1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <drm/drmP.h> 30 #include <drm/amdgpu_drm.h> 31 #include "amdgpu.h" 32 #include "amdgpu_trace.h" 33 34 /* 35 * GPUVM 36 * GPUVM is similar to the legacy gart on older asics, however 37 * rather than there being a single global gart table 38 * for the entire GPU, there are multiple VM page tables active 39 * at any given time. The VM page tables can contain a mix 40 * vram pages and system memory pages and system memory pages 41 * can be mapped as snooped (cached system pages) or unsnooped 42 * (uncached system pages). 43 * Each VM has an ID associated with it and there is a page table 44 * associated with each VMID. When execting a command buffer, 45 * the kernel tells the the ring what VMID to use for that command 46 * buffer. VMIDs are allocated dynamically as commands are submitted. 47 * The userspace drivers maintain their own address space and the kernel 48 * sets up their pages tables accordingly when they submit their 49 * command buffers and a VMID is assigned. 50 * Cayman/Trinity support up to 8 active VMs at any given time; 51 * SI supports 16. 52 */ 53 54 /* Local structure. Encapsulate some VM table update parameters to reduce 55 * the number of function parameters 56 */ 57 struct amdgpu_pte_update_params { 58 /* amdgpu device we do this update for */ 59 struct amdgpu_device *adev; 60 /* address where to copy page table entries from */ 61 uint64_t src; 62 /* indirect buffer to fill with commands */ 63 struct amdgpu_ib *ib; 64 /* Function which actually does the update */ 65 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 66 uint64_t addr, unsigned count, uint32_t incr, 67 uint32_t flags); 68 /* indicate update pt or its shadow */ 69 bool shadow; 70 }; 71 72 /* Helper to disable partial resident texture feature from a fence callback */ 73 struct amdgpu_prt_cb { 74 struct amdgpu_device *adev; 75 struct dma_fence_cb cb; 76 }; 77 78 /** 79 * amdgpu_vm_num_pde - return the number of page directory entries 80 * 81 * @adev: amdgpu_device pointer 82 * 83 * Calculate the number of page directory entries. 84 */ 85 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev) 86 { 87 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size; 88 } 89 90 /** 91 * amdgpu_vm_directory_size - returns the size of the page directory in bytes 92 * 93 * @adev: amdgpu_device pointer 94 * 95 * Calculate the size of the page directory in bytes. 96 */ 97 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev) 98 { 99 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8); 100 } 101 102 /** 103 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 104 * 105 * @vm: vm providing the BOs 106 * @validated: head of validation list 107 * @entry: entry to add 108 * 109 * Add the page directory to the list of BOs to 110 * validate for command submission. 111 */ 112 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 113 struct list_head *validated, 114 struct amdgpu_bo_list_entry *entry) 115 { 116 entry->robj = vm->page_directory; 117 entry->priority = 0; 118 entry->tv.bo = &vm->page_directory->tbo; 119 entry->tv.shared = true; 120 entry->user_pages = NULL; 121 list_add(&entry->tv.head, validated); 122 } 123 124 /** 125 * amdgpu_vm_validate_pt_bos - validate the page table BOs 126 * 127 * @adev: amdgpu device pointer 128 * @vm: vm providing the BOs 129 * @validate: callback to do the validation 130 * @param: parameter for the validation callback 131 * 132 * Validate the page table BOs on command submission if neccessary. 133 */ 134 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 135 int (*validate)(void *p, struct amdgpu_bo *bo), 136 void *param) 137 { 138 uint64_t num_evictions; 139 unsigned i; 140 int r; 141 142 /* We only need to validate the page tables 143 * if they aren't already valid. 144 */ 145 num_evictions = atomic64_read(&adev->num_evictions); 146 if (num_evictions == vm->last_eviction_counter) 147 return 0; 148 149 /* add the vm page table to the list */ 150 for (i = 0; i <= vm->max_pde_used; ++i) { 151 struct amdgpu_bo *bo = vm->page_tables[i].bo; 152 153 if (!bo) 154 continue; 155 156 r = validate(param, bo); 157 if (r) 158 return r; 159 } 160 161 return 0; 162 } 163 164 /** 165 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 166 * 167 * @adev: amdgpu device instance 168 * @vm: vm providing the BOs 169 * 170 * Move the PT BOs to the tail of the LRU. 171 */ 172 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 173 struct amdgpu_vm *vm) 174 { 175 struct ttm_bo_global *glob = adev->mman.bdev.glob; 176 unsigned i; 177 178 spin_lock(&glob->lru_lock); 179 for (i = 0; i <= vm->max_pde_used; ++i) { 180 struct amdgpu_bo *bo = vm->page_tables[i].bo; 181 182 if (!bo) 183 continue; 184 185 ttm_bo_move_to_lru_tail(&bo->tbo); 186 } 187 spin_unlock(&glob->lru_lock); 188 } 189 190 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev, 191 struct amdgpu_vm_id *id) 192 { 193 return id->current_gpu_reset_count != 194 atomic_read(&adev->gpu_reset_counter) ? true : false; 195 } 196 197 /** 198 * amdgpu_vm_grab_id - allocate the next free VMID 199 * 200 * @vm: vm to allocate id for 201 * @ring: ring we want to submit job to 202 * @sync: sync object where we add dependencies 203 * @fence: fence protecting ID from reuse 204 * 205 * Allocate an id for the vm, adding fences to the sync obj as necessary. 206 */ 207 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 208 struct amdgpu_sync *sync, struct dma_fence *fence, 209 struct amdgpu_job *job) 210 { 211 struct amdgpu_device *adev = ring->adev; 212 uint64_t fence_context = adev->fence_context + ring->idx; 213 struct dma_fence *updates = sync->last_vm_update; 214 struct amdgpu_vm_id *id, *idle; 215 struct dma_fence **fences; 216 unsigned i; 217 int r = 0; 218 219 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids, 220 GFP_KERNEL); 221 if (!fences) 222 return -ENOMEM; 223 224 mutex_lock(&adev->vm_manager.lock); 225 226 /* Check if we have an idle VMID */ 227 i = 0; 228 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) { 229 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 230 if (!fences[i]) 231 break; 232 ++i; 233 } 234 235 /* If we can't find a idle VMID to use, wait till one becomes available */ 236 if (&idle->list == &adev->vm_manager.ids_lru) { 237 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 238 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 239 struct dma_fence_array *array; 240 unsigned j; 241 242 for (j = 0; j < i; ++j) 243 dma_fence_get(fences[j]); 244 245 array = dma_fence_array_create(i, fences, fence_context, 246 seqno, true); 247 if (!array) { 248 for (j = 0; j < i; ++j) 249 dma_fence_put(fences[j]); 250 kfree(fences); 251 r = -ENOMEM; 252 goto error; 253 } 254 255 256 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 257 dma_fence_put(&array->base); 258 if (r) 259 goto error; 260 261 mutex_unlock(&adev->vm_manager.lock); 262 return 0; 263 264 } 265 kfree(fences); 266 267 job->vm_needs_flush = true; 268 /* Check if we can use a VMID already assigned to this VM */ 269 i = ring->idx; 270 do { 271 struct dma_fence *flushed; 272 273 id = vm->ids[i++]; 274 if (i == AMDGPU_MAX_RINGS) 275 i = 0; 276 277 /* Check all the prerequisites to using this VMID */ 278 if (!id) 279 continue; 280 if (amdgpu_vm_is_gpu_reset(adev, id)) 281 continue; 282 283 if (atomic64_read(&id->owner) != vm->client_id) 284 continue; 285 286 if (job->vm_pd_addr != id->pd_gpu_addr) 287 continue; 288 289 if (!id->last_flush) 290 continue; 291 292 if (id->last_flush->context != fence_context && 293 !dma_fence_is_signaled(id->last_flush)) 294 continue; 295 296 flushed = id->flushed_updates; 297 if (updates && 298 (!flushed || dma_fence_is_later(updates, flushed))) 299 continue; 300 301 /* Good we can use this VMID. Remember this submission as 302 * user of the VMID. 303 */ 304 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 305 if (r) 306 goto error; 307 308 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 309 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 310 vm->ids[ring->idx] = id; 311 312 job->vm_id = id - adev->vm_manager.ids; 313 job->vm_needs_flush = false; 314 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 315 316 mutex_unlock(&adev->vm_manager.lock); 317 return 0; 318 319 } while (i != ring->idx); 320 321 /* Still no ID to use? Then use the idle one found earlier */ 322 id = idle; 323 324 /* Remember this submission as user of the VMID */ 325 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 326 if (r) 327 goto error; 328 329 dma_fence_put(id->first); 330 id->first = dma_fence_get(fence); 331 332 dma_fence_put(id->last_flush); 333 id->last_flush = NULL; 334 335 dma_fence_put(id->flushed_updates); 336 id->flushed_updates = dma_fence_get(updates); 337 338 id->pd_gpu_addr = job->vm_pd_addr; 339 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 340 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 341 atomic64_set(&id->owner, vm->client_id); 342 vm->ids[ring->idx] = id; 343 344 job->vm_id = id - adev->vm_manager.ids; 345 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 346 347 error: 348 mutex_unlock(&adev->vm_manager.lock); 349 return r; 350 } 351 352 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring) 353 { 354 struct amdgpu_device *adev = ring->adev; 355 const struct amdgpu_ip_block *ip_block; 356 357 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE) 358 /* only compute rings */ 359 return false; 360 361 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 362 if (!ip_block) 363 return false; 364 365 if (ip_block->version->major <= 7) { 366 /* gfx7 has no workaround */ 367 return true; 368 } else if (ip_block->version->major == 8) { 369 if (adev->gfx.mec_fw_version >= 673) 370 /* gfx8 is fixed in MEC firmware 673 */ 371 return false; 372 else 373 return true; 374 } 375 return false; 376 } 377 378 /** 379 * amdgpu_vm_flush - hardware flush the vm 380 * 381 * @ring: ring to use for flush 382 * @vm_id: vmid number to use 383 * @pd_addr: address of the page directory 384 * 385 * Emit a VM flush when it is necessary. 386 */ 387 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job) 388 { 389 struct amdgpu_device *adev = ring->adev; 390 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id]; 391 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 392 id->gds_base != job->gds_base || 393 id->gds_size != job->gds_size || 394 id->gws_base != job->gws_base || 395 id->gws_size != job->gws_size || 396 id->oa_base != job->oa_base || 397 id->oa_size != job->oa_size); 398 int r; 399 400 if (ring->funcs->emit_pipeline_sync && ( 401 job->vm_needs_flush || gds_switch_needed || 402 amdgpu_vm_ring_has_compute_vm_bug(ring))) 403 amdgpu_ring_emit_pipeline_sync(ring); 404 405 if (ring->funcs->emit_vm_flush && (job->vm_needs_flush || 406 amdgpu_vm_is_gpu_reset(adev, id))) { 407 struct dma_fence *fence; 408 409 trace_amdgpu_vm_flush(job->vm_pd_addr, ring->idx, job->vm_id); 410 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr); 411 412 r = amdgpu_fence_emit(ring, &fence); 413 if (r) 414 return r; 415 416 mutex_lock(&adev->vm_manager.lock); 417 dma_fence_put(id->last_flush); 418 id->last_flush = fence; 419 mutex_unlock(&adev->vm_manager.lock); 420 } 421 422 if (gds_switch_needed) { 423 id->gds_base = job->gds_base; 424 id->gds_size = job->gds_size; 425 id->gws_base = job->gws_base; 426 id->gws_size = job->gws_size; 427 id->oa_base = job->oa_base; 428 id->oa_size = job->oa_size; 429 amdgpu_ring_emit_gds_switch(ring, job->vm_id, 430 job->gds_base, job->gds_size, 431 job->gws_base, job->gws_size, 432 job->oa_base, job->oa_size); 433 } 434 435 return 0; 436 } 437 438 /** 439 * amdgpu_vm_reset_id - reset VMID to zero 440 * 441 * @adev: amdgpu device structure 442 * @vm_id: vmid number to use 443 * 444 * Reset saved GDW, GWS and OA to force switch on next flush. 445 */ 446 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id) 447 { 448 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id]; 449 450 id->gds_base = 0; 451 id->gds_size = 0; 452 id->gws_base = 0; 453 id->gws_size = 0; 454 id->oa_base = 0; 455 id->oa_size = 0; 456 } 457 458 /** 459 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 460 * 461 * @vm: requested vm 462 * @bo: requested buffer object 463 * 464 * Find @bo inside the requested vm. 465 * Search inside the @bos vm list for the requested vm 466 * Returns the found bo_va or NULL if none is found 467 * 468 * Object has to be reserved! 469 */ 470 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 471 struct amdgpu_bo *bo) 472 { 473 struct amdgpu_bo_va *bo_va; 474 475 list_for_each_entry(bo_va, &bo->va, bo_list) { 476 if (bo_va->vm == vm) { 477 return bo_va; 478 } 479 } 480 return NULL; 481 } 482 483 /** 484 * amdgpu_vm_do_set_ptes - helper to call the right asic function 485 * 486 * @params: see amdgpu_pte_update_params definition 487 * @pe: addr of the page entry 488 * @addr: dst addr to write into pe 489 * @count: number of page entries to update 490 * @incr: increase next addr by incr bytes 491 * @flags: hw access flags 492 * 493 * Traces the parameters and calls the right asic functions 494 * to setup the page table using the DMA. 495 */ 496 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 497 uint64_t pe, uint64_t addr, 498 unsigned count, uint32_t incr, 499 uint32_t flags) 500 { 501 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 502 503 if (count < 3) { 504 amdgpu_vm_write_pte(params->adev, params->ib, pe, 505 addr | flags, count, incr); 506 507 } else { 508 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 509 count, incr, flags); 510 } 511 } 512 513 /** 514 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 515 * 516 * @params: see amdgpu_pte_update_params definition 517 * @pe: addr of the page entry 518 * @addr: dst addr to write into pe 519 * @count: number of page entries to update 520 * @incr: increase next addr by incr bytes 521 * @flags: hw access flags 522 * 523 * Traces the parameters and calls the DMA function to copy the PTEs. 524 */ 525 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 526 uint64_t pe, uint64_t addr, 527 unsigned count, uint32_t incr, 528 uint32_t flags) 529 { 530 uint64_t src = (params->src + (addr >> 12) * 8); 531 532 533 trace_amdgpu_vm_copy_ptes(pe, src, count); 534 535 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 536 } 537 538 /** 539 * amdgpu_vm_map_gart - Resolve gart mapping of addr 540 * 541 * @pages_addr: optional DMA address to use for lookup 542 * @addr: the unmapped addr 543 * 544 * Look up the physical address of the page that the pte resolves 545 * to and return the pointer for the page table entry. 546 */ 547 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 548 { 549 uint64_t result; 550 551 /* page table offset */ 552 result = pages_addr[addr >> PAGE_SHIFT]; 553 554 /* in case cpu page size != gpu page size*/ 555 result |= addr & (~PAGE_MASK); 556 557 result &= 0xFFFFFFFFFFFFF000ULL; 558 559 return result; 560 } 561 562 /* 563 * amdgpu_vm_update_pdes - make sure that page directory is valid 564 * 565 * @adev: amdgpu_device pointer 566 * @vm: requested vm 567 * @start: start of GPU address range 568 * @end: end of GPU address range 569 * 570 * Allocates new page tables if necessary 571 * and updates the page directory. 572 * Returns 0 for success, error for failure. 573 */ 574 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev, 575 struct amdgpu_vm *vm) 576 { 577 struct amdgpu_bo *shadow; 578 struct amdgpu_ring *ring; 579 uint64_t pd_addr, shadow_addr; 580 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8; 581 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 582 unsigned count = 0, pt_idx, ndw; 583 struct amdgpu_job *job; 584 struct amdgpu_pte_update_params params; 585 struct dma_fence *fence = NULL; 586 587 int r; 588 589 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 590 shadow = vm->page_directory->shadow; 591 592 /* padding, etc. */ 593 ndw = 64; 594 595 /* assume the worst case */ 596 ndw += vm->max_pde_used * 6; 597 598 pd_addr = amdgpu_bo_gpu_offset(vm->page_directory); 599 if (shadow) { 600 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 601 if (r) 602 return r; 603 shadow_addr = amdgpu_bo_gpu_offset(shadow); 604 ndw *= 2; 605 } else { 606 shadow_addr = 0; 607 } 608 609 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 610 if (r) 611 return r; 612 613 memset(¶ms, 0, sizeof(params)); 614 params.adev = adev; 615 params.ib = &job->ibs[0]; 616 617 /* walk over the address space and update the page directory */ 618 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 619 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo; 620 uint64_t pde, pt; 621 622 if (bo == NULL) 623 continue; 624 625 if (bo->shadow) { 626 struct amdgpu_bo *pt_shadow = bo->shadow; 627 628 r = amdgpu_ttm_bind(&pt_shadow->tbo, 629 &pt_shadow->tbo.mem); 630 if (r) 631 return r; 632 } 633 634 pt = amdgpu_bo_gpu_offset(bo); 635 if (vm->page_tables[pt_idx].addr == pt) 636 continue; 637 638 vm->page_tables[pt_idx].addr = pt; 639 640 pde = pd_addr + pt_idx * 8; 641 if (((last_pde + 8 * count) != pde) || 642 ((last_pt + incr * count) != pt) || 643 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 644 645 if (count) { 646 if (shadow) 647 amdgpu_vm_do_set_ptes(¶ms, 648 last_shadow, 649 last_pt, count, 650 incr, 651 AMDGPU_PTE_VALID); 652 653 amdgpu_vm_do_set_ptes(¶ms, last_pde, 654 last_pt, count, incr, 655 AMDGPU_PTE_VALID); 656 } 657 658 count = 1; 659 last_pde = pde; 660 last_shadow = shadow_addr + pt_idx * 8; 661 last_pt = pt; 662 } else { 663 ++count; 664 } 665 } 666 667 if (count) { 668 if (vm->page_directory->shadow) 669 amdgpu_vm_do_set_ptes(¶ms, last_shadow, last_pt, 670 count, incr, AMDGPU_PTE_VALID); 671 672 amdgpu_vm_do_set_ptes(¶ms, last_pde, last_pt, 673 count, incr, AMDGPU_PTE_VALID); 674 } 675 676 if (params.ib->length_dw == 0) { 677 amdgpu_job_free(job); 678 return 0; 679 } 680 681 amdgpu_ring_pad_ib(ring, params.ib); 682 amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv, 683 AMDGPU_FENCE_OWNER_VM); 684 if (shadow) 685 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv, 686 AMDGPU_FENCE_OWNER_VM); 687 688 WARN_ON(params.ib->length_dw > ndw); 689 r = amdgpu_job_submit(job, ring, &vm->entity, 690 AMDGPU_FENCE_OWNER_VM, &fence); 691 if (r) 692 goto error_free; 693 694 amdgpu_bo_fence(vm->page_directory, fence, true); 695 dma_fence_put(vm->page_directory_fence); 696 vm->page_directory_fence = dma_fence_get(fence); 697 dma_fence_put(fence); 698 699 return 0; 700 701 error_free: 702 amdgpu_job_free(job); 703 return r; 704 } 705 706 /** 707 * amdgpu_vm_update_ptes - make sure that page tables are valid 708 * 709 * @params: see amdgpu_pte_update_params definition 710 * @vm: requested vm 711 * @start: start of GPU address range 712 * @end: end of GPU address range 713 * @dst: destination address to map to, the next dst inside the function 714 * @flags: mapping flags 715 * 716 * Update the page tables in the range @start - @end. 717 */ 718 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 719 struct amdgpu_vm *vm, 720 uint64_t start, uint64_t end, 721 uint64_t dst, uint32_t flags) 722 { 723 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1; 724 725 uint64_t cur_pe_start, cur_nptes, cur_dst; 726 uint64_t addr; /* next GPU address to be updated */ 727 uint64_t pt_idx; 728 struct amdgpu_bo *pt; 729 unsigned nptes; /* next number of ptes to be updated */ 730 uint64_t next_pe_start; 731 732 /* initialize the variables */ 733 addr = start; 734 pt_idx = addr >> amdgpu_vm_block_size; 735 pt = vm->page_tables[pt_idx].bo; 736 if (params->shadow) { 737 if (!pt->shadow) 738 return; 739 pt = pt->shadow; 740 } 741 if ((addr & ~mask) == (end & ~mask)) 742 nptes = end - addr; 743 else 744 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 745 746 cur_pe_start = amdgpu_bo_gpu_offset(pt); 747 cur_pe_start += (addr & mask) * 8; 748 cur_nptes = nptes; 749 cur_dst = dst; 750 751 /* for next ptb*/ 752 addr += nptes; 753 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 754 755 /* walk over the address space and update the page tables */ 756 while (addr < end) { 757 pt_idx = addr >> amdgpu_vm_block_size; 758 pt = vm->page_tables[pt_idx].bo; 759 if (params->shadow) { 760 if (!pt->shadow) 761 return; 762 pt = pt->shadow; 763 } 764 765 if ((addr & ~mask) == (end & ~mask)) 766 nptes = end - addr; 767 else 768 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 769 770 next_pe_start = amdgpu_bo_gpu_offset(pt); 771 next_pe_start += (addr & mask) * 8; 772 773 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start && 774 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) { 775 /* The next ptb is consecutive to current ptb. 776 * Don't call the update function now. 777 * Will update two ptbs together in future. 778 */ 779 cur_nptes += nptes; 780 } else { 781 params->func(params, cur_pe_start, cur_dst, cur_nptes, 782 AMDGPU_GPU_PAGE_SIZE, flags); 783 784 cur_pe_start = next_pe_start; 785 cur_nptes = nptes; 786 cur_dst = dst; 787 } 788 789 /* for next ptb*/ 790 addr += nptes; 791 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 792 } 793 794 params->func(params, cur_pe_start, cur_dst, cur_nptes, 795 AMDGPU_GPU_PAGE_SIZE, flags); 796 } 797 798 /* 799 * amdgpu_vm_frag_ptes - add fragment information to PTEs 800 * 801 * @params: see amdgpu_pte_update_params definition 802 * @vm: requested vm 803 * @start: first PTE to handle 804 * @end: last PTE to handle 805 * @dst: addr those PTEs should point to 806 * @flags: hw mapping flags 807 */ 808 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 809 struct amdgpu_vm *vm, 810 uint64_t start, uint64_t end, 811 uint64_t dst, uint32_t flags) 812 { 813 /** 814 * The MC L1 TLB supports variable sized pages, based on a fragment 815 * field in the PTE. When this field is set to a non-zero value, page 816 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 817 * flags are considered valid for all PTEs within the fragment range 818 * and corresponding mappings are assumed to be physically contiguous. 819 * 820 * The L1 TLB can store a single PTE for the whole fragment, 821 * significantly increasing the space available for translation 822 * caching. This leads to large improvements in throughput when the 823 * TLB is under pressure. 824 * 825 * The L2 TLB distributes small and large fragments into two 826 * asymmetric partitions. The large fragment cache is significantly 827 * larger. Thus, we try to use large fragments wherever possible. 828 * Userspace can support this by aligning virtual base address and 829 * allocation size to the fragment size. 830 */ 831 832 /* SI and newer are optimized for 64KB */ 833 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG); 834 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG; 835 836 uint64_t frag_start = ALIGN(start, frag_align); 837 uint64_t frag_end = end & ~(frag_align - 1); 838 839 /* system pages are non continuously */ 840 if (params->src || !(flags & AMDGPU_PTE_VALID) || 841 (frag_start >= frag_end)) { 842 843 amdgpu_vm_update_ptes(params, vm, start, end, dst, flags); 844 return; 845 } 846 847 /* handle the 4K area at the beginning */ 848 if (start != frag_start) { 849 amdgpu_vm_update_ptes(params, vm, start, frag_start, 850 dst, flags); 851 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 852 } 853 854 /* handle the area in the middle */ 855 amdgpu_vm_update_ptes(params, vm, frag_start, frag_end, dst, 856 flags | frag_flags); 857 858 /* handle the 4K area at the end */ 859 if (frag_end != end) { 860 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 861 amdgpu_vm_update_ptes(params, vm, frag_end, end, dst, flags); 862 } 863 } 864 865 /** 866 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 867 * 868 * @adev: amdgpu_device pointer 869 * @exclusive: fence we need to sync to 870 * @src: address where to copy page table entries from 871 * @pages_addr: DMA addresses to use for mapping 872 * @vm: requested vm 873 * @start: start of mapped range 874 * @last: last mapped entry 875 * @flags: flags for the entries 876 * @addr: addr to set the area to 877 * @fence: optional resulting fence 878 * 879 * Fill in the page table entries between @start and @last. 880 * Returns 0 for success, -EINVAL for failure. 881 */ 882 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 883 struct dma_fence *exclusive, 884 uint64_t src, 885 dma_addr_t *pages_addr, 886 struct amdgpu_vm *vm, 887 uint64_t start, uint64_t last, 888 uint32_t flags, uint64_t addr, 889 struct dma_fence **fence) 890 { 891 struct amdgpu_ring *ring; 892 void *owner = AMDGPU_FENCE_OWNER_VM; 893 unsigned nptes, ncmds, ndw; 894 struct amdgpu_job *job; 895 struct amdgpu_pte_update_params params; 896 struct dma_fence *f = NULL; 897 int r; 898 899 memset(¶ms, 0, sizeof(params)); 900 params.adev = adev; 901 params.src = src; 902 903 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 904 905 memset(¶ms, 0, sizeof(params)); 906 params.adev = adev; 907 params.src = src; 908 909 /* sync to everything on unmapping */ 910 if (!(flags & AMDGPU_PTE_VALID)) 911 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 912 913 nptes = last - start + 1; 914 915 /* 916 * reserve space for one command every (1 << BLOCK_SIZE) 917 * entries or 2k dwords (whatever is smaller) 918 */ 919 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1; 920 921 /* padding, etc. */ 922 ndw = 64; 923 924 if (src) { 925 /* only copy commands needed */ 926 ndw += ncmds * 7; 927 928 params.func = amdgpu_vm_do_copy_ptes; 929 930 } else if (pages_addr) { 931 /* copy commands needed */ 932 ndw += ncmds * 7; 933 934 /* and also PTEs */ 935 ndw += nptes * 2; 936 937 params.func = amdgpu_vm_do_copy_ptes; 938 939 } else { 940 /* set page commands needed */ 941 ndw += ncmds * 10; 942 943 /* two extra commands for begin/end of fragment */ 944 ndw += 2 * 10; 945 946 params.func = amdgpu_vm_do_set_ptes; 947 } 948 949 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 950 if (r) 951 return r; 952 953 params.ib = &job->ibs[0]; 954 955 if (!src && pages_addr) { 956 uint64_t *pte; 957 unsigned i; 958 959 /* Put the PTEs at the end of the IB. */ 960 i = ndw - nptes * 2; 961 pte= (uint64_t *)&(job->ibs->ptr[i]); 962 params.src = job->ibs->gpu_addr + i * 4; 963 964 for (i = 0; i < nptes; ++i) { 965 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 966 AMDGPU_GPU_PAGE_SIZE); 967 pte[i] |= flags; 968 } 969 addr = 0; 970 } 971 972 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 973 if (r) 974 goto error_free; 975 976 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv, 977 owner); 978 if (r) 979 goto error_free; 980 981 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv); 982 if (r) 983 goto error_free; 984 985 params.shadow = true; 986 amdgpu_vm_frag_ptes(¶ms, vm, start, last + 1, addr, flags); 987 params.shadow = false; 988 amdgpu_vm_frag_ptes(¶ms, vm, start, last + 1, addr, flags); 989 990 amdgpu_ring_pad_ib(ring, params.ib); 991 WARN_ON(params.ib->length_dw > ndw); 992 r = amdgpu_job_submit(job, ring, &vm->entity, 993 AMDGPU_FENCE_OWNER_VM, &f); 994 if (r) 995 goto error_free; 996 997 amdgpu_bo_fence(vm->page_directory, f, true); 998 dma_fence_put(*fence); 999 *fence = f; 1000 return 0; 1001 1002 error_free: 1003 amdgpu_job_free(job); 1004 return r; 1005 } 1006 1007 /** 1008 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1009 * 1010 * @adev: amdgpu_device pointer 1011 * @exclusive: fence we need to sync to 1012 * @gtt_flags: flags as they are used for GTT 1013 * @pages_addr: DMA addresses to use for mapping 1014 * @vm: requested vm 1015 * @mapping: mapped range and flags to use for the update 1016 * @flags: HW flags for the mapping 1017 * @nodes: array of drm_mm_nodes with the MC addresses 1018 * @fence: optional resulting fence 1019 * 1020 * Split the mapping into smaller chunks so that each update fits 1021 * into a SDMA IB. 1022 * Returns 0 for success, -EINVAL for failure. 1023 */ 1024 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1025 struct dma_fence *exclusive, 1026 uint32_t gtt_flags, 1027 dma_addr_t *pages_addr, 1028 struct amdgpu_vm *vm, 1029 struct amdgpu_bo_va_mapping *mapping, 1030 uint32_t flags, 1031 struct drm_mm_node *nodes, 1032 struct dma_fence **fence) 1033 { 1034 uint64_t pfn, src = 0, start = mapping->it.start; 1035 int r; 1036 1037 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1038 * but in case of something, we filter the flags in first place 1039 */ 1040 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1041 flags &= ~AMDGPU_PTE_READABLE; 1042 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1043 flags &= ~AMDGPU_PTE_WRITEABLE; 1044 1045 trace_amdgpu_vm_bo_update(mapping); 1046 1047 pfn = mapping->offset >> PAGE_SHIFT; 1048 if (nodes) { 1049 while (pfn >= nodes->size) { 1050 pfn -= nodes->size; 1051 ++nodes; 1052 } 1053 } 1054 1055 do { 1056 uint64_t max_entries; 1057 uint64_t addr, last; 1058 1059 if (nodes) { 1060 addr = nodes->start << PAGE_SHIFT; 1061 max_entries = (nodes->size - pfn) * 1062 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1063 } else { 1064 addr = 0; 1065 max_entries = S64_MAX; 1066 } 1067 1068 if (pages_addr) { 1069 if (flags == gtt_flags) 1070 src = adev->gart.table_addr + 1071 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8; 1072 else 1073 max_entries = min(max_entries, 16ull * 1024ull); 1074 addr = 0; 1075 } else if (flags & AMDGPU_PTE_VALID) { 1076 addr += adev->vm_manager.vram_base_offset; 1077 } 1078 addr += pfn << PAGE_SHIFT; 1079 1080 last = min((uint64_t)mapping->it.last, start + max_entries - 1); 1081 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1082 src, pages_addr, vm, 1083 start, last, flags, addr, 1084 fence); 1085 if (r) 1086 return r; 1087 1088 pfn += last - start + 1; 1089 if (nodes && nodes->size == pfn) { 1090 pfn = 0; 1091 ++nodes; 1092 } 1093 start = last + 1; 1094 1095 } while (unlikely(start != mapping->it.last + 1)); 1096 1097 return 0; 1098 } 1099 1100 /** 1101 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1102 * 1103 * @adev: amdgpu_device pointer 1104 * @bo_va: requested BO and VM object 1105 * @clear: if true clear the entries 1106 * 1107 * Fill in the page table entries for @bo_va. 1108 * Returns 0 for success, -EINVAL for failure. 1109 */ 1110 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1111 struct amdgpu_bo_va *bo_va, 1112 bool clear) 1113 { 1114 struct amdgpu_vm *vm = bo_va->vm; 1115 struct amdgpu_bo_va_mapping *mapping; 1116 dma_addr_t *pages_addr = NULL; 1117 uint32_t gtt_flags, flags; 1118 struct ttm_mem_reg *mem; 1119 struct drm_mm_node *nodes; 1120 struct dma_fence *exclusive; 1121 int r; 1122 1123 if (clear || !bo_va->bo) { 1124 mem = NULL; 1125 nodes = NULL; 1126 exclusive = NULL; 1127 } else { 1128 struct ttm_dma_tt *ttm; 1129 1130 mem = &bo_va->bo->tbo.mem; 1131 nodes = mem->mm_node; 1132 if (mem->mem_type == TTM_PL_TT) { 1133 ttm = container_of(bo_va->bo->tbo.ttm, struct 1134 ttm_dma_tt, ttm); 1135 pages_addr = ttm->dma_address; 1136 } 1137 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv); 1138 } 1139 1140 if (bo_va->bo) { 1141 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 1142 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) && 1143 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ? 1144 flags : 0; 1145 } else { 1146 flags = 0x0; 1147 gtt_flags = ~0x0; 1148 } 1149 1150 spin_lock(&vm->status_lock); 1151 if (!list_empty(&bo_va->vm_status)) 1152 list_splice_init(&bo_va->valids, &bo_va->invalids); 1153 spin_unlock(&vm->status_lock); 1154 1155 list_for_each_entry(mapping, &bo_va->invalids, list) { 1156 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1157 gtt_flags, pages_addr, vm, 1158 mapping, flags, nodes, 1159 &bo_va->last_pt_update); 1160 if (r) 1161 return r; 1162 } 1163 1164 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1165 list_for_each_entry(mapping, &bo_va->valids, list) 1166 trace_amdgpu_vm_bo_mapping(mapping); 1167 1168 list_for_each_entry(mapping, &bo_va->invalids, list) 1169 trace_amdgpu_vm_bo_mapping(mapping); 1170 } 1171 1172 spin_lock(&vm->status_lock); 1173 list_splice_init(&bo_va->invalids, &bo_va->valids); 1174 list_del_init(&bo_va->vm_status); 1175 if (clear) 1176 list_add(&bo_va->vm_status, &vm->cleared); 1177 spin_unlock(&vm->status_lock); 1178 1179 return 0; 1180 } 1181 1182 /** 1183 * amdgpu_vm_update_prt_state - update the global PRT state 1184 */ 1185 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1186 { 1187 unsigned long flags; 1188 bool enable; 1189 1190 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1191 enable = !!atomic_read(&adev->vm_manager.num_prt_mappings); 1192 adev->gart.gart_funcs->set_prt(adev, enable); 1193 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1194 } 1195 1196 /** 1197 * amdgpu_vm_prt - callback for updating the PRT status 1198 */ 1199 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1200 { 1201 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1202 1203 amdgpu_vm_update_prt_state(cb->adev); 1204 kfree(cb); 1205 } 1206 1207 /** 1208 * amdgpu_vm_free_mapping - free a mapping 1209 * 1210 * @adev: amdgpu_device pointer 1211 * @vm: requested vm 1212 * @mapping: mapping to be freed 1213 * @fence: fence of the unmap operation 1214 * 1215 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1216 */ 1217 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1218 struct amdgpu_vm *vm, 1219 struct amdgpu_bo_va_mapping *mapping, 1220 struct dma_fence *fence) 1221 { 1222 if ((mapping->flags & AMDGPU_PTE_PRT) && 1223 atomic_dec_return(&adev->vm_manager.num_prt_mappings) == 0) { 1224 struct amdgpu_prt_cb *cb = kmalloc(sizeof(struct amdgpu_prt_cb), 1225 GFP_KERNEL); 1226 1227 cb->adev = adev; 1228 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1229 amdgpu_vm_prt_cb)) { 1230 amdgpu_vm_update_prt_state(adev); 1231 kfree(cb); 1232 } 1233 } 1234 kfree(mapping); 1235 } 1236 1237 /** 1238 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1239 * 1240 * @adev: amdgpu_device pointer 1241 * @vm: requested vm 1242 * 1243 * Make sure all freed BOs are cleared in the PT. 1244 * Returns 0 for success. 1245 * 1246 * PTs have to be reserved and mutex must be locked! 1247 */ 1248 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1249 struct amdgpu_vm *vm) 1250 { 1251 struct amdgpu_bo_va_mapping *mapping; 1252 struct dma_fence *fence = NULL; 1253 int r; 1254 1255 while (!list_empty(&vm->freed)) { 1256 mapping = list_first_entry(&vm->freed, 1257 struct amdgpu_bo_va_mapping, list); 1258 list_del(&mapping->list); 1259 1260 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping, 1261 0, 0, &fence); 1262 amdgpu_vm_free_mapping(adev, vm, mapping, fence); 1263 if (r) { 1264 dma_fence_put(fence); 1265 return r; 1266 } 1267 1268 } 1269 dma_fence_put(fence); 1270 return 0; 1271 1272 } 1273 1274 /** 1275 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1276 * 1277 * @adev: amdgpu_device pointer 1278 * @vm: requested vm 1279 * 1280 * Make sure all invalidated BOs are cleared in the PT. 1281 * Returns 0 for success. 1282 * 1283 * PTs have to be reserved and mutex must be locked! 1284 */ 1285 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1286 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1287 { 1288 struct amdgpu_bo_va *bo_va = NULL; 1289 int r = 0; 1290 1291 spin_lock(&vm->status_lock); 1292 while (!list_empty(&vm->invalidated)) { 1293 bo_va = list_first_entry(&vm->invalidated, 1294 struct amdgpu_bo_va, vm_status); 1295 spin_unlock(&vm->status_lock); 1296 1297 r = amdgpu_vm_bo_update(adev, bo_va, true); 1298 if (r) 1299 return r; 1300 1301 spin_lock(&vm->status_lock); 1302 } 1303 spin_unlock(&vm->status_lock); 1304 1305 if (bo_va) 1306 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1307 1308 return r; 1309 } 1310 1311 /** 1312 * amdgpu_vm_bo_add - add a bo to a specific vm 1313 * 1314 * @adev: amdgpu_device pointer 1315 * @vm: requested vm 1316 * @bo: amdgpu buffer object 1317 * 1318 * Add @bo into the requested vm. 1319 * Add @bo to the list of bos associated with the vm 1320 * Returns newly added bo_va or NULL for failure 1321 * 1322 * Object has to be reserved! 1323 */ 1324 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1325 struct amdgpu_vm *vm, 1326 struct amdgpu_bo *bo) 1327 { 1328 struct amdgpu_bo_va *bo_va; 1329 1330 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1331 if (bo_va == NULL) { 1332 return NULL; 1333 } 1334 bo_va->vm = vm; 1335 bo_va->bo = bo; 1336 bo_va->ref_count = 1; 1337 INIT_LIST_HEAD(&bo_va->bo_list); 1338 INIT_LIST_HEAD(&bo_va->valids); 1339 INIT_LIST_HEAD(&bo_va->invalids); 1340 INIT_LIST_HEAD(&bo_va->vm_status); 1341 1342 if (bo) 1343 list_add_tail(&bo_va->bo_list, &bo->va); 1344 1345 return bo_va; 1346 } 1347 1348 /** 1349 * amdgpu_vm_bo_map - map bo inside a vm 1350 * 1351 * @adev: amdgpu_device pointer 1352 * @bo_va: bo_va to store the address 1353 * @saddr: where to map the BO 1354 * @offset: requested offset in the BO 1355 * @flags: attributes of pages (read/write/valid/etc.) 1356 * 1357 * Add a mapping of the BO at the specefied addr into the VM. 1358 * Returns 0 for success, error for failure. 1359 * 1360 * Object has to be reserved and unreserved outside! 1361 */ 1362 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1363 struct amdgpu_bo_va *bo_va, 1364 uint64_t saddr, uint64_t offset, 1365 uint64_t size, uint64_t flags) 1366 { 1367 struct amdgpu_bo_va_mapping *mapping; 1368 struct amdgpu_vm *vm = bo_va->vm; 1369 struct interval_tree_node *it; 1370 unsigned last_pfn, pt_idx; 1371 uint64_t eaddr; 1372 int r; 1373 1374 /* validate the parameters */ 1375 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1376 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1377 return -EINVAL; 1378 1379 if (flags & AMDGPU_PTE_PRT) { 1380 /* Check if we have PRT hardware support */ 1381 if (!adev->gart.gart_funcs->set_prt) 1382 return -EINVAL; 1383 1384 if (atomic_inc_return(&adev->vm_manager.num_prt_mappings) == 1) 1385 amdgpu_vm_update_prt_state(adev); 1386 } 1387 1388 /* make sure object fit at this offset */ 1389 eaddr = saddr + size - 1; 1390 if (saddr >= eaddr || 1391 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1392 return -EINVAL; 1393 1394 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 1395 if (last_pfn >= adev->vm_manager.max_pfn) { 1396 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n", 1397 last_pfn, adev->vm_manager.max_pfn); 1398 return -EINVAL; 1399 } 1400 1401 saddr /= AMDGPU_GPU_PAGE_SIZE; 1402 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1403 1404 it = interval_tree_iter_first(&vm->va, saddr, eaddr); 1405 if (it) { 1406 struct amdgpu_bo_va_mapping *tmp; 1407 tmp = container_of(it, struct amdgpu_bo_va_mapping, it); 1408 /* bo and tmp overlap, invalid addr */ 1409 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1410 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr, 1411 tmp->it.start, tmp->it.last + 1); 1412 r = -EINVAL; 1413 goto error; 1414 } 1415 1416 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1417 if (!mapping) { 1418 r = -ENOMEM; 1419 goto error; 1420 } 1421 1422 INIT_LIST_HEAD(&mapping->list); 1423 mapping->it.start = saddr; 1424 mapping->it.last = eaddr; 1425 mapping->offset = offset; 1426 mapping->flags = flags; 1427 1428 list_add(&mapping->list, &bo_va->invalids); 1429 interval_tree_insert(&mapping->it, &vm->va); 1430 1431 /* Make sure the page tables are allocated */ 1432 saddr >>= amdgpu_vm_block_size; 1433 eaddr >>= amdgpu_vm_block_size; 1434 1435 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev)); 1436 1437 if (eaddr > vm->max_pde_used) 1438 vm->max_pde_used = eaddr; 1439 1440 /* walk over the address space and allocate the page tables */ 1441 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) { 1442 struct reservation_object *resv = vm->page_directory->tbo.resv; 1443 struct amdgpu_bo *pt; 1444 1445 if (vm->page_tables[pt_idx].bo) 1446 continue; 1447 1448 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8, 1449 AMDGPU_GPU_PAGE_SIZE, true, 1450 AMDGPU_GEM_DOMAIN_VRAM, 1451 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 1452 AMDGPU_GEM_CREATE_SHADOW | 1453 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 1454 AMDGPU_GEM_CREATE_VRAM_CLEARED, 1455 NULL, resv, &pt); 1456 if (r) 1457 goto error_free; 1458 1459 /* Keep a reference to the page table to avoid freeing 1460 * them up in the wrong order. 1461 */ 1462 pt->parent = amdgpu_bo_ref(vm->page_directory); 1463 1464 vm->page_tables[pt_idx].bo = pt; 1465 vm->page_tables[pt_idx].addr = 0; 1466 } 1467 1468 return 0; 1469 1470 error_free: 1471 list_del(&mapping->list); 1472 interval_tree_remove(&mapping->it, &vm->va); 1473 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1474 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 1475 1476 error: 1477 return r; 1478 } 1479 1480 /** 1481 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1482 * 1483 * @adev: amdgpu_device pointer 1484 * @bo_va: bo_va to remove the address from 1485 * @saddr: where to the BO is mapped 1486 * 1487 * Remove a mapping of the BO at the specefied addr from the VM. 1488 * Returns 0 for success, error for failure. 1489 * 1490 * Object has to be reserved and unreserved outside! 1491 */ 1492 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1493 struct amdgpu_bo_va *bo_va, 1494 uint64_t saddr) 1495 { 1496 struct amdgpu_bo_va_mapping *mapping; 1497 struct amdgpu_vm *vm = bo_va->vm; 1498 bool valid = true; 1499 1500 saddr /= AMDGPU_GPU_PAGE_SIZE; 1501 1502 list_for_each_entry(mapping, &bo_va->valids, list) { 1503 if (mapping->it.start == saddr) 1504 break; 1505 } 1506 1507 if (&mapping->list == &bo_va->valids) { 1508 valid = false; 1509 1510 list_for_each_entry(mapping, &bo_va->invalids, list) { 1511 if (mapping->it.start == saddr) 1512 break; 1513 } 1514 1515 if (&mapping->list == &bo_va->invalids) 1516 return -ENOENT; 1517 } 1518 1519 list_del(&mapping->list); 1520 interval_tree_remove(&mapping->it, &vm->va); 1521 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1522 1523 if (valid) 1524 list_add(&mapping->list, &vm->freed); 1525 else 1526 amdgpu_vm_free_mapping(adev, vm, mapping, 1527 bo_va->last_pt_update); 1528 1529 return 0; 1530 } 1531 1532 /** 1533 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 1534 * 1535 * @adev: amdgpu_device pointer 1536 * @bo_va: requested bo_va 1537 * 1538 * Remove @bo_va->bo from the requested vm. 1539 * 1540 * Object have to be reserved! 1541 */ 1542 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 1543 struct amdgpu_bo_va *bo_va) 1544 { 1545 struct amdgpu_bo_va_mapping *mapping, *next; 1546 struct amdgpu_vm *vm = bo_va->vm; 1547 1548 list_del(&bo_va->bo_list); 1549 1550 spin_lock(&vm->status_lock); 1551 list_del(&bo_va->vm_status); 1552 spin_unlock(&vm->status_lock); 1553 1554 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 1555 list_del(&mapping->list); 1556 interval_tree_remove(&mapping->it, &vm->va); 1557 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1558 list_add(&mapping->list, &vm->freed); 1559 } 1560 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 1561 list_del(&mapping->list); 1562 interval_tree_remove(&mapping->it, &vm->va); 1563 amdgpu_vm_free_mapping(adev, vm, mapping, 1564 bo_va->last_pt_update); 1565 } 1566 1567 dma_fence_put(bo_va->last_pt_update); 1568 kfree(bo_va); 1569 } 1570 1571 /** 1572 * amdgpu_vm_bo_invalidate - mark the bo as invalid 1573 * 1574 * @adev: amdgpu_device pointer 1575 * @vm: requested vm 1576 * @bo: amdgpu buffer object 1577 * 1578 * Mark @bo as invalid. 1579 */ 1580 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 1581 struct amdgpu_bo *bo) 1582 { 1583 struct amdgpu_bo_va *bo_va; 1584 1585 list_for_each_entry(bo_va, &bo->va, bo_list) { 1586 spin_lock(&bo_va->vm->status_lock); 1587 if (list_empty(&bo_va->vm_status)) 1588 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1589 spin_unlock(&bo_va->vm->status_lock); 1590 } 1591 } 1592 1593 /** 1594 * amdgpu_vm_init - initialize a vm instance 1595 * 1596 * @adev: amdgpu_device pointer 1597 * @vm: requested vm 1598 * 1599 * Init @vm fields. 1600 */ 1601 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1602 { 1603 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 1604 AMDGPU_VM_PTE_COUNT * 8); 1605 unsigned pd_size, pd_entries; 1606 unsigned ring_instance; 1607 struct amdgpu_ring *ring; 1608 struct amd_sched_rq *rq; 1609 int i, r; 1610 1611 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 1612 vm->ids[i] = NULL; 1613 vm->va = RB_ROOT; 1614 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 1615 spin_lock_init(&vm->status_lock); 1616 INIT_LIST_HEAD(&vm->invalidated); 1617 INIT_LIST_HEAD(&vm->cleared); 1618 INIT_LIST_HEAD(&vm->freed); 1619 1620 pd_size = amdgpu_vm_directory_size(adev); 1621 pd_entries = amdgpu_vm_num_pdes(adev); 1622 1623 /* allocate page table array */ 1624 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt)); 1625 if (vm->page_tables == NULL) { 1626 DRM_ERROR("Cannot allocate memory for page table array\n"); 1627 return -ENOMEM; 1628 } 1629 1630 /* create scheduler entity for page table updates */ 1631 1632 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 1633 ring_instance %= adev->vm_manager.vm_pte_num_rings; 1634 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 1635 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 1636 r = amd_sched_entity_init(&ring->sched, &vm->entity, 1637 rq, amdgpu_sched_jobs); 1638 if (r) 1639 goto err; 1640 1641 vm->page_directory_fence = NULL; 1642 1643 r = amdgpu_bo_create(adev, pd_size, align, true, 1644 AMDGPU_GEM_DOMAIN_VRAM, 1645 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 1646 AMDGPU_GEM_CREATE_SHADOW | 1647 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 1648 AMDGPU_GEM_CREATE_VRAM_CLEARED, 1649 NULL, NULL, &vm->page_directory); 1650 if (r) 1651 goto error_free_sched_entity; 1652 1653 r = amdgpu_bo_reserve(vm->page_directory, false); 1654 if (r) 1655 goto error_free_page_directory; 1656 1657 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 1658 amdgpu_bo_unreserve(vm->page_directory); 1659 1660 return 0; 1661 1662 error_free_page_directory: 1663 amdgpu_bo_unref(&vm->page_directory->shadow); 1664 amdgpu_bo_unref(&vm->page_directory); 1665 vm->page_directory = NULL; 1666 1667 error_free_sched_entity: 1668 amd_sched_entity_fini(&ring->sched, &vm->entity); 1669 1670 err: 1671 drm_free_large(vm->page_tables); 1672 1673 return r; 1674 } 1675 1676 /** 1677 * amdgpu_vm_fini - tear down a vm instance 1678 * 1679 * @adev: amdgpu_device pointer 1680 * @vm: requested vm 1681 * 1682 * Tear down @vm. 1683 * Unbind the VM and remove all bos from the vm bo list 1684 */ 1685 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1686 { 1687 struct amdgpu_bo_va_mapping *mapping, *tmp; 1688 int i; 1689 1690 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 1691 1692 if (!RB_EMPTY_ROOT(&vm->va)) { 1693 dev_err(adev->dev, "still active bo inside vm\n"); 1694 } 1695 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) { 1696 list_del(&mapping->list); 1697 interval_tree_remove(&mapping->it, &vm->va); 1698 kfree(mapping); 1699 } 1700 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 1701 if (mapping->flags & AMDGPU_PTE_PRT) 1702 continue; 1703 1704 list_del(&mapping->list); 1705 kfree(mapping); 1706 } 1707 amdgpu_vm_clear_freed(adev, vm); 1708 1709 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) { 1710 struct amdgpu_bo *pt = vm->page_tables[i].bo; 1711 1712 if (!pt) 1713 continue; 1714 1715 amdgpu_bo_unref(&pt->shadow); 1716 amdgpu_bo_unref(&pt); 1717 } 1718 drm_free_large(vm->page_tables); 1719 1720 amdgpu_bo_unref(&vm->page_directory->shadow); 1721 amdgpu_bo_unref(&vm->page_directory); 1722 dma_fence_put(vm->page_directory_fence); 1723 } 1724 1725 /** 1726 * amdgpu_vm_manager_init - init the VM manager 1727 * 1728 * @adev: amdgpu_device pointer 1729 * 1730 * Initialize the VM manager structures 1731 */ 1732 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 1733 { 1734 unsigned i; 1735 1736 INIT_LIST_HEAD(&adev->vm_manager.ids_lru); 1737 1738 /* skip over VMID 0, since it is the system VM */ 1739 for (i = 1; i < adev->vm_manager.num_ids; ++i) { 1740 amdgpu_vm_reset_id(adev, i); 1741 amdgpu_sync_create(&adev->vm_manager.ids[i].active); 1742 list_add_tail(&adev->vm_manager.ids[i].list, 1743 &adev->vm_manager.ids_lru); 1744 } 1745 1746 adev->vm_manager.fence_context = 1747 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 1748 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 1749 adev->vm_manager.seqno[i] = 0; 1750 1751 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 1752 atomic64_set(&adev->vm_manager.client_counter, 0); 1753 spin_lock_init(&adev->vm_manager.prt_lock); 1754 atomic_set(&adev->vm_manager.num_prt_mappings, 0); 1755 } 1756 1757 /** 1758 * amdgpu_vm_manager_fini - cleanup VM manager 1759 * 1760 * @adev: amdgpu_device pointer 1761 * 1762 * Cleanup the VM manager and free resources. 1763 */ 1764 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 1765 { 1766 unsigned i; 1767 1768 for (i = 0; i < AMDGPU_NUM_VM; ++i) { 1769 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i]; 1770 1771 dma_fence_put(adev->vm_manager.ids[i].first); 1772 amdgpu_sync_free(&adev->vm_manager.ids[i].active); 1773 dma_fence_put(id->flushed_updates); 1774 dma_fence_put(id->last_flush); 1775 } 1776 } 1777