1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <drm/drmP.h> 31 #include <drm/amdgpu_drm.h> 32 #include "amdgpu.h" 33 #include "amdgpu_trace.h" 34 35 /* 36 * GPUVM 37 * GPUVM is similar to the legacy gart on older asics, however 38 * rather than there being a single global gart table 39 * for the entire GPU, there are multiple VM page tables active 40 * at any given time. The VM page tables can contain a mix 41 * vram pages and system memory pages and system memory pages 42 * can be mapped as snooped (cached system pages) or unsnooped 43 * (uncached system pages). 44 * Each VM has an ID associated with it and there is a page table 45 * associated with each VMID. When execting a command buffer, 46 * the kernel tells the the ring what VMID to use for that command 47 * buffer. VMIDs are allocated dynamically as commands are submitted. 48 * The userspace drivers maintain their own address space and the kernel 49 * sets up their pages tables accordingly when they submit their 50 * command buffers and a VMID is assigned. 51 * Cayman/Trinity support up to 8 active VMs at any given time; 52 * SI supports 16. 53 */ 54 55 #define START(node) ((node)->start) 56 #define LAST(node) ((node)->last) 57 58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 59 START, LAST, static, amdgpu_vm_it) 60 61 #undef START 62 #undef LAST 63 64 /* Local structure. Encapsulate some VM table update parameters to reduce 65 * the number of function parameters 66 */ 67 struct amdgpu_pte_update_params { 68 /* amdgpu device we do this update for */ 69 struct amdgpu_device *adev; 70 /* optional amdgpu_vm we do this update for */ 71 struct amdgpu_vm *vm; 72 /* address where to copy page table entries from */ 73 uint64_t src; 74 /* indirect buffer to fill with commands */ 75 struct amdgpu_ib *ib; 76 /* Function which actually does the update */ 77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 78 uint64_t addr, unsigned count, uint32_t incr, 79 uint64_t flags); 80 /* indicate update pt or its shadow */ 81 bool shadow; 82 }; 83 84 /* Helper to disable partial resident texture feature from a fence callback */ 85 struct amdgpu_prt_cb { 86 struct amdgpu_device *adev; 87 struct dma_fence_cb cb; 88 }; 89 90 /** 91 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 92 * 93 * @adev: amdgpu_device pointer 94 * 95 * Calculate the number of entries in a page directory or page table. 96 */ 97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 98 unsigned level) 99 { 100 if (level == 0) 101 /* For the root directory */ 102 return adev->vm_manager.max_pfn >> 103 (adev->vm_manager.block_size * 104 adev->vm_manager.num_level); 105 else if (level == adev->vm_manager.num_level) 106 /* For the page tables on the leaves */ 107 return AMDGPU_VM_PTE_COUNT(adev); 108 else 109 /* Everything in between */ 110 return 1 << adev->vm_manager.block_size; 111 } 112 113 /** 114 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 115 * 116 * @adev: amdgpu_device pointer 117 * 118 * Calculate the size of the BO for a page directory or page table in bytes. 119 */ 120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 121 { 122 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 123 } 124 125 /** 126 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 127 * 128 * @vm: vm providing the BOs 129 * @validated: head of validation list 130 * @entry: entry to add 131 * 132 * Add the page directory to the list of BOs to 133 * validate for command submission. 134 */ 135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 136 struct list_head *validated, 137 struct amdgpu_bo_list_entry *entry) 138 { 139 entry->robj = vm->root.bo; 140 entry->priority = 0; 141 entry->tv.bo = &entry->robj->tbo; 142 entry->tv.shared = true; 143 entry->user_pages = NULL; 144 list_add(&entry->tv.head, validated); 145 } 146 147 /** 148 * amdgpu_vm_validate_layer - validate a single page table level 149 * 150 * @parent: parent page table level 151 * @validate: callback to do the validation 152 * @param: parameter for the validation callback 153 * 154 * Validate the page table BOs on command submission if neccessary. 155 */ 156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent, 157 int (*validate)(void *, struct amdgpu_bo *), 158 void *param) 159 { 160 unsigned i; 161 int r; 162 163 if (!parent->entries) 164 return 0; 165 166 for (i = 0; i <= parent->last_entry_used; ++i) { 167 struct amdgpu_vm_pt *entry = &parent->entries[i]; 168 169 if (!entry->bo) 170 continue; 171 172 r = validate(param, entry->bo); 173 if (r) 174 return r; 175 176 /* 177 * Recurse into the sub directory. This is harmless because we 178 * have only a maximum of 5 layers. 179 */ 180 r = amdgpu_vm_validate_level(entry, validate, param); 181 if (r) 182 return r; 183 } 184 185 return r; 186 } 187 188 /** 189 * amdgpu_vm_validate_pt_bos - validate the page table BOs 190 * 191 * @adev: amdgpu device pointer 192 * @vm: vm providing the BOs 193 * @validate: callback to do the validation 194 * @param: parameter for the validation callback 195 * 196 * Validate the page table BOs on command submission if neccessary. 197 */ 198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 199 int (*validate)(void *p, struct amdgpu_bo *bo), 200 void *param) 201 { 202 uint64_t num_evictions; 203 204 /* We only need to validate the page tables 205 * if they aren't already valid. 206 */ 207 num_evictions = atomic64_read(&adev->num_evictions); 208 if (num_evictions == vm->last_eviction_counter) 209 return 0; 210 211 return amdgpu_vm_validate_level(&vm->root, validate, param); 212 } 213 214 /** 215 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail 216 * 217 * @adev: amdgpu device instance 218 * @vm: vm providing the BOs 219 * 220 * Move the PT BOs to the tail of the LRU. 221 */ 222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent) 223 { 224 unsigned i; 225 226 if (!parent->entries) 227 return; 228 229 for (i = 0; i <= parent->last_entry_used; ++i) { 230 struct amdgpu_vm_pt *entry = &parent->entries[i]; 231 232 if (!entry->bo) 233 continue; 234 235 ttm_bo_move_to_lru_tail(&entry->bo->tbo); 236 amdgpu_vm_move_level_in_lru(entry); 237 } 238 } 239 240 /** 241 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 242 * 243 * @adev: amdgpu device instance 244 * @vm: vm providing the BOs 245 * 246 * Move the PT BOs to the tail of the LRU. 247 */ 248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 249 struct amdgpu_vm *vm) 250 { 251 struct ttm_bo_global *glob = adev->mman.bdev.glob; 252 253 spin_lock(&glob->lru_lock); 254 amdgpu_vm_move_level_in_lru(&vm->root); 255 spin_unlock(&glob->lru_lock); 256 } 257 258 /** 259 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 260 * 261 * @adev: amdgpu_device pointer 262 * @vm: requested vm 263 * @saddr: start of the address range 264 * @eaddr: end of the address range 265 * 266 * Make sure the page directories and page tables are allocated 267 */ 268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 269 struct amdgpu_vm *vm, 270 struct amdgpu_vm_pt *parent, 271 uint64_t saddr, uint64_t eaddr, 272 unsigned level) 273 { 274 unsigned shift = (adev->vm_manager.num_level - level) * 275 adev->vm_manager.block_size; 276 unsigned pt_idx, from, to; 277 int r; 278 279 if (!parent->entries) { 280 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 281 282 parent->entries = drm_calloc_large(num_entries, 283 sizeof(struct amdgpu_vm_pt)); 284 if (!parent->entries) 285 return -ENOMEM; 286 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 287 } 288 289 from = saddr >> shift; 290 to = eaddr >> shift; 291 if (from >= amdgpu_vm_num_entries(adev, level) || 292 to >= amdgpu_vm_num_entries(adev, level)) 293 return -EINVAL; 294 295 if (to > parent->last_entry_used) 296 parent->last_entry_used = to; 297 298 ++level; 299 saddr = saddr & ((1 << shift) - 1); 300 eaddr = eaddr & ((1 << shift) - 1); 301 302 /* walk over the address space and allocate the page tables */ 303 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 304 struct reservation_object *resv = vm->root.bo->tbo.resv; 305 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 306 struct amdgpu_bo *pt; 307 308 if (!entry->bo) { 309 r = amdgpu_bo_create(adev, 310 amdgpu_vm_bo_size(adev, level), 311 AMDGPU_GPU_PAGE_SIZE, true, 312 AMDGPU_GEM_DOMAIN_VRAM, 313 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 314 AMDGPU_GEM_CREATE_SHADOW | 315 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 316 AMDGPU_GEM_CREATE_VRAM_CLEARED, 317 NULL, resv, &pt); 318 if (r) 319 return r; 320 321 /* Keep a reference to the root directory to avoid 322 * freeing them up in the wrong order. 323 */ 324 pt->parent = amdgpu_bo_ref(vm->root.bo); 325 326 entry->bo = pt; 327 entry->addr = 0; 328 } 329 330 if (level < adev->vm_manager.num_level) { 331 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 332 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 333 ((1 << shift) - 1); 334 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 335 sub_eaddr, level); 336 if (r) 337 return r; 338 } 339 } 340 341 return 0; 342 } 343 344 /** 345 * amdgpu_vm_alloc_pts - Allocate page tables. 346 * 347 * @adev: amdgpu_device pointer 348 * @vm: VM to allocate page tables for 349 * @saddr: Start address which needs to be allocated 350 * @size: Size from start address we need. 351 * 352 * Make sure the page tables are allocated. 353 */ 354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 355 struct amdgpu_vm *vm, 356 uint64_t saddr, uint64_t size) 357 { 358 uint64_t last_pfn; 359 uint64_t eaddr; 360 361 /* validate the parameters */ 362 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 363 return -EINVAL; 364 365 eaddr = saddr + size - 1; 366 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 367 if (last_pfn >= adev->vm_manager.max_pfn) { 368 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 369 last_pfn, adev->vm_manager.max_pfn); 370 return -EINVAL; 371 } 372 373 saddr /= AMDGPU_GPU_PAGE_SIZE; 374 eaddr /= AMDGPU_GPU_PAGE_SIZE; 375 376 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); 377 } 378 379 /** 380 * amdgpu_vm_had_gpu_reset - check if reset occured since last use 381 * 382 * @adev: amdgpu_device pointer 383 * @id: VMID structure 384 * 385 * Check if GPU reset occured since last use of the VMID. 386 */ 387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev, 388 struct amdgpu_vm_id *id) 389 { 390 return id->current_gpu_reset_count != 391 atomic_read(&adev->gpu_reset_counter); 392 } 393 394 /** 395 * amdgpu_vm_grab_id - allocate the next free VMID 396 * 397 * @vm: vm to allocate id for 398 * @ring: ring we want to submit job to 399 * @sync: sync object where we add dependencies 400 * @fence: fence protecting ID from reuse 401 * 402 * Allocate an id for the vm, adding fences to the sync obj as necessary. 403 */ 404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 405 struct amdgpu_sync *sync, struct dma_fence *fence, 406 struct amdgpu_job *job) 407 { 408 struct amdgpu_device *adev = ring->adev; 409 unsigned vmhub = ring->funcs->vmhub; 410 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 411 uint64_t fence_context = adev->fence_context + ring->idx; 412 struct dma_fence *updates = sync->last_vm_update; 413 struct amdgpu_vm_id *id, *idle; 414 struct dma_fence **fences; 415 unsigned i; 416 int r = 0; 417 418 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL); 419 if (!fences) 420 return -ENOMEM; 421 422 mutex_lock(&id_mgr->lock); 423 424 /* Check if we have an idle VMID */ 425 i = 0; 426 list_for_each_entry(idle, &id_mgr->ids_lru, list) { 427 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 428 if (!fences[i]) 429 break; 430 ++i; 431 } 432 433 /* If we can't find a idle VMID to use, wait till one becomes available */ 434 if (&idle->list == &id_mgr->ids_lru) { 435 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 436 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 437 struct dma_fence_array *array; 438 unsigned j; 439 440 for (j = 0; j < i; ++j) 441 dma_fence_get(fences[j]); 442 443 array = dma_fence_array_create(i, fences, fence_context, 444 seqno, true); 445 if (!array) { 446 for (j = 0; j < i; ++j) 447 dma_fence_put(fences[j]); 448 kfree(fences); 449 r = -ENOMEM; 450 goto error; 451 } 452 453 454 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 455 dma_fence_put(&array->base); 456 if (r) 457 goto error; 458 459 mutex_unlock(&id_mgr->lock); 460 return 0; 461 462 } 463 kfree(fences); 464 465 job->vm_needs_flush = false; 466 /* Check if we can use a VMID already assigned to this VM */ 467 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) { 468 struct dma_fence *flushed; 469 bool needs_flush = false; 470 471 /* Check all the prerequisites to using this VMID */ 472 if (amdgpu_vm_had_gpu_reset(adev, id)) 473 continue; 474 475 if (atomic64_read(&id->owner) != vm->client_id) 476 continue; 477 478 if (job->vm_pd_addr != id->pd_gpu_addr) 479 continue; 480 481 if (!id->last_flush || 482 (id->last_flush->context != fence_context && 483 !dma_fence_is_signaled(id->last_flush))) 484 needs_flush = true; 485 486 flushed = id->flushed_updates; 487 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) 488 needs_flush = true; 489 490 /* Concurrent flushes are only possible starting with Vega10 */ 491 if (adev->asic_type < CHIP_VEGA10 && needs_flush) 492 continue; 493 494 /* Good we can use this VMID. Remember this submission as 495 * user of the VMID. 496 */ 497 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 498 if (r) 499 goto error; 500 501 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) { 502 dma_fence_put(id->flushed_updates); 503 id->flushed_updates = dma_fence_get(updates); 504 } 505 506 if (needs_flush) 507 goto needs_flush; 508 else 509 goto no_flush_needed; 510 511 }; 512 513 /* Still no ID to use? Then use the idle one found earlier */ 514 id = idle; 515 516 /* Remember this submission as user of the VMID */ 517 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 518 if (r) 519 goto error; 520 521 id->pd_gpu_addr = job->vm_pd_addr; 522 dma_fence_put(id->flushed_updates); 523 id->flushed_updates = dma_fence_get(updates); 524 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 525 atomic64_set(&id->owner, vm->client_id); 526 527 needs_flush: 528 job->vm_needs_flush = true; 529 dma_fence_put(id->last_flush); 530 id->last_flush = NULL; 531 532 no_flush_needed: 533 list_move_tail(&id->list, &id_mgr->ids_lru); 534 535 job->vm_id = id - id_mgr->ids; 536 trace_amdgpu_vm_grab_id(vm, ring, job); 537 538 error: 539 mutex_unlock(&id_mgr->lock); 540 return r; 541 } 542 543 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring) 544 { 545 struct amdgpu_device *adev = ring->adev; 546 const struct amdgpu_ip_block *ip_block; 547 548 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE) 549 /* only compute rings */ 550 return false; 551 552 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 553 if (!ip_block) 554 return false; 555 556 if (ip_block->version->major <= 7) { 557 /* gfx7 has no workaround */ 558 return true; 559 } else if (ip_block->version->major == 8) { 560 if (adev->gfx.mec_fw_version >= 673) 561 /* gfx8 is fixed in MEC firmware 673 */ 562 return false; 563 else 564 return true; 565 } 566 return false; 567 } 568 569 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr) 570 { 571 u64 addr = mc_addr; 572 573 if (adev->gart.gart_funcs->adjust_mc_addr) 574 addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr); 575 576 return addr; 577 } 578 579 /** 580 * amdgpu_vm_flush - hardware flush the vm 581 * 582 * @ring: ring to use for flush 583 * @vm_id: vmid number to use 584 * @pd_addr: address of the page directory 585 * 586 * Emit a VM flush when it is necessary. 587 */ 588 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job) 589 { 590 struct amdgpu_device *adev = ring->adev; 591 unsigned vmhub = ring->funcs->vmhub; 592 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 593 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id]; 594 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 595 id->gds_base != job->gds_base || 596 id->gds_size != job->gds_size || 597 id->gws_base != job->gws_base || 598 id->gws_size != job->gws_size || 599 id->oa_base != job->oa_base || 600 id->oa_size != job->oa_size); 601 bool vm_flush_needed = job->vm_needs_flush || 602 amdgpu_vm_ring_has_compute_vm_bug(ring); 603 unsigned patch_offset = 0; 604 int r; 605 606 if (amdgpu_vm_had_gpu_reset(adev, id)) { 607 gds_switch_needed = true; 608 vm_flush_needed = true; 609 } 610 611 if (!vm_flush_needed && !gds_switch_needed) 612 return 0; 613 614 if (ring->funcs->init_cond_exec) 615 patch_offset = amdgpu_ring_init_cond_exec(ring); 616 617 if (ring->funcs->emit_pipeline_sync && !job->need_pipeline_sync) 618 amdgpu_ring_emit_pipeline_sync(ring); 619 620 if (ring->funcs->emit_vm_flush && vm_flush_needed) { 621 u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr); 622 struct dma_fence *fence; 623 624 trace_amdgpu_vm_flush(ring, job->vm_id, pd_addr); 625 amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr); 626 627 r = amdgpu_fence_emit(ring, &fence); 628 if (r) 629 return r; 630 631 mutex_lock(&id_mgr->lock); 632 dma_fence_put(id->last_flush); 633 id->last_flush = fence; 634 mutex_unlock(&id_mgr->lock); 635 } 636 637 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 638 id->gds_base = job->gds_base; 639 id->gds_size = job->gds_size; 640 id->gws_base = job->gws_base; 641 id->gws_size = job->gws_size; 642 id->oa_base = job->oa_base; 643 id->oa_size = job->oa_size; 644 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base, 645 job->gds_size, job->gws_base, 646 job->gws_size, job->oa_base, 647 job->oa_size); 648 } 649 650 if (ring->funcs->patch_cond_exec) 651 amdgpu_ring_patch_cond_exec(ring, patch_offset); 652 653 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 654 if (ring->funcs->emit_switch_buffer) { 655 amdgpu_ring_emit_switch_buffer(ring); 656 amdgpu_ring_emit_switch_buffer(ring); 657 } 658 return 0; 659 } 660 661 /** 662 * amdgpu_vm_reset_id - reset VMID to zero 663 * 664 * @adev: amdgpu device structure 665 * @vm_id: vmid number to use 666 * 667 * Reset saved GDW, GWS and OA to force switch on next flush. 668 */ 669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub, 670 unsigned vmid) 671 { 672 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 673 struct amdgpu_vm_id *id = &id_mgr->ids[vmid]; 674 675 atomic64_set(&id->owner, 0); 676 id->gds_base = 0; 677 id->gds_size = 0; 678 id->gws_base = 0; 679 id->gws_size = 0; 680 id->oa_base = 0; 681 id->oa_size = 0; 682 } 683 684 /** 685 * amdgpu_vm_reset_all_id - reset VMID to zero 686 * 687 * @adev: amdgpu device structure 688 * 689 * Reset VMID to force flush on next use 690 */ 691 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev) 692 { 693 unsigned i, j; 694 695 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 696 struct amdgpu_vm_id_manager *id_mgr = 697 &adev->vm_manager.id_mgr[i]; 698 699 for (j = 1; j < id_mgr->num_ids; ++j) 700 amdgpu_vm_reset_id(adev, i, j); 701 } 702 } 703 704 /** 705 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 706 * 707 * @vm: requested vm 708 * @bo: requested buffer object 709 * 710 * Find @bo inside the requested vm. 711 * Search inside the @bos vm list for the requested vm 712 * Returns the found bo_va or NULL if none is found 713 * 714 * Object has to be reserved! 715 */ 716 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 717 struct amdgpu_bo *bo) 718 { 719 struct amdgpu_bo_va *bo_va; 720 721 list_for_each_entry(bo_va, &bo->va, bo_list) { 722 if (bo_va->vm == vm) { 723 return bo_va; 724 } 725 } 726 return NULL; 727 } 728 729 /** 730 * amdgpu_vm_do_set_ptes - helper to call the right asic function 731 * 732 * @params: see amdgpu_pte_update_params definition 733 * @pe: addr of the page entry 734 * @addr: dst addr to write into pe 735 * @count: number of page entries to update 736 * @incr: increase next addr by incr bytes 737 * @flags: hw access flags 738 * 739 * Traces the parameters and calls the right asic functions 740 * to setup the page table using the DMA. 741 */ 742 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 743 uint64_t pe, uint64_t addr, 744 unsigned count, uint32_t incr, 745 uint64_t flags) 746 { 747 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 748 749 if (count < 3) { 750 amdgpu_vm_write_pte(params->adev, params->ib, pe, 751 addr | flags, count, incr); 752 753 } else { 754 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 755 count, incr, flags); 756 } 757 } 758 759 /** 760 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 761 * 762 * @params: see amdgpu_pte_update_params definition 763 * @pe: addr of the page entry 764 * @addr: dst addr to write into pe 765 * @count: number of page entries to update 766 * @incr: increase next addr by incr bytes 767 * @flags: hw access flags 768 * 769 * Traces the parameters and calls the DMA function to copy the PTEs. 770 */ 771 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 772 uint64_t pe, uint64_t addr, 773 unsigned count, uint32_t incr, 774 uint64_t flags) 775 { 776 uint64_t src = (params->src + (addr >> 12) * 8); 777 778 779 trace_amdgpu_vm_copy_ptes(pe, src, count); 780 781 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 782 } 783 784 /** 785 * amdgpu_vm_map_gart - Resolve gart mapping of addr 786 * 787 * @pages_addr: optional DMA address to use for lookup 788 * @addr: the unmapped addr 789 * 790 * Look up the physical address of the page that the pte resolves 791 * to and return the pointer for the page table entry. 792 */ 793 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 794 { 795 uint64_t result; 796 797 /* page table offset */ 798 result = pages_addr[addr >> PAGE_SHIFT]; 799 800 /* in case cpu page size != gpu page size*/ 801 result |= addr & (~PAGE_MASK); 802 803 result &= 0xFFFFFFFFFFFFF000ULL; 804 805 return result; 806 } 807 808 /* 809 * amdgpu_vm_update_level - update a single level in the hierarchy 810 * 811 * @adev: amdgpu_device pointer 812 * @vm: requested vm 813 * @parent: parent directory 814 * 815 * Makes sure all entries in @parent are up to date. 816 * Returns 0 for success, error for failure. 817 */ 818 static int amdgpu_vm_update_level(struct amdgpu_device *adev, 819 struct amdgpu_vm *vm, 820 struct amdgpu_vm_pt *parent, 821 unsigned level) 822 { 823 struct amdgpu_bo *shadow; 824 struct amdgpu_ring *ring; 825 uint64_t pd_addr, shadow_addr; 826 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1); 827 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 828 unsigned count = 0, pt_idx, ndw; 829 struct amdgpu_job *job; 830 struct amdgpu_pte_update_params params; 831 struct dma_fence *fence = NULL; 832 833 int r; 834 835 if (!parent->entries) 836 return 0; 837 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 838 839 /* padding, etc. */ 840 ndw = 64; 841 842 /* assume the worst case */ 843 ndw += parent->last_entry_used * 6; 844 845 pd_addr = amdgpu_bo_gpu_offset(parent->bo); 846 847 shadow = parent->bo->shadow; 848 if (shadow) { 849 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 850 if (r) 851 return r; 852 shadow_addr = amdgpu_bo_gpu_offset(shadow); 853 ndw *= 2; 854 } else { 855 shadow_addr = 0; 856 } 857 858 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 859 if (r) 860 return r; 861 862 memset(¶ms, 0, sizeof(params)); 863 params.adev = adev; 864 params.ib = &job->ibs[0]; 865 866 /* walk over the address space and update the directory */ 867 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 868 struct amdgpu_bo *bo = parent->entries[pt_idx].bo; 869 uint64_t pde, pt; 870 871 if (bo == NULL) 872 continue; 873 874 if (bo->shadow) { 875 struct amdgpu_bo *pt_shadow = bo->shadow; 876 877 r = amdgpu_ttm_bind(&pt_shadow->tbo, 878 &pt_shadow->tbo.mem); 879 if (r) 880 return r; 881 } 882 883 pt = amdgpu_bo_gpu_offset(bo); 884 if (parent->entries[pt_idx].addr == pt) 885 continue; 886 887 parent->entries[pt_idx].addr = pt; 888 889 pde = pd_addr + pt_idx * 8; 890 if (((last_pde + 8 * count) != pde) || 891 ((last_pt + incr * count) != pt) || 892 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 893 894 if (count) { 895 uint64_t pt_addr = 896 amdgpu_vm_adjust_mc_addr(adev, last_pt); 897 898 if (shadow) 899 amdgpu_vm_do_set_ptes(¶ms, 900 last_shadow, 901 pt_addr, count, 902 incr, 903 AMDGPU_PTE_VALID); 904 905 amdgpu_vm_do_set_ptes(¶ms, last_pde, 906 pt_addr, count, incr, 907 AMDGPU_PTE_VALID); 908 } 909 910 count = 1; 911 last_pde = pde; 912 last_shadow = shadow_addr + pt_idx * 8; 913 last_pt = pt; 914 } else { 915 ++count; 916 } 917 } 918 919 if (count) { 920 uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt); 921 922 if (vm->root.bo->shadow) 923 amdgpu_vm_do_set_ptes(¶ms, last_shadow, pt_addr, 924 count, incr, AMDGPU_PTE_VALID); 925 926 amdgpu_vm_do_set_ptes(¶ms, last_pde, pt_addr, 927 count, incr, AMDGPU_PTE_VALID); 928 } 929 930 if (params.ib->length_dw == 0) { 931 amdgpu_job_free(job); 932 } else { 933 amdgpu_ring_pad_ib(ring, params.ib); 934 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv, 935 AMDGPU_FENCE_OWNER_VM); 936 if (shadow) 937 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv, 938 AMDGPU_FENCE_OWNER_VM); 939 940 WARN_ON(params.ib->length_dw > ndw); 941 r = amdgpu_job_submit(job, ring, &vm->entity, 942 AMDGPU_FENCE_OWNER_VM, &fence); 943 if (r) 944 goto error_free; 945 946 amdgpu_bo_fence(parent->bo, fence, true); 947 dma_fence_put(vm->last_dir_update); 948 vm->last_dir_update = dma_fence_get(fence); 949 dma_fence_put(fence); 950 } 951 /* 952 * Recurse into the subdirectories. This recursion is harmless because 953 * we only have a maximum of 5 layers. 954 */ 955 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 956 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 957 958 if (!entry->bo) 959 continue; 960 961 r = amdgpu_vm_update_level(adev, vm, entry, level + 1); 962 if (r) 963 return r; 964 } 965 966 return 0; 967 968 error_free: 969 amdgpu_job_free(job); 970 return r; 971 } 972 973 /* 974 * amdgpu_vm_update_directories - make sure that all directories are valid 975 * 976 * @adev: amdgpu_device pointer 977 * @vm: requested vm 978 * 979 * Makes sure all directories are up to date. 980 * Returns 0 for success, error for failure. 981 */ 982 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 983 struct amdgpu_vm *vm) 984 { 985 return amdgpu_vm_update_level(adev, vm, &vm->root, 0); 986 } 987 988 /** 989 * amdgpu_vm_find_pt - find the page table for an address 990 * 991 * @p: see amdgpu_pte_update_params definition 992 * @addr: virtual address in question 993 * 994 * Find the page table BO for a virtual address, return NULL when none found. 995 */ 996 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p, 997 uint64_t addr) 998 { 999 struct amdgpu_vm_pt *entry = &p->vm->root; 1000 unsigned idx, level = p->adev->vm_manager.num_level; 1001 1002 while (entry->entries) { 1003 idx = addr >> (p->adev->vm_manager.block_size * level--); 1004 idx %= amdgpu_bo_size(entry->bo) / 8; 1005 entry = &entry->entries[idx]; 1006 } 1007 1008 if (level) 1009 return NULL; 1010 1011 return entry->bo; 1012 } 1013 1014 /** 1015 * amdgpu_vm_update_ptes - make sure that page tables are valid 1016 * 1017 * @params: see amdgpu_pte_update_params definition 1018 * @vm: requested vm 1019 * @start: start of GPU address range 1020 * @end: end of GPU address range 1021 * @dst: destination address to map to, the next dst inside the function 1022 * @flags: mapping flags 1023 * 1024 * Update the page tables in the range @start - @end. 1025 */ 1026 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1027 uint64_t start, uint64_t end, 1028 uint64_t dst, uint64_t flags) 1029 { 1030 struct amdgpu_device *adev = params->adev; 1031 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1032 1033 uint64_t cur_pe_start, cur_nptes, cur_dst; 1034 uint64_t addr; /* next GPU address to be updated */ 1035 struct amdgpu_bo *pt; 1036 unsigned nptes; /* next number of ptes to be updated */ 1037 uint64_t next_pe_start; 1038 1039 /* initialize the variables */ 1040 addr = start; 1041 pt = amdgpu_vm_get_pt(params, addr); 1042 if (!pt) { 1043 pr_err("PT not found, aborting update_ptes\n"); 1044 return; 1045 } 1046 1047 if (params->shadow) { 1048 if (!pt->shadow) 1049 return; 1050 pt = pt->shadow; 1051 } 1052 if ((addr & ~mask) == (end & ~mask)) 1053 nptes = end - addr; 1054 else 1055 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1056 1057 cur_pe_start = amdgpu_bo_gpu_offset(pt); 1058 cur_pe_start += (addr & mask) * 8; 1059 cur_nptes = nptes; 1060 cur_dst = dst; 1061 1062 /* for next ptb*/ 1063 addr += nptes; 1064 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1065 1066 /* walk over the address space and update the page tables */ 1067 while (addr < end) { 1068 pt = amdgpu_vm_get_pt(params, addr); 1069 if (!pt) { 1070 pr_err("PT not found, aborting update_ptes\n"); 1071 return; 1072 } 1073 1074 if (params->shadow) { 1075 if (!pt->shadow) 1076 return; 1077 pt = pt->shadow; 1078 } 1079 1080 if ((addr & ~mask) == (end & ~mask)) 1081 nptes = end - addr; 1082 else 1083 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1084 1085 next_pe_start = amdgpu_bo_gpu_offset(pt); 1086 next_pe_start += (addr & mask) * 8; 1087 1088 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start && 1089 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) { 1090 /* The next ptb is consecutive to current ptb. 1091 * Don't call the update function now. 1092 * Will update two ptbs together in future. 1093 */ 1094 cur_nptes += nptes; 1095 } else { 1096 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1097 AMDGPU_GPU_PAGE_SIZE, flags); 1098 1099 cur_pe_start = next_pe_start; 1100 cur_nptes = nptes; 1101 cur_dst = dst; 1102 } 1103 1104 /* for next ptb*/ 1105 addr += nptes; 1106 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1107 } 1108 1109 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1110 AMDGPU_GPU_PAGE_SIZE, flags); 1111 } 1112 1113 /* 1114 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1115 * 1116 * @params: see amdgpu_pte_update_params definition 1117 * @vm: requested vm 1118 * @start: first PTE to handle 1119 * @end: last PTE to handle 1120 * @dst: addr those PTEs should point to 1121 * @flags: hw mapping flags 1122 */ 1123 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1124 uint64_t start, uint64_t end, 1125 uint64_t dst, uint64_t flags) 1126 { 1127 /** 1128 * The MC L1 TLB supports variable sized pages, based on a fragment 1129 * field in the PTE. When this field is set to a non-zero value, page 1130 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1131 * flags are considered valid for all PTEs within the fragment range 1132 * and corresponding mappings are assumed to be physically contiguous. 1133 * 1134 * The L1 TLB can store a single PTE for the whole fragment, 1135 * significantly increasing the space available for translation 1136 * caching. This leads to large improvements in throughput when the 1137 * TLB is under pressure. 1138 * 1139 * The L2 TLB distributes small and large fragments into two 1140 * asymmetric partitions. The large fragment cache is significantly 1141 * larger. Thus, we try to use large fragments wherever possible. 1142 * Userspace can support this by aligning virtual base address and 1143 * allocation size to the fragment size. 1144 */ 1145 1146 /* SI and newer are optimized for 64KB */ 1147 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG); 1148 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG; 1149 1150 uint64_t frag_start = ALIGN(start, frag_align); 1151 uint64_t frag_end = end & ~(frag_align - 1); 1152 1153 /* system pages are non continuously */ 1154 if (params->src || !(flags & AMDGPU_PTE_VALID) || 1155 (frag_start >= frag_end)) { 1156 1157 amdgpu_vm_update_ptes(params, start, end, dst, flags); 1158 return; 1159 } 1160 1161 /* handle the 4K area at the beginning */ 1162 if (start != frag_start) { 1163 amdgpu_vm_update_ptes(params, start, frag_start, 1164 dst, flags); 1165 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 1166 } 1167 1168 /* handle the area in the middle */ 1169 amdgpu_vm_update_ptes(params, frag_start, frag_end, dst, 1170 flags | frag_flags); 1171 1172 /* handle the 4K area at the end */ 1173 if (frag_end != end) { 1174 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 1175 amdgpu_vm_update_ptes(params, frag_end, end, dst, flags); 1176 } 1177 } 1178 1179 /** 1180 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1181 * 1182 * @adev: amdgpu_device pointer 1183 * @exclusive: fence we need to sync to 1184 * @src: address where to copy page table entries from 1185 * @pages_addr: DMA addresses to use for mapping 1186 * @vm: requested vm 1187 * @start: start of mapped range 1188 * @last: last mapped entry 1189 * @flags: flags for the entries 1190 * @addr: addr to set the area to 1191 * @fence: optional resulting fence 1192 * 1193 * Fill in the page table entries between @start and @last. 1194 * Returns 0 for success, -EINVAL for failure. 1195 */ 1196 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1197 struct dma_fence *exclusive, 1198 uint64_t src, 1199 dma_addr_t *pages_addr, 1200 struct amdgpu_vm *vm, 1201 uint64_t start, uint64_t last, 1202 uint64_t flags, uint64_t addr, 1203 struct dma_fence **fence) 1204 { 1205 struct amdgpu_ring *ring; 1206 void *owner = AMDGPU_FENCE_OWNER_VM; 1207 unsigned nptes, ncmds, ndw; 1208 struct amdgpu_job *job; 1209 struct amdgpu_pte_update_params params; 1210 struct dma_fence *f = NULL; 1211 int r; 1212 1213 memset(¶ms, 0, sizeof(params)); 1214 params.adev = adev; 1215 params.vm = vm; 1216 params.src = src; 1217 1218 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1219 1220 /* sync to everything on unmapping */ 1221 if (!(flags & AMDGPU_PTE_VALID)) 1222 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1223 1224 nptes = last - start + 1; 1225 1226 /* 1227 * reserve space for one command every (1 << BLOCK_SIZE) 1228 * entries or 2k dwords (whatever is smaller) 1229 */ 1230 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1; 1231 1232 /* padding, etc. */ 1233 ndw = 64; 1234 1235 if (src) { 1236 /* only copy commands needed */ 1237 ndw += ncmds * 7; 1238 1239 params.func = amdgpu_vm_do_copy_ptes; 1240 1241 } else if (pages_addr) { 1242 /* copy commands needed */ 1243 ndw += ncmds * 7; 1244 1245 /* and also PTEs */ 1246 ndw += nptes * 2; 1247 1248 params.func = amdgpu_vm_do_copy_ptes; 1249 1250 } else { 1251 /* set page commands needed */ 1252 ndw += ncmds * 10; 1253 1254 /* two extra commands for begin/end of fragment */ 1255 ndw += 2 * 10; 1256 1257 params.func = amdgpu_vm_do_set_ptes; 1258 } 1259 1260 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1261 if (r) 1262 return r; 1263 1264 params.ib = &job->ibs[0]; 1265 1266 if (!src && pages_addr) { 1267 uint64_t *pte; 1268 unsigned i; 1269 1270 /* Put the PTEs at the end of the IB. */ 1271 i = ndw - nptes * 2; 1272 pte= (uint64_t *)&(job->ibs->ptr[i]); 1273 params.src = job->ibs->gpu_addr + i * 4; 1274 1275 for (i = 0; i < nptes; ++i) { 1276 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1277 AMDGPU_GPU_PAGE_SIZE); 1278 pte[i] |= flags; 1279 } 1280 addr = 0; 1281 } 1282 1283 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1284 if (r) 1285 goto error_free; 1286 1287 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv, 1288 owner); 1289 if (r) 1290 goto error_free; 1291 1292 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv); 1293 if (r) 1294 goto error_free; 1295 1296 params.shadow = true; 1297 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1298 params.shadow = false; 1299 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1300 1301 amdgpu_ring_pad_ib(ring, params.ib); 1302 WARN_ON(params.ib->length_dw > ndw); 1303 r = amdgpu_job_submit(job, ring, &vm->entity, 1304 AMDGPU_FENCE_OWNER_VM, &f); 1305 if (r) 1306 goto error_free; 1307 1308 amdgpu_bo_fence(vm->root.bo, f, true); 1309 dma_fence_put(*fence); 1310 *fence = f; 1311 return 0; 1312 1313 error_free: 1314 amdgpu_job_free(job); 1315 return r; 1316 } 1317 1318 /** 1319 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1320 * 1321 * @adev: amdgpu_device pointer 1322 * @exclusive: fence we need to sync to 1323 * @gtt_flags: flags as they are used for GTT 1324 * @pages_addr: DMA addresses to use for mapping 1325 * @vm: requested vm 1326 * @mapping: mapped range and flags to use for the update 1327 * @flags: HW flags for the mapping 1328 * @nodes: array of drm_mm_nodes with the MC addresses 1329 * @fence: optional resulting fence 1330 * 1331 * Split the mapping into smaller chunks so that each update fits 1332 * into a SDMA IB. 1333 * Returns 0 for success, -EINVAL for failure. 1334 */ 1335 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1336 struct dma_fence *exclusive, 1337 uint64_t gtt_flags, 1338 dma_addr_t *pages_addr, 1339 struct amdgpu_vm *vm, 1340 struct amdgpu_bo_va_mapping *mapping, 1341 uint64_t flags, 1342 struct drm_mm_node *nodes, 1343 struct dma_fence **fence) 1344 { 1345 uint64_t pfn, src = 0, start = mapping->start; 1346 int r; 1347 1348 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1349 * but in case of something, we filter the flags in first place 1350 */ 1351 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1352 flags &= ~AMDGPU_PTE_READABLE; 1353 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1354 flags &= ~AMDGPU_PTE_WRITEABLE; 1355 1356 flags &= ~AMDGPU_PTE_EXECUTABLE; 1357 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1358 1359 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1360 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1361 1362 if ((mapping->flags & AMDGPU_PTE_PRT) && 1363 (adev->asic_type >= CHIP_VEGA10)) { 1364 flags |= AMDGPU_PTE_PRT; 1365 flags &= ~AMDGPU_PTE_VALID; 1366 } 1367 1368 trace_amdgpu_vm_bo_update(mapping); 1369 1370 pfn = mapping->offset >> PAGE_SHIFT; 1371 if (nodes) { 1372 while (pfn >= nodes->size) { 1373 pfn -= nodes->size; 1374 ++nodes; 1375 } 1376 } 1377 1378 do { 1379 uint64_t max_entries; 1380 uint64_t addr, last; 1381 1382 if (nodes) { 1383 addr = nodes->start << PAGE_SHIFT; 1384 max_entries = (nodes->size - pfn) * 1385 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1386 } else { 1387 addr = 0; 1388 max_entries = S64_MAX; 1389 } 1390 1391 if (pages_addr) { 1392 if (flags == gtt_flags) 1393 src = adev->gart.table_addr + 1394 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8; 1395 else 1396 max_entries = min(max_entries, 16ull * 1024ull); 1397 addr = 0; 1398 } else if (flags & AMDGPU_PTE_VALID) { 1399 addr += adev->vm_manager.vram_base_offset; 1400 } 1401 addr += pfn << PAGE_SHIFT; 1402 1403 last = min((uint64_t)mapping->last, start + max_entries - 1); 1404 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1405 src, pages_addr, vm, 1406 start, last, flags, addr, 1407 fence); 1408 if (r) 1409 return r; 1410 1411 pfn += last - start + 1; 1412 if (nodes && nodes->size == pfn) { 1413 pfn = 0; 1414 ++nodes; 1415 } 1416 start = last + 1; 1417 1418 } while (unlikely(start != mapping->last + 1)); 1419 1420 return 0; 1421 } 1422 1423 /** 1424 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1425 * 1426 * @adev: amdgpu_device pointer 1427 * @bo_va: requested BO and VM object 1428 * @clear: if true clear the entries 1429 * 1430 * Fill in the page table entries for @bo_va. 1431 * Returns 0 for success, -EINVAL for failure. 1432 */ 1433 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1434 struct amdgpu_bo_va *bo_va, 1435 bool clear) 1436 { 1437 struct amdgpu_vm *vm = bo_va->vm; 1438 struct amdgpu_bo_va_mapping *mapping; 1439 dma_addr_t *pages_addr = NULL; 1440 uint64_t gtt_flags, flags; 1441 struct ttm_mem_reg *mem; 1442 struct drm_mm_node *nodes; 1443 struct dma_fence *exclusive; 1444 int r; 1445 1446 if (clear || !bo_va->bo) { 1447 mem = NULL; 1448 nodes = NULL; 1449 exclusive = NULL; 1450 } else { 1451 struct ttm_dma_tt *ttm; 1452 1453 mem = &bo_va->bo->tbo.mem; 1454 nodes = mem->mm_node; 1455 if (mem->mem_type == TTM_PL_TT) { 1456 ttm = container_of(bo_va->bo->tbo.ttm, struct 1457 ttm_dma_tt, ttm); 1458 pages_addr = ttm->dma_address; 1459 } 1460 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv); 1461 } 1462 1463 if (bo_va->bo) { 1464 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 1465 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) && 1466 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ? 1467 flags : 0; 1468 } else { 1469 flags = 0x0; 1470 gtt_flags = ~0x0; 1471 } 1472 1473 spin_lock(&vm->status_lock); 1474 if (!list_empty(&bo_va->vm_status)) 1475 list_splice_init(&bo_va->valids, &bo_va->invalids); 1476 spin_unlock(&vm->status_lock); 1477 1478 list_for_each_entry(mapping, &bo_va->invalids, list) { 1479 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1480 gtt_flags, pages_addr, vm, 1481 mapping, flags, nodes, 1482 &bo_va->last_pt_update); 1483 if (r) 1484 return r; 1485 } 1486 1487 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1488 list_for_each_entry(mapping, &bo_va->valids, list) 1489 trace_amdgpu_vm_bo_mapping(mapping); 1490 1491 list_for_each_entry(mapping, &bo_va->invalids, list) 1492 trace_amdgpu_vm_bo_mapping(mapping); 1493 } 1494 1495 spin_lock(&vm->status_lock); 1496 list_splice_init(&bo_va->invalids, &bo_va->valids); 1497 list_del_init(&bo_va->vm_status); 1498 if (clear) 1499 list_add(&bo_va->vm_status, &vm->cleared); 1500 spin_unlock(&vm->status_lock); 1501 1502 return 0; 1503 } 1504 1505 /** 1506 * amdgpu_vm_update_prt_state - update the global PRT state 1507 */ 1508 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1509 { 1510 unsigned long flags; 1511 bool enable; 1512 1513 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1514 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1515 adev->gart.gart_funcs->set_prt(adev, enable); 1516 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1517 } 1518 1519 /** 1520 * amdgpu_vm_prt_get - add a PRT user 1521 */ 1522 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1523 { 1524 if (!adev->gart.gart_funcs->set_prt) 1525 return; 1526 1527 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1528 amdgpu_vm_update_prt_state(adev); 1529 } 1530 1531 /** 1532 * amdgpu_vm_prt_put - drop a PRT user 1533 */ 1534 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1535 { 1536 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1537 amdgpu_vm_update_prt_state(adev); 1538 } 1539 1540 /** 1541 * amdgpu_vm_prt_cb - callback for updating the PRT status 1542 */ 1543 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1544 { 1545 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1546 1547 amdgpu_vm_prt_put(cb->adev); 1548 kfree(cb); 1549 } 1550 1551 /** 1552 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1553 */ 1554 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1555 struct dma_fence *fence) 1556 { 1557 struct amdgpu_prt_cb *cb; 1558 1559 if (!adev->gart.gart_funcs->set_prt) 1560 return; 1561 1562 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1563 if (!cb) { 1564 /* Last resort when we are OOM */ 1565 if (fence) 1566 dma_fence_wait(fence, false); 1567 1568 amdgpu_vm_prt_put(adev); 1569 } else { 1570 cb->adev = adev; 1571 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1572 amdgpu_vm_prt_cb)) 1573 amdgpu_vm_prt_cb(fence, &cb->cb); 1574 } 1575 } 1576 1577 /** 1578 * amdgpu_vm_free_mapping - free a mapping 1579 * 1580 * @adev: amdgpu_device pointer 1581 * @vm: requested vm 1582 * @mapping: mapping to be freed 1583 * @fence: fence of the unmap operation 1584 * 1585 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1586 */ 1587 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1588 struct amdgpu_vm *vm, 1589 struct amdgpu_bo_va_mapping *mapping, 1590 struct dma_fence *fence) 1591 { 1592 if (mapping->flags & AMDGPU_PTE_PRT) 1593 amdgpu_vm_add_prt_cb(adev, fence); 1594 kfree(mapping); 1595 } 1596 1597 /** 1598 * amdgpu_vm_prt_fini - finish all prt mappings 1599 * 1600 * @adev: amdgpu_device pointer 1601 * @vm: requested vm 1602 * 1603 * Register a cleanup callback to disable PRT support after VM dies. 1604 */ 1605 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1606 { 1607 struct reservation_object *resv = vm->root.bo->tbo.resv; 1608 struct dma_fence *excl, **shared; 1609 unsigned i, shared_count; 1610 int r; 1611 1612 r = reservation_object_get_fences_rcu(resv, &excl, 1613 &shared_count, &shared); 1614 if (r) { 1615 /* Not enough memory to grab the fence list, as last resort 1616 * block for all the fences to complete. 1617 */ 1618 reservation_object_wait_timeout_rcu(resv, true, false, 1619 MAX_SCHEDULE_TIMEOUT); 1620 return; 1621 } 1622 1623 /* Add a callback for each fence in the reservation object */ 1624 amdgpu_vm_prt_get(adev); 1625 amdgpu_vm_add_prt_cb(adev, excl); 1626 1627 for (i = 0; i < shared_count; ++i) { 1628 amdgpu_vm_prt_get(adev); 1629 amdgpu_vm_add_prt_cb(adev, shared[i]); 1630 } 1631 1632 kfree(shared); 1633 } 1634 1635 /** 1636 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1637 * 1638 * @adev: amdgpu_device pointer 1639 * @vm: requested vm 1640 * @fence: optional resulting fence (unchanged if no work needed to be done 1641 * or if an error occurred) 1642 * 1643 * Make sure all freed BOs are cleared in the PT. 1644 * Returns 0 for success. 1645 * 1646 * PTs have to be reserved and mutex must be locked! 1647 */ 1648 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1649 struct amdgpu_vm *vm, 1650 struct dma_fence **fence) 1651 { 1652 struct amdgpu_bo_va_mapping *mapping; 1653 struct dma_fence *f = NULL; 1654 int r; 1655 1656 while (!list_empty(&vm->freed)) { 1657 mapping = list_first_entry(&vm->freed, 1658 struct amdgpu_bo_va_mapping, list); 1659 list_del(&mapping->list); 1660 1661 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm, 1662 mapping->start, mapping->last, 1663 0, 0, &f); 1664 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1665 if (r) { 1666 dma_fence_put(f); 1667 return r; 1668 } 1669 } 1670 1671 if (fence && f) { 1672 dma_fence_put(*fence); 1673 *fence = f; 1674 } else { 1675 dma_fence_put(f); 1676 } 1677 1678 return 0; 1679 1680 } 1681 1682 /** 1683 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1684 * 1685 * @adev: amdgpu_device pointer 1686 * @vm: requested vm 1687 * 1688 * Make sure all invalidated BOs are cleared in the PT. 1689 * Returns 0 for success. 1690 * 1691 * PTs have to be reserved and mutex must be locked! 1692 */ 1693 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1694 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1695 { 1696 struct amdgpu_bo_va *bo_va = NULL; 1697 int r = 0; 1698 1699 spin_lock(&vm->status_lock); 1700 while (!list_empty(&vm->invalidated)) { 1701 bo_va = list_first_entry(&vm->invalidated, 1702 struct amdgpu_bo_va, vm_status); 1703 spin_unlock(&vm->status_lock); 1704 1705 r = amdgpu_vm_bo_update(adev, bo_va, true); 1706 if (r) 1707 return r; 1708 1709 spin_lock(&vm->status_lock); 1710 } 1711 spin_unlock(&vm->status_lock); 1712 1713 if (bo_va) 1714 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1715 1716 return r; 1717 } 1718 1719 /** 1720 * amdgpu_vm_bo_add - add a bo to a specific vm 1721 * 1722 * @adev: amdgpu_device pointer 1723 * @vm: requested vm 1724 * @bo: amdgpu buffer object 1725 * 1726 * Add @bo into the requested vm. 1727 * Add @bo to the list of bos associated with the vm 1728 * Returns newly added bo_va or NULL for failure 1729 * 1730 * Object has to be reserved! 1731 */ 1732 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1733 struct amdgpu_vm *vm, 1734 struct amdgpu_bo *bo) 1735 { 1736 struct amdgpu_bo_va *bo_va; 1737 1738 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1739 if (bo_va == NULL) { 1740 return NULL; 1741 } 1742 bo_va->vm = vm; 1743 bo_va->bo = bo; 1744 bo_va->ref_count = 1; 1745 INIT_LIST_HEAD(&bo_va->bo_list); 1746 INIT_LIST_HEAD(&bo_va->valids); 1747 INIT_LIST_HEAD(&bo_va->invalids); 1748 INIT_LIST_HEAD(&bo_va->vm_status); 1749 1750 if (bo) 1751 list_add_tail(&bo_va->bo_list, &bo->va); 1752 1753 return bo_va; 1754 } 1755 1756 /** 1757 * amdgpu_vm_bo_map - map bo inside a vm 1758 * 1759 * @adev: amdgpu_device pointer 1760 * @bo_va: bo_va to store the address 1761 * @saddr: where to map the BO 1762 * @offset: requested offset in the BO 1763 * @flags: attributes of pages (read/write/valid/etc.) 1764 * 1765 * Add a mapping of the BO at the specefied addr into the VM. 1766 * Returns 0 for success, error for failure. 1767 * 1768 * Object has to be reserved and unreserved outside! 1769 */ 1770 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1771 struct amdgpu_bo_va *bo_va, 1772 uint64_t saddr, uint64_t offset, 1773 uint64_t size, uint64_t flags) 1774 { 1775 struct amdgpu_bo_va_mapping *mapping, *tmp; 1776 struct amdgpu_vm *vm = bo_va->vm; 1777 uint64_t eaddr; 1778 1779 /* validate the parameters */ 1780 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1781 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1782 return -EINVAL; 1783 1784 /* make sure object fit at this offset */ 1785 eaddr = saddr + size - 1; 1786 if (saddr >= eaddr || 1787 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1788 return -EINVAL; 1789 1790 saddr /= AMDGPU_GPU_PAGE_SIZE; 1791 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1792 1793 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1794 if (tmp) { 1795 /* bo and tmp overlap, invalid addr */ 1796 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1797 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr, 1798 tmp->start, tmp->last + 1); 1799 return -EINVAL; 1800 } 1801 1802 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1803 if (!mapping) 1804 return -ENOMEM; 1805 1806 INIT_LIST_HEAD(&mapping->list); 1807 mapping->start = saddr; 1808 mapping->last = eaddr; 1809 mapping->offset = offset; 1810 mapping->flags = flags; 1811 1812 list_add(&mapping->list, &bo_va->invalids); 1813 amdgpu_vm_it_insert(mapping, &vm->va); 1814 1815 if (flags & AMDGPU_PTE_PRT) 1816 amdgpu_vm_prt_get(adev); 1817 1818 return 0; 1819 } 1820 1821 /** 1822 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1823 * 1824 * @adev: amdgpu_device pointer 1825 * @bo_va: bo_va to store the address 1826 * @saddr: where to map the BO 1827 * @offset: requested offset in the BO 1828 * @flags: attributes of pages (read/write/valid/etc.) 1829 * 1830 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1831 * mappings as we do so. 1832 * Returns 0 for success, error for failure. 1833 * 1834 * Object has to be reserved and unreserved outside! 1835 */ 1836 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1837 struct amdgpu_bo_va *bo_va, 1838 uint64_t saddr, uint64_t offset, 1839 uint64_t size, uint64_t flags) 1840 { 1841 struct amdgpu_bo_va_mapping *mapping; 1842 struct amdgpu_vm *vm = bo_va->vm; 1843 uint64_t eaddr; 1844 int r; 1845 1846 /* validate the parameters */ 1847 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1848 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1849 return -EINVAL; 1850 1851 /* make sure object fit at this offset */ 1852 eaddr = saddr + size - 1; 1853 if (saddr >= eaddr || 1854 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1855 return -EINVAL; 1856 1857 /* Allocate all the needed memory */ 1858 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1859 if (!mapping) 1860 return -ENOMEM; 1861 1862 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size); 1863 if (r) { 1864 kfree(mapping); 1865 return r; 1866 } 1867 1868 saddr /= AMDGPU_GPU_PAGE_SIZE; 1869 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1870 1871 mapping->start = saddr; 1872 mapping->last = eaddr; 1873 mapping->offset = offset; 1874 mapping->flags = flags; 1875 1876 list_add(&mapping->list, &bo_va->invalids); 1877 amdgpu_vm_it_insert(mapping, &vm->va); 1878 1879 if (flags & AMDGPU_PTE_PRT) 1880 amdgpu_vm_prt_get(adev); 1881 1882 return 0; 1883 } 1884 1885 /** 1886 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1887 * 1888 * @adev: amdgpu_device pointer 1889 * @bo_va: bo_va to remove the address from 1890 * @saddr: where to the BO is mapped 1891 * 1892 * Remove a mapping of the BO at the specefied addr from the VM. 1893 * Returns 0 for success, error for failure. 1894 * 1895 * Object has to be reserved and unreserved outside! 1896 */ 1897 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1898 struct amdgpu_bo_va *bo_va, 1899 uint64_t saddr) 1900 { 1901 struct amdgpu_bo_va_mapping *mapping; 1902 struct amdgpu_vm *vm = bo_va->vm; 1903 bool valid = true; 1904 1905 saddr /= AMDGPU_GPU_PAGE_SIZE; 1906 1907 list_for_each_entry(mapping, &bo_va->valids, list) { 1908 if (mapping->start == saddr) 1909 break; 1910 } 1911 1912 if (&mapping->list == &bo_va->valids) { 1913 valid = false; 1914 1915 list_for_each_entry(mapping, &bo_va->invalids, list) { 1916 if (mapping->start == saddr) 1917 break; 1918 } 1919 1920 if (&mapping->list == &bo_va->invalids) 1921 return -ENOENT; 1922 } 1923 1924 list_del(&mapping->list); 1925 amdgpu_vm_it_remove(mapping, &vm->va); 1926 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1927 1928 if (valid) 1929 list_add(&mapping->list, &vm->freed); 1930 else 1931 amdgpu_vm_free_mapping(adev, vm, mapping, 1932 bo_va->last_pt_update); 1933 1934 return 0; 1935 } 1936 1937 /** 1938 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1939 * 1940 * @adev: amdgpu_device pointer 1941 * @vm: VM structure to use 1942 * @saddr: start of the range 1943 * @size: size of the range 1944 * 1945 * Remove all mappings in a range, split them as appropriate. 1946 * Returns 0 for success, error for failure. 1947 */ 1948 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1949 struct amdgpu_vm *vm, 1950 uint64_t saddr, uint64_t size) 1951 { 1952 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1953 LIST_HEAD(removed); 1954 uint64_t eaddr; 1955 1956 eaddr = saddr + size - 1; 1957 saddr /= AMDGPU_GPU_PAGE_SIZE; 1958 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1959 1960 /* Allocate all the needed memory */ 1961 before = kzalloc(sizeof(*before), GFP_KERNEL); 1962 if (!before) 1963 return -ENOMEM; 1964 INIT_LIST_HEAD(&before->list); 1965 1966 after = kzalloc(sizeof(*after), GFP_KERNEL); 1967 if (!after) { 1968 kfree(before); 1969 return -ENOMEM; 1970 } 1971 INIT_LIST_HEAD(&after->list); 1972 1973 /* Now gather all removed mappings */ 1974 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1975 while (tmp) { 1976 /* Remember mapping split at the start */ 1977 if (tmp->start < saddr) { 1978 before->start = tmp->start; 1979 before->last = saddr - 1; 1980 before->offset = tmp->offset; 1981 before->flags = tmp->flags; 1982 list_add(&before->list, &tmp->list); 1983 } 1984 1985 /* Remember mapping split at the end */ 1986 if (tmp->last > eaddr) { 1987 after->start = eaddr + 1; 1988 after->last = tmp->last; 1989 after->offset = tmp->offset; 1990 after->offset += after->start - tmp->start; 1991 after->flags = tmp->flags; 1992 list_add(&after->list, &tmp->list); 1993 } 1994 1995 list_del(&tmp->list); 1996 list_add(&tmp->list, &removed); 1997 1998 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1999 } 2000 2001 /* And free them up */ 2002 list_for_each_entry_safe(tmp, next, &removed, list) { 2003 amdgpu_vm_it_remove(tmp, &vm->va); 2004 list_del(&tmp->list); 2005 2006 if (tmp->start < saddr) 2007 tmp->start = saddr; 2008 if (tmp->last > eaddr) 2009 tmp->last = eaddr; 2010 2011 list_add(&tmp->list, &vm->freed); 2012 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2013 } 2014 2015 /* Insert partial mapping before the range */ 2016 if (!list_empty(&before->list)) { 2017 amdgpu_vm_it_insert(before, &vm->va); 2018 if (before->flags & AMDGPU_PTE_PRT) 2019 amdgpu_vm_prt_get(adev); 2020 } else { 2021 kfree(before); 2022 } 2023 2024 /* Insert partial mapping after the range */ 2025 if (!list_empty(&after->list)) { 2026 amdgpu_vm_it_insert(after, &vm->va); 2027 if (after->flags & AMDGPU_PTE_PRT) 2028 amdgpu_vm_prt_get(adev); 2029 } else { 2030 kfree(after); 2031 } 2032 2033 return 0; 2034 } 2035 2036 /** 2037 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2038 * 2039 * @adev: amdgpu_device pointer 2040 * @bo_va: requested bo_va 2041 * 2042 * Remove @bo_va->bo from the requested vm. 2043 * 2044 * Object have to be reserved! 2045 */ 2046 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2047 struct amdgpu_bo_va *bo_va) 2048 { 2049 struct amdgpu_bo_va_mapping *mapping, *next; 2050 struct amdgpu_vm *vm = bo_va->vm; 2051 2052 list_del(&bo_va->bo_list); 2053 2054 spin_lock(&vm->status_lock); 2055 list_del(&bo_va->vm_status); 2056 spin_unlock(&vm->status_lock); 2057 2058 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2059 list_del(&mapping->list); 2060 amdgpu_vm_it_remove(mapping, &vm->va); 2061 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2062 list_add(&mapping->list, &vm->freed); 2063 } 2064 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2065 list_del(&mapping->list); 2066 amdgpu_vm_it_remove(mapping, &vm->va); 2067 amdgpu_vm_free_mapping(adev, vm, mapping, 2068 bo_va->last_pt_update); 2069 } 2070 2071 dma_fence_put(bo_va->last_pt_update); 2072 kfree(bo_va); 2073 } 2074 2075 /** 2076 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2077 * 2078 * @adev: amdgpu_device pointer 2079 * @vm: requested vm 2080 * @bo: amdgpu buffer object 2081 * 2082 * Mark @bo as invalid. 2083 */ 2084 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2085 struct amdgpu_bo *bo) 2086 { 2087 struct amdgpu_bo_va *bo_va; 2088 2089 list_for_each_entry(bo_va, &bo->va, bo_list) { 2090 spin_lock(&bo_va->vm->status_lock); 2091 if (list_empty(&bo_va->vm_status)) 2092 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 2093 spin_unlock(&bo_va->vm->status_lock); 2094 } 2095 } 2096 2097 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2098 { 2099 /* Total bits covered by PD + PTs */ 2100 unsigned bits = ilog2(vm_size) + 18; 2101 2102 /* Make sure the PD is 4K in size up to 8GB address space. 2103 Above that split equal between PD and PTs */ 2104 if (vm_size <= 8) 2105 return (bits - 9); 2106 else 2107 return ((bits + 3) / 2); 2108 } 2109 2110 /** 2111 * amdgpu_vm_adjust_size - adjust vm size and block size 2112 * 2113 * @adev: amdgpu_device pointer 2114 * @vm_size: the default vm size if it's set auto 2115 */ 2116 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size) 2117 { 2118 /* adjust vm size firstly */ 2119 if (amdgpu_vm_size == -1) 2120 adev->vm_manager.vm_size = vm_size; 2121 else 2122 adev->vm_manager.vm_size = amdgpu_vm_size; 2123 2124 /* block size depends on vm size */ 2125 if (amdgpu_vm_block_size == -1) 2126 adev->vm_manager.block_size = 2127 amdgpu_vm_get_block_size(adev->vm_manager.vm_size); 2128 else 2129 adev->vm_manager.block_size = amdgpu_vm_block_size; 2130 2131 DRM_INFO("vm size is %llu GB, block size is %u-bit\n", 2132 adev->vm_manager.vm_size, adev->vm_manager.block_size); 2133 } 2134 2135 /** 2136 * amdgpu_vm_init - initialize a vm instance 2137 * 2138 * @adev: amdgpu_device pointer 2139 * @vm: requested vm 2140 * 2141 * Init @vm fields. 2142 */ 2143 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2144 { 2145 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2146 AMDGPU_VM_PTE_COUNT(adev) * 8); 2147 unsigned ring_instance; 2148 struct amdgpu_ring *ring; 2149 struct amd_sched_rq *rq; 2150 int r; 2151 2152 vm->va = RB_ROOT; 2153 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 2154 spin_lock_init(&vm->status_lock); 2155 INIT_LIST_HEAD(&vm->invalidated); 2156 INIT_LIST_HEAD(&vm->cleared); 2157 INIT_LIST_HEAD(&vm->freed); 2158 2159 /* create scheduler entity for page table updates */ 2160 2161 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2162 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2163 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2164 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 2165 r = amd_sched_entity_init(&ring->sched, &vm->entity, 2166 rq, amdgpu_sched_jobs); 2167 if (r) 2168 return r; 2169 2170 vm->last_dir_update = NULL; 2171 2172 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, 2173 AMDGPU_GEM_DOMAIN_VRAM, 2174 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2175 AMDGPU_GEM_CREATE_SHADOW | 2176 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2177 AMDGPU_GEM_CREATE_VRAM_CLEARED, 2178 NULL, NULL, &vm->root.bo); 2179 if (r) 2180 goto error_free_sched_entity; 2181 2182 r = amdgpu_bo_reserve(vm->root.bo, false); 2183 if (r) 2184 goto error_free_root; 2185 2186 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 2187 amdgpu_bo_unreserve(vm->root.bo); 2188 2189 return 0; 2190 2191 error_free_root: 2192 amdgpu_bo_unref(&vm->root.bo->shadow); 2193 amdgpu_bo_unref(&vm->root.bo); 2194 vm->root.bo = NULL; 2195 2196 error_free_sched_entity: 2197 amd_sched_entity_fini(&ring->sched, &vm->entity); 2198 2199 return r; 2200 } 2201 2202 /** 2203 * amdgpu_vm_free_levels - free PD/PT levels 2204 * 2205 * @level: PD/PT starting level to free 2206 * 2207 * Free the page directory or page table level and all sub levels. 2208 */ 2209 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) 2210 { 2211 unsigned i; 2212 2213 if (level->bo) { 2214 amdgpu_bo_unref(&level->bo->shadow); 2215 amdgpu_bo_unref(&level->bo); 2216 } 2217 2218 if (level->entries) 2219 for (i = 0; i <= level->last_entry_used; i++) 2220 amdgpu_vm_free_levels(&level->entries[i]); 2221 2222 drm_free_large(level->entries); 2223 } 2224 2225 /** 2226 * amdgpu_vm_fini - tear down a vm instance 2227 * 2228 * @adev: amdgpu_device pointer 2229 * @vm: requested vm 2230 * 2231 * Tear down @vm. 2232 * Unbind the VM and remove all bos from the vm bo list 2233 */ 2234 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2235 { 2236 struct amdgpu_bo_va_mapping *mapping, *tmp; 2237 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; 2238 2239 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 2240 2241 if (!RB_EMPTY_ROOT(&vm->va)) { 2242 dev_err(adev->dev, "still active bo inside vm\n"); 2243 } 2244 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) { 2245 list_del(&mapping->list); 2246 amdgpu_vm_it_remove(mapping, &vm->va); 2247 kfree(mapping); 2248 } 2249 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2250 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2251 amdgpu_vm_prt_fini(adev, vm); 2252 prt_fini_needed = false; 2253 } 2254 2255 list_del(&mapping->list); 2256 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2257 } 2258 2259 amdgpu_vm_free_levels(&vm->root); 2260 dma_fence_put(vm->last_dir_update); 2261 } 2262 2263 /** 2264 * amdgpu_vm_manager_init - init the VM manager 2265 * 2266 * @adev: amdgpu_device pointer 2267 * 2268 * Initialize the VM manager structures 2269 */ 2270 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2271 { 2272 unsigned i, j; 2273 2274 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2275 struct amdgpu_vm_id_manager *id_mgr = 2276 &adev->vm_manager.id_mgr[i]; 2277 2278 mutex_init(&id_mgr->lock); 2279 INIT_LIST_HEAD(&id_mgr->ids_lru); 2280 2281 /* skip over VMID 0, since it is the system VM */ 2282 for (j = 1; j < id_mgr->num_ids; ++j) { 2283 amdgpu_vm_reset_id(adev, i, j); 2284 amdgpu_sync_create(&id_mgr->ids[i].active); 2285 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru); 2286 } 2287 } 2288 2289 adev->vm_manager.fence_context = 2290 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2291 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2292 adev->vm_manager.seqno[i] = 0; 2293 2294 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2295 atomic64_set(&adev->vm_manager.client_counter, 0); 2296 spin_lock_init(&adev->vm_manager.prt_lock); 2297 atomic_set(&adev->vm_manager.num_prt_users, 0); 2298 } 2299 2300 /** 2301 * amdgpu_vm_manager_fini - cleanup VM manager 2302 * 2303 * @adev: amdgpu_device pointer 2304 * 2305 * Cleanup the VM manager and free resources. 2306 */ 2307 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2308 { 2309 unsigned i, j; 2310 2311 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2312 struct amdgpu_vm_id_manager *id_mgr = 2313 &adev->vm_manager.id_mgr[i]; 2314 2315 mutex_destroy(&id_mgr->lock); 2316 for (j = 0; j < AMDGPU_NUM_VM; ++j) { 2317 struct amdgpu_vm_id *id = &id_mgr->ids[j]; 2318 2319 amdgpu_sync_free(&id->active); 2320 dma_fence_put(id->flushed_updates); 2321 dma_fence_put(id->last_flush); 2322 } 2323 } 2324 } 2325