1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_trace.h" 28 #include "amdgpu_vm.h" 29 30 /* 31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 32 */ 33 struct amdgpu_vm_pt_cursor { 34 uint64_t pfn; 35 struct amdgpu_vm_bo_base *parent; 36 struct amdgpu_vm_bo_base *entry; 37 unsigned int level; 38 }; 39 40 /** 41 * amdgpu_vm_pt_level_shift - return the addr shift for each level 42 * 43 * @adev: amdgpu_device pointer 44 * @level: VMPT level 45 * 46 * Returns: 47 * The number of bits the pfn needs to be right shifted for a level. 48 */ 49 static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, 50 unsigned int level) 51 { 52 switch (level) { 53 case AMDGPU_VM_PDB2: 54 case AMDGPU_VM_PDB1: 55 case AMDGPU_VM_PDB0: 56 return 9 * (AMDGPU_VM_PDB0 - level) + 57 adev->vm_manager.block_size; 58 case AMDGPU_VM_PTB: 59 return 0; 60 default: 61 return ~0; 62 } 63 } 64 65 /** 66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT 67 * 68 * @adev: amdgpu_device pointer 69 * @level: VMPT level 70 * 71 * Returns: 72 * The number of entries in a page directory or page table. 73 */ 74 static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, 75 unsigned int level) 76 { 77 unsigned int shift; 78 79 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 80 if (level == adev->vm_manager.root_level) 81 /* For the root directory */ 82 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 83 >> shift; 84 else if (level != AMDGPU_VM_PTB) 85 /* Everything in between */ 86 return 512; 87 88 /* For the page tables on the leaves */ 89 return AMDGPU_VM_PTE_COUNT(adev); 90 } 91 92 /** 93 * amdgpu_vm_pt_num_ats_entries - return the number of ATS entries in the root PD 94 * 95 * @adev: amdgpu_device pointer 96 * 97 * Returns: 98 * The number of entries in the root page directory which needs the ATS setting. 99 */ 100 static unsigned int amdgpu_vm_pt_num_ats_entries(struct amdgpu_device *adev) 101 { 102 unsigned int shift; 103 104 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 105 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 106 } 107 108 /** 109 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT 110 * 111 * @adev: amdgpu_device pointer 112 * @level: VMPT level 113 * 114 * Returns: 115 * The mask to extract the entry number of a PD/PT from an address. 116 */ 117 static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, 118 unsigned int level) 119 { 120 if (level <= adev->vm_manager.root_level) 121 return 0xffffffff; 122 else if (level != AMDGPU_VM_PTB) 123 return 0x1ff; 124 else 125 return AMDGPU_VM_PTE_COUNT(adev) - 1; 126 } 127 128 /** 129 * amdgpu_vm_pt_size - returns the size of the page table in bytes 130 * 131 * @adev: amdgpu_device pointer 132 * @level: VMPT level 133 * 134 * Returns: 135 * The size of the BO for a page directory or page table in bytes. 136 */ 137 static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, 138 unsigned int level) 139 { 140 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); 141 } 142 143 /** 144 * amdgpu_vm_pt_parent - get the parent page directory 145 * 146 * @pt: child page table 147 * 148 * Helper to get the parent entry for the child page table. NULL if we are at 149 * the root page directory. 150 */ 151 static struct amdgpu_vm_bo_base * 152 amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 153 { 154 struct amdgpu_bo *parent = pt->bo->parent; 155 156 if (!parent) 157 return NULL; 158 159 return parent->vm_bo; 160 } 161 162 /** 163 * amdgpu_vm_pt_start - start PD/PT walk 164 * 165 * @adev: amdgpu_device pointer 166 * @vm: amdgpu_vm structure 167 * @start: start address of the walk 168 * @cursor: state to initialize 169 * 170 * Initialize a amdgpu_vm_pt_cursor to start a walk. 171 */ 172 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 173 struct amdgpu_vm *vm, uint64_t start, 174 struct amdgpu_vm_pt_cursor *cursor) 175 { 176 cursor->pfn = start; 177 cursor->parent = NULL; 178 cursor->entry = &vm->root; 179 cursor->level = adev->vm_manager.root_level; 180 } 181 182 /** 183 * amdgpu_vm_pt_descendant - go to child node 184 * 185 * @adev: amdgpu_device pointer 186 * @cursor: current state 187 * 188 * Walk to the child node of the current node. 189 * Returns: 190 * True if the walk was possible, false otherwise. 191 */ 192 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 193 struct amdgpu_vm_pt_cursor *cursor) 194 { 195 unsigned int mask, shift, idx; 196 197 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 198 !cursor->entry->bo) 199 return false; 200 201 mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); 202 shift = amdgpu_vm_pt_level_shift(adev, cursor->level); 203 204 ++cursor->level; 205 idx = (cursor->pfn >> shift) & mask; 206 cursor->parent = cursor->entry; 207 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 208 return true; 209 } 210 211 /** 212 * amdgpu_vm_pt_sibling - go to sibling node 213 * 214 * @adev: amdgpu_device pointer 215 * @cursor: current state 216 * 217 * Walk to the sibling node of the current node. 218 * Returns: 219 * True if the walk was possible, false otherwise. 220 */ 221 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 222 struct amdgpu_vm_pt_cursor *cursor) 223 { 224 225 unsigned int shift, num_entries; 226 struct amdgpu_bo_vm *parent; 227 228 /* Root doesn't have a sibling */ 229 if (!cursor->parent) 230 return false; 231 232 /* Go to our parents and see if we got a sibling */ 233 shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); 234 num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); 235 parent = to_amdgpu_bo_vm(cursor->parent->bo); 236 237 if (cursor->entry == &parent->entries[num_entries - 1]) 238 return false; 239 240 cursor->pfn += 1ULL << shift; 241 cursor->pfn &= ~((1ULL << shift) - 1); 242 ++cursor->entry; 243 return true; 244 } 245 246 /** 247 * amdgpu_vm_pt_ancestor - go to parent node 248 * 249 * @cursor: current state 250 * 251 * Walk to the parent node of the current node. 252 * Returns: 253 * True if the walk was possible, false otherwise. 254 */ 255 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 256 { 257 if (!cursor->parent) 258 return false; 259 260 --cursor->level; 261 cursor->entry = cursor->parent; 262 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 263 return true; 264 } 265 266 /** 267 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 268 * 269 * @adev: amdgpu_device pointer 270 * @cursor: current state 271 * 272 * Walk the PD/PT tree to the next node. 273 */ 274 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 275 struct amdgpu_vm_pt_cursor *cursor) 276 { 277 /* First try a newborn child */ 278 if (amdgpu_vm_pt_descendant(adev, cursor)) 279 return; 280 281 /* If that didn't worked try to find a sibling */ 282 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 283 /* No sibling, go to our parents and grandparents */ 284 if (!amdgpu_vm_pt_ancestor(cursor)) { 285 cursor->pfn = ~0ll; 286 return; 287 } 288 } 289 } 290 291 /** 292 * amdgpu_vm_pt_first_dfs - start a deep first search 293 * 294 * @adev: amdgpu_device structure 295 * @vm: amdgpu_vm structure 296 * @start: optional cursor to start with 297 * @cursor: state to initialize 298 * 299 * Starts a deep first traversal of the PD/PT tree. 300 */ 301 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 302 struct amdgpu_vm *vm, 303 struct amdgpu_vm_pt_cursor *start, 304 struct amdgpu_vm_pt_cursor *cursor) 305 { 306 if (start) 307 *cursor = *start; 308 else 309 amdgpu_vm_pt_start(adev, vm, 0, cursor); 310 311 while (amdgpu_vm_pt_descendant(adev, cursor)) 312 ; 313 } 314 315 /** 316 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 317 * 318 * @start: starting point for the search 319 * @entry: current entry 320 * 321 * Returns: 322 * True when the search should continue, false otherwise. 323 */ 324 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 325 struct amdgpu_vm_bo_base *entry) 326 { 327 return entry && (!start || entry != start->entry); 328 } 329 330 /** 331 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 332 * 333 * @adev: amdgpu_device structure 334 * @cursor: current state 335 * 336 * Move the cursor to the next node in a deep first search. 337 */ 338 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 339 struct amdgpu_vm_pt_cursor *cursor) 340 { 341 if (!cursor->entry) 342 return; 343 344 if (!cursor->parent) 345 cursor->entry = NULL; 346 else if (amdgpu_vm_pt_sibling(adev, cursor)) 347 while (amdgpu_vm_pt_descendant(adev, cursor)) 348 ; 349 else 350 amdgpu_vm_pt_ancestor(cursor); 351 } 352 353 /* 354 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 355 */ 356 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 357 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 358 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 359 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 360 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 361 362 /** 363 * amdgpu_vm_pt_clear - initially clear the PDs/PTs 364 * 365 * @adev: amdgpu_device pointer 366 * @vm: VM to clear BO from 367 * @vmbo: BO to clear 368 * @immediate: use an immediate update 369 * 370 * Root PD needs to be reserved when calling this. 371 * 372 * Returns: 373 * 0 on success, errno otherwise. 374 */ 375 int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, 376 struct amdgpu_bo_vm *vmbo, bool immediate) 377 { 378 unsigned int level = adev->vm_manager.root_level; 379 struct ttm_operation_ctx ctx = { true, false }; 380 struct amdgpu_vm_update_params params; 381 struct amdgpu_bo *ancestor = &vmbo->bo; 382 unsigned int entries, ats_entries; 383 struct amdgpu_bo *bo = &vmbo->bo; 384 uint64_t addr; 385 int r, idx; 386 387 /* Figure out our place in the hierarchy */ 388 if (ancestor->parent) { 389 ++level; 390 while (ancestor->parent->parent) { 391 ++level; 392 ancestor = ancestor->parent; 393 } 394 } 395 396 entries = amdgpu_bo_size(bo) / 8; 397 if (!vm->pte_support_ats) { 398 ats_entries = 0; 399 400 } else if (!bo->parent) { 401 ats_entries = amdgpu_vm_pt_num_ats_entries(adev); 402 ats_entries = min(ats_entries, entries); 403 entries -= ats_entries; 404 405 } else { 406 struct amdgpu_vm_bo_base *pt; 407 408 pt = ancestor->vm_bo; 409 ats_entries = amdgpu_vm_pt_num_ats_entries(adev); 410 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= 411 ats_entries) { 412 ats_entries = 0; 413 } else { 414 ats_entries = entries; 415 entries = 0; 416 } 417 } 418 419 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 420 if (r) 421 return r; 422 423 if (vmbo->shadow) { 424 struct amdgpu_bo *shadow = vmbo->shadow; 425 426 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 427 if (r) 428 return r; 429 } 430 431 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 432 return -ENODEV; 433 434 r = vm->update_funcs->map_table(vmbo); 435 if (r) 436 goto exit; 437 438 memset(¶ms, 0, sizeof(params)); 439 params.adev = adev; 440 params.vm = vm; 441 params.immediate = immediate; 442 443 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 444 if (r) 445 goto exit; 446 447 addr = 0; 448 if (ats_entries) { 449 uint64_t value = 0, flags; 450 451 flags = AMDGPU_PTE_DEFAULT_ATC; 452 if (level != AMDGPU_VM_PTB) { 453 /* Handle leaf PDEs as PTEs */ 454 flags |= AMDGPU_PDE_PTE; 455 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 456 } 457 458 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, 459 ats_entries, value, flags); 460 if (r) 461 goto exit; 462 463 addr += ats_entries * 8; 464 } 465 466 if (entries) { 467 uint64_t value = 0, flags = 0; 468 469 if (adev->asic_type >= CHIP_VEGA10) { 470 if (level != AMDGPU_VM_PTB) { 471 /* Handle leaf PDEs as PTEs */ 472 flags |= AMDGPU_PDE_PTE; 473 amdgpu_gmc_get_vm_pde(adev, level, 474 &value, &flags); 475 } else { 476 /* Workaround for fault priority problem on GMC9 */ 477 flags = AMDGPU_PTE_EXECUTABLE; 478 } 479 } 480 481 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 482 value, flags); 483 if (r) 484 goto exit; 485 } 486 487 r = vm->update_funcs->commit(¶ms, NULL); 488 exit: 489 drm_dev_exit(idx); 490 return r; 491 } 492 493 /** 494 * amdgpu_vm_pt_create - create bo for PD/PT 495 * 496 * @adev: amdgpu_device pointer 497 * @vm: requesting vm 498 * @level: the page table level 499 * @immediate: use a immediate update 500 * @vmbo: pointer to the buffer object pointer 501 * @xcp_id: GPU partition id 502 */ 503 int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, 504 int level, bool immediate, struct amdgpu_bo_vm **vmbo, 505 int32_t xcp_id) 506 { 507 struct amdgpu_bo_param bp; 508 struct amdgpu_bo *bo; 509 struct dma_resv *resv; 510 unsigned int num_entries; 511 int r; 512 513 memset(&bp, 0, sizeof(bp)); 514 515 bp.size = amdgpu_vm_pt_size(adev, level); 516 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 517 518 if (!adev->gmc.is_app_apu) 519 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 520 else 521 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 522 523 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 524 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 525 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 526 527 if (level < AMDGPU_VM_PTB) 528 num_entries = amdgpu_vm_pt_num_entries(adev, level); 529 else 530 num_entries = 0; 531 532 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 533 534 if (vm->use_cpu_for_update) 535 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 536 537 bp.type = ttm_bo_type_kernel; 538 bp.no_wait_gpu = immediate; 539 bp.xcp_id_plus1 = xcp_id + 1; 540 541 if (vm->root.bo) 542 bp.resv = vm->root.bo->tbo.base.resv; 543 544 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 545 if (r) 546 return r; 547 548 bo = &(*vmbo)->bo; 549 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 550 (*vmbo)->shadow = NULL; 551 return 0; 552 } 553 554 if (!bp.resv) 555 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 556 NULL)); 557 resv = bp.resv; 558 memset(&bp, 0, sizeof(bp)); 559 bp.size = amdgpu_vm_pt_size(adev, level); 560 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 561 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 562 bp.type = ttm_bo_type_kernel; 563 bp.resv = bo->tbo.base.resv; 564 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 565 bp.xcp_id_plus1 = xcp_id + 1; 566 567 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 568 569 if (!resv) 570 dma_resv_unlock(bo->tbo.base.resv); 571 572 if (r) { 573 amdgpu_bo_unref(&bo); 574 return r; 575 } 576 577 amdgpu_bo_add_to_shadow_list(*vmbo); 578 579 return 0; 580 } 581 582 /** 583 * amdgpu_vm_pt_alloc - Allocate a specific page table 584 * 585 * @adev: amdgpu_device pointer 586 * @vm: VM to allocate page tables for 587 * @cursor: Which page table to allocate 588 * @immediate: use an immediate update 589 * 590 * Make sure a specific page table or directory is allocated. 591 * 592 * Returns: 593 * 1 if page table needed to be allocated, 0 if page table was already 594 * allocated, negative errno if an error occurred. 595 */ 596 static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, 597 struct amdgpu_vm *vm, 598 struct amdgpu_vm_pt_cursor *cursor, 599 bool immediate) 600 { 601 struct amdgpu_vm_bo_base *entry = cursor->entry; 602 struct amdgpu_bo *pt_bo; 603 struct amdgpu_bo_vm *pt; 604 int r; 605 606 if (entry->bo) 607 return 0; 608 609 amdgpu_vm_eviction_unlock(vm); 610 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt, 611 vm->root.bo->xcp_id); 612 amdgpu_vm_eviction_lock(vm); 613 if (r) 614 return r; 615 616 /* Keep a reference to the root directory to avoid 617 * freeing them up in the wrong order. 618 */ 619 pt_bo = &pt->bo; 620 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 621 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 622 r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); 623 if (r) 624 goto error_free_pt; 625 626 return 0; 627 628 error_free_pt: 629 amdgpu_bo_unref(&pt->shadow); 630 amdgpu_bo_unref(&pt_bo); 631 return r; 632 } 633 634 /** 635 * amdgpu_vm_pt_free - free one PD/PT 636 * 637 * @entry: PDE to free 638 */ 639 static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) 640 { 641 struct amdgpu_bo *shadow; 642 643 if (!entry->bo) 644 return; 645 646 entry->bo->vm_bo = NULL; 647 shadow = amdgpu_bo_shadowed(entry->bo); 648 if (shadow) { 649 ttm_bo_set_bulk_move(&shadow->tbo, NULL); 650 amdgpu_bo_unref(&shadow); 651 } 652 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 653 654 spin_lock(&entry->vm->status_lock); 655 list_del(&entry->vm_status); 656 spin_unlock(&entry->vm->status_lock); 657 amdgpu_bo_unref(&entry->bo); 658 } 659 660 void amdgpu_vm_pt_free_work(struct work_struct *work) 661 { 662 struct amdgpu_vm_bo_base *entry, *next; 663 struct amdgpu_vm *vm; 664 LIST_HEAD(pt_freed); 665 666 vm = container_of(work, struct amdgpu_vm, pt_free_work); 667 668 spin_lock(&vm->status_lock); 669 list_splice_init(&vm->pt_freed, &pt_freed); 670 spin_unlock(&vm->status_lock); 671 672 /* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */ 673 amdgpu_bo_reserve(vm->root.bo, true); 674 675 list_for_each_entry_safe(entry, next, &pt_freed, vm_status) 676 amdgpu_vm_pt_free(entry); 677 678 amdgpu_bo_unreserve(vm->root.bo); 679 } 680 681 /** 682 * amdgpu_vm_pt_free_dfs - free PD/PT levels 683 * 684 * @adev: amdgpu device structure 685 * @vm: amdgpu vm structure 686 * @start: optional cursor where to start freeing PDs/PTs 687 * @unlocked: vm resv unlock status 688 * 689 * Free the page directory or page table level and all sub levels. 690 */ 691 static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev, 692 struct amdgpu_vm *vm, 693 struct amdgpu_vm_pt_cursor *start, 694 bool unlocked) 695 { 696 struct amdgpu_vm_pt_cursor cursor; 697 struct amdgpu_vm_bo_base *entry; 698 699 if (unlocked) { 700 spin_lock(&vm->status_lock); 701 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 702 list_move(&entry->vm_status, &vm->pt_freed); 703 704 if (start) 705 list_move(&start->entry->vm_status, &vm->pt_freed); 706 spin_unlock(&vm->status_lock); 707 schedule_work(&vm->pt_free_work); 708 return; 709 } 710 711 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 712 amdgpu_vm_pt_free(entry); 713 714 if (start) 715 amdgpu_vm_pt_free(start->entry); 716 } 717 718 /** 719 * amdgpu_vm_pt_free_root - free root PD 720 * @adev: amdgpu device structure 721 * @vm: amdgpu vm structure 722 * 723 * Free the root page directory and everything below it. 724 */ 725 void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) 726 { 727 amdgpu_vm_pt_free_dfs(adev, vm, NULL, false); 728 } 729 730 /** 731 * amdgpu_vm_pt_is_root_clean - check if a root PD is clean 732 * 733 * @adev: amdgpu_device pointer 734 * @vm: the VM to check 735 * 736 * Check all entries of the root PD, if any subsequent PDs are allocated, 737 * it means there are page table creating and filling, and is no a clean 738 * VM 739 * 740 * Returns: 741 * 0 if this VM is clean 742 */ 743 bool amdgpu_vm_pt_is_root_clean(struct amdgpu_device *adev, 744 struct amdgpu_vm *vm) 745 { 746 enum amdgpu_vm_level root = adev->vm_manager.root_level; 747 unsigned int entries = amdgpu_vm_pt_num_entries(adev, root); 748 unsigned int i = 0; 749 750 for (i = 0; i < entries; i++) { 751 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 752 return false; 753 } 754 return true; 755 } 756 757 /** 758 * amdgpu_vm_pde_update - update a single level in the hierarchy 759 * 760 * @params: parameters for the update 761 * @entry: entry to update 762 * 763 * Makes sure the requested entry in parent is up to date. 764 */ 765 int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, 766 struct amdgpu_vm_bo_base *entry) 767 { 768 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 769 struct amdgpu_bo *bo, *pbo; 770 struct amdgpu_vm *vm = params->vm; 771 uint64_t pde, pt, flags; 772 unsigned int level; 773 774 if (WARN_ON(!parent)) 775 return -EINVAL; 776 777 bo = parent->bo; 778 for (level = 0, pbo = bo->parent; pbo; ++level) 779 pbo = pbo->parent; 780 781 level += params->adev->vm_manager.root_level; 782 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 783 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 784 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 785 1, 0, flags); 786 } 787 788 /** 789 * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags 790 * 791 * @adev: amdgpu_device pointer 792 * @flags: pointer to PTE flags 793 * 794 * Update PTE no-retry flags when TF is enabled. 795 */ 796 static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev, 797 uint64_t *flags) 798 { 799 /* 800 * Update no-retry flags with the corresponding TF 801 * no-retry combination. 802 */ 803 if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) { 804 *flags &= ~AMDGPU_VM_NORETRY_FLAGS; 805 *flags |= adev->gmc.noretry_flags; 806 } 807 } 808 809 /* 810 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates 811 * 812 * Make sure to set the right flags for the PTEs at the desired level. 813 */ 814 static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, 815 struct amdgpu_bo_vm *pt, 816 unsigned int level, 817 uint64_t pe, uint64_t addr, 818 unsigned int count, uint32_t incr, 819 uint64_t flags) 820 { 821 struct amdgpu_device *adev = params->adev; 822 823 if (level != AMDGPU_VM_PTB) { 824 flags |= AMDGPU_PDE_PTE; 825 amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags); 826 827 } else if (adev->asic_type >= CHIP_VEGA10 && 828 !(flags & AMDGPU_PTE_VALID) && 829 !(flags & AMDGPU_PTE_PRT)) { 830 831 /* Workaround for fault priority problem on GMC9 */ 832 flags |= AMDGPU_PTE_EXECUTABLE; 833 } 834 835 /* 836 * Update no-retry flags to use the no-retry flag combination 837 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination 838 * does not work when TF is enabled. So, replace them with 839 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for 840 * all cases. 841 */ 842 if (level == AMDGPU_VM_PTB) 843 amdgpu_vm_pte_update_noretry_flags(adev, &flags); 844 845 /* APUs mapping system memory may need different MTYPEs on different 846 * NUMA nodes. Only do this for contiguous ranges that can be assumed 847 * to be on the same NUMA node. 848 */ 849 if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) && 850 adev->gmc.gmc_funcs->override_vm_pte_flags && 851 num_possible_nodes() > 1) { 852 if (!params->pages_addr) 853 amdgpu_gmc_override_vm_pte_flags(adev, params->vm, 854 addr, &flags); 855 else 856 dev_dbg(adev->dev, 857 "override_vm_pte_flags skipped: non-contiguous\n"); 858 } 859 860 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 861 flags); 862 } 863 864 /** 865 * amdgpu_vm_pte_fragment - get fragment for PTEs 866 * 867 * @params: see amdgpu_vm_update_params definition 868 * @start: first PTE to handle 869 * @end: last PTE to handle 870 * @flags: hw mapping flags 871 * @frag: resulting fragment size 872 * @frag_end: end of this fragment 873 * 874 * Returns the first possible fragment for the start and end address. 875 */ 876 static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, 877 uint64_t start, uint64_t end, uint64_t flags, 878 unsigned int *frag, uint64_t *frag_end) 879 { 880 /** 881 * The MC L1 TLB supports variable sized pages, based on a fragment 882 * field in the PTE. When this field is set to a non-zero value, page 883 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 884 * flags are considered valid for all PTEs within the fragment range 885 * and corresponding mappings are assumed to be physically contiguous. 886 * 887 * The L1 TLB can store a single PTE for the whole fragment, 888 * significantly increasing the space available for translation 889 * caching. This leads to large improvements in throughput when the 890 * TLB is under pressure. 891 * 892 * The L2 TLB distributes small and large fragments into two 893 * asymmetric partitions. The large fragment cache is significantly 894 * larger. Thus, we try to use large fragments wherever possible. 895 * Userspace can support this by aligning virtual base address and 896 * allocation size to the fragment size. 897 * 898 * Starting with Vega10 the fragment size only controls the L1. The L2 899 * is now directly feed with small/huge/giant pages from the walker. 900 */ 901 unsigned int max_frag; 902 903 if (params->adev->asic_type < CHIP_VEGA10) 904 max_frag = params->adev->vm_manager.fragment_size; 905 else 906 max_frag = 31; 907 908 /* system pages are non continuously */ 909 if (params->pages_addr) { 910 *frag = 0; 911 *frag_end = end; 912 return; 913 } 914 915 /* This intentionally wraps around if no bit is set */ 916 *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); 917 if (*frag >= max_frag) { 918 *frag = max_frag; 919 *frag_end = end & ~((1ULL << max_frag) - 1); 920 } else { 921 *frag_end = start + (1 << *frag); 922 } 923 } 924 925 /** 926 * amdgpu_vm_ptes_update - make sure that page tables are valid 927 * 928 * @params: see amdgpu_vm_update_params definition 929 * @start: start of GPU address range 930 * @end: end of GPU address range 931 * @dst: destination address to map to, the next dst inside the function 932 * @flags: mapping flags 933 * 934 * Update the page tables in the range @start - @end. 935 * 936 * Returns: 937 * 0 for success, -EINVAL for failure. 938 */ 939 int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, 940 uint64_t start, uint64_t end, 941 uint64_t dst, uint64_t flags) 942 { 943 struct amdgpu_device *adev = params->adev; 944 struct amdgpu_vm_pt_cursor cursor; 945 uint64_t frag_start = start, frag_end; 946 unsigned int frag; 947 int r; 948 949 /* figure out the initial fragment */ 950 amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, 951 &frag_end); 952 953 /* walk over the address space and update the PTs */ 954 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 955 while (cursor.pfn < end) { 956 unsigned int shift, parent_shift, mask; 957 uint64_t incr, entry_end, pe_start; 958 struct amdgpu_bo *pt; 959 960 if (!params->unlocked) { 961 /* make sure that the page tables covering the 962 * address range are actually allocated 963 */ 964 r = amdgpu_vm_pt_alloc(params->adev, params->vm, 965 &cursor, params->immediate); 966 if (r) 967 return r; 968 } 969 970 shift = amdgpu_vm_pt_level_shift(adev, cursor.level); 971 parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); 972 if (params->unlocked) { 973 /* Unlocked updates are only allowed on the leaves */ 974 if (amdgpu_vm_pt_descendant(adev, &cursor)) 975 continue; 976 } else if (adev->asic_type < CHIP_VEGA10 && 977 (flags & AMDGPU_PTE_VALID)) { 978 /* No huge page support before GMC v9 */ 979 if (cursor.level != AMDGPU_VM_PTB) { 980 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 981 return -ENOENT; 982 continue; 983 } 984 } else if (frag < shift) { 985 /* We can't use this level when the fragment size is 986 * smaller than the address shift. Go to the next 987 * child entry and try again. 988 */ 989 if (amdgpu_vm_pt_descendant(adev, &cursor)) 990 continue; 991 } else if (frag >= parent_shift) { 992 /* If the fragment size is even larger than the parent 993 * shift we should go up one level and check it again. 994 */ 995 if (!amdgpu_vm_pt_ancestor(&cursor)) 996 return -EINVAL; 997 continue; 998 } 999 1000 pt = cursor.entry->bo; 1001 if (!pt) { 1002 /* We need all PDs and PTs for mapping something, */ 1003 if (flags & AMDGPU_PTE_VALID) 1004 return -ENOENT; 1005 1006 /* but unmapping something can happen at a higher 1007 * level. 1008 */ 1009 if (!amdgpu_vm_pt_ancestor(&cursor)) 1010 return -EINVAL; 1011 1012 pt = cursor.entry->bo; 1013 shift = parent_shift; 1014 frag_end = max(frag_end, ALIGN(frag_start + 1, 1015 1ULL << shift)); 1016 } 1017 1018 /* Looks good so far, calculate parameters for the update */ 1019 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1020 mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); 1021 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1022 entry_end = ((uint64_t)mask + 1) << shift; 1023 entry_end += cursor.pfn & ~(entry_end - 1); 1024 entry_end = min(entry_end, end); 1025 1026 do { 1027 struct amdgpu_vm *vm = params->vm; 1028 uint64_t upd_end = min(entry_end, frag_end); 1029 unsigned int nptes = (upd_end - frag_start) >> shift; 1030 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1031 1032 /* This can happen when we set higher level PDs to 1033 * silent to stop fault floods. 1034 */ 1035 nptes = max(nptes, 1u); 1036 1037 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1038 min(nptes, 32u), dst, incr, 1039 upd_flags, 1040 vm->task_info.tgid, 1041 vm->immediate.fence_context); 1042 amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), 1043 cursor.level, pe_start, dst, 1044 nptes, incr, upd_flags); 1045 1046 pe_start += nptes * 8; 1047 dst += nptes * incr; 1048 1049 frag_start = upd_end; 1050 if (frag_start >= frag_end) { 1051 /* figure out the next fragment */ 1052 amdgpu_vm_pte_fragment(params, frag_start, end, 1053 flags, &frag, &frag_end); 1054 if (frag < shift) 1055 break; 1056 } 1057 } while (frag_start < entry_end); 1058 1059 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1060 /* Free all child entries. 1061 * Update the tables with the flags and addresses and free up subsequent 1062 * tables in the case of huge pages or freed up areas. 1063 * This is the maximum you can free, because all other page tables are not 1064 * completely covered by the range and so potentially still in use. 1065 */ 1066 while (cursor.pfn < frag_start) { 1067 /* Make sure previous mapping is freed */ 1068 if (cursor.entry->bo) { 1069 params->table_freed = true; 1070 amdgpu_vm_pt_free_dfs(adev, params->vm, 1071 &cursor, 1072 params->unlocked); 1073 } 1074 amdgpu_vm_pt_next(adev, &cursor); 1075 } 1076 1077 } else if (frag >= shift) { 1078 /* or just move on to the next on the same level. */ 1079 amdgpu_vm_pt_next(adev, &cursor); 1080 } 1081 } 1082 1083 return 0; 1084 } 1085 1086 /** 1087 * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible 1088 * @adev: amdgpu device structure 1089 * @vm: amdgpu vm structure 1090 * 1091 * make root page directory and everything below it cpu accessible. 1092 */ 1093 int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1094 { 1095 struct amdgpu_vm_pt_cursor cursor; 1096 struct amdgpu_vm_bo_base *entry; 1097 1098 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 1099 1100 struct amdgpu_bo_vm *bo; 1101 int r; 1102 1103 if (entry->bo) { 1104 bo = to_amdgpu_bo_vm(entry->bo); 1105 r = vm->update_funcs->map_table(bo); 1106 if (r) 1107 return r; 1108 } 1109 } 1110 1111 return 0; 1112 } 1113