1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_trace.h" 28 #include "amdgpu_vm.h" 29 30 /* 31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 32 */ 33 struct amdgpu_vm_pt_cursor { 34 uint64_t pfn; 35 struct amdgpu_vm_bo_base *parent; 36 struct amdgpu_vm_bo_base *entry; 37 unsigned int level; 38 }; 39 40 /** 41 * amdgpu_vm_pt_level_shift - return the addr shift for each level 42 * 43 * @adev: amdgpu_device pointer 44 * @level: VMPT level 45 * 46 * Returns: 47 * The number of bits the pfn needs to be right shifted for a level. 48 */ 49 static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, 50 unsigned int level) 51 { 52 switch (level) { 53 case AMDGPU_VM_PDB2: 54 case AMDGPU_VM_PDB1: 55 case AMDGPU_VM_PDB0: 56 return 9 * (AMDGPU_VM_PDB0 - level) + 57 adev->vm_manager.block_size; 58 case AMDGPU_VM_PTB: 59 return 0; 60 default: 61 return ~0; 62 } 63 } 64 65 /** 66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT 67 * 68 * @adev: amdgpu_device pointer 69 * @level: VMPT level 70 * 71 * Returns: 72 * The number of entries in a page directory or page table. 73 */ 74 static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, 75 unsigned int level) 76 { 77 unsigned int shift; 78 79 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 80 if (level == adev->vm_manager.root_level) 81 /* For the root directory */ 82 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 83 >> shift; 84 else if (level != AMDGPU_VM_PTB) 85 /* Everything in between */ 86 return 512; 87 88 /* For the page tables on the leaves */ 89 return AMDGPU_VM_PTE_COUNT(adev); 90 } 91 92 /** 93 * amdgpu_vm_pt_num_ats_entries - return the number of ATS entries in the root PD 94 * 95 * @adev: amdgpu_device pointer 96 * 97 * Returns: 98 * The number of entries in the root page directory which needs the ATS setting. 99 */ 100 static unsigned int amdgpu_vm_pt_num_ats_entries(struct amdgpu_device *adev) 101 { 102 unsigned int shift; 103 104 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 105 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 106 } 107 108 /** 109 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT 110 * 111 * @adev: amdgpu_device pointer 112 * @level: VMPT level 113 * 114 * Returns: 115 * The mask to extract the entry number of a PD/PT from an address. 116 */ 117 static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, 118 unsigned int level) 119 { 120 if (level <= adev->vm_manager.root_level) 121 return 0xffffffff; 122 else if (level != AMDGPU_VM_PTB) 123 return 0x1ff; 124 else 125 return AMDGPU_VM_PTE_COUNT(adev) - 1; 126 } 127 128 /** 129 * amdgpu_vm_pt_size - returns the size of the page table in bytes 130 * 131 * @adev: amdgpu_device pointer 132 * @level: VMPT level 133 * 134 * Returns: 135 * The size of the BO for a page directory or page table in bytes. 136 */ 137 static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, 138 unsigned int level) 139 { 140 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); 141 } 142 143 /** 144 * amdgpu_vm_pt_parent - get the parent page directory 145 * 146 * @pt: child page table 147 * 148 * Helper to get the parent entry for the child page table. NULL if we are at 149 * the root page directory. 150 */ 151 static struct amdgpu_vm_bo_base * 152 amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 153 { 154 struct amdgpu_bo *parent = pt->bo->parent; 155 156 if (!parent) 157 return NULL; 158 159 return parent->vm_bo; 160 } 161 162 /** 163 * amdgpu_vm_pt_start - start PD/PT walk 164 * 165 * @adev: amdgpu_device pointer 166 * @vm: amdgpu_vm structure 167 * @start: start address of the walk 168 * @cursor: state to initialize 169 * 170 * Initialize a amdgpu_vm_pt_cursor to start a walk. 171 */ 172 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 173 struct amdgpu_vm *vm, uint64_t start, 174 struct amdgpu_vm_pt_cursor *cursor) 175 { 176 cursor->pfn = start; 177 cursor->parent = NULL; 178 cursor->entry = &vm->root; 179 cursor->level = adev->vm_manager.root_level; 180 } 181 182 /** 183 * amdgpu_vm_pt_descendant - go to child node 184 * 185 * @adev: amdgpu_device pointer 186 * @cursor: current state 187 * 188 * Walk to the child node of the current node. 189 * Returns: 190 * True if the walk was possible, false otherwise. 191 */ 192 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 193 struct amdgpu_vm_pt_cursor *cursor) 194 { 195 unsigned int mask, shift, idx; 196 197 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 198 !cursor->entry->bo) 199 return false; 200 201 mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); 202 shift = amdgpu_vm_pt_level_shift(adev, cursor->level); 203 204 ++cursor->level; 205 idx = (cursor->pfn >> shift) & mask; 206 cursor->parent = cursor->entry; 207 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 208 return true; 209 } 210 211 /** 212 * amdgpu_vm_pt_sibling - go to sibling node 213 * 214 * @adev: amdgpu_device pointer 215 * @cursor: current state 216 * 217 * Walk to the sibling node of the current node. 218 * Returns: 219 * True if the walk was possible, false otherwise. 220 */ 221 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 222 struct amdgpu_vm_pt_cursor *cursor) 223 { 224 225 unsigned int shift, num_entries; 226 struct amdgpu_bo_vm *parent; 227 228 /* Root doesn't have a sibling */ 229 if (!cursor->parent) 230 return false; 231 232 /* Go to our parents and see if we got a sibling */ 233 shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); 234 num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); 235 parent = to_amdgpu_bo_vm(cursor->parent->bo); 236 237 if (cursor->entry == &parent->entries[num_entries - 1]) 238 return false; 239 240 cursor->pfn += 1ULL << shift; 241 cursor->pfn &= ~((1ULL << shift) - 1); 242 ++cursor->entry; 243 return true; 244 } 245 246 /** 247 * amdgpu_vm_pt_ancestor - go to parent node 248 * 249 * @cursor: current state 250 * 251 * Walk to the parent node of the current node. 252 * Returns: 253 * True if the walk was possible, false otherwise. 254 */ 255 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 256 { 257 if (!cursor->parent) 258 return false; 259 260 --cursor->level; 261 cursor->entry = cursor->parent; 262 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 263 return true; 264 } 265 266 /** 267 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 268 * 269 * @adev: amdgpu_device pointer 270 * @cursor: current state 271 * 272 * Walk the PD/PT tree to the next node. 273 */ 274 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 275 struct amdgpu_vm_pt_cursor *cursor) 276 { 277 /* First try a newborn child */ 278 if (amdgpu_vm_pt_descendant(adev, cursor)) 279 return; 280 281 /* If that didn't worked try to find a sibling */ 282 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 283 /* No sibling, go to our parents and grandparents */ 284 if (!amdgpu_vm_pt_ancestor(cursor)) { 285 cursor->pfn = ~0ll; 286 return; 287 } 288 } 289 } 290 291 /** 292 * amdgpu_vm_pt_first_dfs - start a deep first search 293 * 294 * @adev: amdgpu_device structure 295 * @vm: amdgpu_vm structure 296 * @start: optional cursor to start with 297 * @cursor: state to initialize 298 * 299 * Starts a deep first traversal of the PD/PT tree. 300 */ 301 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 302 struct amdgpu_vm *vm, 303 struct amdgpu_vm_pt_cursor *start, 304 struct amdgpu_vm_pt_cursor *cursor) 305 { 306 if (start) 307 *cursor = *start; 308 else 309 amdgpu_vm_pt_start(adev, vm, 0, cursor); 310 311 while (amdgpu_vm_pt_descendant(adev, cursor)) 312 ; 313 } 314 315 /** 316 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 317 * 318 * @start: starting point for the search 319 * @entry: current entry 320 * 321 * Returns: 322 * True when the search should continue, false otherwise. 323 */ 324 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 325 struct amdgpu_vm_bo_base *entry) 326 { 327 return entry && (!start || entry != start->entry); 328 } 329 330 /** 331 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 332 * 333 * @adev: amdgpu_device structure 334 * @cursor: current state 335 * 336 * Move the cursor to the next node in a deep first search. 337 */ 338 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 339 struct amdgpu_vm_pt_cursor *cursor) 340 { 341 if (!cursor->entry) 342 return; 343 344 if (!cursor->parent) 345 cursor->entry = NULL; 346 else if (amdgpu_vm_pt_sibling(adev, cursor)) 347 while (amdgpu_vm_pt_descendant(adev, cursor)) 348 ; 349 else 350 amdgpu_vm_pt_ancestor(cursor); 351 } 352 353 /* 354 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 355 */ 356 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 357 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 358 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 359 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 360 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 361 362 /** 363 * amdgpu_vm_pt_clear - initially clear the PDs/PTs 364 * 365 * @adev: amdgpu_device pointer 366 * @vm: VM to clear BO from 367 * @vmbo: BO to clear 368 * @immediate: use an immediate update 369 * 370 * Root PD needs to be reserved when calling this. 371 * 372 * Returns: 373 * 0 on success, errno otherwise. 374 */ 375 int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, 376 struct amdgpu_bo_vm *vmbo, bool immediate) 377 { 378 unsigned int level = adev->vm_manager.root_level; 379 struct ttm_operation_ctx ctx = { true, false }; 380 struct amdgpu_vm_update_params params; 381 struct amdgpu_bo *ancestor = &vmbo->bo; 382 unsigned int entries, ats_entries; 383 struct amdgpu_bo *bo = &vmbo->bo; 384 uint64_t addr; 385 int r, idx; 386 387 /* Figure out our place in the hierarchy */ 388 if (ancestor->parent) { 389 ++level; 390 while (ancestor->parent->parent) { 391 ++level; 392 ancestor = ancestor->parent; 393 } 394 } 395 396 entries = amdgpu_bo_size(bo) / 8; 397 if (!vm->pte_support_ats) { 398 ats_entries = 0; 399 400 } else if (!bo->parent) { 401 ats_entries = amdgpu_vm_pt_num_ats_entries(adev); 402 ats_entries = min(ats_entries, entries); 403 entries -= ats_entries; 404 405 } else { 406 struct amdgpu_vm_bo_base *pt; 407 408 pt = ancestor->vm_bo; 409 ats_entries = amdgpu_vm_pt_num_ats_entries(adev); 410 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= 411 ats_entries) { 412 ats_entries = 0; 413 } else { 414 ats_entries = entries; 415 entries = 0; 416 } 417 } 418 419 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 420 if (r) 421 return r; 422 423 if (vmbo->shadow) { 424 struct amdgpu_bo *shadow = vmbo->shadow; 425 426 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 427 if (r) 428 return r; 429 } 430 431 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 432 return -ENODEV; 433 434 r = vm->update_funcs->map_table(vmbo); 435 if (r) 436 goto exit; 437 438 memset(¶ms, 0, sizeof(params)); 439 params.adev = adev; 440 params.vm = vm; 441 params.immediate = immediate; 442 443 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 444 if (r) 445 goto exit; 446 447 addr = 0; 448 if (ats_entries) { 449 uint64_t value = 0, flags; 450 451 flags = AMDGPU_PTE_DEFAULT_ATC; 452 if (level != AMDGPU_VM_PTB) { 453 /* Handle leaf PDEs as PTEs */ 454 flags |= AMDGPU_PDE_PTE; 455 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 456 } 457 458 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, 459 ats_entries, value, flags); 460 if (r) 461 goto exit; 462 463 addr += ats_entries * 8; 464 } 465 466 if (entries) { 467 uint64_t value = 0, flags = 0; 468 469 if (adev->asic_type >= CHIP_VEGA10) { 470 if (level != AMDGPU_VM_PTB) { 471 /* Handle leaf PDEs as PTEs */ 472 flags |= AMDGPU_PDE_PTE; 473 amdgpu_gmc_get_vm_pde(adev, level, 474 &value, &flags); 475 } else { 476 /* Workaround for fault priority problem on GMC9 */ 477 flags = AMDGPU_PTE_EXECUTABLE; 478 } 479 } 480 481 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 482 value, flags); 483 if (r) 484 goto exit; 485 } 486 487 r = vm->update_funcs->commit(¶ms, NULL); 488 exit: 489 drm_dev_exit(idx); 490 return r; 491 } 492 493 /** 494 * amdgpu_vm_pt_create - create bo for PD/PT 495 * 496 * @adev: amdgpu_device pointer 497 * @vm: requesting vm 498 * @level: the page table level 499 * @immediate: use a immediate update 500 * @vmbo: pointer to the buffer object pointer 501 */ 502 int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, 503 int level, bool immediate, struct amdgpu_bo_vm **vmbo) 504 { 505 struct amdgpu_fpriv *fpriv = container_of(vm, struct amdgpu_fpriv, vm); 506 struct amdgpu_bo_param bp; 507 struct amdgpu_bo *bo; 508 struct dma_resv *resv; 509 unsigned int num_entries; 510 int r; 511 512 memset(&bp, 0, sizeof(bp)); 513 514 bp.size = amdgpu_vm_pt_size(adev, level); 515 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 516 517 if (!adev->gmc.is_app_apu) 518 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 519 else 520 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 521 522 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 523 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 524 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 525 526 if (level < AMDGPU_VM_PTB) 527 num_entries = amdgpu_vm_pt_num_entries(adev, level); 528 else 529 num_entries = 0; 530 531 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 532 533 if (vm->use_cpu_for_update) 534 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 535 536 bp.type = ttm_bo_type_kernel; 537 bp.no_wait_gpu = immediate; 538 bp.xcp_id_plus1 = fpriv->xcp_id == ~0 ? 0 : fpriv->xcp_id + 1; 539 540 if (vm->root.bo) 541 bp.resv = vm->root.bo->tbo.base.resv; 542 543 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 544 if (r) 545 return r; 546 547 bo = &(*vmbo)->bo; 548 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 549 (*vmbo)->shadow = NULL; 550 return 0; 551 } 552 553 if (!bp.resv) 554 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 555 NULL)); 556 resv = bp.resv; 557 memset(&bp, 0, sizeof(bp)); 558 bp.size = amdgpu_vm_pt_size(adev, level); 559 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 560 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 561 bp.type = ttm_bo_type_kernel; 562 bp.resv = bo->tbo.base.resv; 563 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 564 bp.xcp_id_plus1 = fpriv->xcp_id == ~0 ? 0 : fpriv->xcp_id + 1; 565 566 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 567 568 if (!resv) 569 dma_resv_unlock(bo->tbo.base.resv); 570 571 if (r) { 572 amdgpu_bo_unref(&bo); 573 return r; 574 } 575 576 amdgpu_bo_add_to_shadow_list(*vmbo); 577 578 return 0; 579 } 580 581 /** 582 * amdgpu_vm_pt_alloc - Allocate a specific page table 583 * 584 * @adev: amdgpu_device pointer 585 * @vm: VM to allocate page tables for 586 * @cursor: Which page table to allocate 587 * @immediate: use an immediate update 588 * 589 * Make sure a specific page table or directory is allocated. 590 * 591 * Returns: 592 * 1 if page table needed to be allocated, 0 if page table was already 593 * allocated, negative errno if an error occurred. 594 */ 595 static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, 596 struct amdgpu_vm *vm, 597 struct amdgpu_vm_pt_cursor *cursor, 598 bool immediate) 599 { 600 struct amdgpu_vm_bo_base *entry = cursor->entry; 601 struct amdgpu_bo *pt_bo; 602 struct amdgpu_bo_vm *pt; 603 int r; 604 605 if (entry->bo) 606 return 0; 607 608 amdgpu_vm_eviction_unlock(vm); 609 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 610 amdgpu_vm_eviction_lock(vm); 611 if (r) 612 return r; 613 614 /* Keep a reference to the root directory to avoid 615 * freeing them up in the wrong order. 616 */ 617 pt_bo = &pt->bo; 618 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 619 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 620 r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); 621 if (r) 622 goto error_free_pt; 623 624 return 0; 625 626 error_free_pt: 627 amdgpu_bo_unref(&pt->shadow); 628 amdgpu_bo_unref(&pt_bo); 629 return r; 630 } 631 632 /** 633 * amdgpu_vm_pt_free - free one PD/PT 634 * 635 * @entry: PDE to free 636 */ 637 static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) 638 { 639 struct amdgpu_bo *shadow; 640 641 if (!entry->bo) 642 return; 643 shadow = amdgpu_bo_shadowed(entry->bo); 644 if (shadow) { 645 ttm_bo_set_bulk_move(&shadow->tbo, NULL); 646 amdgpu_bo_unref(&shadow); 647 } 648 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 649 entry->bo->vm_bo = NULL; 650 651 spin_lock(&entry->vm->status_lock); 652 list_del(&entry->vm_status); 653 spin_unlock(&entry->vm->status_lock); 654 amdgpu_bo_unref(&entry->bo); 655 } 656 657 void amdgpu_vm_pt_free_work(struct work_struct *work) 658 { 659 struct amdgpu_vm_bo_base *entry, *next; 660 struct amdgpu_vm *vm; 661 LIST_HEAD(pt_freed); 662 663 vm = container_of(work, struct amdgpu_vm, pt_free_work); 664 665 spin_lock(&vm->status_lock); 666 list_splice_init(&vm->pt_freed, &pt_freed); 667 spin_unlock(&vm->status_lock); 668 669 /* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */ 670 amdgpu_bo_reserve(vm->root.bo, true); 671 672 list_for_each_entry_safe(entry, next, &pt_freed, vm_status) 673 amdgpu_vm_pt_free(entry); 674 675 amdgpu_bo_unreserve(vm->root.bo); 676 } 677 678 /** 679 * amdgpu_vm_pt_free_dfs - free PD/PT levels 680 * 681 * @adev: amdgpu device structure 682 * @vm: amdgpu vm structure 683 * @start: optional cursor where to start freeing PDs/PTs 684 * @unlocked: vm resv unlock status 685 * 686 * Free the page directory or page table level and all sub levels. 687 */ 688 static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev, 689 struct amdgpu_vm *vm, 690 struct amdgpu_vm_pt_cursor *start, 691 bool unlocked) 692 { 693 struct amdgpu_vm_pt_cursor cursor; 694 struct amdgpu_vm_bo_base *entry; 695 696 if (unlocked) { 697 spin_lock(&vm->status_lock); 698 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 699 list_move(&entry->vm_status, &vm->pt_freed); 700 701 if (start) 702 list_move(&start->entry->vm_status, &vm->pt_freed); 703 spin_unlock(&vm->status_lock); 704 schedule_work(&vm->pt_free_work); 705 return; 706 } 707 708 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 709 amdgpu_vm_pt_free(entry); 710 711 if (start) 712 amdgpu_vm_pt_free(start->entry); 713 } 714 715 /** 716 * amdgpu_vm_pt_free_root - free root PD 717 * @adev: amdgpu device structure 718 * @vm: amdgpu vm structure 719 * 720 * Free the root page directory and everything below it. 721 */ 722 void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) 723 { 724 amdgpu_vm_pt_free_dfs(adev, vm, NULL, false); 725 } 726 727 /** 728 * amdgpu_vm_pt_is_root_clean - check if a root PD is clean 729 * 730 * @adev: amdgpu_device pointer 731 * @vm: the VM to check 732 * 733 * Check all entries of the root PD, if any subsequent PDs are allocated, 734 * it means there are page table creating and filling, and is no a clean 735 * VM 736 * 737 * Returns: 738 * 0 if this VM is clean 739 */ 740 bool amdgpu_vm_pt_is_root_clean(struct amdgpu_device *adev, 741 struct amdgpu_vm *vm) 742 { 743 enum amdgpu_vm_level root = adev->vm_manager.root_level; 744 unsigned int entries = amdgpu_vm_pt_num_entries(adev, root); 745 unsigned int i = 0; 746 747 for (i = 0; i < entries; i++) { 748 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 749 return false; 750 } 751 return true; 752 } 753 754 /** 755 * amdgpu_vm_pde_update - update a single level in the hierarchy 756 * 757 * @params: parameters for the update 758 * @entry: entry to update 759 * 760 * Makes sure the requested entry in parent is up to date. 761 */ 762 int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, 763 struct amdgpu_vm_bo_base *entry) 764 { 765 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 766 struct amdgpu_bo *bo = parent->bo, *pbo; 767 struct amdgpu_vm *vm = params->vm; 768 uint64_t pde, pt, flags; 769 unsigned int level; 770 771 for (level = 0, pbo = bo->parent; pbo; ++level) 772 pbo = pbo->parent; 773 774 level += params->adev->vm_manager.root_level; 775 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 776 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 777 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 778 1, 0, flags); 779 } 780 781 /* 782 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates 783 * 784 * Make sure to set the right flags for the PTEs at the desired level. 785 */ 786 static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, 787 struct amdgpu_bo_vm *pt, 788 unsigned int level, 789 uint64_t pe, uint64_t addr, 790 unsigned int count, uint32_t incr, 791 uint64_t flags) 792 { 793 struct amdgpu_device *adev = params->adev; 794 795 if (level != AMDGPU_VM_PTB) { 796 flags |= AMDGPU_PDE_PTE; 797 amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags); 798 799 } else if (adev->asic_type >= CHIP_VEGA10 && 800 !(flags & AMDGPU_PTE_VALID) && 801 !(flags & AMDGPU_PTE_PRT)) { 802 803 /* Workaround for fault priority problem on GMC9 */ 804 flags |= AMDGPU_PTE_EXECUTABLE; 805 } 806 807 /* APUs mapping system memory may need different MTYPEs on different 808 * NUMA nodes. Only do this for contiguous ranges that can be assumed 809 * to be on the same NUMA node. 810 */ 811 if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) && 812 adev->gmc.gmc_funcs->override_vm_pte_flags && 813 num_possible_nodes() > 1) { 814 if (!params->pages_addr) 815 amdgpu_gmc_override_vm_pte_flags(adev, params->vm, 816 addr, &flags); 817 else 818 dev_dbg(adev->dev, 819 "override_vm_pte_flags skipped: non-contiguous\n"); 820 } 821 822 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 823 flags); 824 } 825 826 /** 827 * amdgpu_vm_pte_fragment - get fragment for PTEs 828 * 829 * @params: see amdgpu_vm_update_params definition 830 * @start: first PTE to handle 831 * @end: last PTE to handle 832 * @flags: hw mapping flags 833 * @frag: resulting fragment size 834 * @frag_end: end of this fragment 835 * 836 * Returns the first possible fragment for the start and end address. 837 */ 838 static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, 839 uint64_t start, uint64_t end, uint64_t flags, 840 unsigned int *frag, uint64_t *frag_end) 841 { 842 /** 843 * The MC L1 TLB supports variable sized pages, based on a fragment 844 * field in the PTE. When this field is set to a non-zero value, page 845 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 846 * flags are considered valid for all PTEs within the fragment range 847 * and corresponding mappings are assumed to be physically contiguous. 848 * 849 * The L1 TLB can store a single PTE for the whole fragment, 850 * significantly increasing the space available for translation 851 * caching. This leads to large improvements in throughput when the 852 * TLB is under pressure. 853 * 854 * The L2 TLB distributes small and large fragments into two 855 * asymmetric partitions. The large fragment cache is significantly 856 * larger. Thus, we try to use large fragments wherever possible. 857 * Userspace can support this by aligning virtual base address and 858 * allocation size to the fragment size. 859 * 860 * Starting with Vega10 the fragment size only controls the L1. The L2 861 * is now directly feed with small/huge/giant pages from the walker. 862 */ 863 unsigned int max_frag; 864 865 if (params->adev->asic_type < CHIP_VEGA10) 866 max_frag = params->adev->vm_manager.fragment_size; 867 else 868 max_frag = 31; 869 870 /* system pages are non continuously */ 871 if (params->pages_addr) { 872 *frag = 0; 873 *frag_end = end; 874 return; 875 } 876 877 /* This intentionally wraps around if no bit is set */ 878 *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); 879 if (*frag >= max_frag) { 880 *frag = max_frag; 881 *frag_end = end & ~((1ULL << max_frag) - 1); 882 } else { 883 *frag_end = start + (1 << *frag); 884 } 885 } 886 887 /** 888 * amdgpu_vm_ptes_update - make sure that page tables are valid 889 * 890 * @params: see amdgpu_vm_update_params definition 891 * @start: start of GPU address range 892 * @end: end of GPU address range 893 * @dst: destination address to map to, the next dst inside the function 894 * @flags: mapping flags 895 * 896 * Update the page tables in the range @start - @end. 897 * 898 * Returns: 899 * 0 for success, -EINVAL for failure. 900 */ 901 int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, 902 uint64_t start, uint64_t end, 903 uint64_t dst, uint64_t flags) 904 { 905 struct amdgpu_device *adev = params->adev; 906 struct amdgpu_vm_pt_cursor cursor; 907 uint64_t frag_start = start, frag_end; 908 unsigned int frag; 909 int r; 910 911 /* figure out the initial fragment */ 912 amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, 913 &frag_end); 914 915 /* walk over the address space and update the PTs */ 916 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 917 while (cursor.pfn < end) { 918 unsigned int shift, parent_shift, mask; 919 uint64_t incr, entry_end, pe_start; 920 struct amdgpu_bo *pt; 921 922 if (!params->unlocked) { 923 /* make sure that the page tables covering the 924 * address range are actually allocated 925 */ 926 r = amdgpu_vm_pt_alloc(params->adev, params->vm, 927 &cursor, params->immediate); 928 if (r) 929 return r; 930 } 931 932 shift = amdgpu_vm_pt_level_shift(adev, cursor.level); 933 parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); 934 if (params->unlocked) { 935 /* Unlocked updates are only allowed on the leaves */ 936 if (amdgpu_vm_pt_descendant(adev, &cursor)) 937 continue; 938 } else if (adev->asic_type < CHIP_VEGA10 && 939 (flags & AMDGPU_PTE_VALID)) { 940 /* No huge page support before GMC v9 */ 941 if (cursor.level != AMDGPU_VM_PTB) { 942 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 943 return -ENOENT; 944 continue; 945 } 946 } else if (frag < shift) { 947 /* We can't use this level when the fragment size is 948 * smaller than the address shift. Go to the next 949 * child entry and try again. 950 */ 951 if (amdgpu_vm_pt_descendant(adev, &cursor)) 952 continue; 953 } else if (frag >= parent_shift) { 954 /* If the fragment size is even larger than the parent 955 * shift we should go up one level and check it again. 956 */ 957 if (!amdgpu_vm_pt_ancestor(&cursor)) 958 return -EINVAL; 959 continue; 960 } 961 962 pt = cursor.entry->bo; 963 if (!pt) { 964 /* We need all PDs and PTs for mapping something, */ 965 if (flags & AMDGPU_PTE_VALID) 966 return -ENOENT; 967 968 /* but unmapping something can happen at a higher 969 * level. 970 */ 971 if (!amdgpu_vm_pt_ancestor(&cursor)) 972 return -EINVAL; 973 974 pt = cursor.entry->bo; 975 shift = parent_shift; 976 frag_end = max(frag_end, ALIGN(frag_start + 1, 977 1ULL << shift)); 978 } 979 980 /* Looks good so far, calculate parameters for the update */ 981 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 982 mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); 983 pe_start = ((cursor.pfn >> shift) & mask) * 8; 984 entry_end = ((uint64_t)mask + 1) << shift; 985 entry_end += cursor.pfn & ~(entry_end - 1); 986 entry_end = min(entry_end, end); 987 988 do { 989 struct amdgpu_vm *vm = params->vm; 990 uint64_t upd_end = min(entry_end, frag_end); 991 unsigned int nptes = (upd_end - frag_start) >> shift; 992 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 993 994 /* This can happen when we set higher level PDs to 995 * silent to stop fault floods. 996 */ 997 nptes = max(nptes, 1u); 998 999 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1000 min(nptes, 32u), dst, incr, 1001 upd_flags, 1002 vm->task_info.tgid, 1003 vm->immediate.fence_context); 1004 amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), 1005 cursor.level, pe_start, dst, 1006 nptes, incr, upd_flags); 1007 1008 pe_start += nptes * 8; 1009 dst += nptes * incr; 1010 1011 frag_start = upd_end; 1012 if (frag_start >= frag_end) { 1013 /* figure out the next fragment */ 1014 amdgpu_vm_pte_fragment(params, frag_start, end, 1015 flags, &frag, &frag_end); 1016 if (frag < shift) 1017 break; 1018 } 1019 } while (frag_start < entry_end); 1020 1021 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1022 /* Free all child entries. 1023 * Update the tables with the flags and addresses and free up subsequent 1024 * tables in the case of huge pages or freed up areas. 1025 * This is the maximum you can free, because all other page tables are not 1026 * completely covered by the range and so potentially still in use. 1027 */ 1028 while (cursor.pfn < frag_start) { 1029 /* Make sure previous mapping is freed */ 1030 if (cursor.entry->bo) { 1031 params->table_freed = true; 1032 amdgpu_vm_pt_free_dfs(adev, params->vm, 1033 &cursor, 1034 params->unlocked); 1035 } 1036 amdgpu_vm_pt_next(adev, &cursor); 1037 } 1038 1039 } else if (frag >= shift) { 1040 /* or just move on to the next on the same level. */ 1041 amdgpu_vm_pt_next(adev, &cursor); 1042 } 1043 } 1044 1045 return 0; 1046 } 1047