned int pages;
584 	int i, r;
585 
586 	*sgt = kmalloc(sizeof(**sgt), GFP_KERNEL);
587 	if (!*sgt)
588 		return -ENOMEM;
589 
590 	for (pages = mem->num_pages, node = mem->mm_node;
591 	     pages; pages -= node->size, ++node)
592 		++num_entries;
593 
594 	r = sg_alloc_table(*sgt, num_entries, GFP_KERNEL);
595 	if (r)
596 		goto error_free;
597 
598 	for_each_sgtable_sg((*sgt), sg, i)
599 		sg->length = 0;
600 
601 	node = mem->mm_node;
602 	for_each_sgtable_sg((*sgt), sg, i) {
603 		phys_addr_t phys = (node->start << PAGE_SHIFT) +
604 			adev->gmc.aper_base;
605 		size_t size = node->size << PAGE_SHIFT;
606 		dma_addr_t addr;
607 
608 		++node;
609 		addr = dma_map_resource(dev, phys, size, dir,
610 					DMA_ATTR_SKIP_CPU_SYNC);
611 		r = dma_mapping_error(dev, addr);
612 		if (r)
613 			goto error_unmap;
614 
615 		sg_set_page(sg, NULL, size, 0);
616 		sg_dma_address(sg) = addr;
617 		sg_dma_len(sg) = size;
618 	}
619 	return 0;
620 
621 error_unmap:
622 	for_each_sgtable_sg((*sgt), sg, i) {
623 		if (!sg->length)
624 			continue;
625 
626 		dma_unmap_resource(dev, sg->dma_address,
627 				   sg->length, dir,
628 				   DMA_ATTR_SKIP_CPU_SYNC);
629 	}
630 	sg_free_table(*sgt);
631 
632 error_free:
633 	kfree(*sgt);
634 	return r;
635 }
636 
637 /**
638  * amdgpu_vram_mgr_free_sgt - allocate and fill a sg table
639  *
640  * @dev: device pointer
641  * @dir: data direction of resource to unmap
642  * @sgt: sg table to free
643  *
644  * Free a previously allocate sg table.
645  */
646 void amdgpu_vram_mgr_free_sgt(struct device *dev,
647 			      enum dma_data_direction dir,
648 			      struct sg_table *sgt)
649 {
650 	struct scatterlist *sg;
651 	int i;
652 
653 	for_each_sgtable_sg(sgt, sg, i)
654 		dma_unmap_resource(dev, sg->dma_address,
655 				   sg->length, dir,
656 				   DMA_ATTR_SKIP_CPU_SYNC);
657 	sg_free_table(sgt);
658 	kfree(sgt);
659 }
660 
661 /**
662  * amdgpu_vram_mgr_usage - how many bytes are used in this domain
663  *
664  * @man: TTM memory type manager
665  *
666  * Returns how many bytes are used in this domain.
667  */
668 uint64_t amdgpu_vram_mgr_usage(struct ttm_resource_manager *man)
669 {
670 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
671 
672 	return atomic64_read(&mgr->usage);
673 }
674 
675 /**
676  * amdgpu_vram_mgr_vis_usage - how many bytes are used in the visible part
677  *
678  * @man: TTM memory type manager
679  *
680  * Returns how many bytes are used in the visible part of VRAM
681  */
682 uint64_t amdgpu_vram_mgr_vis_usage(struct ttm_resource_manager *man)
683 {
684 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
685 
686 	return atomic64_read(&mgr->vis_usage);
687 }
688 
689 /**
690  * amdgpu_vram_mgr_debug - dump VRAM table
691  *
692  * @man: TTM memory type manager
693  * @printer: DRM printer to use
694  *
695  * Dump the table content using printk.
696  */
697 static void amdgpu_vram_mgr_debug(struct ttm_resource_manager *man,
698 				  struct drm_printer *printer)
699 {
700 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
701 
702 	spin_lock(&mgr->lock);
703 	drm_mm_print(&mgr->mm, printer);
704 	spin_unlock(&mgr->lock);
705 
706 	drm_printf(printer, "man size:%llu pages, ram usage:%lluMB, vis usage:%lluMB\n",
707 		   man->size, amdgpu_vram_mgr_usage(man) >> 20,
708 		   amdgpu_vram_mgr_vis_usage(man) >> 20);
709 }
710 
711 static const struct ttm_resource_manager_func amdgpu_vram_mgr_func = {
712 	.alloc	= amdgpu_vram_mgr_new,
713 	.free	= amdgpu_vram_mgr_del,
714 	.debug	= amdgpu_vram_mgr_debug
715 };
716