xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38 
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59 
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62 
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64 		     START, LAST, static, amdgpu_vm_it)
65 
66 #undef START
67 #undef LAST
68 
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73 
74 	/**
75 	 * @adev: amdgpu device
76 	 */
77 	struct amdgpu_device *adev;
78 
79 	/**
80 	 * @cb: callback
81 	 */
82 	struct dma_fence_cb cb;
83 };
84 
85 /*
86  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
87  * happens while holding this lock anywhere to prevent deadlocks when
88  * an MMU notifier runs in reclaim-FS context.
89  */
90 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
91 {
92 	mutex_lock(&vm->eviction_lock);
93 	vm->saved_flags = memalloc_nofs_save();
94 }
95 
96 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
97 {
98 	if (mutex_trylock(&vm->eviction_lock)) {
99 		vm->saved_flags = memalloc_nofs_save();
100 		return 1;
101 	}
102 	return 0;
103 }
104 
105 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
106 {
107 	memalloc_nofs_restore(vm->saved_flags);
108 	mutex_unlock(&vm->eviction_lock);
109 }
110 
111 /**
112  * amdgpu_vm_level_shift - return the addr shift for each level
113  *
114  * @adev: amdgpu_device pointer
115  * @level: VMPT level
116  *
117  * Returns:
118  * The number of bits the pfn needs to be right shifted for a level.
119  */
120 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
121 				      unsigned level)
122 {
123 	switch (level) {
124 	case AMDGPU_VM_PDB2:
125 	case AMDGPU_VM_PDB1:
126 	case AMDGPU_VM_PDB0:
127 		return 9 * (AMDGPU_VM_PDB0 - level) +
128 			adev->vm_manager.block_size;
129 	case AMDGPU_VM_PTB:
130 		return 0;
131 	default:
132 		return ~0;
133 	}
134 }
135 
136 /**
137  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
138  *
139  * @adev: amdgpu_device pointer
140  * @level: VMPT level
141  *
142  * Returns:
143  * The number of entries in a page directory or page table.
144  */
145 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
146 				      unsigned level)
147 {
148 	unsigned shift = amdgpu_vm_level_shift(adev,
149 					       adev->vm_manager.root_level);
150 
151 	if (level == adev->vm_manager.root_level)
152 		/* For the root directory */
153 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
154 			>> shift;
155 	else if (level != AMDGPU_VM_PTB)
156 		/* Everything in between */
157 		return 512;
158 	else
159 		/* For the page tables on the leaves */
160 		return AMDGPU_VM_PTE_COUNT(adev);
161 }
162 
163 /**
164  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
165  *
166  * @adev: amdgpu_device pointer
167  *
168  * Returns:
169  * The number of entries in the root page directory which needs the ATS setting.
170  */
171 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
172 {
173 	unsigned shift;
174 
175 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
176 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
177 }
178 
179 /**
180  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
181  *
182  * @adev: amdgpu_device pointer
183  * @level: VMPT level
184  *
185  * Returns:
186  * The mask to extract the entry number of a PD/PT from an address.
187  */
188 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
189 				       unsigned int level)
190 {
191 	if (level <= adev->vm_manager.root_level)
192 		return 0xffffffff;
193 	else if (level != AMDGPU_VM_PTB)
194 		return 0x1ff;
195 	else
196 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
197 }
198 
199 /**
200  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
201  *
202  * @adev: amdgpu_device pointer
203  * @level: VMPT level
204  *
205  * Returns:
206  * The size of the BO for a page directory or page table in bytes.
207  */
208 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
209 {
210 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
211 }
212 
213 /**
214  * amdgpu_vm_bo_evicted - vm_bo is evicted
215  *
216  * @vm_bo: vm_bo which is evicted
217  *
218  * State for PDs/PTs and per VM BOs which are not at the location they should
219  * be.
220  */
221 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
222 {
223 	struct amdgpu_vm *vm = vm_bo->vm;
224 	struct amdgpu_bo *bo = vm_bo->bo;
225 
226 	vm_bo->moved = true;
227 	if (bo->tbo.type == ttm_bo_type_kernel)
228 		list_move(&vm_bo->vm_status, &vm->evicted);
229 	else
230 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
231 }
232 /**
233  * amdgpu_vm_bo_moved - vm_bo is moved
234  *
235  * @vm_bo: vm_bo which is moved
236  *
237  * State for per VM BOs which are moved, but that change is not yet reflected
238  * in the page tables.
239  */
240 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
241 {
242 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
243 }
244 
245 /**
246  * amdgpu_vm_bo_idle - vm_bo is idle
247  *
248  * @vm_bo: vm_bo which is now idle
249  *
250  * State for PDs/PTs and per VM BOs which have gone through the state machine
251  * and are now idle.
252  */
253 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
254 {
255 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
256 	vm_bo->moved = false;
257 }
258 
259 /**
260  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
261  *
262  * @vm_bo: vm_bo which is now invalidated
263  *
264  * State for normal BOs which are invalidated and that change not yet reflected
265  * in the PTs.
266  */
267 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	spin_lock(&vm_bo->vm->invalidated_lock);
270 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
271 	spin_unlock(&vm_bo->vm->invalidated_lock);
272 }
273 
274 /**
275  * amdgpu_vm_bo_relocated - vm_bo is reloacted
276  *
277  * @vm_bo: vm_bo which is relocated
278  *
279  * State for PDs/PTs which needs to update their parent PD.
280  * For the root PD, just move to idle state.
281  */
282 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
283 {
284 	if (vm_bo->bo->parent)
285 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
286 	else
287 		amdgpu_vm_bo_idle(vm_bo);
288 }
289 
290 /**
291  * amdgpu_vm_bo_done - vm_bo is done
292  *
293  * @vm_bo: vm_bo which is now done
294  *
295  * State for normal BOs which are invalidated and that change has been updated
296  * in the PTs.
297  */
298 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
299 {
300 	spin_lock(&vm_bo->vm->invalidated_lock);
301 	list_del_init(&vm_bo->vm_status);
302 	spin_unlock(&vm_bo->vm->invalidated_lock);
303 }
304 
305 /**
306  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
307  *
308  * @base: base structure for tracking BO usage in a VM
309  * @vm: vm to which bo is to be added
310  * @bo: amdgpu buffer object
311  *
312  * Initialize a bo_va_base structure and add it to the appropriate lists
313  *
314  */
315 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
316 				   struct amdgpu_vm *vm,
317 				   struct amdgpu_bo *bo)
318 {
319 	base->vm = vm;
320 	base->bo = bo;
321 	base->next = NULL;
322 	INIT_LIST_HEAD(&base->vm_status);
323 
324 	if (!bo)
325 		return;
326 	base->next = bo->vm_bo;
327 	bo->vm_bo = base;
328 
329 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
330 		return;
331 
332 	vm->bulk_moveable = false;
333 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
334 		amdgpu_vm_bo_relocated(base);
335 	else
336 		amdgpu_vm_bo_idle(base);
337 
338 	if (bo->preferred_domains &
339 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
340 		return;
341 
342 	/*
343 	 * we checked all the prerequisites, but it looks like this per vm bo
344 	 * is currently evicted. add the bo to the evicted list to make sure it
345 	 * is validated on next vm use to avoid fault.
346 	 * */
347 	amdgpu_vm_bo_evicted(base);
348 }
349 
350 /**
351  * amdgpu_vm_pt_parent - get the parent page directory
352  *
353  * @pt: child page table
354  *
355  * Helper to get the parent entry for the child page table. NULL if we are at
356  * the root page directory.
357  */
358 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
359 {
360 	struct amdgpu_bo *parent = pt->base.bo->parent;
361 
362 	if (!parent)
363 		return NULL;
364 
365 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
366 }
367 
368 /*
369  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
370  */
371 struct amdgpu_vm_pt_cursor {
372 	uint64_t pfn;
373 	struct amdgpu_vm_pt *parent;
374 	struct amdgpu_vm_pt *entry;
375 	unsigned level;
376 };
377 
378 /**
379  * amdgpu_vm_pt_start - start PD/PT walk
380  *
381  * @adev: amdgpu_device pointer
382  * @vm: amdgpu_vm structure
383  * @start: start address of the walk
384  * @cursor: state to initialize
385  *
386  * Initialize a amdgpu_vm_pt_cursor to start a walk.
387  */
388 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
389 			       struct amdgpu_vm *vm, uint64_t start,
390 			       struct amdgpu_vm_pt_cursor *cursor)
391 {
392 	cursor->pfn = start;
393 	cursor->parent = NULL;
394 	cursor->entry = &vm->root;
395 	cursor->level = adev->vm_manager.root_level;
396 }
397 
398 /**
399  * amdgpu_vm_pt_descendant - go to child node
400  *
401  * @adev: amdgpu_device pointer
402  * @cursor: current state
403  *
404  * Walk to the child node of the current node.
405  * Returns:
406  * True if the walk was possible, false otherwise.
407  */
408 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
409 				    struct amdgpu_vm_pt_cursor *cursor)
410 {
411 	unsigned mask, shift, idx;
412 
413 	if (!cursor->entry->entries)
414 		return false;
415 
416 	BUG_ON(!cursor->entry->base.bo);
417 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
418 	shift = amdgpu_vm_level_shift(adev, cursor->level);
419 
420 	++cursor->level;
421 	idx = (cursor->pfn >> shift) & mask;
422 	cursor->parent = cursor->entry;
423 	cursor->entry = &cursor->entry->entries[idx];
424 	return true;
425 }
426 
427 /**
428  * amdgpu_vm_pt_sibling - go to sibling node
429  *
430  * @adev: amdgpu_device pointer
431  * @cursor: current state
432  *
433  * Walk to the sibling node of the current node.
434  * Returns:
435  * True if the walk was possible, false otherwise.
436  */
437 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
438 				 struct amdgpu_vm_pt_cursor *cursor)
439 {
440 	unsigned shift, num_entries;
441 
442 	/* Root doesn't have a sibling */
443 	if (!cursor->parent)
444 		return false;
445 
446 	/* Go to our parents and see if we got a sibling */
447 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
448 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
449 
450 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
451 		return false;
452 
453 	cursor->pfn += 1ULL << shift;
454 	cursor->pfn &= ~((1ULL << shift) - 1);
455 	++cursor->entry;
456 	return true;
457 }
458 
459 /**
460  * amdgpu_vm_pt_ancestor - go to parent node
461  *
462  * @cursor: current state
463  *
464  * Walk to the parent node of the current node.
465  * Returns:
466  * True if the walk was possible, false otherwise.
467  */
468 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
469 {
470 	if (!cursor->parent)
471 		return false;
472 
473 	--cursor->level;
474 	cursor->entry = cursor->parent;
475 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
476 	return true;
477 }
478 
479 /**
480  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
481  *
482  * @adev: amdgpu_device pointer
483  * @cursor: current state
484  *
485  * Walk the PD/PT tree to the next node.
486  */
487 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
488 			      struct amdgpu_vm_pt_cursor *cursor)
489 {
490 	/* First try a newborn child */
491 	if (amdgpu_vm_pt_descendant(adev, cursor))
492 		return;
493 
494 	/* If that didn't worked try to find a sibling */
495 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
496 		/* No sibling, go to our parents and grandparents */
497 		if (!amdgpu_vm_pt_ancestor(cursor)) {
498 			cursor->pfn = ~0ll;
499 			return;
500 		}
501 	}
502 }
503 
504 /**
505  * amdgpu_vm_pt_first_dfs - start a deep first search
506  *
507  * @adev: amdgpu_device structure
508  * @vm: amdgpu_vm structure
509  * @start: optional cursor to start with
510  * @cursor: state to initialize
511  *
512  * Starts a deep first traversal of the PD/PT tree.
513  */
514 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
515 				   struct amdgpu_vm *vm,
516 				   struct amdgpu_vm_pt_cursor *start,
517 				   struct amdgpu_vm_pt_cursor *cursor)
518 {
519 	if (start)
520 		*cursor = *start;
521 	else
522 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
523 	while (amdgpu_vm_pt_descendant(adev, cursor));
524 }
525 
526 /**
527  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
528  *
529  * @start: starting point for the search
530  * @entry: current entry
531  *
532  * Returns:
533  * True when the search should continue, false otherwise.
534  */
535 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
536 				      struct amdgpu_vm_pt *entry)
537 {
538 	return entry && (!start || entry != start->entry);
539 }
540 
541 /**
542  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
543  *
544  * @adev: amdgpu_device structure
545  * @cursor: current state
546  *
547  * Move the cursor to the next node in a deep first search.
548  */
549 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
550 				  struct amdgpu_vm_pt_cursor *cursor)
551 {
552 	if (!cursor->entry)
553 		return;
554 
555 	if (!cursor->parent)
556 		cursor->entry = NULL;
557 	else if (amdgpu_vm_pt_sibling(adev, cursor))
558 		while (amdgpu_vm_pt_descendant(adev, cursor));
559 	else
560 		amdgpu_vm_pt_ancestor(cursor);
561 }
562 
563 /*
564  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
565  */
566 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
567 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
568 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
569 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
570 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
571 
572 /**
573  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
574  *
575  * @vm: vm providing the BOs
576  * @validated: head of validation list
577  * @entry: entry to add
578  *
579  * Add the page directory to the list of BOs to
580  * validate for command submission.
581  */
582 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
583 			 struct list_head *validated,
584 			 struct amdgpu_bo_list_entry *entry)
585 {
586 	entry->priority = 0;
587 	entry->tv.bo = &vm->root.base.bo->tbo;
588 	/* Two for VM updates, one for TTM and one for the CS job */
589 	entry->tv.num_shared = 4;
590 	entry->user_pages = NULL;
591 	list_add(&entry->tv.head, validated);
592 }
593 
594 /**
595  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
596  *
597  * @bo: BO which was removed from the LRU
598  *
599  * Make sure the bulk_moveable flag is updated when a BO is removed from the
600  * LRU.
601  */
602 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
603 {
604 	struct amdgpu_bo *abo;
605 	struct amdgpu_vm_bo_base *bo_base;
606 
607 	if (!amdgpu_bo_is_amdgpu_bo(bo))
608 		return;
609 
610 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
611 		return;
612 
613 	abo = ttm_to_amdgpu_bo(bo);
614 	if (!abo->parent)
615 		return;
616 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
617 		struct amdgpu_vm *vm = bo_base->vm;
618 
619 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
620 			vm->bulk_moveable = false;
621 	}
622 
623 }
624 /**
625  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
626  *
627  * @adev: amdgpu device pointer
628  * @vm: vm providing the BOs
629  *
630  * Move all BOs to the end of LRU and remember their positions to put them
631  * together.
632  */
633 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
634 				struct amdgpu_vm *vm)
635 {
636 	struct amdgpu_vm_bo_base *bo_base;
637 
638 	if (vm->bulk_moveable) {
639 		spin_lock(&ttm_bo_glob.lru_lock);
640 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
641 		spin_unlock(&ttm_bo_glob.lru_lock);
642 		return;
643 	}
644 
645 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
646 
647 	spin_lock(&ttm_bo_glob.lru_lock);
648 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
649 		struct amdgpu_bo *bo = bo_base->bo;
650 
651 		if (!bo->parent)
652 			continue;
653 
654 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
655 		if (bo->shadow)
656 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
657 						&vm->lru_bulk_move);
658 	}
659 	spin_unlock(&ttm_bo_glob.lru_lock);
660 
661 	vm->bulk_moveable = true;
662 }
663 
664 /**
665  * amdgpu_vm_validate_pt_bos - validate the page table BOs
666  *
667  * @adev: amdgpu device pointer
668  * @vm: vm providing the BOs
669  * @validate: callback to do the validation
670  * @param: parameter for the validation callback
671  *
672  * Validate the page table BOs on command submission if neccessary.
673  *
674  * Returns:
675  * Validation result.
676  */
677 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
678 			      int (*validate)(void *p, struct amdgpu_bo *bo),
679 			      void *param)
680 {
681 	struct amdgpu_vm_bo_base *bo_base, *tmp;
682 	int r;
683 
684 	vm->bulk_moveable &= list_empty(&vm->evicted);
685 
686 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
687 		struct amdgpu_bo *bo = bo_base->bo;
688 
689 		r = validate(param, bo);
690 		if (r)
691 			return r;
692 
693 		if (bo->tbo.type != ttm_bo_type_kernel) {
694 			amdgpu_vm_bo_moved(bo_base);
695 		} else {
696 			vm->update_funcs->map_table(bo);
697 			amdgpu_vm_bo_relocated(bo_base);
698 		}
699 	}
700 
701 	amdgpu_vm_eviction_lock(vm);
702 	vm->evicting = false;
703 	amdgpu_vm_eviction_unlock(vm);
704 
705 	return 0;
706 }
707 
708 /**
709  * amdgpu_vm_ready - check VM is ready for updates
710  *
711  * @vm: VM to check
712  *
713  * Check if all VM PDs/PTs are ready for updates
714  *
715  * Returns:
716  * True if eviction list is empty.
717  */
718 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
719 {
720 	return list_empty(&vm->evicted);
721 }
722 
723 /**
724  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
725  *
726  * @adev: amdgpu_device pointer
727  * @vm: VM to clear BO from
728  * @bo: BO to clear
729  * @immediate: use an immediate update
730  *
731  * Root PD needs to be reserved when calling this.
732  *
733  * Returns:
734  * 0 on success, errno otherwise.
735  */
736 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
737 			      struct amdgpu_vm *vm,
738 			      struct amdgpu_bo *bo,
739 			      bool immediate)
740 {
741 	struct ttm_operation_ctx ctx = { true, false };
742 	unsigned level = adev->vm_manager.root_level;
743 	struct amdgpu_vm_update_params params;
744 	struct amdgpu_bo *ancestor = bo;
745 	unsigned entries, ats_entries;
746 	uint64_t addr;
747 	int r;
748 
749 	/* Figure out our place in the hierarchy */
750 	if (ancestor->parent) {
751 		++level;
752 		while (ancestor->parent->parent) {
753 			++level;
754 			ancestor = ancestor->parent;
755 		}
756 	}
757 
758 	entries = amdgpu_bo_size(bo) / 8;
759 	if (!vm->pte_support_ats) {
760 		ats_entries = 0;
761 
762 	} else if (!bo->parent) {
763 		ats_entries = amdgpu_vm_num_ats_entries(adev);
764 		ats_entries = min(ats_entries, entries);
765 		entries -= ats_entries;
766 
767 	} else {
768 		struct amdgpu_vm_pt *pt;
769 
770 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
771 		ats_entries = amdgpu_vm_num_ats_entries(adev);
772 		if ((pt - vm->root.entries) >= ats_entries) {
773 			ats_entries = 0;
774 		} else {
775 			ats_entries = entries;
776 			entries = 0;
777 		}
778 	}
779 
780 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
781 	if (r)
782 		return r;
783 
784 	if (bo->shadow) {
785 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
786 				    &ctx);
787 		if (r)
788 			return r;
789 	}
790 
791 	r = vm->update_funcs->map_table(bo);
792 	if (r)
793 		return r;
794 
795 	memset(&params, 0, sizeof(params));
796 	params.adev = adev;
797 	params.vm = vm;
798 	params.immediate = immediate;
799 
800 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
801 	if (r)
802 		return r;
803 
804 	addr = 0;
805 	if (ats_entries) {
806 		uint64_t value = 0, flags;
807 
808 		flags = AMDGPU_PTE_DEFAULT_ATC;
809 		if (level != AMDGPU_VM_PTB) {
810 			/* Handle leaf PDEs as PTEs */
811 			flags |= AMDGPU_PDE_PTE;
812 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
813 		}
814 
815 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
816 					     value, flags);
817 		if (r)
818 			return r;
819 
820 		addr += ats_entries * 8;
821 	}
822 
823 	if (entries) {
824 		uint64_t value = 0, flags = 0;
825 
826 		if (adev->asic_type >= CHIP_VEGA10) {
827 			if (level != AMDGPU_VM_PTB) {
828 				/* Handle leaf PDEs as PTEs */
829 				flags |= AMDGPU_PDE_PTE;
830 				amdgpu_gmc_get_vm_pde(adev, level,
831 						      &value, &flags);
832 			} else {
833 				/* Workaround for fault priority problem on GMC9 */
834 				flags = AMDGPU_PTE_EXECUTABLE;
835 			}
836 		}
837 
838 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
839 					     value, flags);
840 		if (r)
841 			return r;
842 	}
843 
844 	return vm->update_funcs->commit(&params, NULL);
845 }
846 
847 /**
848  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
849  *
850  * @adev: amdgpu_device pointer
851  * @vm: requesting vm
852  * @level: the page table level
853  * @immediate: use a immediate update
854  * @bp: resulting BO allocation parameters
855  */
856 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
857 			       int level, bool immediate,
858 			       struct amdgpu_bo_param *bp)
859 {
860 	memset(bp, 0, sizeof(*bp));
861 
862 	bp->size = amdgpu_vm_bo_size(adev, level);
863 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
864 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
865 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
866 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
867 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
868 	if (vm->use_cpu_for_update)
869 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
870 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
871 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
872 	bp->type = ttm_bo_type_kernel;
873 	bp->no_wait_gpu = immediate;
874 	if (vm->root.base.bo)
875 		bp->resv = vm->root.base.bo->tbo.base.resv;
876 }
877 
878 /**
879  * amdgpu_vm_alloc_pts - Allocate a specific page table
880  *
881  * @adev: amdgpu_device pointer
882  * @vm: VM to allocate page tables for
883  * @cursor: Which page table to allocate
884  * @immediate: use an immediate update
885  *
886  * Make sure a specific page table or directory is allocated.
887  *
888  * Returns:
889  * 1 if page table needed to be allocated, 0 if page table was already
890  * allocated, negative errno if an error occurred.
891  */
892 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
893 			       struct amdgpu_vm *vm,
894 			       struct amdgpu_vm_pt_cursor *cursor,
895 			       bool immediate)
896 {
897 	struct amdgpu_vm_pt *entry = cursor->entry;
898 	struct amdgpu_bo_param bp;
899 	struct amdgpu_bo *pt;
900 	int r;
901 
902 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
903 		unsigned num_entries;
904 
905 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
906 		entry->entries = kvmalloc_array(num_entries,
907 						sizeof(*entry->entries),
908 						GFP_KERNEL | __GFP_ZERO);
909 		if (!entry->entries)
910 			return -ENOMEM;
911 	}
912 
913 	if (entry->base.bo)
914 		return 0;
915 
916 	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
917 
918 	r = amdgpu_bo_create(adev, &bp, &pt);
919 	if (r)
920 		return r;
921 
922 	/* Keep a reference to the root directory to avoid
923 	 * freeing them up in the wrong order.
924 	 */
925 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
926 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
927 
928 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
929 	if (r)
930 		goto error_free_pt;
931 
932 	return 0;
933 
934 error_free_pt:
935 	amdgpu_bo_unref(&pt->shadow);
936 	amdgpu_bo_unref(&pt);
937 	return r;
938 }
939 
940 /**
941  * amdgpu_vm_free_table - fre one PD/PT
942  *
943  * @entry: PDE to free
944  */
945 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
946 {
947 	if (entry->base.bo) {
948 		entry->base.bo->vm_bo = NULL;
949 		list_del(&entry->base.vm_status);
950 		amdgpu_bo_unref(&entry->base.bo->shadow);
951 		amdgpu_bo_unref(&entry->base.bo);
952 	}
953 	kvfree(entry->entries);
954 	entry->entries = NULL;
955 }
956 
957 /**
958  * amdgpu_vm_free_pts - free PD/PT levels
959  *
960  * @adev: amdgpu device structure
961  * @vm: amdgpu vm structure
962  * @start: optional cursor where to start freeing PDs/PTs
963  *
964  * Free the page directory or page table level and all sub levels.
965  */
966 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
967 			       struct amdgpu_vm *vm,
968 			       struct amdgpu_vm_pt_cursor *start)
969 {
970 	struct amdgpu_vm_pt_cursor cursor;
971 	struct amdgpu_vm_pt *entry;
972 
973 	vm->bulk_moveable = false;
974 
975 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
976 		amdgpu_vm_free_table(entry);
977 
978 	if (start)
979 		amdgpu_vm_free_table(start->entry);
980 }
981 
982 /**
983  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
984  *
985  * @adev: amdgpu_device pointer
986  */
987 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
988 {
989 	const struct amdgpu_ip_block *ip_block;
990 	bool has_compute_vm_bug;
991 	struct amdgpu_ring *ring;
992 	int i;
993 
994 	has_compute_vm_bug = false;
995 
996 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
997 	if (ip_block) {
998 		/* Compute has a VM bug for GFX version < 7.
999 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1000 		if (ip_block->version->major <= 7)
1001 			has_compute_vm_bug = true;
1002 		else if (ip_block->version->major == 8)
1003 			if (adev->gfx.mec_fw_version < 673)
1004 				has_compute_vm_bug = true;
1005 	}
1006 
1007 	for (i = 0; i < adev->num_rings; i++) {
1008 		ring = adev->rings[i];
1009 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1010 			/* only compute rings */
1011 			ring->has_compute_vm_bug = has_compute_vm_bug;
1012 		else
1013 			ring->has_compute_vm_bug = false;
1014 	}
1015 }
1016 
1017 /**
1018  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1019  *
1020  * @ring: ring on which the job will be submitted
1021  * @job: job to submit
1022  *
1023  * Returns:
1024  * True if sync is needed.
1025  */
1026 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1027 				  struct amdgpu_job *job)
1028 {
1029 	struct amdgpu_device *adev = ring->adev;
1030 	unsigned vmhub = ring->funcs->vmhub;
1031 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1032 	struct amdgpu_vmid *id;
1033 	bool gds_switch_needed;
1034 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1035 
1036 	if (job->vmid == 0)
1037 		return false;
1038 	id = &id_mgr->ids[job->vmid];
1039 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1040 		id->gds_base != job->gds_base ||
1041 		id->gds_size != job->gds_size ||
1042 		id->gws_base != job->gws_base ||
1043 		id->gws_size != job->gws_size ||
1044 		id->oa_base != job->oa_base ||
1045 		id->oa_size != job->oa_size);
1046 
1047 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1048 		return true;
1049 
1050 	return vm_flush_needed || gds_switch_needed;
1051 }
1052 
1053 /**
1054  * amdgpu_vm_flush - hardware flush the vm
1055  *
1056  * @ring: ring to use for flush
1057  * @job:  related job
1058  * @need_pipe_sync: is pipe sync needed
1059  *
1060  * Emit a VM flush when it is necessary.
1061  *
1062  * Returns:
1063  * 0 on success, errno otherwise.
1064  */
1065 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1066 		    bool need_pipe_sync)
1067 {
1068 	struct amdgpu_device *adev = ring->adev;
1069 	unsigned vmhub = ring->funcs->vmhub;
1070 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1071 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1072 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1073 		id->gds_base != job->gds_base ||
1074 		id->gds_size != job->gds_size ||
1075 		id->gws_base != job->gws_base ||
1076 		id->gws_size != job->gws_size ||
1077 		id->oa_base != job->oa_base ||
1078 		id->oa_size != job->oa_size);
1079 	bool vm_flush_needed = job->vm_needs_flush;
1080 	struct dma_fence *fence = NULL;
1081 	bool pasid_mapping_needed = false;
1082 	unsigned patch_offset = 0;
1083 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1084 	int r;
1085 
1086 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1087 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1088 
1089 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1090 		gds_switch_needed = true;
1091 		vm_flush_needed = true;
1092 		pasid_mapping_needed = true;
1093 	}
1094 
1095 	mutex_lock(&id_mgr->lock);
1096 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1097 	    !dma_fence_is_signaled(id->pasid_mapping))
1098 		pasid_mapping_needed = true;
1099 	mutex_unlock(&id_mgr->lock);
1100 
1101 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1102 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1103 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1104 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1105 		ring->funcs->emit_wreg;
1106 
1107 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1108 		return 0;
1109 
1110 	if (ring->funcs->init_cond_exec)
1111 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1112 
1113 	if (need_pipe_sync)
1114 		amdgpu_ring_emit_pipeline_sync(ring);
1115 
1116 	if (vm_flush_needed) {
1117 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1118 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1119 	}
1120 
1121 	if (pasid_mapping_needed)
1122 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1123 
1124 	if (vm_flush_needed || pasid_mapping_needed) {
1125 		r = amdgpu_fence_emit(ring, &fence, 0);
1126 		if (r)
1127 			return r;
1128 	}
1129 
1130 	if (vm_flush_needed) {
1131 		mutex_lock(&id_mgr->lock);
1132 		dma_fence_put(id->last_flush);
1133 		id->last_flush = dma_fence_get(fence);
1134 		id->current_gpu_reset_count =
1135 			atomic_read(&adev->gpu_reset_counter);
1136 		mutex_unlock(&id_mgr->lock);
1137 	}
1138 
1139 	if (pasid_mapping_needed) {
1140 		mutex_lock(&id_mgr->lock);
1141 		id->pasid = job->pasid;
1142 		dma_fence_put(id->pasid_mapping);
1143 		id->pasid_mapping = dma_fence_get(fence);
1144 		mutex_unlock(&id_mgr->lock);
1145 	}
1146 	dma_fence_put(fence);
1147 
1148 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1149 		id->gds_base = job->gds_base;
1150 		id->gds_size = job->gds_size;
1151 		id->gws_base = job->gws_base;
1152 		id->gws_size = job->gws_size;
1153 		id->oa_base = job->oa_base;
1154 		id->oa_size = job->oa_size;
1155 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1156 					    job->gds_size, job->gws_base,
1157 					    job->gws_size, job->oa_base,
1158 					    job->oa_size);
1159 	}
1160 
1161 	if (ring->funcs->patch_cond_exec)
1162 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1163 
1164 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1165 	if (ring->funcs->emit_switch_buffer) {
1166 		amdgpu_ring_emit_switch_buffer(ring);
1167 		amdgpu_ring_emit_switch_buffer(ring);
1168 	}
1169 	return 0;
1170 }
1171 
1172 /**
1173  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1174  *
1175  * @vm: requested vm
1176  * @bo: requested buffer object
1177  *
1178  * Find @bo inside the requested vm.
1179  * Search inside the @bos vm list for the requested vm
1180  * Returns the found bo_va or NULL if none is found
1181  *
1182  * Object has to be reserved!
1183  *
1184  * Returns:
1185  * Found bo_va or NULL.
1186  */
1187 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1188 				       struct amdgpu_bo *bo)
1189 {
1190 	struct amdgpu_vm_bo_base *base;
1191 
1192 	for (base = bo->vm_bo; base; base = base->next) {
1193 		if (base->vm != vm)
1194 			continue;
1195 
1196 		return container_of(base, struct amdgpu_bo_va, base);
1197 	}
1198 	return NULL;
1199 }
1200 
1201 /**
1202  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1203  *
1204  * @pages_addr: optional DMA address to use for lookup
1205  * @addr: the unmapped addr
1206  *
1207  * Look up the physical address of the page that the pte resolves
1208  * to.
1209  *
1210  * Returns:
1211  * The pointer for the page table entry.
1212  */
1213 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1214 {
1215 	uint64_t result;
1216 
1217 	/* page table offset */
1218 	result = pages_addr[addr >> PAGE_SHIFT];
1219 
1220 	/* in case cpu page size != gpu page size*/
1221 	result |= addr & (~PAGE_MASK);
1222 
1223 	result &= 0xFFFFFFFFFFFFF000ULL;
1224 
1225 	return result;
1226 }
1227 
1228 /**
1229  * amdgpu_vm_update_pde - update a single level in the hierarchy
1230  *
1231  * @params: parameters for the update
1232  * @vm: requested vm
1233  * @entry: entry to update
1234  *
1235  * Makes sure the requested entry in parent is up to date.
1236  */
1237 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1238 				struct amdgpu_vm *vm,
1239 				struct amdgpu_vm_pt *entry)
1240 {
1241 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1242 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1243 	uint64_t pde, pt, flags;
1244 	unsigned level;
1245 
1246 	for (level = 0, pbo = bo->parent; pbo; ++level)
1247 		pbo = pbo->parent;
1248 
1249 	level += params->adev->vm_manager.root_level;
1250 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1251 	pde = (entry - parent->entries) * 8;
1252 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1253 }
1254 
1255 /**
1256  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1257  *
1258  * @adev: amdgpu_device pointer
1259  * @vm: related vm
1260  *
1261  * Mark all PD level as invalid after an error.
1262  */
1263 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1264 				     struct amdgpu_vm *vm)
1265 {
1266 	struct amdgpu_vm_pt_cursor cursor;
1267 	struct amdgpu_vm_pt *entry;
1268 
1269 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1270 		if (entry->base.bo && !entry->base.moved)
1271 			amdgpu_vm_bo_relocated(&entry->base);
1272 }
1273 
1274 /**
1275  * amdgpu_vm_update_pdes - make sure that all directories are valid
1276  *
1277  * @adev: amdgpu_device pointer
1278  * @vm: requested vm
1279  * @immediate: submit immediately to the paging queue
1280  *
1281  * Makes sure all directories are up to date.
1282  *
1283  * Returns:
1284  * 0 for success, error for failure.
1285  */
1286 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1287 			  struct amdgpu_vm *vm, bool immediate)
1288 {
1289 	struct amdgpu_vm_update_params params;
1290 	int r;
1291 
1292 	if (list_empty(&vm->relocated))
1293 		return 0;
1294 
1295 	memset(&params, 0, sizeof(params));
1296 	params.adev = adev;
1297 	params.vm = vm;
1298 	params.immediate = immediate;
1299 
1300 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1301 	if (r)
1302 		return r;
1303 
1304 	while (!list_empty(&vm->relocated)) {
1305 		struct amdgpu_vm_pt *entry;
1306 
1307 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1308 					 base.vm_status);
1309 		amdgpu_vm_bo_idle(&entry->base);
1310 
1311 		r = amdgpu_vm_update_pde(&params, vm, entry);
1312 		if (r)
1313 			goto error;
1314 	}
1315 
1316 	r = vm->update_funcs->commit(&params, &vm->last_update);
1317 	if (r)
1318 		goto error;
1319 	return 0;
1320 
1321 error:
1322 	amdgpu_vm_invalidate_pds(adev, vm);
1323 	return r;
1324 }
1325 
1326 /*
1327  * amdgpu_vm_update_flags - figure out flags for PTE updates
1328  *
1329  * Make sure to set the right flags for the PTEs at the desired level.
1330  */
1331 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1332 				   struct amdgpu_bo *bo, unsigned level,
1333 				   uint64_t pe, uint64_t addr,
1334 				   unsigned count, uint32_t incr,
1335 				   uint64_t flags)
1336 
1337 {
1338 	if (level != AMDGPU_VM_PTB) {
1339 		flags |= AMDGPU_PDE_PTE;
1340 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1341 
1342 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1343 		   !(flags & AMDGPU_PTE_VALID) &&
1344 		   !(flags & AMDGPU_PTE_PRT)) {
1345 
1346 		/* Workaround for fault priority problem on GMC9 */
1347 		flags |= AMDGPU_PTE_EXECUTABLE;
1348 	}
1349 
1350 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1351 					 flags);
1352 }
1353 
1354 /**
1355  * amdgpu_vm_fragment - get fragment for PTEs
1356  *
1357  * @params: see amdgpu_vm_update_params definition
1358  * @start: first PTE to handle
1359  * @end: last PTE to handle
1360  * @flags: hw mapping flags
1361  * @frag: resulting fragment size
1362  * @frag_end: end of this fragment
1363  *
1364  * Returns the first possible fragment for the start and end address.
1365  */
1366 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1367 			       uint64_t start, uint64_t end, uint64_t flags,
1368 			       unsigned int *frag, uint64_t *frag_end)
1369 {
1370 	/**
1371 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1372 	 * field in the PTE. When this field is set to a non-zero value, page
1373 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1374 	 * flags are considered valid for all PTEs within the fragment range
1375 	 * and corresponding mappings are assumed to be physically contiguous.
1376 	 *
1377 	 * The L1 TLB can store a single PTE for the whole fragment,
1378 	 * significantly increasing the space available for translation
1379 	 * caching. This leads to large improvements in throughput when the
1380 	 * TLB is under pressure.
1381 	 *
1382 	 * The L2 TLB distributes small and large fragments into two
1383 	 * asymmetric partitions. The large fragment cache is significantly
1384 	 * larger. Thus, we try to use large fragments wherever possible.
1385 	 * Userspace can support this by aligning virtual base address and
1386 	 * allocation size to the fragment size.
1387 	 *
1388 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1389 	 * is now directly feed with small/huge/giant pages from the walker.
1390 	 */
1391 	unsigned max_frag;
1392 
1393 	if (params->adev->asic_type < CHIP_VEGA10)
1394 		max_frag = params->adev->vm_manager.fragment_size;
1395 	else
1396 		max_frag = 31;
1397 
1398 	/* system pages are non continuously */
1399 	if (params->pages_addr) {
1400 		*frag = 0;
1401 		*frag_end = end;
1402 		return;
1403 	}
1404 
1405 	/* This intentionally wraps around if no bit is set */
1406 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1407 	if (*frag >= max_frag) {
1408 		*frag = max_frag;
1409 		*frag_end = end & ~((1ULL << max_frag) - 1);
1410 	} else {
1411 		*frag_end = start + (1 << *frag);
1412 	}
1413 }
1414 
1415 /**
1416  * amdgpu_vm_update_ptes - make sure that page tables are valid
1417  *
1418  * @params: see amdgpu_vm_update_params definition
1419  * @start: start of GPU address range
1420  * @end: end of GPU address range
1421  * @dst: destination address to map to, the next dst inside the function
1422  * @flags: mapping flags
1423  *
1424  * Update the page tables in the range @start - @end.
1425  *
1426  * Returns:
1427  * 0 for success, -EINVAL for failure.
1428  */
1429 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1430 				 uint64_t start, uint64_t end,
1431 				 uint64_t dst, uint64_t flags)
1432 {
1433 	struct amdgpu_device *adev = params->adev;
1434 	struct amdgpu_vm_pt_cursor cursor;
1435 	uint64_t frag_start = start, frag_end;
1436 	unsigned int frag;
1437 	int r;
1438 
1439 	/* figure out the initial fragment */
1440 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1441 
1442 	/* walk over the address space and update the PTs */
1443 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1444 	while (cursor.pfn < end) {
1445 		unsigned shift, parent_shift, mask;
1446 		uint64_t incr, entry_end, pe_start;
1447 		struct amdgpu_bo *pt;
1448 
1449 		if (!params->unlocked) {
1450 			/* make sure that the page tables covering the
1451 			 * address range are actually allocated
1452 			 */
1453 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1454 						&cursor, params->immediate);
1455 			if (r)
1456 				return r;
1457 		}
1458 
1459 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1460 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1461 		if (params->unlocked) {
1462 			/* Unlocked updates are only allowed on the leaves */
1463 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1464 				continue;
1465 		} else if (adev->asic_type < CHIP_VEGA10 &&
1466 			   (flags & AMDGPU_PTE_VALID)) {
1467 			/* No huge page support before GMC v9 */
1468 			if (cursor.level != AMDGPU_VM_PTB) {
1469 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1470 					return -ENOENT;
1471 				continue;
1472 			}
1473 		} else if (frag < shift) {
1474 			/* We can't use this level when the fragment size is
1475 			 * smaller than the address shift. Go to the next
1476 			 * child entry and try again.
1477 			 */
1478 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1479 				continue;
1480 		} else if (frag >= parent_shift) {
1481 			/* If the fragment size is even larger than the parent
1482 			 * shift we should go up one level and check it again.
1483 			 */
1484 			if (!amdgpu_vm_pt_ancestor(&cursor))
1485 				return -EINVAL;
1486 			continue;
1487 		}
1488 
1489 		pt = cursor.entry->base.bo;
1490 		if (!pt) {
1491 			/* We need all PDs and PTs for mapping something, */
1492 			if (flags & AMDGPU_PTE_VALID)
1493 				return -ENOENT;
1494 
1495 			/* but unmapping something can happen at a higher
1496 			 * level.
1497 			 */
1498 			if (!amdgpu_vm_pt_ancestor(&cursor))
1499 				return -EINVAL;
1500 
1501 			pt = cursor.entry->base.bo;
1502 			shift = parent_shift;
1503 		}
1504 
1505 		/* Looks good so far, calculate parameters for the update */
1506 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1507 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1508 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1509 		entry_end = ((uint64_t)mask + 1) << shift;
1510 		entry_end += cursor.pfn & ~(entry_end - 1);
1511 		entry_end = min(entry_end, end);
1512 
1513 		do {
1514 			uint64_t upd_end = min(entry_end, frag_end);
1515 			unsigned nptes = (upd_end - frag_start) >> shift;
1516 
1517 			/* This can happen when we set higher level PDs to
1518 			 * silent to stop fault floods.
1519 			 */
1520 			nptes = max(nptes, 1u);
1521 			amdgpu_vm_update_flags(params, pt, cursor.level,
1522 					       pe_start, dst, nptes, incr,
1523 					       flags | AMDGPU_PTE_FRAG(frag));
1524 
1525 			pe_start += nptes * 8;
1526 			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1527 
1528 			frag_start = upd_end;
1529 			if (frag_start >= frag_end) {
1530 				/* figure out the next fragment */
1531 				amdgpu_vm_fragment(params, frag_start, end,
1532 						   flags, &frag, &frag_end);
1533 				if (frag < shift)
1534 					break;
1535 			}
1536 		} while (frag_start < entry_end);
1537 
1538 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1539 			/* Free all child entries.
1540 			 * Update the tables with the flags and addresses and free up subsequent
1541 			 * tables in the case of huge pages or freed up areas.
1542 			 * This is the maximum you can free, because all other page tables are not
1543 			 * completely covered by the range and so potentially still in use.
1544 			 */
1545 			while (cursor.pfn < frag_start) {
1546 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1547 				amdgpu_vm_pt_next(adev, &cursor);
1548 			}
1549 
1550 		} else if (frag >= shift) {
1551 			/* or just move on to the next on the same level. */
1552 			amdgpu_vm_pt_next(adev, &cursor);
1553 		}
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 /**
1560  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1561  *
1562  * @adev: amdgpu_device pointer
1563  * @vm: requested vm
1564  * @immediate: immediate submission in a page fault
1565  * @unlocked: unlocked invalidation during MM callback
1566  * @resv: fences we need to sync to
1567  * @start: start of mapped range
1568  * @last: last mapped entry
1569  * @flags: flags for the entries
1570  * @addr: addr to set the area to
1571  * @pages_addr: DMA addresses to use for mapping
1572  * @fence: optional resulting fence
1573  *
1574  * Fill in the page table entries between @start and @last.
1575  *
1576  * Returns:
1577  * 0 for success, -EINVAL for failure.
1578  */
1579 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1580 				       struct amdgpu_vm *vm, bool immediate,
1581 				       bool unlocked, struct dma_resv *resv,
1582 				       uint64_t start, uint64_t last,
1583 				       uint64_t flags, uint64_t addr,
1584 				       dma_addr_t *pages_addr,
1585 				       struct dma_fence **fence)
1586 {
1587 	struct amdgpu_vm_update_params params;
1588 	enum amdgpu_sync_mode sync_mode;
1589 	int r;
1590 
1591 	memset(&params, 0, sizeof(params));
1592 	params.adev = adev;
1593 	params.vm = vm;
1594 	params.immediate = immediate;
1595 	params.pages_addr = pages_addr;
1596 	params.unlocked = unlocked;
1597 
1598 	/* Implicitly sync to command submissions in the same VM before
1599 	 * unmapping. Sync to moving fences before mapping.
1600 	 */
1601 	if (!(flags & AMDGPU_PTE_VALID))
1602 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1603 	else
1604 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1605 
1606 	amdgpu_vm_eviction_lock(vm);
1607 	if (vm->evicting) {
1608 		r = -EBUSY;
1609 		goto error_unlock;
1610 	}
1611 
1612 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1613 		struct dma_fence *tmp = dma_fence_get_stub();
1614 
1615 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1616 		swap(vm->last_unlocked, tmp);
1617 		dma_fence_put(tmp);
1618 	}
1619 
1620 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1621 	if (r)
1622 		goto error_unlock;
1623 
1624 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1625 	if (r)
1626 		goto error_unlock;
1627 
1628 	r = vm->update_funcs->commit(&params, fence);
1629 
1630 error_unlock:
1631 	amdgpu_vm_eviction_unlock(vm);
1632 	return r;
1633 }
1634 
1635 /**
1636  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1637  *
1638  * @adev: amdgpu_device pointer
1639  * @resv: fences we need to sync to
1640  * @pages_addr: DMA addresses to use for mapping
1641  * @vm: requested vm
1642  * @mapping: mapped range and flags to use for the update
1643  * @flags: HW flags for the mapping
1644  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1645  * @nodes: array of drm_mm_nodes with the MC addresses
1646  * @fence: optional resulting fence
1647  *
1648  * Split the mapping into smaller chunks so that each update fits
1649  * into a SDMA IB.
1650  *
1651  * Returns:
1652  * 0 for success, -EINVAL for failure.
1653  */
1654 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1655 				      struct dma_resv *resv,
1656 				      dma_addr_t *pages_addr,
1657 				      struct amdgpu_vm *vm,
1658 				      struct amdgpu_bo_va_mapping *mapping,
1659 				      uint64_t flags,
1660 				      struct amdgpu_device *bo_adev,
1661 				      struct drm_mm_node *nodes,
1662 				      struct dma_fence **fence)
1663 {
1664 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1665 	uint64_t pfn, start = mapping->start;
1666 	int r;
1667 
1668 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1669 	 * but in case of something, we filter the flags in first place
1670 	 */
1671 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1672 		flags &= ~AMDGPU_PTE_READABLE;
1673 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1674 		flags &= ~AMDGPU_PTE_WRITEABLE;
1675 
1676 	/* Apply ASIC specific mapping flags */
1677 	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1678 
1679 	trace_amdgpu_vm_bo_update(mapping);
1680 
1681 	pfn = mapping->offset >> PAGE_SHIFT;
1682 	if (nodes) {
1683 		while (pfn >= nodes->size) {
1684 			pfn -= nodes->size;
1685 			++nodes;
1686 		}
1687 	}
1688 
1689 	do {
1690 		dma_addr_t *dma_addr = NULL;
1691 		uint64_t max_entries;
1692 		uint64_t addr, last;
1693 
1694 		if (nodes) {
1695 			addr = nodes->start << PAGE_SHIFT;
1696 			max_entries = (nodes->size - pfn) *
1697 				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1698 		} else {
1699 			addr = 0;
1700 			max_entries = S64_MAX;
1701 		}
1702 
1703 		if (pages_addr) {
1704 			uint64_t count;
1705 
1706 			for (count = 1;
1707 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1708 			     ++count) {
1709 				uint64_t idx = pfn + count;
1710 
1711 				if (pages_addr[idx] !=
1712 				    (pages_addr[idx - 1] + PAGE_SIZE))
1713 					break;
1714 			}
1715 
1716 			if (count < min_linear_pages) {
1717 				addr = pfn << PAGE_SHIFT;
1718 				dma_addr = pages_addr;
1719 			} else {
1720 				addr = pages_addr[pfn];
1721 				max_entries = count *
1722 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1723 			}
1724 
1725 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1726 			addr += bo_adev->vm_manager.vram_base_offset;
1727 			addr += pfn << PAGE_SHIFT;
1728 		}
1729 
1730 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1731 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1732 						start, last, flags, addr,
1733 						dma_addr, fence);
1734 		if (r)
1735 			return r;
1736 
1737 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1738 		if (nodes && nodes->size == pfn) {
1739 			pfn = 0;
1740 			++nodes;
1741 		}
1742 		start = last + 1;
1743 
1744 	} while (unlikely(start != mapping->last + 1));
1745 
1746 	return 0;
1747 }
1748 
1749 /**
1750  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1751  *
1752  * @adev: amdgpu_device pointer
1753  * @bo_va: requested BO and VM object
1754  * @clear: if true clear the entries
1755  *
1756  * Fill in the page table entries for @bo_va.
1757  *
1758  * Returns:
1759  * 0 for success, -EINVAL for failure.
1760  */
1761 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1762 			bool clear)
1763 {
1764 	struct amdgpu_bo *bo = bo_va->base.bo;
1765 	struct amdgpu_vm *vm = bo_va->base.vm;
1766 	struct amdgpu_bo_va_mapping *mapping;
1767 	dma_addr_t *pages_addr = NULL;
1768 	struct ttm_mem_reg *mem;
1769 	struct drm_mm_node *nodes;
1770 	struct dma_fence **last_update;
1771 	struct dma_resv *resv;
1772 	uint64_t flags;
1773 	struct amdgpu_device *bo_adev = adev;
1774 	int r;
1775 
1776 	if (clear || !bo) {
1777 		mem = NULL;
1778 		nodes = NULL;
1779 		resv = vm->root.base.bo->tbo.base.resv;
1780 	} else {
1781 		struct ttm_dma_tt *ttm;
1782 
1783 		mem = &bo->tbo.mem;
1784 		nodes = mem->mm_node;
1785 		if (mem->mem_type == TTM_PL_TT) {
1786 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1787 			pages_addr = ttm->dma_address;
1788 		}
1789 		resv = bo->tbo.base.resv;
1790 	}
1791 
1792 	if (bo) {
1793 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1794 
1795 		if (amdgpu_bo_encrypted(bo))
1796 			flags |= AMDGPU_PTE_TMZ;
1797 
1798 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1799 	} else {
1800 		flags = 0x0;
1801 	}
1802 
1803 	if (clear || (bo && bo->tbo.base.resv ==
1804 		      vm->root.base.bo->tbo.base.resv))
1805 		last_update = &vm->last_update;
1806 	else
1807 		last_update = &bo_va->last_pt_update;
1808 
1809 	if (!clear && bo_va->base.moved) {
1810 		bo_va->base.moved = false;
1811 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1812 
1813 	} else if (bo_va->cleared != clear) {
1814 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1815 	}
1816 
1817 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1818 		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1819 					       mapping, flags, bo_adev, nodes,
1820 					       last_update);
1821 		if (r)
1822 			return r;
1823 	}
1824 
1825 	/* If the BO is not in its preferred location add it back to
1826 	 * the evicted list so that it gets validated again on the
1827 	 * next command submission.
1828 	 */
1829 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1830 		uint32_t mem_type = bo->tbo.mem.mem_type;
1831 
1832 		if (!(bo->preferred_domains &
1833 		      amdgpu_mem_type_to_domain(mem_type)))
1834 			amdgpu_vm_bo_evicted(&bo_va->base);
1835 		else
1836 			amdgpu_vm_bo_idle(&bo_va->base);
1837 	} else {
1838 		amdgpu_vm_bo_done(&bo_va->base);
1839 	}
1840 
1841 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1842 	bo_va->cleared = clear;
1843 
1844 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1845 		list_for_each_entry(mapping, &bo_va->valids, list)
1846 			trace_amdgpu_vm_bo_mapping(mapping);
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 /**
1853  * amdgpu_vm_update_prt_state - update the global PRT state
1854  *
1855  * @adev: amdgpu_device pointer
1856  */
1857 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1858 {
1859 	unsigned long flags;
1860 	bool enable;
1861 
1862 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1863 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1864 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1865 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1866 }
1867 
1868 /**
1869  * amdgpu_vm_prt_get - add a PRT user
1870  *
1871  * @adev: amdgpu_device pointer
1872  */
1873 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1874 {
1875 	if (!adev->gmc.gmc_funcs->set_prt)
1876 		return;
1877 
1878 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1879 		amdgpu_vm_update_prt_state(adev);
1880 }
1881 
1882 /**
1883  * amdgpu_vm_prt_put - drop a PRT user
1884  *
1885  * @adev: amdgpu_device pointer
1886  */
1887 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1888 {
1889 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1890 		amdgpu_vm_update_prt_state(adev);
1891 }
1892 
1893 /**
1894  * amdgpu_vm_prt_cb - callback for updating the PRT status
1895  *
1896  * @fence: fence for the callback
1897  * @_cb: the callback function
1898  */
1899 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1900 {
1901 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1902 
1903 	amdgpu_vm_prt_put(cb->adev);
1904 	kfree(cb);
1905 }
1906 
1907 /**
1908  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1909  *
1910  * @adev: amdgpu_device pointer
1911  * @fence: fence for the callback
1912  */
1913 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1914 				 struct dma_fence *fence)
1915 {
1916 	struct amdgpu_prt_cb *cb;
1917 
1918 	if (!adev->gmc.gmc_funcs->set_prt)
1919 		return;
1920 
1921 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1922 	if (!cb) {
1923 		/* Last resort when we are OOM */
1924 		if (fence)
1925 			dma_fence_wait(fence, false);
1926 
1927 		amdgpu_vm_prt_put(adev);
1928 	} else {
1929 		cb->adev = adev;
1930 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1931 						     amdgpu_vm_prt_cb))
1932 			amdgpu_vm_prt_cb(fence, &cb->cb);
1933 	}
1934 }
1935 
1936 /**
1937  * amdgpu_vm_free_mapping - free a mapping
1938  *
1939  * @adev: amdgpu_device pointer
1940  * @vm: requested vm
1941  * @mapping: mapping to be freed
1942  * @fence: fence of the unmap operation
1943  *
1944  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1945  */
1946 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1947 				   struct amdgpu_vm *vm,
1948 				   struct amdgpu_bo_va_mapping *mapping,
1949 				   struct dma_fence *fence)
1950 {
1951 	if (mapping->flags & AMDGPU_PTE_PRT)
1952 		amdgpu_vm_add_prt_cb(adev, fence);
1953 	kfree(mapping);
1954 }
1955 
1956 /**
1957  * amdgpu_vm_prt_fini - finish all prt mappings
1958  *
1959  * @adev: amdgpu_device pointer
1960  * @vm: requested vm
1961  *
1962  * Register a cleanup callback to disable PRT support after VM dies.
1963  */
1964 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1965 {
1966 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1967 	struct dma_fence *excl, **shared;
1968 	unsigned i, shared_count;
1969 	int r;
1970 
1971 	r = dma_resv_get_fences_rcu(resv, &excl,
1972 					      &shared_count, &shared);
1973 	if (r) {
1974 		/* Not enough memory to grab the fence list, as last resort
1975 		 * block for all the fences to complete.
1976 		 */
1977 		dma_resv_wait_timeout_rcu(resv, true, false,
1978 						    MAX_SCHEDULE_TIMEOUT);
1979 		return;
1980 	}
1981 
1982 	/* Add a callback for each fence in the reservation object */
1983 	amdgpu_vm_prt_get(adev);
1984 	amdgpu_vm_add_prt_cb(adev, excl);
1985 
1986 	for (i = 0; i < shared_count; ++i) {
1987 		amdgpu_vm_prt_get(adev);
1988 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1989 	}
1990 
1991 	kfree(shared);
1992 }
1993 
1994 /**
1995  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1996  *
1997  * @adev: amdgpu_device pointer
1998  * @vm: requested vm
1999  * @fence: optional resulting fence (unchanged if no work needed to be done
2000  * or if an error occurred)
2001  *
2002  * Make sure all freed BOs are cleared in the PT.
2003  * PTs have to be reserved and mutex must be locked!
2004  *
2005  * Returns:
2006  * 0 for success.
2007  *
2008  */
2009 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2010 			  struct amdgpu_vm *vm,
2011 			  struct dma_fence **fence)
2012 {
2013 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2014 	struct amdgpu_bo_va_mapping *mapping;
2015 	uint64_t init_pte_value = 0;
2016 	struct dma_fence *f = NULL;
2017 	int r;
2018 
2019 	while (!list_empty(&vm->freed)) {
2020 		mapping = list_first_entry(&vm->freed,
2021 			struct amdgpu_bo_va_mapping, list);
2022 		list_del(&mapping->list);
2023 
2024 		if (vm->pte_support_ats &&
2025 		    mapping->start < AMDGPU_GMC_HOLE_START)
2026 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2027 
2028 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2029 						mapping->start, mapping->last,
2030 						init_pte_value, 0, NULL, &f);
2031 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2032 		if (r) {
2033 			dma_fence_put(f);
2034 			return r;
2035 		}
2036 	}
2037 
2038 	if (fence && f) {
2039 		dma_fence_put(*fence);
2040 		*fence = f;
2041 	} else {
2042 		dma_fence_put(f);
2043 	}
2044 
2045 	return 0;
2046 
2047 }
2048 
2049 /**
2050  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2051  *
2052  * @adev: amdgpu_device pointer
2053  * @vm: requested vm
2054  *
2055  * Make sure all BOs which are moved are updated in the PTs.
2056  *
2057  * Returns:
2058  * 0 for success.
2059  *
2060  * PTs have to be reserved!
2061  */
2062 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2063 			   struct amdgpu_vm *vm)
2064 {
2065 	struct amdgpu_bo_va *bo_va, *tmp;
2066 	struct dma_resv *resv;
2067 	bool clear;
2068 	int r;
2069 
2070 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2071 		/* Per VM BOs never need to bo cleared in the page tables */
2072 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2073 		if (r)
2074 			return r;
2075 	}
2076 
2077 	spin_lock(&vm->invalidated_lock);
2078 	while (!list_empty(&vm->invalidated)) {
2079 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2080 					 base.vm_status);
2081 		resv = bo_va->base.bo->tbo.base.resv;
2082 		spin_unlock(&vm->invalidated_lock);
2083 
2084 		/* Try to reserve the BO to avoid clearing its ptes */
2085 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2086 			clear = false;
2087 		/* Somebody else is using the BO right now */
2088 		else
2089 			clear = true;
2090 
2091 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2092 		if (r)
2093 			return r;
2094 
2095 		if (!clear)
2096 			dma_resv_unlock(resv);
2097 		spin_lock(&vm->invalidated_lock);
2098 	}
2099 	spin_unlock(&vm->invalidated_lock);
2100 
2101 	return 0;
2102 }
2103 
2104 /**
2105  * amdgpu_vm_bo_add - add a bo to a specific vm
2106  *
2107  * @adev: amdgpu_device pointer
2108  * @vm: requested vm
2109  * @bo: amdgpu buffer object
2110  *
2111  * Add @bo into the requested vm.
2112  * Add @bo to the list of bos associated with the vm
2113  *
2114  * Returns:
2115  * Newly added bo_va or NULL for failure
2116  *
2117  * Object has to be reserved!
2118  */
2119 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2120 				      struct amdgpu_vm *vm,
2121 				      struct amdgpu_bo *bo)
2122 {
2123 	struct amdgpu_bo_va *bo_va;
2124 
2125 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2126 	if (bo_va == NULL) {
2127 		return NULL;
2128 	}
2129 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2130 
2131 	bo_va->ref_count = 1;
2132 	INIT_LIST_HEAD(&bo_va->valids);
2133 	INIT_LIST_HEAD(&bo_va->invalids);
2134 
2135 	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2136 	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2137 		bo_va->is_xgmi = true;
2138 		/* Power up XGMI if it can be potentially used */
2139 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2140 	}
2141 
2142 	return bo_va;
2143 }
2144 
2145 
2146 /**
2147  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2148  *
2149  * @adev: amdgpu_device pointer
2150  * @bo_va: bo_va to store the address
2151  * @mapping: the mapping to insert
2152  *
2153  * Insert a new mapping into all structures.
2154  */
2155 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2156 				    struct amdgpu_bo_va *bo_va,
2157 				    struct amdgpu_bo_va_mapping *mapping)
2158 {
2159 	struct amdgpu_vm *vm = bo_va->base.vm;
2160 	struct amdgpu_bo *bo = bo_va->base.bo;
2161 
2162 	mapping->bo_va = bo_va;
2163 	list_add(&mapping->list, &bo_va->invalids);
2164 	amdgpu_vm_it_insert(mapping, &vm->va);
2165 
2166 	if (mapping->flags & AMDGPU_PTE_PRT)
2167 		amdgpu_vm_prt_get(adev);
2168 
2169 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2170 	    !bo_va->base.moved) {
2171 		list_move(&bo_va->base.vm_status, &vm->moved);
2172 	}
2173 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2174 }
2175 
2176 /**
2177  * amdgpu_vm_bo_map - map bo inside a vm
2178  *
2179  * @adev: amdgpu_device pointer
2180  * @bo_va: bo_va to store the address
2181  * @saddr: where to map the BO
2182  * @offset: requested offset in the BO
2183  * @size: BO size in bytes
2184  * @flags: attributes of pages (read/write/valid/etc.)
2185  *
2186  * Add a mapping of the BO at the specefied addr into the VM.
2187  *
2188  * Returns:
2189  * 0 for success, error for failure.
2190  *
2191  * Object has to be reserved and unreserved outside!
2192  */
2193 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2194 		     struct amdgpu_bo_va *bo_va,
2195 		     uint64_t saddr, uint64_t offset,
2196 		     uint64_t size, uint64_t flags)
2197 {
2198 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2199 	struct amdgpu_bo *bo = bo_va->base.bo;
2200 	struct amdgpu_vm *vm = bo_va->base.vm;
2201 	uint64_t eaddr;
2202 
2203 	/* validate the parameters */
2204 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2205 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2206 		return -EINVAL;
2207 
2208 	/* make sure object fit at this offset */
2209 	eaddr = saddr + size - 1;
2210 	if (saddr >= eaddr ||
2211 	    (bo && offset + size > amdgpu_bo_size(bo)))
2212 		return -EINVAL;
2213 
2214 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2215 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2216 
2217 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2218 	if (tmp) {
2219 		/* bo and tmp overlap, invalid addr */
2220 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2221 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2222 			tmp->start, tmp->last + 1);
2223 		return -EINVAL;
2224 	}
2225 
2226 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2227 	if (!mapping)
2228 		return -ENOMEM;
2229 
2230 	mapping->start = saddr;
2231 	mapping->last = eaddr;
2232 	mapping->offset = offset;
2233 	mapping->flags = flags;
2234 
2235 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2236 
2237 	return 0;
2238 }
2239 
2240 /**
2241  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2242  *
2243  * @adev: amdgpu_device pointer
2244  * @bo_va: bo_va to store the address
2245  * @saddr: where to map the BO
2246  * @offset: requested offset in the BO
2247  * @size: BO size in bytes
2248  * @flags: attributes of pages (read/write/valid/etc.)
2249  *
2250  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2251  * mappings as we do so.
2252  *
2253  * Returns:
2254  * 0 for success, error for failure.
2255  *
2256  * Object has to be reserved and unreserved outside!
2257  */
2258 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2259 			     struct amdgpu_bo_va *bo_va,
2260 			     uint64_t saddr, uint64_t offset,
2261 			     uint64_t size, uint64_t flags)
2262 {
2263 	struct amdgpu_bo_va_mapping *mapping;
2264 	struct amdgpu_bo *bo = bo_va->base.bo;
2265 	uint64_t eaddr;
2266 	int r;
2267 
2268 	/* validate the parameters */
2269 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2270 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2271 		return -EINVAL;
2272 
2273 	/* make sure object fit at this offset */
2274 	eaddr = saddr + size - 1;
2275 	if (saddr >= eaddr ||
2276 	    (bo && offset + size > amdgpu_bo_size(bo)))
2277 		return -EINVAL;
2278 
2279 	/* Allocate all the needed memory */
2280 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2281 	if (!mapping)
2282 		return -ENOMEM;
2283 
2284 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2285 	if (r) {
2286 		kfree(mapping);
2287 		return r;
2288 	}
2289 
2290 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2291 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2292 
2293 	mapping->start = saddr;
2294 	mapping->last = eaddr;
2295 	mapping->offset = offset;
2296 	mapping->flags = flags;
2297 
2298 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2299 
2300 	return 0;
2301 }
2302 
2303 /**
2304  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2305  *
2306  * @adev: amdgpu_device pointer
2307  * @bo_va: bo_va to remove the address from
2308  * @saddr: where to the BO is mapped
2309  *
2310  * Remove a mapping of the BO at the specefied addr from the VM.
2311  *
2312  * Returns:
2313  * 0 for success, error for failure.
2314  *
2315  * Object has to be reserved and unreserved outside!
2316  */
2317 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2318 		       struct amdgpu_bo_va *bo_va,
2319 		       uint64_t saddr)
2320 {
2321 	struct amdgpu_bo_va_mapping *mapping;
2322 	struct amdgpu_vm *vm = bo_va->base.vm;
2323 	bool valid = true;
2324 
2325 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2326 
2327 	list_for_each_entry(mapping, &bo_va->valids, list) {
2328 		if (mapping->start == saddr)
2329 			break;
2330 	}
2331 
2332 	if (&mapping->list == &bo_va->valids) {
2333 		valid = false;
2334 
2335 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2336 			if (mapping->start == saddr)
2337 				break;
2338 		}
2339 
2340 		if (&mapping->list == &bo_va->invalids)
2341 			return -ENOENT;
2342 	}
2343 
2344 	list_del(&mapping->list);
2345 	amdgpu_vm_it_remove(mapping, &vm->va);
2346 	mapping->bo_va = NULL;
2347 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2348 
2349 	if (valid)
2350 		list_add(&mapping->list, &vm->freed);
2351 	else
2352 		amdgpu_vm_free_mapping(adev, vm, mapping,
2353 				       bo_va->last_pt_update);
2354 
2355 	return 0;
2356 }
2357 
2358 /**
2359  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2360  *
2361  * @adev: amdgpu_device pointer
2362  * @vm: VM structure to use
2363  * @saddr: start of the range
2364  * @size: size of the range
2365  *
2366  * Remove all mappings in a range, split them as appropriate.
2367  *
2368  * Returns:
2369  * 0 for success, error for failure.
2370  */
2371 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2372 				struct amdgpu_vm *vm,
2373 				uint64_t saddr, uint64_t size)
2374 {
2375 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2376 	LIST_HEAD(removed);
2377 	uint64_t eaddr;
2378 
2379 	eaddr = saddr + size - 1;
2380 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2381 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2382 
2383 	/* Allocate all the needed memory */
2384 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2385 	if (!before)
2386 		return -ENOMEM;
2387 	INIT_LIST_HEAD(&before->list);
2388 
2389 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2390 	if (!after) {
2391 		kfree(before);
2392 		return -ENOMEM;
2393 	}
2394 	INIT_LIST_HEAD(&after->list);
2395 
2396 	/* Now gather all removed mappings */
2397 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2398 	while (tmp) {
2399 		/* Remember mapping split at the start */
2400 		if (tmp->start < saddr) {
2401 			before->start = tmp->start;
2402 			before->last = saddr - 1;
2403 			before->offset = tmp->offset;
2404 			before->flags = tmp->flags;
2405 			before->bo_va = tmp->bo_va;
2406 			list_add(&before->list, &tmp->bo_va->invalids);
2407 		}
2408 
2409 		/* Remember mapping split at the end */
2410 		if (tmp->last > eaddr) {
2411 			after->start = eaddr + 1;
2412 			after->last = tmp->last;
2413 			after->offset = tmp->offset;
2414 			after->offset += after->start - tmp->start;
2415 			after->flags = tmp->flags;
2416 			after->bo_va = tmp->bo_va;
2417 			list_add(&after->list, &tmp->bo_va->invalids);
2418 		}
2419 
2420 		list_del(&tmp->list);
2421 		list_add(&tmp->list, &removed);
2422 
2423 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2424 	}
2425 
2426 	/* And free them up */
2427 	list_for_each_entry_safe(tmp, next, &removed, list) {
2428 		amdgpu_vm_it_remove(tmp, &vm->va);
2429 		list_del(&tmp->list);
2430 
2431 		if (tmp->start < saddr)
2432 		    tmp->start = saddr;
2433 		if (tmp->last > eaddr)
2434 		    tmp->last = eaddr;
2435 
2436 		tmp->bo_va = NULL;
2437 		list_add(&tmp->list, &vm->freed);
2438 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2439 	}
2440 
2441 	/* Insert partial mapping before the range */
2442 	if (!list_empty(&before->list)) {
2443 		amdgpu_vm_it_insert(before, &vm->va);
2444 		if (before->flags & AMDGPU_PTE_PRT)
2445 			amdgpu_vm_prt_get(adev);
2446 	} else {
2447 		kfree(before);
2448 	}
2449 
2450 	/* Insert partial mapping after the range */
2451 	if (!list_empty(&after->list)) {
2452 		amdgpu_vm_it_insert(after, &vm->va);
2453 		if (after->flags & AMDGPU_PTE_PRT)
2454 			amdgpu_vm_prt_get(adev);
2455 	} else {
2456 		kfree(after);
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 /**
2463  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2464  *
2465  * @vm: the requested VM
2466  * @addr: the address
2467  *
2468  * Find a mapping by it's address.
2469  *
2470  * Returns:
2471  * The amdgpu_bo_va_mapping matching for addr or NULL
2472  *
2473  */
2474 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2475 							 uint64_t addr)
2476 {
2477 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2478 }
2479 
2480 /**
2481  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2482  *
2483  * @vm: the requested vm
2484  * @ticket: CS ticket
2485  *
2486  * Trace all mappings of BOs reserved during a command submission.
2487  */
2488 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2489 {
2490 	struct amdgpu_bo_va_mapping *mapping;
2491 
2492 	if (!trace_amdgpu_vm_bo_cs_enabled())
2493 		return;
2494 
2495 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2496 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2497 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2498 			struct amdgpu_bo *bo;
2499 
2500 			bo = mapping->bo_va->base.bo;
2501 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2502 			    ticket)
2503 				continue;
2504 		}
2505 
2506 		trace_amdgpu_vm_bo_cs(mapping);
2507 	}
2508 }
2509 
2510 /**
2511  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2512  *
2513  * @adev: amdgpu_device pointer
2514  * @bo_va: requested bo_va
2515  *
2516  * Remove @bo_va->bo from the requested vm.
2517  *
2518  * Object have to be reserved!
2519  */
2520 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2521 		      struct amdgpu_bo_va *bo_va)
2522 {
2523 	struct amdgpu_bo_va_mapping *mapping, *next;
2524 	struct amdgpu_bo *bo = bo_va->base.bo;
2525 	struct amdgpu_vm *vm = bo_va->base.vm;
2526 	struct amdgpu_vm_bo_base **base;
2527 
2528 	if (bo) {
2529 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2530 			vm->bulk_moveable = false;
2531 
2532 		for (base = &bo_va->base.bo->vm_bo; *base;
2533 		     base = &(*base)->next) {
2534 			if (*base != &bo_va->base)
2535 				continue;
2536 
2537 			*base = bo_va->base.next;
2538 			break;
2539 		}
2540 	}
2541 
2542 	spin_lock(&vm->invalidated_lock);
2543 	list_del(&bo_va->base.vm_status);
2544 	spin_unlock(&vm->invalidated_lock);
2545 
2546 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2547 		list_del(&mapping->list);
2548 		amdgpu_vm_it_remove(mapping, &vm->va);
2549 		mapping->bo_va = NULL;
2550 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2551 		list_add(&mapping->list, &vm->freed);
2552 	}
2553 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2554 		list_del(&mapping->list);
2555 		amdgpu_vm_it_remove(mapping, &vm->va);
2556 		amdgpu_vm_free_mapping(adev, vm, mapping,
2557 				       bo_va->last_pt_update);
2558 	}
2559 
2560 	dma_fence_put(bo_va->last_pt_update);
2561 
2562 	if (bo && bo_va->is_xgmi)
2563 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2564 
2565 	kfree(bo_va);
2566 }
2567 
2568 /**
2569  * amdgpu_vm_evictable - check if we can evict a VM
2570  *
2571  * @bo: A page table of the VM.
2572  *
2573  * Check if it is possible to evict a VM.
2574  */
2575 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2576 {
2577 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2578 
2579 	/* Page tables of a destroyed VM can go away immediately */
2580 	if (!bo_base || !bo_base->vm)
2581 		return true;
2582 
2583 	/* Don't evict VM page tables while they are busy */
2584 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2585 		return false;
2586 
2587 	/* Try to block ongoing updates */
2588 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2589 		return false;
2590 
2591 	/* Don't evict VM page tables while they are updated */
2592 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2593 		amdgpu_vm_eviction_unlock(bo_base->vm);
2594 		return false;
2595 	}
2596 
2597 	bo_base->vm->evicting = true;
2598 	amdgpu_vm_eviction_unlock(bo_base->vm);
2599 	return true;
2600 }
2601 
2602 /**
2603  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2604  *
2605  * @adev: amdgpu_device pointer
2606  * @bo: amdgpu buffer object
2607  * @evicted: is the BO evicted
2608  *
2609  * Mark @bo as invalid.
2610  */
2611 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2612 			     struct amdgpu_bo *bo, bool evicted)
2613 {
2614 	struct amdgpu_vm_bo_base *bo_base;
2615 
2616 	/* shadow bo doesn't have bo base, its validation needs its parent */
2617 	if (bo->parent && bo->parent->shadow == bo)
2618 		bo = bo->parent;
2619 
2620 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2621 		struct amdgpu_vm *vm = bo_base->vm;
2622 
2623 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2624 			amdgpu_vm_bo_evicted(bo_base);
2625 			continue;
2626 		}
2627 
2628 		if (bo_base->moved)
2629 			continue;
2630 		bo_base->moved = true;
2631 
2632 		if (bo->tbo.type == ttm_bo_type_kernel)
2633 			amdgpu_vm_bo_relocated(bo_base);
2634 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2635 			amdgpu_vm_bo_moved(bo_base);
2636 		else
2637 			amdgpu_vm_bo_invalidated(bo_base);
2638 	}
2639 }
2640 
2641 /**
2642  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2643  *
2644  * @vm_size: VM size
2645  *
2646  * Returns:
2647  * VM page table as power of two
2648  */
2649 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2650 {
2651 	/* Total bits covered by PD + PTs */
2652 	unsigned bits = ilog2(vm_size) + 18;
2653 
2654 	/* Make sure the PD is 4K in size up to 8GB address space.
2655 	   Above that split equal between PD and PTs */
2656 	if (vm_size <= 8)
2657 		return (bits - 9);
2658 	else
2659 		return ((bits + 3) / 2);
2660 }
2661 
2662 /**
2663  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2664  *
2665  * @adev: amdgpu_device pointer
2666  * @min_vm_size: the minimum vm size in GB if it's set auto
2667  * @fragment_size_default: Default PTE fragment size
2668  * @max_level: max VMPT level
2669  * @max_bits: max address space size in bits
2670  *
2671  */
2672 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2673 			   uint32_t fragment_size_default, unsigned max_level,
2674 			   unsigned max_bits)
2675 {
2676 	unsigned int max_size = 1 << (max_bits - 30);
2677 	unsigned int vm_size;
2678 	uint64_t tmp;
2679 
2680 	/* adjust vm size first */
2681 	if (amdgpu_vm_size != -1) {
2682 		vm_size = amdgpu_vm_size;
2683 		if (vm_size > max_size) {
2684 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2685 				 amdgpu_vm_size, max_size);
2686 			vm_size = max_size;
2687 		}
2688 	} else {
2689 		struct sysinfo si;
2690 		unsigned int phys_ram_gb;
2691 
2692 		/* Optimal VM size depends on the amount of physical
2693 		 * RAM available. Underlying requirements and
2694 		 * assumptions:
2695 		 *
2696 		 *  - Need to map system memory and VRAM from all GPUs
2697 		 *     - VRAM from other GPUs not known here
2698 		 *     - Assume VRAM <= system memory
2699 		 *  - On GFX8 and older, VM space can be segmented for
2700 		 *    different MTYPEs
2701 		 *  - Need to allow room for fragmentation, guard pages etc.
2702 		 *
2703 		 * This adds up to a rough guess of system memory x3.
2704 		 * Round up to power of two to maximize the available
2705 		 * VM size with the given page table size.
2706 		 */
2707 		si_meminfo(&si);
2708 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2709 			       (1 << 30) - 1) >> 30;
2710 		vm_size = roundup_pow_of_two(
2711 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2712 	}
2713 
2714 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2715 
2716 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2717 	if (amdgpu_vm_block_size != -1)
2718 		tmp >>= amdgpu_vm_block_size - 9;
2719 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2720 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2721 	switch (adev->vm_manager.num_level) {
2722 	case 3:
2723 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2724 		break;
2725 	case 2:
2726 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2727 		break;
2728 	case 1:
2729 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2730 		break;
2731 	default:
2732 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2733 	}
2734 	/* block size depends on vm size and hw setup*/
2735 	if (amdgpu_vm_block_size != -1)
2736 		adev->vm_manager.block_size =
2737 			min((unsigned)amdgpu_vm_block_size, max_bits
2738 			    - AMDGPU_GPU_PAGE_SHIFT
2739 			    - 9 * adev->vm_manager.num_level);
2740 	else if (adev->vm_manager.num_level > 1)
2741 		adev->vm_manager.block_size = 9;
2742 	else
2743 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2744 
2745 	if (amdgpu_vm_fragment_size == -1)
2746 		adev->vm_manager.fragment_size = fragment_size_default;
2747 	else
2748 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2749 
2750 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2751 		 vm_size, adev->vm_manager.num_level + 1,
2752 		 adev->vm_manager.block_size,
2753 		 adev->vm_manager.fragment_size);
2754 }
2755 
2756 /**
2757  * amdgpu_vm_wait_idle - wait for the VM to become idle
2758  *
2759  * @vm: VM object to wait for
2760  * @timeout: timeout to wait for VM to become idle
2761  */
2762 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2763 {
2764 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2765 					    true, true, timeout);
2766 	if (timeout <= 0)
2767 		return timeout;
2768 
2769 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2770 }
2771 
2772 /**
2773  * amdgpu_vm_init - initialize a vm instance
2774  *
2775  * @adev: amdgpu_device pointer
2776  * @vm: requested vm
2777  * @vm_context: Indicates if it GFX or Compute context
2778  * @pasid: Process address space identifier
2779  *
2780  * Init @vm fields.
2781  *
2782  * Returns:
2783  * 0 for success, error for failure.
2784  */
2785 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2786 		   int vm_context, unsigned int pasid)
2787 {
2788 	struct amdgpu_bo_param bp;
2789 	struct amdgpu_bo *root;
2790 	int r, i;
2791 
2792 	vm->va = RB_ROOT_CACHED;
2793 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2794 		vm->reserved_vmid[i] = NULL;
2795 	INIT_LIST_HEAD(&vm->evicted);
2796 	INIT_LIST_HEAD(&vm->relocated);
2797 	INIT_LIST_HEAD(&vm->moved);
2798 	INIT_LIST_HEAD(&vm->idle);
2799 	INIT_LIST_HEAD(&vm->invalidated);
2800 	spin_lock_init(&vm->invalidated_lock);
2801 	INIT_LIST_HEAD(&vm->freed);
2802 
2803 
2804 	/* create scheduler entities for page table updates */
2805 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2806 				  adev->vm_manager.vm_pte_scheds,
2807 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2808 	if (r)
2809 		return r;
2810 
2811 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2812 				  adev->vm_manager.vm_pte_scheds,
2813 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2814 	if (r)
2815 		goto error_free_immediate;
2816 
2817 	vm->pte_support_ats = false;
2818 	vm->is_compute_context = false;
2819 
2820 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2821 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2822 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2823 
2824 		if (adev->asic_type == CHIP_RAVEN)
2825 			vm->pte_support_ats = true;
2826 	} else {
2827 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2828 						AMDGPU_VM_USE_CPU_FOR_GFX);
2829 	}
2830 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2831 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2832 	WARN_ONCE((vm->use_cpu_for_update &&
2833 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2834 		  "CPU update of VM recommended only for large BAR system\n");
2835 
2836 	if (vm->use_cpu_for_update)
2837 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2838 	else
2839 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2840 	vm->last_update = NULL;
2841 	vm->last_unlocked = dma_fence_get_stub();
2842 
2843 	mutex_init(&vm->eviction_lock);
2844 	vm->evicting = false;
2845 
2846 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2847 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2848 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2849 	r = amdgpu_bo_create(adev, &bp, &root);
2850 	if (r)
2851 		goto error_free_delayed;
2852 
2853 	r = amdgpu_bo_reserve(root, true);
2854 	if (r)
2855 		goto error_free_root;
2856 
2857 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2858 	if (r)
2859 		goto error_unreserve;
2860 
2861 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2862 
2863 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2864 	if (r)
2865 		goto error_unreserve;
2866 
2867 	amdgpu_bo_unreserve(vm->root.base.bo);
2868 
2869 	if (pasid) {
2870 		unsigned long flags;
2871 
2872 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2873 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2874 			      GFP_ATOMIC);
2875 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2876 		if (r < 0)
2877 			goto error_free_root;
2878 
2879 		vm->pasid = pasid;
2880 	}
2881 
2882 	INIT_KFIFO(vm->faults);
2883 
2884 	return 0;
2885 
2886 error_unreserve:
2887 	amdgpu_bo_unreserve(vm->root.base.bo);
2888 
2889 error_free_root:
2890 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2891 	amdgpu_bo_unref(&vm->root.base.bo);
2892 	vm->root.base.bo = NULL;
2893 
2894 error_free_delayed:
2895 	dma_fence_put(vm->last_unlocked);
2896 	drm_sched_entity_destroy(&vm->delayed);
2897 
2898 error_free_immediate:
2899 	drm_sched_entity_destroy(&vm->immediate);
2900 
2901 	return r;
2902 }
2903 
2904 /**
2905  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2906  *
2907  * @adev: amdgpu_device pointer
2908  * @vm: the VM to check
2909  *
2910  * check all entries of the root PD, if any subsequent PDs are allocated,
2911  * it means there are page table creating and filling, and is no a clean
2912  * VM
2913  *
2914  * Returns:
2915  *	0 if this VM is clean
2916  */
2917 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2918 	struct amdgpu_vm *vm)
2919 {
2920 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2921 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2922 	unsigned int i = 0;
2923 
2924 	if (!(vm->root.entries))
2925 		return 0;
2926 
2927 	for (i = 0; i < entries; i++) {
2928 		if (vm->root.entries[i].base.bo)
2929 			return -EINVAL;
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 /**
2936  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2937  *
2938  * @adev: amdgpu_device pointer
2939  * @vm: requested vm
2940  * @pasid: pasid to use
2941  *
2942  * This only works on GFX VMs that don't have any BOs added and no
2943  * page tables allocated yet.
2944  *
2945  * Changes the following VM parameters:
2946  * - use_cpu_for_update
2947  * - pte_supports_ats
2948  * - pasid (old PASID is released, because compute manages its own PASIDs)
2949  *
2950  * Reinitializes the page directory to reflect the changed ATS
2951  * setting.
2952  *
2953  * Returns:
2954  * 0 for success, -errno for errors.
2955  */
2956 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2957 			   unsigned int pasid)
2958 {
2959 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2960 	int r;
2961 
2962 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2963 	if (r)
2964 		return r;
2965 
2966 	/* Sanity checks */
2967 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2968 	if (r)
2969 		goto unreserve_bo;
2970 
2971 	if (pasid) {
2972 		unsigned long flags;
2973 
2974 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2975 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2976 			      GFP_ATOMIC);
2977 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2978 
2979 		if (r == -ENOSPC)
2980 			goto unreserve_bo;
2981 		r = 0;
2982 	}
2983 
2984 	/* Check if PD needs to be reinitialized and do it before
2985 	 * changing any other state, in case it fails.
2986 	 */
2987 	if (pte_support_ats != vm->pte_support_ats) {
2988 		vm->pte_support_ats = pte_support_ats;
2989 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2990 		if (r)
2991 			goto free_idr;
2992 	}
2993 
2994 	/* Update VM state */
2995 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2996 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2997 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2998 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2999 	WARN_ONCE((vm->use_cpu_for_update &&
3000 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3001 		  "CPU update of VM recommended only for large BAR system\n");
3002 
3003 	if (vm->use_cpu_for_update) {
3004 		/* Sync with last SDMA update/clear before switching to CPU */
3005 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3006 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3007 		if (r)
3008 			goto free_idr;
3009 
3010 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3011 	} else {
3012 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3013 	}
3014 	dma_fence_put(vm->last_update);
3015 	vm->last_update = NULL;
3016 	vm->is_compute_context = true;
3017 
3018 	if (vm->pasid) {
3019 		unsigned long flags;
3020 
3021 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3022 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3023 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3024 
3025 		/* Free the original amdgpu allocated pasid
3026 		 * Will be replaced with kfd allocated pasid
3027 		 */
3028 		amdgpu_pasid_free(vm->pasid);
3029 		vm->pasid = 0;
3030 	}
3031 
3032 	/* Free the shadow bo for compute VM */
3033 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3034 
3035 	if (pasid)
3036 		vm->pasid = pasid;
3037 
3038 	goto unreserve_bo;
3039 
3040 free_idr:
3041 	if (pasid) {
3042 		unsigned long flags;
3043 
3044 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3045 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3046 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3047 	}
3048 unreserve_bo:
3049 	amdgpu_bo_unreserve(vm->root.base.bo);
3050 	return r;
3051 }
3052 
3053 /**
3054  * amdgpu_vm_release_compute - release a compute vm
3055  * @adev: amdgpu_device pointer
3056  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3057  *
3058  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3059  * pasid from vm. Compute should stop use of vm after this call.
3060  */
3061 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3062 {
3063 	if (vm->pasid) {
3064 		unsigned long flags;
3065 
3066 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3067 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3068 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3069 	}
3070 	vm->pasid = 0;
3071 	vm->is_compute_context = false;
3072 }
3073 
3074 /**
3075  * amdgpu_vm_fini - tear down a vm instance
3076  *
3077  * @adev: amdgpu_device pointer
3078  * @vm: requested vm
3079  *
3080  * Tear down @vm.
3081  * Unbind the VM and remove all bos from the vm bo list
3082  */
3083 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3084 {
3085 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3086 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3087 	struct amdgpu_bo *root;
3088 	int i;
3089 
3090 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3091 
3092 	root = amdgpu_bo_ref(vm->root.base.bo);
3093 	amdgpu_bo_reserve(root, true);
3094 	if (vm->pasid) {
3095 		unsigned long flags;
3096 
3097 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3098 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3099 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3100 		vm->pasid = 0;
3101 	}
3102 
3103 	dma_fence_wait(vm->last_unlocked, false);
3104 	dma_fence_put(vm->last_unlocked);
3105 
3106 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3107 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3108 			amdgpu_vm_prt_fini(adev, vm);
3109 			prt_fini_needed = false;
3110 		}
3111 
3112 		list_del(&mapping->list);
3113 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3114 	}
3115 
3116 	amdgpu_vm_free_pts(adev, vm, NULL);
3117 	amdgpu_bo_unreserve(root);
3118 	amdgpu_bo_unref(&root);
3119 	WARN_ON(vm->root.base.bo);
3120 
3121 	drm_sched_entity_destroy(&vm->immediate);
3122 	drm_sched_entity_destroy(&vm->delayed);
3123 
3124 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3125 		dev_err(adev->dev, "still active bo inside vm\n");
3126 	}
3127 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3128 					     &vm->va.rb_root, rb) {
3129 		/* Don't remove the mapping here, we don't want to trigger a
3130 		 * rebalance and the tree is about to be destroyed anyway.
3131 		 */
3132 		list_del(&mapping->list);
3133 		kfree(mapping);
3134 	}
3135 
3136 	dma_fence_put(vm->last_update);
3137 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3138 		amdgpu_vmid_free_reserved(adev, vm, i);
3139 }
3140 
3141 /**
3142  * amdgpu_vm_manager_init - init the VM manager
3143  *
3144  * @adev: amdgpu_device pointer
3145  *
3146  * Initialize the VM manager structures
3147  */
3148 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3149 {
3150 	unsigned i;
3151 
3152 	amdgpu_vmid_mgr_init(adev);
3153 
3154 	adev->vm_manager.fence_context =
3155 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3156 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3157 		adev->vm_manager.seqno[i] = 0;
3158 
3159 	spin_lock_init(&adev->vm_manager.prt_lock);
3160 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3161 
3162 	/* If not overridden by the user, by default, only in large BAR systems
3163 	 * Compute VM tables will be updated by CPU
3164 	 */
3165 #ifdef CONFIG_X86_64
3166 	if (amdgpu_vm_update_mode == -1) {
3167 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3168 			adev->vm_manager.vm_update_mode =
3169 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3170 		else
3171 			adev->vm_manager.vm_update_mode = 0;
3172 	} else
3173 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3174 #else
3175 	adev->vm_manager.vm_update_mode = 0;
3176 #endif
3177 
3178 	idr_init(&adev->vm_manager.pasid_idr);
3179 	spin_lock_init(&adev->vm_manager.pasid_lock);
3180 }
3181 
3182 /**
3183  * amdgpu_vm_manager_fini - cleanup VM manager
3184  *
3185  * @adev: amdgpu_device pointer
3186  *
3187  * Cleanup the VM manager and free resources.
3188  */
3189 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3190 {
3191 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3192 	idr_destroy(&adev->vm_manager.pasid_idr);
3193 
3194 	amdgpu_vmid_mgr_fini(adev);
3195 }
3196 
3197 /**
3198  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3199  *
3200  * @dev: drm device pointer
3201  * @data: drm_amdgpu_vm
3202  * @filp: drm file pointer
3203  *
3204  * Returns:
3205  * 0 for success, -errno for errors.
3206  */
3207 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3208 {
3209 	union drm_amdgpu_vm *args = data;
3210 	struct amdgpu_device *adev = dev->dev_private;
3211 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3212 	long timeout = msecs_to_jiffies(2000);
3213 	int r;
3214 
3215 	switch (args->in.op) {
3216 	case AMDGPU_VM_OP_RESERVE_VMID:
3217 		/* We only have requirement to reserve vmid from gfxhub */
3218 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3219 					       AMDGPU_GFXHUB_0);
3220 		if (r)
3221 			return r;
3222 		break;
3223 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3224 		if (amdgpu_sriov_runtime(adev))
3225 			timeout = 8 * timeout;
3226 
3227 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3228 		 * not referenced anymore.
3229 		 */
3230 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3231 		if (r)
3232 			return r;
3233 
3234 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3235 		if (r < 0)
3236 			return r;
3237 
3238 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3239 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3240 		break;
3241 	default:
3242 		return -EINVAL;
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 /**
3249  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3250  *
3251  * @adev: drm device pointer
3252  * @pasid: PASID identifier for VM
3253  * @task_info: task_info to fill.
3254  */
3255 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3256 			 struct amdgpu_task_info *task_info)
3257 {
3258 	struct amdgpu_vm *vm;
3259 	unsigned long flags;
3260 
3261 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3262 
3263 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3264 	if (vm)
3265 		*task_info = vm->task_info;
3266 
3267 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3268 }
3269 
3270 /**
3271  * amdgpu_vm_set_task_info - Sets VMs task info.
3272  *
3273  * @vm: vm for which to set the info
3274  */
3275 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3276 {
3277 	if (vm->task_info.pid)
3278 		return;
3279 
3280 	vm->task_info.pid = current->pid;
3281 	get_task_comm(vm->task_info.task_name, current);
3282 
3283 	if (current->group_leader->mm != current->mm)
3284 		return;
3285 
3286 	vm->task_info.tgid = current->group_leader->pid;
3287 	get_task_comm(vm->task_info.process_name, current->group_leader);
3288 }
3289 
3290 /**
3291  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3292  * @adev: amdgpu device pointer
3293  * @pasid: PASID of the VM
3294  * @addr: Address of the fault
3295  *
3296  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3297  * shouldn't be reported any more.
3298  */
3299 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3300 			    uint64_t addr)
3301 {
3302 	struct amdgpu_bo *root;
3303 	uint64_t value, flags;
3304 	struct amdgpu_vm *vm;
3305 	long r;
3306 
3307 	spin_lock(&adev->vm_manager.pasid_lock);
3308 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3309 	if (vm)
3310 		root = amdgpu_bo_ref(vm->root.base.bo);
3311 	else
3312 		root = NULL;
3313 	spin_unlock(&adev->vm_manager.pasid_lock);
3314 
3315 	if (!root)
3316 		return false;
3317 
3318 	r = amdgpu_bo_reserve(root, true);
3319 	if (r)
3320 		goto error_unref;
3321 
3322 	/* Double check that the VM still exists */
3323 	spin_lock(&adev->vm_manager.pasid_lock);
3324 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3325 	if (vm && vm->root.base.bo != root)
3326 		vm = NULL;
3327 	spin_unlock(&adev->vm_manager.pasid_lock);
3328 	if (!vm)
3329 		goto error_unlock;
3330 
3331 	addr /= AMDGPU_GPU_PAGE_SIZE;
3332 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3333 		AMDGPU_PTE_SYSTEM;
3334 
3335 	if (vm->is_compute_context) {
3336 		/* Intentionally setting invalid PTE flag
3337 		 * combination to force a no-retry-fault
3338 		 */
3339 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3340 			AMDGPU_PTE_TF;
3341 		value = 0;
3342 
3343 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3344 		/* Redirect the access to the dummy page */
3345 		value = adev->dummy_page_addr;
3346 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3347 			AMDGPU_PTE_WRITEABLE;
3348 
3349 	} else {
3350 		/* Let the hw retry silently on the PTE */
3351 		value = 0;
3352 	}
3353 
3354 	r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3355 					addr + 1, flags, value, NULL, NULL);
3356 	if (r)
3357 		goto error_unlock;
3358 
3359 	r = amdgpu_vm_update_pdes(adev, vm, true);
3360 
3361 error_unlock:
3362 	amdgpu_bo_unreserve(root);
3363 	if (r < 0)
3364 		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3365 
3366 error_unref:
3367 	amdgpu_bo_unref(&root);
3368 
3369 	return false;
3370 }
3371