1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_level_shift - return the addr shift for each level 138 * 139 * @adev: amdgpu_device pointer 140 * @level: VMPT level 141 * 142 * Returns: 143 * The number of bits the pfn needs to be right shifted for a level. 144 */ 145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 146 unsigned level) 147 { 148 unsigned shift = 0xff; 149 150 switch (level) { 151 case AMDGPU_VM_PDB2: 152 case AMDGPU_VM_PDB1: 153 case AMDGPU_VM_PDB0: 154 shift = 9 * (AMDGPU_VM_PDB0 - level) + 155 adev->vm_manager.block_size; 156 break; 157 case AMDGPU_VM_PTB: 158 shift = 0; 159 break; 160 default: 161 dev_err(adev->dev, "the level%d isn't supported.\n", level); 162 } 163 164 return shift; 165 } 166 167 /** 168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 169 * 170 * @adev: amdgpu_device pointer 171 * @level: VMPT level 172 * 173 * Returns: 174 * The number of entries in a page directory or page table. 175 */ 176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 177 unsigned level) 178 { 179 unsigned shift = amdgpu_vm_level_shift(adev, 180 adev->vm_manager.root_level); 181 182 if (level == adev->vm_manager.root_level) 183 /* For the root directory */ 184 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 185 else if (level != AMDGPU_VM_PTB) 186 /* Everything in between */ 187 return 512; 188 else 189 /* For the page tables on the leaves */ 190 return AMDGPU_VM_PTE_COUNT(adev); 191 } 192 193 /** 194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 195 * 196 * @adev: amdgpu_device pointer 197 * @level: VMPT level 198 * 199 * Returns: 200 * The mask to extract the entry number of a PD/PT from an address. 201 */ 202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 203 unsigned int level) 204 { 205 if (level <= adev->vm_manager.root_level) 206 return 0xffffffff; 207 else if (level != AMDGPU_VM_PTB) 208 return 0x1ff; 209 else 210 return AMDGPU_VM_PTE_COUNT(adev) - 1; 211 } 212 213 /** 214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 215 * 216 * @adev: amdgpu_device pointer 217 * @level: VMPT level 218 * 219 * Returns: 220 * The size of the BO for a page directory or page table in bytes. 221 */ 222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 223 { 224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 225 } 226 227 /** 228 * amdgpu_vm_bo_evicted - vm_bo is evicted 229 * 230 * @vm_bo: vm_bo which is evicted 231 * 232 * State for PDs/PTs and per VM BOs which are not at the location they should 233 * be. 234 */ 235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 236 { 237 struct amdgpu_vm *vm = vm_bo->vm; 238 struct amdgpu_bo *bo = vm_bo->bo; 239 240 vm_bo->moved = true; 241 if (bo->tbo.type == ttm_bo_type_kernel) 242 list_move(&vm_bo->vm_status, &vm->evicted); 243 else 244 list_move_tail(&vm_bo->vm_status, &vm->evicted); 245 } 246 247 /** 248 * amdgpu_vm_bo_relocated - vm_bo is reloacted 249 * 250 * @vm_bo: vm_bo which is relocated 251 * 252 * State for PDs/PTs which needs to update their parent PD. 253 */ 254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 255 { 256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 257 } 258 259 /** 260 * amdgpu_vm_bo_moved - vm_bo is moved 261 * 262 * @vm_bo: vm_bo which is moved 263 * 264 * State for per VM BOs which are moved, but that change is not yet reflected 265 * in the page tables. 266 */ 267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 270 } 271 272 /** 273 * amdgpu_vm_bo_idle - vm_bo is idle 274 * 275 * @vm_bo: vm_bo which is now idle 276 * 277 * State for PDs/PTs and per VM BOs which have gone through the state machine 278 * and are now idle. 279 */ 280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 283 vm_bo->moved = false; 284 } 285 286 /** 287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 288 * 289 * @vm_bo: vm_bo which is now invalidated 290 * 291 * State for normal BOs which are invalidated and that change not yet reflected 292 * in the PTs. 293 */ 294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 295 { 296 spin_lock(&vm_bo->vm->invalidated_lock); 297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 298 spin_unlock(&vm_bo->vm->invalidated_lock); 299 } 300 301 /** 302 * amdgpu_vm_bo_done - vm_bo is done 303 * 304 * @vm_bo: vm_bo which is now done 305 * 306 * State for normal BOs which are invalidated and that change has been updated 307 * in the PTs. 308 */ 309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 spin_lock(&vm_bo->vm->invalidated_lock); 312 list_del_init(&vm_bo->vm_status); 313 spin_unlock(&vm_bo->vm->invalidated_lock); 314 } 315 316 /** 317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 318 * 319 * @base: base structure for tracking BO usage in a VM 320 * @vm: vm to which bo is to be added 321 * @bo: amdgpu buffer object 322 * 323 * Initialize a bo_va_base structure and add it to the appropriate lists 324 * 325 */ 326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 327 struct amdgpu_vm *vm, 328 struct amdgpu_bo *bo) 329 { 330 base->vm = vm; 331 base->bo = bo; 332 base->next = NULL; 333 INIT_LIST_HEAD(&base->vm_status); 334 335 if (!bo) 336 return; 337 base->next = bo->vm_bo; 338 bo->vm_bo = base; 339 340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 341 return; 342 343 vm->bulk_moveable = false; 344 if (bo->tbo.type == ttm_bo_type_kernel) 345 amdgpu_vm_bo_relocated(base); 346 else 347 amdgpu_vm_bo_idle(base); 348 349 if (bo->preferred_domains & 350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 351 return; 352 353 /* 354 * we checked all the prerequisites, but it looks like this per vm bo 355 * is currently evicted. add the bo to the evicted list to make sure it 356 * is validated on next vm use to avoid fault. 357 * */ 358 amdgpu_vm_bo_evicted(base); 359 } 360 361 /** 362 * amdgpu_vm_pt_parent - get the parent page directory 363 * 364 * @pt: child page table 365 * 366 * Helper to get the parent entry for the child page table. NULL if we are at 367 * the root page directory. 368 */ 369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 370 { 371 struct amdgpu_bo *parent = pt->base.bo->parent; 372 373 if (!parent) 374 return NULL; 375 376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 377 } 378 379 /** 380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 381 */ 382 struct amdgpu_vm_pt_cursor { 383 uint64_t pfn; 384 struct amdgpu_vm_pt *parent; 385 struct amdgpu_vm_pt *entry; 386 unsigned level; 387 }; 388 389 /** 390 * amdgpu_vm_pt_start - start PD/PT walk 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: amdgpu_vm structure 394 * @start: start address of the walk 395 * @cursor: state to initialize 396 * 397 * Initialize a amdgpu_vm_pt_cursor to start a walk. 398 */ 399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, uint64_t start, 401 struct amdgpu_vm_pt_cursor *cursor) 402 { 403 cursor->pfn = start; 404 cursor->parent = NULL; 405 cursor->entry = &vm->root; 406 cursor->level = adev->vm_manager.root_level; 407 } 408 409 /** 410 * amdgpu_vm_pt_descendant - go to child node 411 * 412 * @adev: amdgpu_device pointer 413 * @cursor: current state 414 * 415 * Walk to the child node of the current node. 416 * Returns: 417 * True if the walk was possible, false otherwise. 418 */ 419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 420 struct amdgpu_vm_pt_cursor *cursor) 421 { 422 unsigned mask, shift, idx; 423 424 if (!cursor->entry->entries) 425 return false; 426 427 BUG_ON(!cursor->entry->base.bo); 428 mask = amdgpu_vm_entries_mask(adev, cursor->level); 429 shift = amdgpu_vm_level_shift(adev, cursor->level); 430 431 ++cursor->level; 432 idx = (cursor->pfn >> shift) & mask; 433 cursor->parent = cursor->entry; 434 cursor->entry = &cursor->entry->entries[idx]; 435 return true; 436 } 437 438 /** 439 * amdgpu_vm_pt_sibling - go to sibling node 440 * 441 * @adev: amdgpu_device pointer 442 * @cursor: current state 443 * 444 * Walk to the sibling node of the current node. 445 * Returns: 446 * True if the walk was possible, false otherwise. 447 */ 448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 449 struct amdgpu_vm_pt_cursor *cursor) 450 { 451 unsigned shift, num_entries; 452 453 /* Root doesn't have a sibling */ 454 if (!cursor->parent) 455 return false; 456 457 /* Go to our parents and see if we got a sibling */ 458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 460 461 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 462 return false; 463 464 cursor->pfn += 1ULL << shift; 465 cursor->pfn &= ~((1ULL << shift) - 1); 466 ++cursor->entry; 467 return true; 468 } 469 470 /** 471 * amdgpu_vm_pt_ancestor - go to parent node 472 * 473 * @cursor: current state 474 * 475 * Walk to the parent node of the current node. 476 * Returns: 477 * True if the walk was possible, false otherwise. 478 */ 479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 480 { 481 if (!cursor->parent) 482 return false; 483 484 --cursor->level; 485 cursor->entry = cursor->parent; 486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 487 return true; 488 } 489 490 /** 491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 492 * 493 * @adev: amdgpu_device pointer 494 * @cursor: current state 495 * 496 * Walk the PD/PT tree to the next node. 497 */ 498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 499 struct amdgpu_vm_pt_cursor *cursor) 500 { 501 /* First try a newborn child */ 502 if (amdgpu_vm_pt_descendant(adev, cursor)) 503 return; 504 505 /* If that didn't worked try to find a sibling */ 506 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 507 /* No sibling, go to our parents and grandparents */ 508 if (!amdgpu_vm_pt_ancestor(cursor)) { 509 cursor->pfn = ~0ll; 510 return; 511 } 512 } 513 } 514 515 /** 516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 517 * 518 * @adev: amdgpu_device pointer 519 * @vm: amdgpu_vm structure 520 * @start: start addr of the walk 521 * @cursor: state to initialize 522 * 523 * Start a walk and go directly to the leaf node. 524 */ 525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 526 struct amdgpu_vm *vm, uint64_t start, 527 struct amdgpu_vm_pt_cursor *cursor) 528 { 529 amdgpu_vm_pt_start(adev, vm, start, cursor); 530 while (amdgpu_vm_pt_descendant(adev, cursor)); 531 } 532 533 /** 534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 535 * 536 * @adev: amdgpu_device pointer 537 * @cursor: current state 538 * 539 * Walk the PD/PT tree to the next leaf node. 540 */ 541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 542 struct amdgpu_vm_pt_cursor *cursor) 543 { 544 amdgpu_vm_pt_next(adev, cursor); 545 while (amdgpu_vm_pt_descendant(adev, cursor)); 546 } 547 548 /** 549 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 550 */ 551 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 552 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 553 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 554 555 /** 556 * amdgpu_vm_pt_first_dfs - start a deep first search 557 * 558 * @adev: amdgpu_device structure 559 * @vm: amdgpu_vm structure 560 * @cursor: state to initialize 561 * 562 * Starts a deep first traversal of the PD/PT tree. 563 */ 564 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 565 struct amdgpu_vm *vm, 566 struct amdgpu_vm_pt_cursor *cursor) 567 { 568 amdgpu_vm_pt_start(adev, vm, 0, cursor); 569 while (amdgpu_vm_pt_descendant(adev, cursor)); 570 } 571 572 /** 573 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 574 * 575 * @adev: amdgpu_device structure 576 * @cursor: current state 577 * 578 * Move the cursor to the next node in a deep first search. 579 */ 580 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 581 struct amdgpu_vm_pt_cursor *cursor) 582 { 583 if (!cursor->entry) 584 return; 585 586 if (!cursor->parent) 587 cursor->entry = NULL; 588 else if (amdgpu_vm_pt_sibling(adev, cursor)) 589 while (amdgpu_vm_pt_descendant(adev, cursor)); 590 else 591 amdgpu_vm_pt_ancestor(cursor); 592 } 593 594 /** 595 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 596 */ 597 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 598 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 599 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 600 (entry); (entry) = (cursor).entry, \ 601 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 602 603 /** 604 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 605 * 606 * @vm: vm providing the BOs 607 * @validated: head of validation list 608 * @entry: entry to add 609 * 610 * Add the page directory to the list of BOs to 611 * validate for command submission. 612 */ 613 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 614 struct list_head *validated, 615 struct amdgpu_bo_list_entry *entry) 616 { 617 entry->priority = 0; 618 entry->tv.bo = &vm->root.base.bo->tbo; 619 entry->tv.shared = true; 620 entry->user_pages = NULL; 621 list_add(&entry->tv.head, validated); 622 } 623 624 /** 625 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 626 * 627 * @adev: amdgpu device pointer 628 * @vm: vm providing the BOs 629 * 630 * Move all BOs to the end of LRU and remember their positions to put them 631 * together. 632 */ 633 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 634 struct amdgpu_vm *vm) 635 { 636 struct ttm_bo_global *glob = adev->mman.bdev.glob; 637 struct amdgpu_vm_bo_base *bo_base; 638 639 if (vm->bulk_moveable) { 640 spin_lock(&glob->lru_lock); 641 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 642 spin_unlock(&glob->lru_lock); 643 return; 644 } 645 646 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 647 648 spin_lock(&glob->lru_lock); 649 list_for_each_entry(bo_base, &vm->idle, vm_status) { 650 struct amdgpu_bo *bo = bo_base->bo; 651 652 if (!bo->parent) 653 continue; 654 655 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 656 if (bo->shadow) 657 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 658 &vm->lru_bulk_move); 659 } 660 spin_unlock(&glob->lru_lock); 661 662 vm->bulk_moveable = true; 663 } 664 665 /** 666 * amdgpu_vm_validate_pt_bos - validate the page table BOs 667 * 668 * @adev: amdgpu device pointer 669 * @vm: vm providing the BOs 670 * @validate: callback to do the validation 671 * @param: parameter for the validation callback 672 * 673 * Validate the page table BOs on command submission if neccessary. 674 * 675 * Returns: 676 * Validation result. 677 */ 678 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 679 int (*validate)(void *p, struct amdgpu_bo *bo), 680 void *param) 681 { 682 struct amdgpu_vm_bo_base *bo_base, *tmp; 683 int r = 0; 684 685 vm->bulk_moveable &= list_empty(&vm->evicted); 686 687 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 688 struct amdgpu_bo *bo = bo_base->bo; 689 690 r = validate(param, bo); 691 if (r) 692 break; 693 694 if (bo->tbo.type != ttm_bo_type_kernel) { 695 amdgpu_vm_bo_moved(bo_base); 696 } else { 697 if (vm->use_cpu_for_update) 698 r = amdgpu_bo_kmap(bo, NULL); 699 else 700 r = amdgpu_ttm_alloc_gart(&bo->tbo); 701 if (r) 702 break; 703 if (bo->shadow) { 704 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 705 if (r) 706 break; 707 } 708 amdgpu_vm_bo_relocated(bo_base); 709 } 710 } 711 712 return r; 713 } 714 715 /** 716 * amdgpu_vm_ready - check VM is ready for updates 717 * 718 * @vm: VM to check 719 * 720 * Check if all VM PDs/PTs are ready for updates 721 * 722 * Returns: 723 * True if eviction list is empty. 724 */ 725 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 726 { 727 return list_empty(&vm->evicted); 728 } 729 730 /** 731 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 732 * 733 * @adev: amdgpu_device pointer 734 * @vm: VM to clear BO from 735 * @bo: BO to clear 736 * @level: level this BO is at 737 * @pte_support_ats: indicate ATS support from PTE 738 * 739 * Root PD needs to be reserved when calling this. 740 * 741 * Returns: 742 * 0 on success, errno otherwise. 743 */ 744 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 745 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 746 unsigned level, bool pte_support_ats) 747 { 748 struct ttm_operation_ctx ctx = { true, false }; 749 struct dma_fence *fence = NULL; 750 unsigned entries, ats_entries; 751 struct amdgpu_ring *ring; 752 struct amdgpu_job *job; 753 uint64_t addr; 754 int r; 755 756 entries = amdgpu_bo_size(bo) / 8; 757 758 if (pte_support_ats) { 759 if (level == adev->vm_manager.root_level) { 760 ats_entries = amdgpu_vm_level_shift(adev, level); 761 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 762 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 763 ats_entries = min(ats_entries, entries); 764 entries -= ats_entries; 765 } else { 766 ats_entries = entries; 767 entries = 0; 768 } 769 } else { 770 ats_entries = 0; 771 } 772 773 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 774 775 r = reservation_object_reserve_shared(bo->tbo.resv); 776 if (r) 777 return r; 778 779 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 780 if (r) 781 goto error; 782 783 r = amdgpu_ttm_alloc_gart(&bo->tbo); 784 if (r) 785 return r; 786 787 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 788 if (r) 789 goto error; 790 791 addr = amdgpu_bo_gpu_offset(bo); 792 if (ats_entries) { 793 uint64_t ats_value; 794 795 ats_value = AMDGPU_PTE_DEFAULT_ATC; 796 if (level != AMDGPU_VM_PTB) 797 ats_value |= AMDGPU_PDE_PTE; 798 799 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 800 ats_entries, 0, ats_value); 801 addr += ats_entries * 8; 802 } 803 804 if (entries) 805 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 806 entries, 0, 0); 807 808 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 809 810 WARN_ON(job->ibs[0].length_dw > 64); 811 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 812 AMDGPU_FENCE_OWNER_UNDEFINED, false); 813 if (r) 814 goto error_free; 815 816 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 817 &fence); 818 if (r) 819 goto error_free; 820 821 amdgpu_bo_fence(bo, fence, true); 822 dma_fence_put(fence); 823 824 if (bo->shadow) 825 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 826 level, pte_support_ats); 827 828 return 0; 829 830 error_free: 831 amdgpu_job_free(job); 832 833 error: 834 return r; 835 } 836 837 /** 838 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 839 * 840 * @adev: amdgpu_device pointer 841 * @vm: requesting vm 842 * @bp: resulting BO allocation parameters 843 */ 844 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 845 int level, struct amdgpu_bo_param *bp) 846 { 847 memset(bp, 0, sizeof(*bp)); 848 849 bp->size = amdgpu_vm_bo_size(adev, level); 850 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 851 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 852 if (bp->size <= PAGE_SIZE && adev->asic_type >= CHIP_VEGA10 && 853 adev->flags & AMD_IS_APU) 854 bp->domain |= AMDGPU_GEM_DOMAIN_GTT; 855 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 856 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 857 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 858 if (vm->use_cpu_for_update) 859 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 860 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 861 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 862 bp->type = ttm_bo_type_kernel; 863 if (vm->root.base.bo) 864 bp->resv = vm->root.base.bo->tbo.resv; 865 } 866 867 /** 868 * amdgpu_vm_alloc_pts - Allocate page tables. 869 * 870 * @adev: amdgpu_device pointer 871 * @vm: VM to allocate page tables for 872 * @saddr: Start address which needs to be allocated 873 * @size: Size from start address we need. 874 * 875 * Make sure the page directories and page tables are allocated 876 * 877 * Returns: 878 * 0 on success, errno otherwise. 879 */ 880 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 881 struct amdgpu_vm *vm, 882 uint64_t saddr, uint64_t size) 883 { 884 struct amdgpu_vm_pt_cursor cursor; 885 struct amdgpu_bo *pt; 886 bool ats = false; 887 uint64_t eaddr; 888 int r; 889 890 /* validate the parameters */ 891 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 892 return -EINVAL; 893 894 eaddr = saddr + size - 1; 895 896 if (vm->pte_support_ats) 897 ats = saddr < AMDGPU_GMC_HOLE_START; 898 899 saddr /= AMDGPU_GPU_PAGE_SIZE; 900 eaddr /= AMDGPU_GPU_PAGE_SIZE; 901 902 if (eaddr >= adev->vm_manager.max_pfn) { 903 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 904 eaddr, adev->vm_manager.max_pfn); 905 return -EINVAL; 906 } 907 908 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 909 struct amdgpu_vm_pt *entry = cursor.entry; 910 struct amdgpu_bo_param bp; 911 912 if (cursor.level < AMDGPU_VM_PTB) { 913 unsigned num_entries; 914 915 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 916 entry->entries = kvmalloc_array(num_entries, 917 sizeof(*entry->entries), 918 GFP_KERNEL | 919 __GFP_ZERO); 920 if (!entry->entries) 921 return -ENOMEM; 922 } 923 924 925 if (entry->base.bo) 926 continue; 927 928 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 929 930 r = amdgpu_bo_create(adev, &bp, &pt); 931 if (r) 932 return r; 933 934 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 935 if (r) 936 goto error_free_pt; 937 938 if (vm->use_cpu_for_update) { 939 r = amdgpu_bo_kmap(pt, NULL); 940 if (r) 941 goto error_free_pt; 942 } 943 944 /* Keep a reference to the root directory to avoid 945 * freeing them up in the wrong order. 946 */ 947 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 948 949 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 950 } 951 952 return 0; 953 954 error_free_pt: 955 amdgpu_bo_unref(&pt->shadow); 956 amdgpu_bo_unref(&pt); 957 return r; 958 } 959 960 /** 961 * amdgpu_vm_free_pts - free PD/PT levels 962 * 963 * @adev: amdgpu device structure 964 * @vm: amdgpu vm structure 965 * 966 * Free the page directory or page table level and all sub levels. 967 */ 968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 969 struct amdgpu_vm *vm) 970 { 971 struct amdgpu_vm_pt_cursor cursor; 972 struct amdgpu_vm_pt *entry; 973 974 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 975 976 if (entry->base.bo) { 977 entry->base.bo->vm_bo = NULL; 978 list_del(&entry->base.vm_status); 979 amdgpu_bo_unref(&entry->base.bo->shadow); 980 amdgpu_bo_unref(&entry->base.bo); 981 } 982 kvfree(entry->entries); 983 } 984 985 BUG_ON(vm->root.base.bo); 986 } 987 988 /** 989 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 990 * 991 * @adev: amdgpu_device pointer 992 */ 993 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 994 { 995 const struct amdgpu_ip_block *ip_block; 996 bool has_compute_vm_bug; 997 struct amdgpu_ring *ring; 998 int i; 999 1000 has_compute_vm_bug = false; 1001 1002 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1003 if (ip_block) { 1004 /* Compute has a VM bug for GFX version < 7. 1005 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1006 if (ip_block->version->major <= 7) 1007 has_compute_vm_bug = true; 1008 else if (ip_block->version->major == 8) 1009 if (adev->gfx.mec_fw_version < 673) 1010 has_compute_vm_bug = true; 1011 } 1012 1013 for (i = 0; i < adev->num_rings; i++) { 1014 ring = adev->rings[i]; 1015 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1016 /* only compute rings */ 1017 ring->has_compute_vm_bug = has_compute_vm_bug; 1018 else 1019 ring->has_compute_vm_bug = false; 1020 } 1021 } 1022 1023 /** 1024 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1025 * 1026 * @ring: ring on which the job will be submitted 1027 * @job: job to submit 1028 * 1029 * Returns: 1030 * True if sync is needed. 1031 */ 1032 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1033 struct amdgpu_job *job) 1034 { 1035 struct amdgpu_device *adev = ring->adev; 1036 unsigned vmhub = ring->funcs->vmhub; 1037 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1038 struct amdgpu_vmid *id; 1039 bool gds_switch_needed; 1040 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1041 1042 if (job->vmid == 0) 1043 return false; 1044 id = &id_mgr->ids[job->vmid]; 1045 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1046 id->gds_base != job->gds_base || 1047 id->gds_size != job->gds_size || 1048 id->gws_base != job->gws_base || 1049 id->gws_size != job->gws_size || 1050 id->oa_base != job->oa_base || 1051 id->oa_size != job->oa_size); 1052 1053 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1054 return true; 1055 1056 return vm_flush_needed || gds_switch_needed; 1057 } 1058 1059 /** 1060 * amdgpu_vm_flush - hardware flush the vm 1061 * 1062 * @ring: ring to use for flush 1063 * @job: related job 1064 * @need_pipe_sync: is pipe sync needed 1065 * 1066 * Emit a VM flush when it is necessary. 1067 * 1068 * Returns: 1069 * 0 on success, errno otherwise. 1070 */ 1071 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1072 { 1073 struct amdgpu_device *adev = ring->adev; 1074 unsigned vmhub = ring->funcs->vmhub; 1075 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1076 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1077 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1078 id->gds_base != job->gds_base || 1079 id->gds_size != job->gds_size || 1080 id->gws_base != job->gws_base || 1081 id->gws_size != job->gws_size || 1082 id->oa_base != job->oa_base || 1083 id->oa_size != job->oa_size); 1084 bool vm_flush_needed = job->vm_needs_flush; 1085 bool pasid_mapping_needed = id->pasid != job->pasid || 1086 !id->pasid_mapping || 1087 !dma_fence_is_signaled(id->pasid_mapping); 1088 struct dma_fence *fence = NULL; 1089 unsigned patch_offset = 0; 1090 int r; 1091 1092 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1093 gds_switch_needed = true; 1094 vm_flush_needed = true; 1095 pasid_mapping_needed = true; 1096 } 1097 1098 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1099 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1100 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1101 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1102 ring->funcs->emit_wreg; 1103 1104 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1105 return 0; 1106 1107 if (ring->funcs->init_cond_exec) 1108 patch_offset = amdgpu_ring_init_cond_exec(ring); 1109 1110 if (need_pipe_sync) 1111 amdgpu_ring_emit_pipeline_sync(ring); 1112 1113 if (vm_flush_needed) { 1114 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1115 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1116 } 1117 1118 if (pasid_mapping_needed) 1119 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1120 1121 if (vm_flush_needed || pasid_mapping_needed) { 1122 r = amdgpu_fence_emit(ring, &fence, 0); 1123 if (r) 1124 return r; 1125 } 1126 1127 if (vm_flush_needed) { 1128 mutex_lock(&id_mgr->lock); 1129 dma_fence_put(id->last_flush); 1130 id->last_flush = dma_fence_get(fence); 1131 id->current_gpu_reset_count = 1132 atomic_read(&adev->gpu_reset_counter); 1133 mutex_unlock(&id_mgr->lock); 1134 } 1135 1136 if (pasid_mapping_needed) { 1137 id->pasid = job->pasid; 1138 dma_fence_put(id->pasid_mapping); 1139 id->pasid_mapping = dma_fence_get(fence); 1140 } 1141 dma_fence_put(fence); 1142 1143 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1144 id->gds_base = job->gds_base; 1145 id->gds_size = job->gds_size; 1146 id->gws_base = job->gws_base; 1147 id->gws_size = job->gws_size; 1148 id->oa_base = job->oa_base; 1149 id->oa_size = job->oa_size; 1150 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1151 job->gds_size, job->gws_base, 1152 job->gws_size, job->oa_base, 1153 job->oa_size); 1154 } 1155 1156 if (ring->funcs->patch_cond_exec) 1157 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1158 1159 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1160 if (ring->funcs->emit_switch_buffer) { 1161 amdgpu_ring_emit_switch_buffer(ring); 1162 amdgpu_ring_emit_switch_buffer(ring); 1163 } 1164 return 0; 1165 } 1166 1167 /** 1168 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1169 * 1170 * @vm: requested vm 1171 * @bo: requested buffer object 1172 * 1173 * Find @bo inside the requested vm. 1174 * Search inside the @bos vm list for the requested vm 1175 * Returns the found bo_va or NULL if none is found 1176 * 1177 * Object has to be reserved! 1178 * 1179 * Returns: 1180 * Found bo_va or NULL. 1181 */ 1182 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1183 struct amdgpu_bo *bo) 1184 { 1185 struct amdgpu_vm_bo_base *base; 1186 1187 for (base = bo->vm_bo; base; base = base->next) { 1188 if (base->vm != vm) 1189 continue; 1190 1191 return container_of(base, struct amdgpu_bo_va, base); 1192 } 1193 return NULL; 1194 } 1195 1196 /** 1197 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1198 * 1199 * @params: see amdgpu_pte_update_params definition 1200 * @bo: PD/PT to update 1201 * @pe: addr of the page entry 1202 * @addr: dst addr to write into pe 1203 * @count: number of page entries to update 1204 * @incr: increase next addr by incr bytes 1205 * @flags: hw access flags 1206 * 1207 * Traces the parameters and calls the right asic functions 1208 * to setup the page table using the DMA. 1209 */ 1210 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1211 struct amdgpu_bo *bo, 1212 uint64_t pe, uint64_t addr, 1213 unsigned count, uint32_t incr, 1214 uint64_t flags) 1215 { 1216 pe += amdgpu_bo_gpu_offset(bo); 1217 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1218 1219 if (count < 3) { 1220 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1221 addr | flags, count, incr); 1222 1223 } else { 1224 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1225 count, incr, flags); 1226 } 1227 } 1228 1229 /** 1230 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1231 * 1232 * @params: see amdgpu_pte_update_params definition 1233 * @bo: PD/PT to update 1234 * @pe: addr of the page entry 1235 * @addr: dst addr to write into pe 1236 * @count: number of page entries to update 1237 * @incr: increase next addr by incr bytes 1238 * @flags: hw access flags 1239 * 1240 * Traces the parameters and calls the DMA function to copy the PTEs. 1241 */ 1242 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1243 struct amdgpu_bo *bo, 1244 uint64_t pe, uint64_t addr, 1245 unsigned count, uint32_t incr, 1246 uint64_t flags) 1247 { 1248 uint64_t src = (params->src + (addr >> 12) * 8); 1249 1250 pe += amdgpu_bo_gpu_offset(bo); 1251 trace_amdgpu_vm_copy_ptes(pe, src, count); 1252 1253 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1254 } 1255 1256 /** 1257 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1258 * 1259 * @pages_addr: optional DMA address to use for lookup 1260 * @addr: the unmapped addr 1261 * 1262 * Look up the physical address of the page that the pte resolves 1263 * to. 1264 * 1265 * Returns: 1266 * The pointer for the page table entry. 1267 */ 1268 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1269 { 1270 uint64_t result; 1271 1272 /* page table offset */ 1273 result = pages_addr[addr >> PAGE_SHIFT]; 1274 1275 /* in case cpu page size != gpu page size*/ 1276 result |= addr & (~PAGE_MASK); 1277 1278 result &= 0xFFFFFFFFFFFFF000ULL; 1279 1280 return result; 1281 } 1282 1283 /** 1284 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1285 * 1286 * @params: see amdgpu_pte_update_params definition 1287 * @bo: PD/PT to update 1288 * @pe: kmap addr of the page entry 1289 * @addr: dst addr to write into pe 1290 * @count: number of page entries to update 1291 * @incr: increase next addr by incr bytes 1292 * @flags: hw access flags 1293 * 1294 * Write count number of PT/PD entries directly. 1295 */ 1296 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1297 struct amdgpu_bo *bo, 1298 uint64_t pe, uint64_t addr, 1299 unsigned count, uint32_t incr, 1300 uint64_t flags) 1301 { 1302 unsigned int i; 1303 uint64_t value; 1304 1305 pe += (unsigned long)amdgpu_bo_kptr(bo); 1306 1307 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1308 1309 for (i = 0; i < count; i++) { 1310 value = params->pages_addr ? 1311 amdgpu_vm_map_gart(params->pages_addr, addr) : 1312 addr; 1313 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1314 i, value, flags); 1315 addr += incr; 1316 } 1317 } 1318 1319 1320 /** 1321 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1322 * 1323 * @adev: amdgpu_device pointer 1324 * @vm: related vm 1325 * @owner: fence owner 1326 * 1327 * Returns: 1328 * 0 on success, errno otherwise. 1329 */ 1330 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1331 void *owner) 1332 { 1333 struct amdgpu_sync sync; 1334 int r; 1335 1336 amdgpu_sync_create(&sync); 1337 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1338 r = amdgpu_sync_wait(&sync, true); 1339 amdgpu_sync_free(&sync); 1340 1341 return r; 1342 } 1343 1344 /** 1345 * amdgpu_vm_update_func - helper to call update function 1346 * 1347 * Calls the update function for both the given BO as well as its shadow. 1348 */ 1349 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1350 struct amdgpu_bo *bo, 1351 uint64_t pe, uint64_t addr, 1352 unsigned count, uint32_t incr, 1353 uint64_t flags) 1354 { 1355 if (bo->shadow) 1356 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1357 params->func(params, bo, pe, addr, count, incr, flags); 1358 } 1359 1360 /* 1361 * amdgpu_vm_update_pde - update a single level in the hierarchy 1362 * 1363 * @param: parameters for the update 1364 * @vm: requested vm 1365 * @parent: parent directory 1366 * @entry: entry to update 1367 * 1368 * Makes sure the requested entry in parent is up to date. 1369 */ 1370 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1371 struct amdgpu_vm *vm, 1372 struct amdgpu_vm_pt *parent, 1373 struct amdgpu_vm_pt *entry) 1374 { 1375 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1376 uint64_t pde, pt, flags; 1377 unsigned level; 1378 1379 /* Don't update huge pages here */ 1380 if (entry->huge) 1381 return; 1382 1383 for (level = 0, pbo = bo->parent; pbo; ++level) 1384 pbo = pbo->parent; 1385 1386 level += params->adev->vm_manager.root_level; 1387 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1388 pde = (entry - parent->entries) * 8; 1389 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1390 } 1391 1392 /* 1393 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1394 * 1395 * @adev: amdgpu_device pointer 1396 * @vm: related vm 1397 * 1398 * Mark all PD level as invalid after an error. 1399 */ 1400 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1401 struct amdgpu_vm *vm) 1402 { 1403 struct amdgpu_vm_pt_cursor cursor; 1404 struct amdgpu_vm_pt *entry; 1405 1406 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1407 if (entry->base.bo && !entry->base.moved) 1408 amdgpu_vm_bo_relocated(&entry->base); 1409 } 1410 1411 /* 1412 * amdgpu_vm_update_directories - make sure that all directories are valid 1413 * 1414 * @adev: amdgpu_device pointer 1415 * @vm: requested vm 1416 * 1417 * Makes sure all directories are up to date. 1418 * 1419 * Returns: 1420 * 0 for success, error for failure. 1421 */ 1422 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1423 struct amdgpu_vm *vm) 1424 { 1425 struct amdgpu_pte_update_params params; 1426 struct amdgpu_job *job; 1427 unsigned ndw = 0; 1428 int r = 0; 1429 1430 if (list_empty(&vm->relocated)) 1431 return 0; 1432 1433 restart: 1434 memset(¶ms, 0, sizeof(params)); 1435 params.adev = adev; 1436 1437 if (vm->use_cpu_for_update) { 1438 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1439 if (unlikely(r)) 1440 return r; 1441 1442 params.func = amdgpu_vm_cpu_set_ptes; 1443 } else { 1444 ndw = 512 * 8; 1445 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1446 if (r) 1447 return r; 1448 1449 params.ib = &job->ibs[0]; 1450 params.func = amdgpu_vm_do_set_ptes; 1451 } 1452 1453 while (!list_empty(&vm->relocated)) { 1454 struct amdgpu_vm_pt *pt, *entry; 1455 1456 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1457 base.vm_status); 1458 amdgpu_vm_bo_idle(&entry->base); 1459 1460 pt = amdgpu_vm_pt_parent(entry); 1461 if (!pt) 1462 continue; 1463 1464 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1465 1466 if (!vm->use_cpu_for_update && 1467 (ndw - params.ib->length_dw) < 32) 1468 break; 1469 } 1470 1471 if (vm->use_cpu_for_update) { 1472 /* Flush HDP */ 1473 mb(); 1474 amdgpu_asic_flush_hdp(adev, NULL); 1475 } else if (params.ib->length_dw == 0) { 1476 amdgpu_job_free(job); 1477 } else { 1478 struct amdgpu_bo *root = vm->root.base.bo; 1479 struct amdgpu_ring *ring; 1480 struct dma_fence *fence; 1481 1482 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1483 sched); 1484 1485 amdgpu_ring_pad_ib(ring, params.ib); 1486 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1487 AMDGPU_FENCE_OWNER_VM, false); 1488 WARN_ON(params.ib->length_dw > ndw); 1489 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1490 &fence); 1491 if (r) 1492 goto error; 1493 1494 amdgpu_bo_fence(root, fence, true); 1495 dma_fence_put(vm->last_update); 1496 vm->last_update = fence; 1497 } 1498 1499 if (!list_empty(&vm->relocated)) 1500 goto restart; 1501 1502 return 0; 1503 1504 error: 1505 amdgpu_vm_invalidate_pds(adev, vm); 1506 amdgpu_job_free(job); 1507 return r; 1508 } 1509 1510 /** 1511 * amdgpu_vm_update_huge - figure out parameters for PTE updates 1512 * 1513 * Make sure to set the right flags for the PTEs at the desired level. 1514 */ 1515 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params, 1516 struct amdgpu_bo *bo, unsigned level, 1517 uint64_t pe, uint64_t addr, 1518 unsigned count, uint32_t incr, 1519 uint64_t flags) 1520 1521 { 1522 if (level != AMDGPU_VM_PTB) { 1523 flags |= AMDGPU_PDE_PTE; 1524 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1525 } 1526 1527 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1528 } 1529 1530 /** 1531 * amdgpu_vm_fragment - get fragment for PTEs 1532 * 1533 * @params: see amdgpu_pte_update_params definition 1534 * @start: first PTE to handle 1535 * @end: last PTE to handle 1536 * @flags: hw mapping flags 1537 * @frag: resulting fragment size 1538 * @frag_end: end of this fragment 1539 * 1540 * Returns the first possible fragment for the start and end address. 1541 */ 1542 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1543 uint64_t start, uint64_t end, uint64_t flags, 1544 unsigned int *frag, uint64_t *frag_end) 1545 { 1546 /** 1547 * The MC L1 TLB supports variable sized pages, based on a fragment 1548 * field in the PTE. When this field is set to a non-zero value, page 1549 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1550 * flags are considered valid for all PTEs within the fragment range 1551 * and corresponding mappings are assumed to be physically contiguous. 1552 * 1553 * The L1 TLB can store a single PTE for the whole fragment, 1554 * significantly increasing the space available for translation 1555 * caching. This leads to large improvements in throughput when the 1556 * TLB is under pressure. 1557 * 1558 * The L2 TLB distributes small and large fragments into two 1559 * asymmetric partitions. The large fragment cache is significantly 1560 * larger. Thus, we try to use large fragments wherever possible. 1561 * Userspace can support this by aligning virtual base address and 1562 * allocation size to the fragment size. 1563 * 1564 * Starting with Vega10 the fragment size only controls the L1. The L2 1565 * is now directly feed with small/huge/giant pages from the walker. 1566 */ 1567 unsigned max_frag; 1568 1569 if (params->adev->asic_type < CHIP_VEGA10) 1570 max_frag = params->adev->vm_manager.fragment_size; 1571 else 1572 max_frag = 31; 1573 1574 /* system pages are non continuously */ 1575 if (params->src) { 1576 *frag = 0; 1577 *frag_end = end; 1578 return; 1579 } 1580 1581 /* This intentionally wraps around if no bit is set */ 1582 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1583 if (*frag >= max_frag) { 1584 *frag = max_frag; 1585 *frag_end = end & ~((1ULL << max_frag) - 1); 1586 } else { 1587 *frag_end = start + (1 << *frag); 1588 } 1589 } 1590 1591 /** 1592 * amdgpu_vm_update_ptes - make sure that page tables are valid 1593 * 1594 * @params: see amdgpu_pte_update_params definition 1595 * @start: start of GPU address range 1596 * @end: end of GPU address range 1597 * @dst: destination address to map to, the next dst inside the function 1598 * @flags: mapping flags 1599 * 1600 * Update the page tables in the range @start - @end. 1601 * 1602 * Returns: 1603 * 0 for success, -EINVAL for failure. 1604 */ 1605 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1606 uint64_t start, uint64_t end, 1607 uint64_t dst, uint64_t flags) 1608 { 1609 struct amdgpu_device *adev = params->adev; 1610 struct amdgpu_vm_pt_cursor cursor; 1611 uint64_t frag_start = start, frag_end; 1612 unsigned int frag; 1613 1614 /* figure out the initial fragment */ 1615 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1616 1617 /* walk over the address space and update the PTs */ 1618 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1619 while (cursor.pfn < end) { 1620 struct amdgpu_bo *pt = cursor.entry->base.bo; 1621 unsigned shift, parent_shift, mask; 1622 uint64_t incr, entry_end, pe_start; 1623 1624 if (!pt) 1625 return -ENOENT; 1626 1627 /* The root level can't be a huge page */ 1628 if (cursor.level == adev->vm_manager.root_level) { 1629 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1630 return -ENOENT; 1631 continue; 1632 } 1633 1634 /* First check if the entry is already handled */ 1635 if (cursor.pfn < frag_start) { 1636 cursor.entry->huge = true; 1637 amdgpu_vm_pt_next(adev, &cursor); 1638 continue; 1639 } 1640 1641 /* If it isn't already handled it can't be a huge page */ 1642 if (cursor.entry->huge) { 1643 /* Add the entry to the relocated list to update it. */ 1644 cursor.entry->huge = false; 1645 amdgpu_vm_bo_relocated(&cursor.entry->base); 1646 } 1647 1648 shift = amdgpu_vm_level_shift(adev, cursor.level); 1649 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1650 if (adev->asic_type < CHIP_VEGA10) { 1651 /* No huge page support before GMC v9 */ 1652 if (cursor.level != AMDGPU_VM_PTB) { 1653 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1654 return -ENOENT; 1655 continue; 1656 } 1657 } else if (frag < shift) { 1658 /* We can't use this level when the fragment size is 1659 * smaller than the address shift. Go to the next 1660 * child entry and try again. 1661 */ 1662 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1663 return -ENOENT; 1664 continue; 1665 } else if (frag >= parent_shift) { 1666 /* If the fragment size is even larger than the parent 1667 * shift we should go up one level and check it again. 1668 */ 1669 if (!amdgpu_vm_pt_ancestor(&cursor)) 1670 return -ENOENT; 1671 continue; 1672 } 1673 1674 /* Looks good so far, calculate parameters for the update */ 1675 incr = AMDGPU_GPU_PAGE_SIZE << shift; 1676 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1677 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1678 entry_end = (mask + 1) << shift; 1679 entry_end += cursor.pfn & ~(entry_end - 1); 1680 entry_end = min(entry_end, end); 1681 1682 do { 1683 uint64_t upd_end = min(entry_end, frag_end); 1684 unsigned nptes = (upd_end - frag_start) >> shift; 1685 1686 amdgpu_vm_update_huge(params, pt, cursor.level, 1687 pe_start, dst, nptes, incr, 1688 flags | AMDGPU_PTE_FRAG(frag)); 1689 1690 pe_start += nptes * 8; 1691 dst += nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1692 1693 frag_start = upd_end; 1694 if (frag_start >= frag_end) { 1695 /* figure out the next fragment */ 1696 amdgpu_vm_fragment(params, frag_start, end, 1697 flags, &frag, &frag_end); 1698 if (frag < shift) 1699 break; 1700 } 1701 } while (frag_start < entry_end); 1702 1703 if (frag >= shift) 1704 amdgpu_vm_pt_next(adev, &cursor); 1705 } 1706 1707 return 0; 1708 } 1709 1710 /** 1711 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1712 * 1713 * @adev: amdgpu_device pointer 1714 * @exclusive: fence we need to sync to 1715 * @pages_addr: DMA addresses to use for mapping 1716 * @vm: requested vm 1717 * @start: start of mapped range 1718 * @last: last mapped entry 1719 * @flags: flags for the entries 1720 * @addr: addr to set the area to 1721 * @fence: optional resulting fence 1722 * 1723 * Fill in the page table entries between @start and @last. 1724 * 1725 * Returns: 1726 * 0 for success, -EINVAL for failure. 1727 */ 1728 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1729 struct dma_fence *exclusive, 1730 dma_addr_t *pages_addr, 1731 struct amdgpu_vm *vm, 1732 uint64_t start, uint64_t last, 1733 uint64_t flags, uint64_t addr, 1734 struct dma_fence **fence) 1735 { 1736 struct amdgpu_ring *ring; 1737 void *owner = AMDGPU_FENCE_OWNER_VM; 1738 unsigned nptes, ncmds, ndw; 1739 struct amdgpu_job *job; 1740 struct amdgpu_pte_update_params params; 1741 struct dma_fence *f = NULL; 1742 int r; 1743 1744 memset(¶ms, 0, sizeof(params)); 1745 params.adev = adev; 1746 params.vm = vm; 1747 1748 /* sync to everything on unmapping */ 1749 if (!(flags & AMDGPU_PTE_VALID)) 1750 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1751 1752 if (vm->use_cpu_for_update) { 1753 /* params.src is used as flag to indicate system Memory */ 1754 if (pages_addr) 1755 params.src = ~0; 1756 1757 /* Wait for PT BOs to be free. PTs share the same resv. object 1758 * as the root PD BO 1759 */ 1760 r = amdgpu_vm_wait_pd(adev, vm, owner); 1761 if (unlikely(r)) 1762 return r; 1763 1764 params.func = amdgpu_vm_cpu_set_ptes; 1765 params.pages_addr = pages_addr; 1766 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1767 addr, flags); 1768 } 1769 1770 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1771 1772 nptes = last - start + 1; 1773 1774 /* 1775 * reserve space for two commands every (1 << BLOCK_SIZE) 1776 * entries or 2k dwords (whatever is smaller) 1777 * 1778 * The second command is for the shadow pagetables. 1779 */ 1780 if (vm->root.base.bo->shadow) 1781 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1782 else 1783 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1784 1785 /* padding, etc. */ 1786 ndw = 64; 1787 1788 if (pages_addr) { 1789 /* copy commands needed */ 1790 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1791 1792 /* and also PTEs */ 1793 ndw += nptes * 2; 1794 1795 params.func = amdgpu_vm_do_copy_ptes; 1796 1797 } else { 1798 /* set page commands needed */ 1799 ndw += ncmds * 10; 1800 1801 /* extra commands for begin/end fragments */ 1802 if (vm->root.base.bo->shadow) 1803 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1804 else 1805 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1806 1807 params.func = amdgpu_vm_do_set_ptes; 1808 } 1809 1810 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1811 if (r) 1812 return r; 1813 1814 params.ib = &job->ibs[0]; 1815 1816 if (pages_addr) { 1817 uint64_t *pte; 1818 unsigned i; 1819 1820 /* Put the PTEs at the end of the IB. */ 1821 i = ndw - nptes * 2; 1822 pte= (uint64_t *)&(job->ibs->ptr[i]); 1823 params.src = job->ibs->gpu_addr + i * 4; 1824 1825 for (i = 0; i < nptes; ++i) { 1826 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1827 AMDGPU_GPU_PAGE_SIZE); 1828 pte[i] |= flags; 1829 } 1830 addr = 0; 1831 } 1832 1833 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1834 if (r) 1835 goto error_free; 1836 1837 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1838 owner, false); 1839 if (r) 1840 goto error_free; 1841 1842 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1843 if (r) 1844 goto error_free; 1845 1846 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1847 if (r) 1848 goto error_free; 1849 1850 amdgpu_ring_pad_ib(ring, params.ib); 1851 WARN_ON(params.ib->length_dw > ndw); 1852 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1853 if (r) 1854 goto error_free; 1855 1856 amdgpu_bo_fence(vm->root.base.bo, f, true); 1857 dma_fence_put(*fence); 1858 *fence = f; 1859 return 0; 1860 1861 error_free: 1862 amdgpu_job_free(job); 1863 return r; 1864 } 1865 1866 /** 1867 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1868 * 1869 * @adev: amdgpu_device pointer 1870 * @exclusive: fence we need to sync to 1871 * @pages_addr: DMA addresses to use for mapping 1872 * @vm: requested vm 1873 * @mapping: mapped range and flags to use for the update 1874 * @flags: HW flags for the mapping 1875 * @nodes: array of drm_mm_nodes with the MC addresses 1876 * @fence: optional resulting fence 1877 * 1878 * Split the mapping into smaller chunks so that each update fits 1879 * into a SDMA IB. 1880 * 1881 * Returns: 1882 * 0 for success, -EINVAL for failure. 1883 */ 1884 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1885 struct dma_fence *exclusive, 1886 dma_addr_t *pages_addr, 1887 struct amdgpu_vm *vm, 1888 struct amdgpu_bo_va_mapping *mapping, 1889 uint64_t flags, 1890 struct drm_mm_node *nodes, 1891 struct dma_fence **fence) 1892 { 1893 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1894 uint64_t pfn, start = mapping->start; 1895 int r; 1896 1897 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1898 * but in case of something, we filter the flags in first place 1899 */ 1900 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1901 flags &= ~AMDGPU_PTE_READABLE; 1902 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1903 flags &= ~AMDGPU_PTE_WRITEABLE; 1904 1905 flags &= ~AMDGPU_PTE_EXECUTABLE; 1906 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1907 1908 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1909 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1910 1911 if ((mapping->flags & AMDGPU_PTE_PRT) && 1912 (adev->asic_type >= CHIP_VEGA10)) { 1913 flags |= AMDGPU_PTE_PRT; 1914 flags &= ~AMDGPU_PTE_VALID; 1915 } 1916 1917 trace_amdgpu_vm_bo_update(mapping); 1918 1919 pfn = mapping->offset >> PAGE_SHIFT; 1920 if (nodes) { 1921 while (pfn >= nodes->size) { 1922 pfn -= nodes->size; 1923 ++nodes; 1924 } 1925 } 1926 1927 do { 1928 dma_addr_t *dma_addr = NULL; 1929 uint64_t max_entries; 1930 uint64_t addr, last; 1931 1932 if (nodes) { 1933 addr = nodes->start << PAGE_SHIFT; 1934 max_entries = (nodes->size - pfn) * 1935 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1936 } else { 1937 addr = 0; 1938 max_entries = S64_MAX; 1939 } 1940 1941 if (pages_addr) { 1942 uint64_t count; 1943 1944 max_entries = min(max_entries, 16ull * 1024ull); 1945 for (count = 1; 1946 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1947 ++count) { 1948 uint64_t idx = pfn + count; 1949 1950 if (pages_addr[idx] != 1951 (pages_addr[idx - 1] + PAGE_SIZE)) 1952 break; 1953 } 1954 1955 if (count < min_linear_pages) { 1956 addr = pfn << PAGE_SHIFT; 1957 dma_addr = pages_addr; 1958 } else { 1959 addr = pages_addr[pfn]; 1960 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1961 } 1962 1963 } else if (flags & AMDGPU_PTE_VALID) { 1964 addr += adev->vm_manager.vram_base_offset; 1965 addr += pfn << PAGE_SHIFT; 1966 } 1967 1968 last = min((uint64_t)mapping->last, start + max_entries - 1); 1969 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1970 start, last, flags, addr, 1971 fence); 1972 if (r) 1973 return r; 1974 1975 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1976 if (nodes && nodes->size == pfn) { 1977 pfn = 0; 1978 ++nodes; 1979 } 1980 start = last + 1; 1981 1982 } while (unlikely(start != mapping->last + 1)); 1983 1984 return 0; 1985 } 1986 1987 /** 1988 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1989 * 1990 * @adev: amdgpu_device pointer 1991 * @bo_va: requested BO and VM object 1992 * @clear: if true clear the entries 1993 * 1994 * Fill in the page table entries for @bo_va. 1995 * 1996 * Returns: 1997 * 0 for success, -EINVAL for failure. 1998 */ 1999 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 2000 struct amdgpu_bo_va *bo_va, 2001 bool clear) 2002 { 2003 struct amdgpu_bo *bo = bo_va->base.bo; 2004 struct amdgpu_vm *vm = bo_va->base.vm; 2005 struct amdgpu_bo_va_mapping *mapping; 2006 dma_addr_t *pages_addr = NULL; 2007 struct ttm_mem_reg *mem; 2008 struct drm_mm_node *nodes; 2009 struct dma_fence *exclusive, **last_update; 2010 uint64_t flags; 2011 int r; 2012 2013 if (clear || !bo) { 2014 mem = NULL; 2015 nodes = NULL; 2016 exclusive = NULL; 2017 } else { 2018 struct ttm_dma_tt *ttm; 2019 2020 mem = &bo->tbo.mem; 2021 nodes = mem->mm_node; 2022 if (mem->mem_type == TTM_PL_TT) { 2023 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2024 pages_addr = ttm->dma_address; 2025 } 2026 exclusive = reservation_object_get_excl(bo->tbo.resv); 2027 } 2028 2029 if (bo) 2030 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2031 else 2032 flags = 0x0; 2033 2034 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2035 last_update = &vm->last_update; 2036 else 2037 last_update = &bo_va->last_pt_update; 2038 2039 if (!clear && bo_va->base.moved) { 2040 bo_va->base.moved = false; 2041 list_splice_init(&bo_va->valids, &bo_va->invalids); 2042 2043 } else if (bo_va->cleared != clear) { 2044 list_splice_init(&bo_va->valids, &bo_va->invalids); 2045 } 2046 2047 list_for_each_entry(mapping, &bo_va->invalids, list) { 2048 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2049 mapping, flags, nodes, 2050 last_update); 2051 if (r) 2052 return r; 2053 } 2054 2055 if (vm->use_cpu_for_update) { 2056 /* Flush HDP */ 2057 mb(); 2058 amdgpu_asic_flush_hdp(adev, NULL); 2059 } 2060 2061 /* If the BO is not in its preferred location add it back to 2062 * the evicted list so that it gets validated again on the 2063 * next command submission. 2064 */ 2065 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2066 uint32_t mem_type = bo->tbo.mem.mem_type; 2067 2068 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2069 amdgpu_vm_bo_evicted(&bo_va->base); 2070 else 2071 amdgpu_vm_bo_idle(&bo_va->base); 2072 } else { 2073 amdgpu_vm_bo_done(&bo_va->base); 2074 } 2075 2076 list_splice_init(&bo_va->invalids, &bo_va->valids); 2077 bo_va->cleared = clear; 2078 2079 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2080 list_for_each_entry(mapping, &bo_va->valids, list) 2081 trace_amdgpu_vm_bo_mapping(mapping); 2082 } 2083 2084 return 0; 2085 } 2086 2087 /** 2088 * amdgpu_vm_update_prt_state - update the global PRT state 2089 * 2090 * @adev: amdgpu_device pointer 2091 */ 2092 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2093 { 2094 unsigned long flags; 2095 bool enable; 2096 2097 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2098 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2099 adev->gmc.gmc_funcs->set_prt(adev, enable); 2100 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2101 } 2102 2103 /** 2104 * amdgpu_vm_prt_get - add a PRT user 2105 * 2106 * @adev: amdgpu_device pointer 2107 */ 2108 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2109 { 2110 if (!adev->gmc.gmc_funcs->set_prt) 2111 return; 2112 2113 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2114 amdgpu_vm_update_prt_state(adev); 2115 } 2116 2117 /** 2118 * amdgpu_vm_prt_put - drop a PRT user 2119 * 2120 * @adev: amdgpu_device pointer 2121 */ 2122 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2123 { 2124 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2125 amdgpu_vm_update_prt_state(adev); 2126 } 2127 2128 /** 2129 * amdgpu_vm_prt_cb - callback for updating the PRT status 2130 * 2131 * @fence: fence for the callback 2132 * @_cb: the callback function 2133 */ 2134 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2135 { 2136 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2137 2138 amdgpu_vm_prt_put(cb->adev); 2139 kfree(cb); 2140 } 2141 2142 /** 2143 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2144 * 2145 * @adev: amdgpu_device pointer 2146 * @fence: fence for the callback 2147 */ 2148 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2149 struct dma_fence *fence) 2150 { 2151 struct amdgpu_prt_cb *cb; 2152 2153 if (!adev->gmc.gmc_funcs->set_prt) 2154 return; 2155 2156 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2157 if (!cb) { 2158 /* Last resort when we are OOM */ 2159 if (fence) 2160 dma_fence_wait(fence, false); 2161 2162 amdgpu_vm_prt_put(adev); 2163 } else { 2164 cb->adev = adev; 2165 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2166 amdgpu_vm_prt_cb)) 2167 amdgpu_vm_prt_cb(fence, &cb->cb); 2168 } 2169 } 2170 2171 /** 2172 * amdgpu_vm_free_mapping - free a mapping 2173 * 2174 * @adev: amdgpu_device pointer 2175 * @vm: requested vm 2176 * @mapping: mapping to be freed 2177 * @fence: fence of the unmap operation 2178 * 2179 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2180 */ 2181 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2182 struct amdgpu_vm *vm, 2183 struct amdgpu_bo_va_mapping *mapping, 2184 struct dma_fence *fence) 2185 { 2186 if (mapping->flags & AMDGPU_PTE_PRT) 2187 amdgpu_vm_add_prt_cb(adev, fence); 2188 kfree(mapping); 2189 } 2190 2191 /** 2192 * amdgpu_vm_prt_fini - finish all prt mappings 2193 * 2194 * @adev: amdgpu_device pointer 2195 * @vm: requested vm 2196 * 2197 * Register a cleanup callback to disable PRT support after VM dies. 2198 */ 2199 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2200 { 2201 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2202 struct dma_fence *excl, **shared; 2203 unsigned i, shared_count; 2204 int r; 2205 2206 r = reservation_object_get_fences_rcu(resv, &excl, 2207 &shared_count, &shared); 2208 if (r) { 2209 /* Not enough memory to grab the fence list, as last resort 2210 * block for all the fences to complete. 2211 */ 2212 reservation_object_wait_timeout_rcu(resv, true, false, 2213 MAX_SCHEDULE_TIMEOUT); 2214 return; 2215 } 2216 2217 /* Add a callback for each fence in the reservation object */ 2218 amdgpu_vm_prt_get(adev); 2219 amdgpu_vm_add_prt_cb(adev, excl); 2220 2221 for (i = 0; i < shared_count; ++i) { 2222 amdgpu_vm_prt_get(adev); 2223 amdgpu_vm_add_prt_cb(adev, shared[i]); 2224 } 2225 2226 kfree(shared); 2227 } 2228 2229 /** 2230 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2231 * 2232 * @adev: amdgpu_device pointer 2233 * @vm: requested vm 2234 * @fence: optional resulting fence (unchanged if no work needed to be done 2235 * or if an error occurred) 2236 * 2237 * Make sure all freed BOs are cleared in the PT. 2238 * PTs have to be reserved and mutex must be locked! 2239 * 2240 * Returns: 2241 * 0 for success. 2242 * 2243 */ 2244 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2245 struct amdgpu_vm *vm, 2246 struct dma_fence **fence) 2247 { 2248 struct amdgpu_bo_va_mapping *mapping; 2249 uint64_t init_pte_value = 0; 2250 struct dma_fence *f = NULL; 2251 int r; 2252 2253 while (!list_empty(&vm->freed)) { 2254 mapping = list_first_entry(&vm->freed, 2255 struct amdgpu_bo_va_mapping, list); 2256 list_del(&mapping->list); 2257 2258 if (vm->pte_support_ats && 2259 mapping->start < AMDGPU_GMC_HOLE_START) 2260 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2261 2262 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2263 mapping->start, mapping->last, 2264 init_pte_value, 0, &f); 2265 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2266 if (r) { 2267 dma_fence_put(f); 2268 return r; 2269 } 2270 } 2271 2272 if (fence && f) { 2273 dma_fence_put(*fence); 2274 *fence = f; 2275 } else { 2276 dma_fence_put(f); 2277 } 2278 2279 return 0; 2280 2281 } 2282 2283 /** 2284 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2285 * 2286 * @adev: amdgpu_device pointer 2287 * @vm: requested vm 2288 * 2289 * Make sure all BOs which are moved are updated in the PTs. 2290 * 2291 * Returns: 2292 * 0 for success. 2293 * 2294 * PTs have to be reserved! 2295 */ 2296 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2297 struct amdgpu_vm *vm) 2298 { 2299 struct amdgpu_bo_va *bo_va, *tmp; 2300 struct reservation_object *resv; 2301 bool clear; 2302 int r; 2303 2304 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2305 /* Per VM BOs never need to bo cleared in the page tables */ 2306 r = amdgpu_vm_bo_update(adev, bo_va, false); 2307 if (r) 2308 return r; 2309 } 2310 2311 spin_lock(&vm->invalidated_lock); 2312 while (!list_empty(&vm->invalidated)) { 2313 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2314 base.vm_status); 2315 resv = bo_va->base.bo->tbo.resv; 2316 spin_unlock(&vm->invalidated_lock); 2317 2318 /* Try to reserve the BO to avoid clearing its ptes */ 2319 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2320 clear = false; 2321 /* Somebody else is using the BO right now */ 2322 else 2323 clear = true; 2324 2325 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2326 if (r) 2327 return r; 2328 2329 if (!clear) 2330 reservation_object_unlock(resv); 2331 spin_lock(&vm->invalidated_lock); 2332 } 2333 spin_unlock(&vm->invalidated_lock); 2334 2335 return 0; 2336 } 2337 2338 /** 2339 * amdgpu_vm_bo_add - add a bo to a specific vm 2340 * 2341 * @adev: amdgpu_device pointer 2342 * @vm: requested vm 2343 * @bo: amdgpu buffer object 2344 * 2345 * Add @bo into the requested vm. 2346 * Add @bo to the list of bos associated with the vm 2347 * 2348 * Returns: 2349 * Newly added bo_va or NULL for failure 2350 * 2351 * Object has to be reserved! 2352 */ 2353 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2354 struct amdgpu_vm *vm, 2355 struct amdgpu_bo *bo) 2356 { 2357 struct amdgpu_bo_va *bo_va; 2358 2359 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2360 if (bo_va == NULL) { 2361 return NULL; 2362 } 2363 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2364 2365 bo_va->ref_count = 1; 2366 INIT_LIST_HEAD(&bo_va->valids); 2367 INIT_LIST_HEAD(&bo_va->invalids); 2368 2369 return bo_va; 2370 } 2371 2372 2373 /** 2374 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2375 * 2376 * @adev: amdgpu_device pointer 2377 * @bo_va: bo_va to store the address 2378 * @mapping: the mapping to insert 2379 * 2380 * Insert a new mapping into all structures. 2381 */ 2382 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2383 struct amdgpu_bo_va *bo_va, 2384 struct amdgpu_bo_va_mapping *mapping) 2385 { 2386 struct amdgpu_vm *vm = bo_va->base.vm; 2387 struct amdgpu_bo *bo = bo_va->base.bo; 2388 2389 mapping->bo_va = bo_va; 2390 list_add(&mapping->list, &bo_va->invalids); 2391 amdgpu_vm_it_insert(mapping, &vm->va); 2392 2393 if (mapping->flags & AMDGPU_PTE_PRT) 2394 amdgpu_vm_prt_get(adev); 2395 2396 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2397 !bo_va->base.moved) { 2398 list_move(&bo_va->base.vm_status, &vm->moved); 2399 } 2400 trace_amdgpu_vm_bo_map(bo_va, mapping); 2401 } 2402 2403 /** 2404 * amdgpu_vm_bo_map - map bo inside a vm 2405 * 2406 * @adev: amdgpu_device pointer 2407 * @bo_va: bo_va to store the address 2408 * @saddr: where to map the BO 2409 * @offset: requested offset in the BO 2410 * @size: BO size in bytes 2411 * @flags: attributes of pages (read/write/valid/etc.) 2412 * 2413 * Add a mapping of the BO at the specefied addr into the VM. 2414 * 2415 * Returns: 2416 * 0 for success, error for failure. 2417 * 2418 * Object has to be reserved and unreserved outside! 2419 */ 2420 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2421 struct amdgpu_bo_va *bo_va, 2422 uint64_t saddr, uint64_t offset, 2423 uint64_t size, uint64_t flags) 2424 { 2425 struct amdgpu_bo_va_mapping *mapping, *tmp; 2426 struct amdgpu_bo *bo = bo_va->base.bo; 2427 struct amdgpu_vm *vm = bo_va->base.vm; 2428 uint64_t eaddr; 2429 2430 /* validate the parameters */ 2431 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2432 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2433 return -EINVAL; 2434 2435 /* make sure object fit at this offset */ 2436 eaddr = saddr + size - 1; 2437 if (saddr >= eaddr || 2438 (bo && offset + size > amdgpu_bo_size(bo))) 2439 return -EINVAL; 2440 2441 saddr /= AMDGPU_GPU_PAGE_SIZE; 2442 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2443 2444 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2445 if (tmp) { 2446 /* bo and tmp overlap, invalid addr */ 2447 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2448 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2449 tmp->start, tmp->last + 1); 2450 return -EINVAL; 2451 } 2452 2453 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2454 if (!mapping) 2455 return -ENOMEM; 2456 2457 mapping->start = saddr; 2458 mapping->last = eaddr; 2459 mapping->offset = offset; 2460 mapping->flags = flags; 2461 2462 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2463 2464 return 0; 2465 } 2466 2467 /** 2468 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2469 * 2470 * @adev: amdgpu_device pointer 2471 * @bo_va: bo_va to store the address 2472 * @saddr: where to map the BO 2473 * @offset: requested offset in the BO 2474 * @size: BO size in bytes 2475 * @flags: attributes of pages (read/write/valid/etc.) 2476 * 2477 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2478 * mappings as we do so. 2479 * 2480 * Returns: 2481 * 0 for success, error for failure. 2482 * 2483 * Object has to be reserved and unreserved outside! 2484 */ 2485 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2486 struct amdgpu_bo_va *bo_va, 2487 uint64_t saddr, uint64_t offset, 2488 uint64_t size, uint64_t flags) 2489 { 2490 struct amdgpu_bo_va_mapping *mapping; 2491 struct amdgpu_bo *bo = bo_va->base.bo; 2492 uint64_t eaddr; 2493 int r; 2494 2495 /* validate the parameters */ 2496 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2497 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2498 return -EINVAL; 2499 2500 /* make sure object fit at this offset */ 2501 eaddr = saddr + size - 1; 2502 if (saddr >= eaddr || 2503 (bo && offset + size > amdgpu_bo_size(bo))) 2504 return -EINVAL; 2505 2506 /* Allocate all the needed memory */ 2507 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2508 if (!mapping) 2509 return -ENOMEM; 2510 2511 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2512 if (r) { 2513 kfree(mapping); 2514 return r; 2515 } 2516 2517 saddr /= AMDGPU_GPU_PAGE_SIZE; 2518 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2519 2520 mapping->start = saddr; 2521 mapping->last = eaddr; 2522 mapping->offset = offset; 2523 mapping->flags = flags; 2524 2525 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2526 2527 return 0; 2528 } 2529 2530 /** 2531 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2532 * 2533 * @adev: amdgpu_device pointer 2534 * @bo_va: bo_va to remove the address from 2535 * @saddr: where to the BO is mapped 2536 * 2537 * Remove a mapping of the BO at the specefied addr from the VM. 2538 * 2539 * Returns: 2540 * 0 for success, error for failure. 2541 * 2542 * Object has to be reserved and unreserved outside! 2543 */ 2544 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2545 struct amdgpu_bo_va *bo_va, 2546 uint64_t saddr) 2547 { 2548 struct amdgpu_bo_va_mapping *mapping; 2549 struct amdgpu_vm *vm = bo_va->base.vm; 2550 bool valid = true; 2551 2552 saddr /= AMDGPU_GPU_PAGE_SIZE; 2553 2554 list_for_each_entry(mapping, &bo_va->valids, list) { 2555 if (mapping->start == saddr) 2556 break; 2557 } 2558 2559 if (&mapping->list == &bo_va->valids) { 2560 valid = false; 2561 2562 list_for_each_entry(mapping, &bo_va->invalids, list) { 2563 if (mapping->start == saddr) 2564 break; 2565 } 2566 2567 if (&mapping->list == &bo_va->invalids) 2568 return -ENOENT; 2569 } 2570 2571 list_del(&mapping->list); 2572 amdgpu_vm_it_remove(mapping, &vm->va); 2573 mapping->bo_va = NULL; 2574 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2575 2576 if (valid) 2577 list_add(&mapping->list, &vm->freed); 2578 else 2579 amdgpu_vm_free_mapping(adev, vm, mapping, 2580 bo_va->last_pt_update); 2581 2582 return 0; 2583 } 2584 2585 /** 2586 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2587 * 2588 * @adev: amdgpu_device pointer 2589 * @vm: VM structure to use 2590 * @saddr: start of the range 2591 * @size: size of the range 2592 * 2593 * Remove all mappings in a range, split them as appropriate. 2594 * 2595 * Returns: 2596 * 0 for success, error for failure. 2597 */ 2598 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2599 struct amdgpu_vm *vm, 2600 uint64_t saddr, uint64_t size) 2601 { 2602 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2603 LIST_HEAD(removed); 2604 uint64_t eaddr; 2605 2606 eaddr = saddr + size - 1; 2607 saddr /= AMDGPU_GPU_PAGE_SIZE; 2608 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2609 2610 /* Allocate all the needed memory */ 2611 before = kzalloc(sizeof(*before), GFP_KERNEL); 2612 if (!before) 2613 return -ENOMEM; 2614 INIT_LIST_HEAD(&before->list); 2615 2616 after = kzalloc(sizeof(*after), GFP_KERNEL); 2617 if (!after) { 2618 kfree(before); 2619 return -ENOMEM; 2620 } 2621 INIT_LIST_HEAD(&after->list); 2622 2623 /* Now gather all removed mappings */ 2624 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2625 while (tmp) { 2626 /* Remember mapping split at the start */ 2627 if (tmp->start < saddr) { 2628 before->start = tmp->start; 2629 before->last = saddr - 1; 2630 before->offset = tmp->offset; 2631 before->flags = tmp->flags; 2632 before->bo_va = tmp->bo_va; 2633 list_add(&before->list, &tmp->bo_va->invalids); 2634 } 2635 2636 /* Remember mapping split at the end */ 2637 if (tmp->last > eaddr) { 2638 after->start = eaddr + 1; 2639 after->last = tmp->last; 2640 after->offset = tmp->offset; 2641 after->offset += after->start - tmp->start; 2642 after->flags = tmp->flags; 2643 after->bo_va = tmp->bo_va; 2644 list_add(&after->list, &tmp->bo_va->invalids); 2645 } 2646 2647 list_del(&tmp->list); 2648 list_add(&tmp->list, &removed); 2649 2650 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2651 } 2652 2653 /* And free them up */ 2654 list_for_each_entry_safe(tmp, next, &removed, list) { 2655 amdgpu_vm_it_remove(tmp, &vm->va); 2656 list_del(&tmp->list); 2657 2658 if (tmp->start < saddr) 2659 tmp->start = saddr; 2660 if (tmp->last > eaddr) 2661 tmp->last = eaddr; 2662 2663 tmp->bo_va = NULL; 2664 list_add(&tmp->list, &vm->freed); 2665 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2666 } 2667 2668 /* Insert partial mapping before the range */ 2669 if (!list_empty(&before->list)) { 2670 amdgpu_vm_it_insert(before, &vm->va); 2671 if (before->flags & AMDGPU_PTE_PRT) 2672 amdgpu_vm_prt_get(adev); 2673 } else { 2674 kfree(before); 2675 } 2676 2677 /* Insert partial mapping after the range */ 2678 if (!list_empty(&after->list)) { 2679 amdgpu_vm_it_insert(after, &vm->va); 2680 if (after->flags & AMDGPU_PTE_PRT) 2681 amdgpu_vm_prt_get(adev); 2682 } else { 2683 kfree(after); 2684 } 2685 2686 return 0; 2687 } 2688 2689 /** 2690 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2691 * 2692 * @vm: the requested VM 2693 * @addr: the address 2694 * 2695 * Find a mapping by it's address. 2696 * 2697 * Returns: 2698 * The amdgpu_bo_va_mapping matching for addr or NULL 2699 * 2700 */ 2701 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2702 uint64_t addr) 2703 { 2704 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2705 } 2706 2707 /** 2708 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2709 * 2710 * @vm: the requested vm 2711 * @ticket: CS ticket 2712 * 2713 * Trace all mappings of BOs reserved during a command submission. 2714 */ 2715 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2716 { 2717 struct amdgpu_bo_va_mapping *mapping; 2718 2719 if (!trace_amdgpu_vm_bo_cs_enabled()) 2720 return; 2721 2722 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2723 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2724 if (mapping->bo_va && mapping->bo_va->base.bo) { 2725 struct amdgpu_bo *bo; 2726 2727 bo = mapping->bo_va->base.bo; 2728 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2729 continue; 2730 } 2731 2732 trace_amdgpu_vm_bo_cs(mapping); 2733 } 2734 } 2735 2736 /** 2737 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2738 * 2739 * @adev: amdgpu_device pointer 2740 * @bo_va: requested bo_va 2741 * 2742 * Remove @bo_va->bo from the requested vm. 2743 * 2744 * Object have to be reserved! 2745 */ 2746 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2747 struct amdgpu_bo_va *bo_va) 2748 { 2749 struct amdgpu_bo_va_mapping *mapping, *next; 2750 struct amdgpu_bo *bo = bo_va->base.bo; 2751 struct amdgpu_vm *vm = bo_va->base.vm; 2752 struct amdgpu_vm_bo_base **base; 2753 2754 if (bo) { 2755 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2756 vm->bulk_moveable = false; 2757 2758 for (base = &bo_va->base.bo->vm_bo; *base; 2759 base = &(*base)->next) { 2760 if (*base != &bo_va->base) 2761 continue; 2762 2763 *base = bo_va->base.next; 2764 break; 2765 } 2766 } 2767 2768 spin_lock(&vm->invalidated_lock); 2769 list_del(&bo_va->base.vm_status); 2770 spin_unlock(&vm->invalidated_lock); 2771 2772 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2773 list_del(&mapping->list); 2774 amdgpu_vm_it_remove(mapping, &vm->va); 2775 mapping->bo_va = NULL; 2776 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2777 list_add(&mapping->list, &vm->freed); 2778 } 2779 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2780 list_del(&mapping->list); 2781 amdgpu_vm_it_remove(mapping, &vm->va); 2782 amdgpu_vm_free_mapping(adev, vm, mapping, 2783 bo_va->last_pt_update); 2784 } 2785 2786 dma_fence_put(bo_va->last_pt_update); 2787 kfree(bo_va); 2788 } 2789 2790 /** 2791 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2792 * 2793 * @adev: amdgpu_device pointer 2794 * @bo: amdgpu buffer object 2795 * @evicted: is the BO evicted 2796 * 2797 * Mark @bo as invalid. 2798 */ 2799 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2800 struct amdgpu_bo *bo, bool evicted) 2801 { 2802 struct amdgpu_vm_bo_base *bo_base; 2803 2804 /* shadow bo doesn't have bo base, its validation needs its parent */ 2805 if (bo->parent && bo->parent->shadow == bo) 2806 bo = bo->parent; 2807 2808 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2809 struct amdgpu_vm *vm = bo_base->vm; 2810 2811 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2812 amdgpu_vm_bo_evicted(bo_base); 2813 continue; 2814 } 2815 2816 if (bo_base->moved) 2817 continue; 2818 bo_base->moved = true; 2819 2820 if (bo->tbo.type == ttm_bo_type_kernel) 2821 amdgpu_vm_bo_relocated(bo_base); 2822 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2823 amdgpu_vm_bo_moved(bo_base); 2824 else 2825 amdgpu_vm_bo_invalidated(bo_base); 2826 } 2827 } 2828 2829 /** 2830 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2831 * 2832 * @vm_size: VM size 2833 * 2834 * Returns: 2835 * VM page table as power of two 2836 */ 2837 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2838 { 2839 /* Total bits covered by PD + PTs */ 2840 unsigned bits = ilog2(vm_size) + 18; 2841 2842 /* Make sure the PD is 4K in size up to 8GB address space. 2843 Above that split equal between PD and PTs */ 2844 if (vm_size <= 8) 2845 return (bits - 9); 2846 else 2847 return ((bits + 3) / 2); 2848 } 2849 2850 /** 2851 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2852 * 2853 * @adev: amdgpu_device pointer 2854 * @min_vm_size: the minimum vm size in GB if it's set auto 2855 * @fragment_size_default: Default PTE fragment size 2856 * @max_level: max VMPT level 2857 * @max_bits: max address space size in bits 2858 * 2859 */ 2860 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2861 uint32_t fragment_size_default, unsigned max_level, 2862 unsigned max_bits) 2863 { 2864 unsigned int max_size = 1 << (max_bits - 30); 2865 unsigned int vm_size; 2866 uint64_t tmp; 2867 2868 /* adjust vm size first */ 2869 if (amdgpu_vm_size != -1) { 2870 vm_size = amdgpu_vm_size; 2871 if (vm_size > max_size) { 2872 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2873 amdgpu_vm_size, max_size); 2874 vm_size = max_size; 2875 } 2876 } else { 2877 struct sysinfo si; 2878 unsigned int phys_ram_gb; 2879 2880 /* Optimal VM size depends on the amount of physical 2881 * RAM available. Underlying requirements and 2882 * assumptions: 2883 * 2884 * - Need to map system memory and VRAM from all GPUs 2885 * - VRAM from other GPUs not known here 2886 * - Assume VRAM <= system memory 2887 * - On GFX8 and older, VM space can be segmented for 2888 * different MTYPEs 2889 * - Need to allow room for fragmentation, guard pages etc. 2890 * 2891 * This adds up to a rough guess of system memory x3. 2892 * Round up to power of two to maximize the available 2893 * VM size with the given page table size. 2894 */ 2895 si_meminfo(&si); 2896 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2897 (1 << 30) - 1) >> 30; 2898 vm_size = roundup_pow_of_two( 2899 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2900 } 2901 2902 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2903 2904 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2905 if (amdgpu_vm_block_size != -1) 2906 tmp >>= amdgpu_vm_block_size - 9; 2907 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2908 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2909 switch (adev->vm_manager.num_level) { 2910 case 3: 2911 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2912 break; 2913 case 2: 2914 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2915 break; 2916 case 1: 2917 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2918 break; 2919 default: 2920 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2921 } 2922 /* block size depends on vm size and hw setup*/ 2923 if (amdgpu_vm_block_size != -1) 2924 adev->vm_manager.block_size = 2925 min((unsigned)amdgpu_vm_block_size, max_bits 2926 - AMDGPU_GPU_PAGE_SHIFT 2927 - 9 * adev->vm_manager.num_level); 2928 else if (adev->vm_manager.num_level > 1) 2929 adev->vm_manager.block_size = 9; 2930 else 2931 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2932 2933 if (amdgpu_vm_fragment_size == -1) 2934 adev->vm_manager.fragment_size = fragment_size_default; 2935 else 2936 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2937 2938 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2939 vm_size, adev->vm_manager.num_level + 1, 2940 adev->vm_manager.block_size, 2941 adev->vm_manager.fragment_size); 2942 } 2943 2944 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2945 { 2946 struct amdgpu_retryfault_hashtable *fault_hash; 2947 2948 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2949 if (!fault_hash) 2950 return fault_hash; 2951 2952 INIT_CHASH_TABLE(fault_hash->hash, 2953 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2954 spin_lock_init(&fault_hash->lock); 2955 fault_hash->count = 0; 2956 2957 return fault_hash; 2958 } 2959 2960 /** 2961 * amdgpu_vm_init - initialize a vm instance 2962 * 2963 * @adev: amdgpu_device pointer 2964 * @vm: requested vm 2965 * @vm_context: Indicates if it GFX or Compute context 2966 * @pasid: Process address space identifier 2967 * 2968 * Init @vm fields. 2969 * 2970 * Returns: 2971 * 0 for success, error for failure. 2972 */ 2973 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2974 int vm_context, unsigned int pasid) 2975 { 2976 struct amdgpu_bo_param bp; 2977 struct amdgpu_bo *root; 2978 int r, i; 2979 2980 vm->va = RB_ROOT_CACHED; 2981 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2982 vm->reserved_vmid[i] = NULL; 2983 INIT_LIST_HEAD(&vm->evicted); 2984 INIT_LIST_HEAD(&vm->relocated); 2985 INIT_LIST_HEAD(&vm->moved); 2986 INIT_LIST_HEAD(&vm->idle); 2987 INIT_LIST_HEAD(&vm->invalidated); 2988 spin_lock_init(&vm->invalidated_lock); 2989 INIT_LIST_HEAD(&vm->freed); 2990 2991 /* create scheduler entity for page table updates */ 2992 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2993 adev->vm_manager.vm_pte_num_rqs, NULL); 2994 if (r) 2995 return r; 2996 2997 vm->pte_support_ats = false; 2998 2999 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 3000 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3001 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3002 3003 if (adev->asic_type == CHIP_RAVEN) 3004 vm->pte_support_ats = true; 3005 } else { 3006 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3007 AMDGPU_VM_USE_CPU_FOR_GFX); 3008 } 3009 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3010 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3011 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3012 "CPU update of VM recommended only for large BAR system\n"); 3013 vm->last_update = NULL; 3014 3015 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3016 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3017 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3018 r = amdgpu_bo_create(adev, &bp, &root); 3019 if (r) 3020 goto error_free_sched_entity; 3021 3022 r = amdgpu_bo_reserve(root, true); 3023 if (r) 3024 goto error_free_root; 3025 3026 r = amdgpu_vm_clear_bo(adev, vm, root, 3027 adev->vm_manager.root_level, 3028 vm->pte_support_ats); 3029 if (r) 3030 goto error_unreserve; 3031 3032 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3033 amdgpu_bo_unreserve(vm->root.base.bo); 3034 3035 if (pasid) { 3036 unsigned long flags; 3037 3038 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3039 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3040 GFP_ATOMIC); 3041 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3042 if (r < 0) 3043 goto error_free_root; 3044 3045 vm->pasid = pasid; 3046 } 3047 3048 vm->fault_hash = init_fault_hash(); 3049 if (!vm->fault_hash) { 3050 r = -ENOMEM; 3051 goto error_free_root; 3052 } 3053 3054 INIT_KFIFO(vm->faults); 3055 vm->fault_credit = 16; 3056 3057 return 0; 3058 3059 error_unreserve: 3060 amdgpu_bo_unreserve(vm->root.base.bo); 3061 3062 error_free_root: 3063 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3064 amdgpu_bo_unref(&vm->root.base.bo); 3065 vm->root.base.bo = NULL; 3066 3067 error_free_sched_entity: 3068 drm_sched_entity_destroy(&vm->entity); 3069 3070 return r; 3071 } 3072 3073 /** 3074 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3075 * 3076 * @adev: amdgpu_device pointer 3077 * @vm: requested vm 3078 * 3079 * This only works on GFX VMs that don't have any BOs added and no 3080 * page tables allocated yet. 3081 * 3082 * Changes the following VM parameters: 3083 * - use_cpu_for_update 3084 * - pte_supports_ats 3085 * - pasid (old PASID is released, because compute manages its own PASIDs) 3086 * 3087 * Reinitializes the page directory to reflect the changed ATS 3088 * setting. 3089 * 3090 * Returns: 3091 * 0 for success, -errno for errors. 3092 */ 3093 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3094 { 3095 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3096 int r; 3097 3098 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3099 if (r) 3100 return r; 3101 3102 /* Sanity checks */ 3103 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3104 r = -EINVAL; 3105 goto unreserve_bo; 3106 } 3107 3108 if (pasid) { 3109 unsigned long flags; 3110 3111 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3112 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3113 GFP_ATOMIC); 3114 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3115 3116 if (r == -ENOSPC) 3117 goto unreserve_bo; 3118 r = 0; 3119 } 3120 3121 /* Check if PD needs to be reinitialized and do it before 3122 * changing any other state, in case it fails. 3123 */ 3124 if (pte_support_ats != vm->pte_support_ats) { 3125 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3126 adev->vm_manager.root_level, 3127 pte_support_ats); 3128 if (r) 3129 goto free_idr; 3130 } 3131 3132 /* Update VM state */ 3133 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3134 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3135 vm->pte_support_ats = pte_support_ats; 3136 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3137 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3138 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3139 "CPU update of VM recommended only for large BAR system\n"); 3140 3141 if (vm->pasid) { 3142 unsigned long flags; 3143 3144 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3145 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3146 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3147 3148 /* Free the original amdgpu allocated pasid 3149 * Will be replaced with kfd allocated pasid 3150 */ 3151 amdgpu_pasid_free(vm->pasid); 3152 vm->pasid = 0; 3153 } 3154 3155 /* Free the shadow bo for compute VM */ 3156 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3157 3158 if (pasid) 3159 vm->pasid = pasid; 3160 3161 goto unreserve_bo; 3162 3163 free_idr: 3164 if (pasid) { 3165 unsigned long flags; 3166 3167 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3168 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3169 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3170 } 3171 unreserve_bo: 3172 amdgpu_bo_unreserve(vm->root.base.bo); 3173 return r; 3174 } 3175 3176 /** 3177 * amdgpu_vm_release_compute - release a compute vm 3178 * @adev: amdgpu_device pointer 3179 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3180 * 3181 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3182 * pasid from vm. Compute should stop use of vm after this call. 3183 */ 3184 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3185 { 3186 if (vm->pasid) { 3187 unsigned long flags; 3188 3189 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3190 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3191 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3192 } 3193 vm->pasid = 0; 3194 } 3195 3196 /** 3197 * amdgpu_vm_fini - tear down a vm instance 3198 * 3199 * @adev: amdgpu_device pointer 3200 * @vm: requested vm 3201 * 3202 * Tear down @vm. 3203 * Unbind the VM and remove all bos from the vm bo list 3204 */ 3205 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3206 { 3207 struct amdgpu_bo_va_mapping *mapping, *tmp; 3208 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3209 struct amdgpu_bo *root; 3210 u64 fault; 3211 int i, r; 3212 3213 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3214 3215 /* Clear pending page faults from IH when the VM is destroyed */ 3216 while (kfifo_get(&vm->faults, &fault)) 3217 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3218 3219 if (vm->pasid) { 3220 unsigned long flags; 3221 3222 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3223 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3224 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3225 } 3226 3227 kfree(vm->fault_hash); 3228 vm->fault_hash = NULL; 3229 3230 drm_sched_entity_destroy(&vm->entity); 3231 3232 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3233 dev_err(adev->dev, "still active bo inside vm\n"); 3234 } 3235 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3236 &vm->va.rb_root, rb) { 3237 list_del(&mapping->list); 3238 amdgpu_vm_it_remove(mapping, &vm->va); 3239 kfree(mapping); 3240 } 3241 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3242 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3243 amdgpu_vm_prt_fini(adev, vm); 3244 prt_fini_needed = false; 3245 } 3246 3247 list_del(&mapping->list); 3248 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3249 } 3250 3251 root = amdgpu_bo_ref(vm->root.base.bo); 3252 r = amdgpu_bo_reserve(root, true); 3253 if (r) { 3254 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3255 } else { 3256 amdgpu_vm_free_pts(adev, vm); 3257 amdgpu_bo_unreserve(root); 3258 } 3259 amdgpu_bo_unref(&root); 3260 dma_fence_put(vm->last_update); 3261 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3262 amdgpu_vmid_free_reserved(adev, vm, i); 3263 } 3264 3265 /** 3266 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 3267 * 3268 * @adev: amdgpu_device pointer 3269 * @pasid: PASID do identify the VM 3270 * 3271 * This function is expected to be called in interrupt context. 3272 * 3273 * Returns: 3274 * True if there was fault credit, false otherwise 3275 */ 3276 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 3277 unsigned int pasid) 3278 { 3279 struct amdgpu_vm *vm; 3280 3281 spin_lock(&adev->vm_manager.pasid_lock); 3282 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3283 if (!vm) { 3284 /* VM not found, can't track fault credit */ 3285 spin_unlock(&adev->vm_manager.pasid_lock); 3286 return true; 3287 } 3288 3289 /* No lock needed. only accessed by IRQ handler */ 3290 if (!vm->fault_credit) { 3291 /* Too many faults in this VM */ 3292 spin_unlock(&adev->vm_manager.pasid_lock); 3293 return false; 3294 } 3295 3296 vm->fault_credit--; 3297 spin_unlock(&adev->vm_manager.pasid_lock); 3298 return true; 3299 } 3300 3301 /** 3302 * amdgpu_vm_manager_init - init the VM manager 3303 * 3304 * @adev: amdgpu_device pointer 3305 * 3306 * Initialize the VM manager structures 3307 */ 3308 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3309 { 3310 unsigned i; 3311 3312 amdgpu_vmid_mgr_init(adev); 3313 3314 adev->vm_manager.fence_context = 3315 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3316 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3317 adev->vm_manager.seqno[i] = 0; 3318 3319 spin_lock_init(&adev->vm_manager.prt_lock); 3320 atomic_set(&adev->vm_manager.num_prt_users, 0); 3321 3322 /* If not overridden by the user, by default, only in large BAR systems 3323 * Compute VM tables will be updated by CPU 3324 */ 3325 #ifdef CONFIG_X86_64 3326 if (amdgpu_vm_update_mode == -1) { 3327 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3328 adev->vm_manager.vm_update_mode = 3329 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3330 else 3331 adev->vm_manager.vm_update_mode = 0; 3332 } else 3333 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3334 #else 3335 adev->vm_manager.vm_update_mode = 0; 3336 #endif 3337 3338 idr_init(&adev->vm_manager.pasid_idr); 3339 spin_lock_init(&adev->vm_manager.pasid_lock); 3340 } 3341 3342 /** 3343 * amdgpu_vm_manager_fini - cleanup VM manager 3344 * 3345 * @adev: amdgpu_device pointer 3346 * 3347 * Cleanup the VM manager and free resources. 3348 */ 3349 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3350 { 3351 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3352 idr_destroy(&adev->vm_manager.pasid_idr); 3353 3354 amdgpu_vmid_mgr_fini(adev); 3355 } 3356 3357 /** 3358 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3359 * 3360 * @dev: drm device pointer 3361 * @data: drm_amdgpu_vm 3362 * @filp: drm file pointer 3363 * 3364 * Returns: 3365 * 0 for success, -errno for errors. 3366 */ 3367 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3368 { 3369 union drm_amdgpu_vm *args = data; 3370 struct amdgpu_device *adev = dev->dev_private; 3371 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3372 int r; 3373 3374 switch (args->in.op) { 3375 case AMDGPU_VM_OP_RESERVE_VMID: 3376 /* current, we only have requirement to reserve vmid from gfxhub */ 3377 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3378 if (r) 3379 return r; 3380 break; 3381 case AMDGPU_VM_OP_UNRESERVE_VMID: 3382 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3383 break; 3384 default: 3385 return -EINVAL; 3386 } 3387 3388 return 0; 3389 } 3390 3391 /** 3392 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3393 * 3394 * @adev: drm device pointer 3395 * @pasid: PASID identifier for VM 3396 * @task_info: task_info to fill. 3397 */ 3398 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3399 struct amdgpu_task_info *task_info) 3400 { 3401 struct amdgpu_vm *vm; 3402 3403 spin_lock(&adev->vm_manager.pasid_lock); 3404 3405 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3406 if (vm) 3407 *task_info = vm->task_info; 3408 3409 spin_unlock(&adev->vm_manager.pasid_lock); 3410 } 3411 3412 /** 3413 * amdgpu_vm_set_task_info - Sets VMs task info. 3414 * 3415 * @vm: vm for which to set the info 3416 */ 3417 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3418 { 3419 if (!vm->task_info.pid) { 3420 vm->task_info.pid = current->pid; 3421 get_task_comm(vm->task_info.task_name, current); 3422 3423 if (current->group_leader->mm == current->mm) { 3424 vm->task_info.tgid = current->group_leader->pid; 3425 get_task_comm(vm->task_info.process_name, current->group_leader); 3426 } 3427 } 3428 } 3429 3430 /** 3431 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3432 * 3433 * @fault_hash: fault hash table 3434 * @key: 64-bit encoding of PASID and address 3435 * 3436 * This should be called when a retry page fault interrupt is 3437 * received. If this is a new page fault, it will be added to a hash 3438 * table. The return value indicates whether this is a new fault, or 3439 * a fault that was already known and is already being handled. 3440 * 3441 * If there are too many pending page faults, this will fail. Retry 3442 * interrupts should be ignored in this case until there is enough 3443 * free space. 3444 * 3445 * Returns 0 if the fault was added, 1 if the fault was already known, 3446 * -ENOSPC if there are too many pending faults. 3447 */ 3448 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3449 { 3450 unsigned long flags; 3451 int r = -ENOSPC; 3452 3453 if (WARN_ON_ONCE(!fault_hash)) 3454 /* Should be allocated in amdgpu_vm_init 3455 */ 3456 return r; 3457 3458 spin_lock_irqsave(&fault_hash->lock, flags); 3459 3460 /* Only let the hash table fill up to 50% for best performance */ 3461 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3462 goto unlock_out; 3463 3464 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3465 if (!r) 3466 fault_hash->count++; 3467 3468 /* chash_table_copy_in should never fail unless we're losing count */ 3469 WARN_ON_ONCE(r < 0); 3470 3471 unlock_out: 3472 spin_unlock_irqrestore(&fault_hash->lock, flags); 3473 return r; 3474 } 3475 3476 /** 3477 * amdgpu_vm_clear_fault - Remove a page fault record 3478 * 3479 * @fault_hash: fault hash table 3480 * @key: 64-bit encoding of PASID and address 3481 * 3482 * This should be called when a page fault has been handled. Any 3483 * future interrupt with this key will be processed as a new 3484 * page fault. 3485 */ 3486 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3487 { 3488 unsigned long flags; 3489 int r; 3490 3491 if (!fault_hash) 3492 return; 3493 3494 spin_lock_irqsave(&fault_hash->lock, flags); 3495 3496 r = chash_table_remove(&fault_hash->hash, key, NULL); 3497 if (!WARN_ON_ONCE(r < 0)) { 3498 fault_hash->count--; 3499 WARN_ON_ONCE(fault_hash->count < 0); 3500 } 3501 3502 spin_unlock_irqrestore(&fault_hash->lock, flags); 3503 } 3504