1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <drm/drmP.h> 30 #include <drm/amdgpu_drm.h> 31 #include "amdgpu.h" 32 #include "amdgpu_trace.h" 33 34 /* 35 * GPUVM 36 * GPUVM is similar to the legacy gart on older asics, however 37 * rather than there being a single global gart table 38 * for the entire GPU, there are multiple VM page tables active 39 * at any given time. The VM page tables can contain a mix 40 * vram pages and system memory pages and system memory pages 41 * can be mapped as snooped (cached system pages) or unsnooped 42 * (uncached system pages). 43 * Each VM has an ID associated with it and there is a page table 44 * associated with each VMID. When execting a command buffer, 45 * the kernel tells the the ring what VMID to use for that command 46 * buffer. VMIDs are allocated dynamically as commands are submitted. 47 * The userspace drivers maintain their own address space and the kernel 48 * sets up their pages tables accordingly when they submit their 49 * command buffers and a VMID is assigned. 50 * Cayman/Trinity support up to 8 active VMs at any given time; 51 * SI supports 16. 52 */ 53 54 /* Local structure. Encapsulate some VM table update parameters to reduce 55 * the number of function parameters 56 */ 57 struct amdgpu_pte_update_params { 58 /* amdgpu device we do this update for */ 59 struct amdgpu_device *adev; 60 /* optional amdgpu_vm we do this update for */ 61 struct amdgpu_vm *vm; 62 /* address where to copy page table entries from */ 63 uint64_t src; 64 /* indirect buffer to fill with commands */ 65 struct amdgpu_ib *ib; 66 /* Function which actually does the update */ 67 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 68 uint64_t addr, unsigned count, uint32_t incr, 69 uint64_t flags); 70 /* indicate update pt or its shadow */ 71 bool shadow; 72 }; 73 74 /* Helper to disable partial resident texture feature from a fence callback */ 75 struct amdgpu_prt_cb { 76 struct amdgpu_device *adev; 77 struct dma_fence_cb cb; 78 }; 79 80 /** 81 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 82 * 83 * @adev: amdgpu_device pointer 84 * 85 * Calculate the number of entries in a page directory or page table. 86 */ 87 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 88 unsigned level) 89 { 90 if (level == 0) 91 /* For the root directory */ 92 return adev->vm_manager.max_pfn >> 93 (amdgpu_vm_block_size * adev->vm_manager.num_level); 94 else if (level == adev->vm_manager.num_level) 95 /* For the page tables on the leaves */ 96 return AMDGPU_VM_PTE_COUNT; 97 else 98 /* Everything in between */ 99 return 1 << amdgpu_vm_block_size; 100 } 101 102 /** 103 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 104 * 105 * @adev: amdgpu_device pointer 106 * 107 * Calculate the size of the BO for a page directory or page table in bytes. 108 */ 109 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 110 { 111 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 112 } 113 114 /** 115 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 116 * 117 * @vm: vm providing the BOs 118 * @validated: head of validation list 119 * @entry: entry to add 120 * 121 * Add the page directory to the list of BOs to 122 * validate for command submission. 123 */ 124 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 125 struct list_head *validated, 126 struct amdgpu_bo_list_entry *entry) 127 { 128 entry->robj = vm->root.bo; 129 entry->priority = 0; 130 entry->tv.bo = &entry->robj->tbo; 131 entry->tv.shared = true; 132 entry->user_pages = NULL; 133 list_add(&entry->tv.head, validated); 134 } 135 136 /** 137 * amdgpu_vm_validate_layer - validate a single page table level 138 * 139 * @parent: parent page table level 140 * @validate: callback to do the validation 141 * @param: parameter for the validation callback 142 * 143 * Validate the page table BOs on command submission if neccessary. 144 */ 145 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent, 146 int (*validate)(void *, struct amdgpu_bo *), 147 void *param) 148 { 149 unsigned i; 150 int r; 151 152 if (!parent->entries) 153 return 0; 154 155 for (i = 0; i <= parent->last_entry_used; ++i) { 156 struct amdgpu_vm_pt *entry = &parent->entries[i]; 157 158 if (!entry->bo) 159 continue; 160 161 r = validate(param, entry->bo); 162 if (r) 163 return r; 164 165 /* 166 * Recurse into the sub directory. This is harmless because we 167 * have only a maximum of 5 layers. 168 */ 169 r = amdgpu_vm_validate_level(entry, validate, param); 170 if (r) 171 return r; 172 } 173 174 return r; 175 } 176 177 /** 178 * amdgpu_vm_validate_pt_bos - validate the page table BOs 179 * 180 * @adev: amdgpu device pointer 181 * @vm: vm providing the BOs 182 * @validate: callback to do the validation 183 * @param: parameter for the validation callback 184 * 185 * Validate the page table BOs on command submission if neccessary. 186 */ 187 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 188 int (*validate)(void *p, struct amdgpu_bo *bo), 189 void *param) 190 { 191 uint64_t num_evictions; 192 193 /* We only need to validate the page tables 194 * if they aren't already valid. 195 */ 196 num_evictions = atomic64_read(&adev->num_evictions); 197 if (num_evictions == vm->last_eviction_counter) 198 return 0; 199 200 return amdgpu_vm_validate_level(&vm->root, validate, param); 201 } 202 203 /** 204 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail 205 * 206 * @adev: amdgpu device instance 207 * @vm: vm providing the BOs 208 * 209 * Move the PT BOs to the tail of the LRU. 210 */ 211 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent) 212 { 213 unsigned i; 214 215 if (!parent->entries) 216 return; 217 218 for (i = 0; i <= parent->last_entry_used; ++i) { 219 struct amdgpu_vm_pt *entry = &parent->entries[i]; 220 221 if (!entry->bo) 222 continue; 223 224 ttm_bo_move_to_lru_tail(&entry->bo->tbo); 225 amdgpu_vm_move_level_in_lru(entry); 226 } 227 } 228 229 /** 230 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 231 * 232 * @adev: amdgpu device instance 233 * @vm: vm providing the BOs 234 * 235 * Move the PT BOs to the tail of the LRU. 236 */ 237 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 238 struct amdgpu_vm *vm) 239 { 240 struct ttm_bo_global *glob = adev->mman.bdev.glob; 241 242 spin_lock(&glob->lru_lock); 243 amdgpu_vm_move_level_in_lru(&vm->root); 244 spin_unlock(&glob->lru_lock); 245 } 246 247 /** 248 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 249 * 250 * @adev: amdgpu_device pointer 251 * @vm: requested vm 252 * @saddr: start of the address range 253 * @eaddr: end of the address range 254 * 255 * Make sure the page directories and page tables are allocated 256 */ 257 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 258 struct amdgpu_vm *vm, 259 struct amdgpu_vm_pt *parent, 260 uint64_t saddr, uint64_t eaddr, 261 unsigned level) 262 { 263 unsigned shift = (adev->vm_manager.num_level - level) * 264 amdgpu_vm_block_size; 265 unsigned pt_idx, from, to; 266 int r; 267 268 if (!parent->entries) { 269 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 270 271 parent->entries = drm_calloc_large(num_entries, 272 sizeof(struct amdgpu_vm_pt)); 273 if (!parent->entries) 274 return -ENOMEM; 275 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 276 } 277 278 from = (saddr >> shift) % amdgpu_vm_num_entries(adev, level); 279 to = (eaddr >> shift) % amdgpu_vm_num_entries(adev, level); 280 281 if (to > parent->last_entry_used) 282 parent->last_entry_used = to; 283 284 ++level; 285 286 /* walk over the address space and allocate the page tables */ 287 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 288 struct reservation_object *resv = vm->root.bo->tbo.resv; 289 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 290 struct amdgpu_bo *pt; 291 292 if (!entry->bo) { 293 r = amdgpu_bo_create(adev, 294 amdgpu_vm_bo_size(adev, level), 295 AMDGPU_GPU_PAGE_SIZE, true, 296 AMDGPU_GEM_DOMAIN_VRAM, 297 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 298 AMDGPU_GEM_CREATE_SHADOW | 299 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 300 AMDGPU_GEM_CREATE_VRAM_CLEARED, 301 NULL, resv, &pt); 302 if (r) 303 return r; 304 305 /* Keep a reference to the root directory to avoid 306 * freeing them up in the wrong order. 307 */ 308 pt->parent = amdgpu_bo_ref(vm->root.bo); 309 310 entry->bo = pt; 311 entry->addr = 0; 312 } 313 314 if (level < adev->vm_manager.num_level) { 315 r = amdgpu_vm_alloc_levels(adev, vm, entry, saddr, 316 eaddr, level); 317 if (r) 318 return r; 319 } 320 } 321 322 return 0; 323 } 324 325 /** 326 * amdgpu_vm_alloc_pts - Allocate page tables. 327 * 328 * @adev: amdgpu_device pointer 329 * @vm: VM to allocate page tables for 330 * @saddr: Start address which needs to be allocated 331 * @size: Size from start address we need. 332 * 333 * Make sure the page tables are allocated. 334 */ 335 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 336 struct amdgpu_vm *vm, 337 uint64_t saddr, uint64_t size) 338 { 339 unsigned last_pfn; 340 uint64_t eaddr; 341 342 /* validate the parameters */ 343 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 344 return -EINVAL; 345 346 eaddr = saddr + size - 1; 347 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 348 if (last_pfn >= adev->vm_manager.max_pfn) { 349 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n", 350 last_pfn, adev->vm_manager.max_pfn); 351 return -EINVAL; 352 } 353 354 saddr /= AMDGPU_GPU_PAGE_SIZE; 355 eaddr /= AMDGPU_GPU_PAGE_SIZE; 356 357 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); 358 } 359 360 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev, 361 struct amdgpu_vm_id *id) 362 { 363 return id->current_gpu_reset_count != 364 atomic_read(&adev->gpu_reset_counter) ? true : false; 365 } 366 367 /** 368 * amdgpu_vm_grab_id - allocate the next free VMID 369 * 370 * @vm: vm to allocate id for 371 * @ring: ring we want to submit job to 372 * @sync: sync object where we add dependencies 373 * @fence: fence protecting ID from reuse 374 * 375 * Allocate an id for the vm, adding fences to the sync obj as necessary. 376 */ 377 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 378 struct amdgpu_sync *sync, struct dma_fence *fence, 379 struct amdgpu_job *job) 380 { 381 struct amdgpu_device *adev = ring->adev; 382 uint64_t fence_context = adev->fence_context + ring->idx; 383 struct dma_fence *updates = sync->last_vm_update; 384 struct amdgpu_vm_id *id, *idle; 385 struct dma_fence **fences; 386 unsigned i; 387 int r = 0; 388 389 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids, 390 GFP_KERNEL); 391 if (!fences) 392 return -ENOMEM; 393 394 mutex_lock(&adev->vm_manager.lock); 395 396 /* Check if we have an idle VMID */ 397 i = 0; 398 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) { 399 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 400 if (!fences[i]) 401 break; 402 ++i; 403 } 404 405 /* If we can't find a idle VMID to use, wait till one becomes available */ 406 if (&idle->list == &adev->vm_manager.ids_lru) { 407 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 408 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 409 struct dma_fence_array *array; 410 unsigned j; 411 412 for (j = 0; j < i; ++j) 413 dma_fence_get(fences[j]); 414 415 array = dma_fence_array_create(i, fences, fence_context, 416 seqno, true); 417 if (!array) { 418 for (j = 0; j < i; ++j) 419 dma_fence_put(fences[j]); 420 kfree(fences); 421 r = -ENOMEM; 422 goto error; 423 } 424 425 426 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 427 dma_fence_put(&array->base); 428 if (r) 429 goto error; 430 431 mutex_unlock(&adev->vm_manager.lock); 432 return 0; 433 434 } 435 kfree(fences); 436 437 job->vm_needs_flush = true; 438 /* Check if we can use a VMID already assigned to this VM */ 439 i = ring->idx; 440 do { 441 struct dma_fence *flushed; 442 443 id = vm->ids[i++]; 444 if (i == AMDGPU_MAX_RINGS) 445 i = 0; 446 447 /* Check all the prerequisites to using this VMID */ 448 if (!id) 449 continue; 450 if (amdgpu_vm_is_gpu_reset(adev, id)) 451 continue; 452 453 if (atomic64_read(&id->owner) != vm->client_id) 454 continue; 455 456 if (job->vm_pd_addr != id->pd_gpu_addr) 457 continue; 458 459 if (!id->last_flush) 460 continue; 461 462 if (id->last_flush->context != fence_context && 463 !dma_fence_is_signaled(id->last_flush)) 464 continue; 465 466 flushed = id->flushed_updates; 467 if (updates && 468 (!flushed || dma_fence_is_later(updates, flushed))) 469 continue; 470 471 /* Good we can use this VMID. Remember this submission as 472 * user of the VMID. 473 */ 474 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 475 if (r) 476 goto error; 477 478 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 479 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 480 vm->ids[ring->idx] = id; 481 482 job->vm_id = id - adev->vm_manager.ids; 483 job->vm_needs_flush = false; 484 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 485 486 mutex_unlock(&adev->vm_manager.lock); 487 return 0; 488 489 } while (i != ring->idx); 490 491 /* Still no ID to use? Then use the idle one found earlier */ 492 id = idle; 493 494 /* Remember this submission as user of the VMID */ 495 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 496 if (r) 497 goto error; 498 499 dma_fence_put(id->first); 500 id->first = dma_fence_get(fence); 501 502 dma_fence_put(id->last_flush); 503 id->last_flush = NULL; 504 505 dma_fence_put(id->flushed_updates); 506 id->flushed_updates = dma_fence_get(updates); 507 508 id->pd_gpu_addr = job->vm_pd_addr; 509 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 510 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 511 atomic64_set(&id->owner, vm->client_id); 512 vm->ids[ring->idx] = id; 513 514 job->vm_id = id - adev->vm_manager.ids; 515 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 516 517 error: 518 mutex_unlock(&adev->vm_manager.lock); 519 return r; 520 } 521 522 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring) 523 { 524 struct amdgpu_device *adev = ring->adev; 525 const struct amdgpu_ip_block *ip_block; 526 527 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE) 528 /* only compute rings */ 529 return false; 530 531 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 532 if (!ip_block) 533 return false; 534 535 if (ip_block->version->major <= 7) { 536 /* gfx7 has no workaround */ 537 return true; 538 } else if (ip_block->version->major == 8) { 539 if (adev->gfx.mec_fw_version >= 673) 540 /* gfx8 is fixed in MEC firmware 673 */ 541 return false; 542 else 543 return true; 544 } 545 return false; 546 } 547 548 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr) 549 { 550 u64 addr = mc_addr; 551 552 if (adev->mc.mc_funcs && adev->mc.mc_funcs->adjust_mc_addr) 553 addr = adev->mc.mc_funcs->adjust_mc_addr(adev, addr); 554 555 return addr; 556 } 557 558 /** 559 * amdgpu_vm_flush - hardware flush the vm 560 * 561 * @ring: ring to use for flush 562 * @vm_id: vmid number to use 563 * @pd_addr: address of the page directory 564 * 565 * Emit a VM flush when it is necessary. 566 */ 567 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job) 568 { 569 struct amdgpu_device *adev = ring->adev; 570 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id]; 571 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 572 id->gds_base != job->gds_base || 573 id->gds_size != job->gds_size || 574 id->gws_base != job->gws_base || 575 id->gws_size != job->gws_size || 576 id->oa_base != job->oa_base || 577 id->oa_size != job->oa_size); 578 int r; 579 580 if (job->vm_needs_flush || gds_switch_needed || 581 amdgpu_vm_is_gpu_reset(adev, id) || 582 amdgpu_vm_ring_has_compute_vm_bug(ring)) { 583 unsigned patch_offset = 0; 584 585 if (ring->funcs->init_cond_exec) 586 patch_offset = amdgpu_ring_init_cond_exec(ring); 587 588 if (ring->funcs->emit_pipeline_sync && 589 (job->vm_needs_flush || gds_switch_needed || 590 amdgpu_vm_ring_has_compute_vm_bug(ring))) 591 amdgpu_ring_emit_pipeline_sync(ring); 592 593 if (ring->funcs->emit_vm_flush && (job->vm_needs_flush || 594 amdgpu_vm_is_gpu_reset(adev, id))) { 595 struct dma_fence *fence; 596 u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr); 597 598 trace_amdgpu_vm_flush(pd_addr, ring->idx, job->vm_id); 599 amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr); 600 601 r = amdgpu_fence_emit(ring, &fence); 602 if (r) 603 return r; 604 605 mutex_lock(&adev->vm_manager.lock); 606 dma_fence_put(id->last_flush); 607 id->last_flush = fence; 608 mutex_unlock(&adev->vm_manager.lock); 609 } 610 611 if (gds_switch_needed) { 612 id->gds_base = job->gds_base; 613 id->gds_size = job->gds_size; 614 id->gws_base = job->gws_base; 615 id->gws_size = job->gws_size; 616 id->oa_base = job->oa_base; 617 id->oa_size = job->oa_size; 618 amdgpu_ring_emit_gds_switch(ring, job->vm_id, 619 job->gds_base, job->gds_size, 620 job->gws_base, job->gws_size, 621 job->oa_base, job->oa_size); 622 } 623 624 if (ring->funcs->patch_cond_exec) 625 amdgpu_ring_patch_cond_exec(ring, patch_offset); 626 627 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 628 if (ring->funcs->emit_switch_buffer) { 629 amdgpu_ring_emit_switch_buffer(ring); 630 amdgpu_ring_emit_switch_buffer(ring); 631 } 632 } 633 return 0; 634 } 635 636 /** 637 * amdgpu_vm_reset_id - reset VMID to zero 638 * 639 * @adev: amdgpu device structure 640 * @vm_id: vmid number to use 641 * 642 * Reset saved GDW, GWS and OA to force switch on next flush. 643 */ 644 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id) 645 { 646 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id]; 647 648 id->gds_base = 0; 649 id->gds_size = 0; 650 id->gws_base = 0; 651 id->gws_size = 0; 652 id->oa_base = 0; 653 id->oa_size = 0; 654 } 655 656 /** 657 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 658 * 659 * @vm: requested vm 660 * @bo: requested buffer object 661 * 662 * Find @bo inside the requested vm. 663 * Search inside the @bos vm list for the requested vm 664 * Returns the found bo_va or NULL if none is found 665 * 666 * Object has to be reserved! 667 */ 668 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 669 struct amdgpu_bo *bo) 670 { 671 struct amdgpu_bo_va *bo_va; 672 673 list_for_each_entry(bo_va, &bo->va, bo_list) { 674 if (bo_va->vm == vm) { 675 return bo_va; 676 } 677 } 678 return NULL; 679 } 680 681 /** 682 * amdgpu_vm_do_set_ptes - helper to call the right asic function 683 * 684 * @params: see amdgpu_pte_update_params definition 685 * @pe: addr of the page entry 686 * @addr: dst addr to write into pe 687 * @count: number of page entries to update 688 * @incr: increase next addr by incr bytes 689 * @flags: hw access flags 690 * 691 * Traces the parameters and calls the right asic functions 692 * to setup the page table using the DMA. 693 */ 694 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 695 uint64_t pe, uint64_t addr, 696 unsigned count, uint32_t incr, 697 uint64_t flags) 698 { 699 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 700 701 if (count < 3) { 702 amdgpu_vm_write_pte(params->adev, params->ib, pe, 703 addr | flags, count, incr); 704 705 } else { 706 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 707 count, incr, flags); 708 } 709 } 710 711 /** 712 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 713 * 714 * @params: see amdgpu_pte_update_params definition 715 * @pe: addr of the page entry 716 * @addr: dst addr to write into pe 717 * @count: number of page entries to update 718 * @incr: increase next addr by incr bytes 719 * @flags: hw access flags 720 * 721 * Traces the parameters and calls the DMA function to copy the PTEs. 722 */ 723 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 724 uint64_t pe, uint64_t addr, 725 unsigned count, uint32_t incr, 726 uint64_t flags) 727 { 728 uint64_t src = (params->src + (addr >> 12) * 8); 729 730 731 trace_amdgpu_vm_copy_ptes(pe, src, count); 732 733 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 734 } 735 736 /** 737 * amdgpu_vm_map_gart - Resolve gart mapping of addr 738 * 739 * @pages_addr: optional DMA address to use for lookup 740 * @addr: the unmapped addr 741 * 742 * Look up the physical address of the page that the pte resolves 743 * to and return the pointer for the page table entry. 744 */ 745 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 746 { 747 uint64_t result; 748 749 /* page table offset */ 750 result = pages_addr[addr >> PAGE_SHIFT]; 751 752 /* in case cpu page size != gpu page size*/ 753 result |= addr & (~PAGE_MASK); 754 755 result &= 0xFFFFFFFFFFFFF000ULL; 756 757 return result; 758 } 759 760 /* 761 * amdgpu_vm_update_level - update a single level in the hierarchy 762 * 763 * @adev: amdgpu_device pointer 764 * @vm: requested vm 765 * @parent: parent directory 766 * 767 * Makes sure all entries in @parent are up to date. 768 * Returns 0 for success, error for failure. 769 */ 770 static int amdgpu_vm_update_level(struct amdgpu_device *adev, 771 struct amdgpu_vm *vm, 772 struct amdgpu_vm_pt *parent, 773 unsigned level) 774 { 775 struct amdgpu_bo *shadow; 776 struct amdgpu_ring *ring; 777 uint64_t pd_addr, shadow_addr; 778 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1); 779 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 780 unsigned count = 0, pt_idx, ndw; 781 struct amdgpu_job *job; 782 struct amdgpu_pte_update_params params; 783 struct dma_fence *fence = NULL; 784 785 int r; 786 787 if (!parent->entries) 788 return 0; 789 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 790 791 /* padding, etc. */ 792 ndw = 64; 793 794 /* assume the worst case */ 795 ndw += parent->last_entry_used * 6; 796 797 pd_addr = amdgpu_bo_gpu_offset(parent->bo); 798 799 shadow = parent->bo->shadow; 800 if (shadow) { 801 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 802 if (r) 803 return r; 804 shadow_addr = amdgpu_bo_gpu_offset(shadow); 805 ndw *= 2; 806 } else { 807 shadow_addr = 0; 808 } 809 810 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 811 if (r) 812 return r; 813 814 memset(¶ms, 0, sizeof(params)); 815 params.adev = adev; 816 params.ib = &job->ibs[0]; 817 818 /* walk over the address space and update the directory */ 819 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 820 struct amdgpu_bo *bo = parent->entries[pt_idx].bo; 821 uint64_t pde, pt; 822 823 if (bo == NULL) 824 continue; 825 826 if (bo->shadow) { 827 struct amdgpu_bo *pt_shadow = bo->shadow; 828 829 r = amdgpu_ttm_bind(&pt_shadow->tbo, 830 &pt_shadow->tbo.mem); 831 if (r) 832 return r; 833 } 834 835 pt = amdgpu_bo_gpu_offset(bo); 836 if (parent->entries[pt_idx].addr == pt) 837 continue; 838 839 parent->entries[pt_idx].addr = pt; 840 841 pde = pd_addr + pt_idx * 8; 842 if (((last_pde + 8 * count) != pde) || 843 ((last_pt + incr * count) != pt) || 844 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 845 846 if (count) { 847 uint64_t pt_addr = 848 amdgpu_vm_adjust_mc_addr(adev, last_pt); 849 850 if (shadow) 851 amdgpu_vm_do_set_ptes(¶ms, 852 last_shadow, 853 pt_addr, count, 854 incr, 855 AMDGPU_PTE_VALID); 856 857 amdgpu_vm_do_set_ptes(¶ms, last_pde, 858 pt_addr, count, incr, 859 AMDGPU_PTE_VALID); 860 } 861 862 count = 1; 863 last_pde = pde; 864 last_shadow = shadow_addr + pt_idx * 8; 865 last_pt = pt; 866 } else { 867 ++count; 868 } 869 } 870 871 if (count) { 872 uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt); 873 874 if (vm->root.bo->shadow) 875 amdgpu_vm_do_set_ptes(¶ms, last_shadow, pt_addr, 876 count, incr, AMDGPU_PTE_VALID); 877 878 amdgpu_vm_do_set_ptes(¶ms, last_pde, pt_addr, 879 count, incr, AMDGPU_PTE_VALID); 880 } 881 882 if (params.ib->length_dw == 0) { 883 amdgpu_job_free(job); 884 } else { 885 amdgpu_ring_pad_ib(ring, params.ib); 886 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv, 887 AMDGPU_FENCE_OWNER_VM); 888 if (shadow) 889 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv, 890 AMDGPU_FENCE_OWNER_VM); 891 892 WARN_ON(params.ib->length_dw > ndw); 893 r = amdgpu_job_submit(job, ring, &vm->entity, 894 AMDGPU_FENCE_OWNER_VM, &fence); 895 if (r) 896 goto error_free; 897 898 amdgpu_bo_fence(parent->bo, fence, true); 899 dma_fence_put(vm->last_dir_update); 900 vm->last_dir_update = dma_fence_get(fence); 901 dma_fence_put(fence); 902 } 903 /* 904 * Recurse into the subdirectories. This recursion is harmless because 905 * we only have a maximum of 5 layers. 906 */ 907 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 908 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 909 910 if (!entry->bo) 911 continue; 912 913 r = amdgpu_vm_update_level(adev, vm, entry, level + 1); 914 if (r) 915 return r; 916 } 917 918 return 0; 919 920 error_free: 921 amdgpu_job_free(job); 922 return r; 923 } 924 925 /* 926 * amdgpu_vm_update_directories - make sure that all directories are valid 927 * 928 * @adev: amdgpu_device pointer 929 * @vm: requested vm 930 * 931 * Makes sure all directories are up to date. 932 * Returns 0 for success, error for failure. 933 */ 934 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 935 struct amdgpu_vm *vm) 936 { 937 return amdgpu_vm_update_level(adev, vm, &vm->root, 0); 938 } 939 940 /** 941 * amdgpu_vm_find_pt - find the page table for an address 942 * 943 * @p: see amdgpu_pte_update_params definition 944 * @addr: virtual address in question 945 * 946 * Find the page table BO for a virtual address, return NULL when none found. 947 */ 948 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p, 949 uint64_t addr) 950 { 951 struct amdgpu_vm_pt *entry = &p->vm->root; 952 unsigned idx, level = p->adev->vm_manager.num_level; 953 954 while (entry->entries) { 955 idx = addr >> (amdgpu_vm_block_size * level--); 956 idx %= amdgpu_bo_size(entry->bo) / 8; 957 entry = &entry->entries[idx]; 958 } 959 960 if (level) 961 return NULL; 962 963 return entry->bo; 964 } 965 966 /** 967 * amdgpu_vm_update_ptes - make sure that page tables are valid 968 * 969 * @params: see amdgpu_pte_update_params definition 970 * @vm: requested vm 971 * @start: start of GPU address range 972 * @end: end of GPU address range 973 * @dst: destination address to map to, the next dst inside the function 974 * @flags: mapping flags 975 * 976 * Update the page tables in the range @start - @end. 977 */ 978 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 979 uint64_t start, uint64_t end, 980 uint64_t dst, uint64_t flags) 981 { 982 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1; 983 984 uint64_t cur_pe_start, cur_nptes, cur_dst; 985 uint64_t addr; /* next GPU address to be updated */ 986 struct amdgpu_bo *pt; 987 unsigned nptes; /* next number of ptes to be updated */ 988 uint64_t next_pe_start; 989 990 /* initialize the variables */ 991 addr = start; 992 pt = amdgpu_vm_get_pt(params, addr); 993 if (!pt) 994 return; 995 996 if (params->shadow) { 997 if (!pt->shadow) 998 return; 999 pt = pt->shadow; 1000 } 1001 if ((addr & ~mask) == (end & ~mask)) 1002 nptes = end - addr; 1003 else 1004 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 1005 1006 cur_pe_start = amdgpu_bo_gpu_offset(pt); 1007 cur_pe_start += (addr & mask) * 8; 1008 cur_nptes = nptes; 1009 cur_dst = dst; 1010 1011 /* for next ptb*/ 1012 addr += nptes; 1013 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1014 1015 /* walk over the address space and update the page tables */ 1016 while (addr < end) { 1017 pt = amdgpu_vm_get_pt(params, addr); 1018 if (!pt) 1019 return; 1020 1021 if (params->shadow) { 1022 if (!pt->shadow) 1023 return; 1024 pt = pt->shadow; 1025 } 1026 1027 if ((addr & ~mask) == (end & ~mask)) 1028 nptes = end - addr; 1029 else 1030 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 1031 1032 next_pe_start = amdgpu_bo_gpu_offset(pt); 1033 next_pe_start += (addr & mask) * 8; 1034 1035 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start && 1036 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) { 1037 /* The next ptb is consecutive to current ptb. 1038 * Don't call the update function now. 1039 * Will update two ptbs together in future. 1040 */ 1041 cur_nptes += nptes; 1042 } else { 1043 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1044 AMDGPU_GPU_PAGE_SIZE, flags); 1045 1046 cur_pe_start = next_pe_start; 1047 cur_nptes = nptes; 1048 cur_dst = dst; 1049 } 1050 1051 /* for next ptb*/ 1052 addr += nptes; 1053 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1054 } 1055 1056 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1057 AMDGPU_GPU_PAGE_SIZE, flags); 1058 } 1059 1060 /* 1061 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1062 * 1063 * @params: see amdgpu_pte_update_params definition 1064 * @vm: requested vm 1065 * @start: first PTE to handle 1066 * @end: last PTE to handle 1067 * @dst: addr those PTEs should point to 1068 * @flags: hw mapping flags 1069 */ 1070 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1071 uint64_t start, uint64_t end, 1072 uint64_t dst, uint64_t flags) 1073 { 1074 /** 1075 * The MC L1 TLB supports variable sized pages, based on a fragment 1076 * field in the PTE. When this field is set to a non-zero value, page 1077 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1078 * flags are considered valid for all PTEs within the fragment range 1079 * and corresponding mappings are assumed to be physically contiguous. 1080 * 1081 * The L1 TLB can store a single PTE for the whole fragment, 1082 * significantly increasing the space available for translation 1083 * caching. This leads to large improvements in throughput when the 1084 * TLB is under pressure. 1085 * 1086 * The L2 TLB distributes small and large fragments into two 1087 * asymmetric partitions. The large fragment cache is significantly 1088 * larger. Thus, we try to use large fragments wherever possible. 1089 * Userspace can support this by aligning virtual base address and 1090 * allocation size to the fragment size. 1091 */ 1092 1093 /* SI and newer are optimized for 64KB */ 1094 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG); 1095 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG; 1096 1097 uint64_t frag_start = ALIGN(start, frag_align); 1098 uint64_t frag_end = end & ~(frag_align - 1); 1099 1100 /* system pages are non continuously */ 1101 if (params->src || !(flags & AMDGPU_PTE_VALID) || 1102 (frag_start >= frag_end)) { 1103 1104 amdgpu_vm_update_ptes(params, start, end, dst, flags); 1105 return; 1106 } 1107 1108 /* handle the 4K area at the beginning */ 1109 if (start != frag_start) { 1110 amdgpu_vm_update_ptes(params, start, frag_start, 1111 dst, flags); 1112 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 1113 } 1114 1115 /* handle the area in the middle */ 1116 amdgpu_vm_update_ptes(params, frag_start, frag_end, dst, 1117 flags | frag_flags); 1118 1119 /* handle the 4K area at the end */ 1120 if (frag_end != end) { 1121 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 1122 amdgpu_vm_update_ptes(params, frag_end, end, dst, flags); 1123 } 1124 } 1125 1126 /** 1127 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1128 * 1129 * @adev: amdgpu_device pointer 1130 * @exclusive: fence we need to sync to 1131 * @src: address where to copy page table entries from 1132 * @pages_addr: DMA addresses to use for mapping 1133 * @vm: requested vm 1134 * @start: start of mapped range 1135 * @last: last mapped entry 1136 * @flags: flags for the entries 1137 * @addr: addr to set the area to 1138 * @fence: optional resulting fence 1139 * 1140 * Fill in the page table entries between @start and @last. 1141 * Returns 0 for success, -EINVAL for failure. 1142 */ 1143 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1144 struct dma_fence *exclusive, 1145 uint64_t src, 1146 dma_addr_t *pages_addr, 1147 struct amdgpu_vm *vm, 1148 uint64_t start, uint64_t last, 1149 uint64_t flags, uint64_t addr, 1150 struct dma_fence **fence) 1151 { 1152 struct amdgpu_ring *ring; 1153 void *owner = AMDGPU_FENCE_OWNER_VM; 1154 unsigned nptes, ncmds, ndw; 1155 struct amdgpu_job *job; 1156 struct amdgpu_pte_update_params params; 1157 struct dma_fence *f = NULL; 1158 int r; 1159 1160 memset(¶ms, 0, sizeof(params)); 1161 params.adev = adev; 1162 params.vm = vm; 1163 params.src = src; 1164 1165 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1166 1167 /* sync to everything on unmapping */ 1168 if (!(flags & AMDGPU_PTE_VALID)) 1169 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1170 1171 nptes = last - start + 1; 1172 1173 /* 1174 * reserve space for one command every (1 << BLOCK_SIZE) 1175 * entries or 2k dwords (whatever is smaller) 1176 */ 1177 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1; 1178 1179 /* padding, etc. */ 1180 ndw = 64; 1181 1182 if (src) { 1183 /* only copy commands needed */ 1184 ndw += ncmds * 7; 1185 1186 params.func = amdgpu_vm_do_copy_ptes; 1187 1188 } else if (pages_addr) { 1189 /* copy commands needed */ 1190 ndw += ncmds * 7; 1191 1192 /* and also PTEs */ 1193 ndw += nptes * 2; 1194 1195 params.func = amdgpu_vm_do_copy_ptes; 1196 1197 } else { 1198 /* set page commands needed */ 1199 ndw += ncmds * 10; 1200 1201 /* two extra commands for begin/end of fragment */ 1202 ndw += 2 * 10; 1203 1204 params.func = amdgpu_vm_do_set_ptes; 1205 } 1206 1207 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1208 if (r) 1209 return r; 1210 1211 params.ib = &job->ibs[0]; 1212 1213 if (!src && pages_addr) { 1214 uint64_t *pte; 1215 unsigned i; 1216 1217 /* Put the PTEs at the end of the IB. */ 1218 i = ndw - nptes * 2; 1219 pte= (uint64_t *)&(job->ibs->ptr[i]); 1220 params.src = job->ibs->gpu_addr + i * 4; 1221 1222 for (i = 0; i < nptes; ++i) { 1223 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1224 AMDGPU_GPU_PAGE_SIZE); 1225 pte[i] |= flags; 1226 } 1227 addr = 0; 1228 } 1229 1230 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1231 if (r) 1232 goto error_free; 1233 1234 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv, 1235 owner); 1236 if (r) 1237 goto error_free; 1238 1239 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv); 1240 if (r) 1241 goto error_free; 1242 1243 params.shadow = true; 1244 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1245 params.shadow = false; 1246 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1247 1248 amdgpu_ring_pad_ib(ring, params.ib); 1249 WARN_ON(params.ib->length_dw > ndw); 1250 r = amdgpu_job_submit(job, ring, &vm->entity, 1251 AMDGPU_FENCE_OWNER_VM, &f); 1252 if (r) 1253 goto error_free; 1254 1255 amdgpu_bo_fence(vm->root.bo, f, true); 1256 dma_fence_put(*fence); 1257 *fence = f; 1258 return 0; 1259 1260 error_free: 1261 amdgpu_job_free(job); 1262 return r; 1263 } 1264 1265 /** 1266 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1267 * 1268 * @adev: amdgpu_device pointer 1269 * @exclusive: fence we need to sync to 1270 * @gtt_flags: flags as they are used for GTT 1271 * @pages_addr: DMA addresses to use for mapping 1272 * @vm: requested vm 1273 * @mapping: mapped range and flags to use for the update 1274 * @flags: HW flags for the mapping 1275 * @nodes: array of drm_mm_nodes with the MC addresses 1276 * @fence: optional resulting fence 1277 * 1278 * Split the mapping into smaller chunks so that each update fits 1279 * into a SDMA IB. 1280 * Returns 0 for success, -EINVAL for failure. 1281 */ 1282 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1283 struct dma_fence *exclusive, 1284 uint64_t gtt_flags, 1285 dma_addr_t *pages_addr, 1286 struct amdgpu_vm *vm, 1287 struct amdgpu_bo_va_mapping *mapping, 1288 uint64_t flags, 1289 struct drm_mm_node *nodes, 1290 struct dma_fence **fence) 1291 { 1292 uint64_t pfn, src = 0, start = mapping->it.start; 1293 int r; 1294 1295 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1296 * but in case of something, we filter the flags in first place 1297 */ 1298 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1299 flags &= ~AMDGPU_PTE_READABLE; 1300 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1301 flags &= ~AMDGPU_PTE_WRITEABLE; 1302 1303 flags &= ~AMDGPU_PTE_EXECUTABLE; 1304 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1305 1306 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1307 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1308 1309 trace_amdgpu_vm_bo_update(mapping); 1310 1311 pfn = mapping->offset >> PAGE_SHIFT; 1312 if (nodes) { 1313 while (pfn >= nodes->size) { 1314 pfn -= nodes->size; 1315 ++nodes; 1316 } 1317 } 1318 1319 do { 1320 uint64_t max_entries; 1321 uint64_t addr, last; 1322 1323 if (nodes) { 1324 addr = nodes->start << PAGE_SHIFT; 1325 max_entries = (nodes->size - pfn) * 1326 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1327 } else { 1328 addr = 0; 1329 max_entries = S64_MAX; 1330 } 1331 1332 if (pages_addr) { 1333 if (flags == gtt_flags) 1334 src = adev->gart.table_addr + 1335 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8; 1336 else 1337 max_entries = min(max_entries, 16ull * 1024ull); 1338 addr = 0; 1339 } else if (flags & AMDGPU_PTE_VALID) { 1340 addr += adev->vm_manager.vram_base_offset; 1341 } 1342 addr += pfn << PAGE_SHIFT; 1343 1344 last = min((uint64_t)mapping->it.last, start + max_entries - 1); 1345 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1346 src, pages_addr, vm, 1347 start, last, flags, addr, 1348 fence); 1349 if (r) 1350 return r; 1351 1352 pfn += last - start + 1; 1353 if (nodes && nodes->size == pfn) { 1354 pfn = 0; 1355 ++nodes; 1356 } 1357 start = last + 1; 1358 1359 } while (unlikely(start != mapping->it.last + 1)); 1360 1361 return 0; 1362 } 1363 1364 /** 1365 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1366 * 1367 * @adev: amdgpu_device pointer 1368 * @bo_va: requested BO and VM object 1369 * @clear: if true clear the entries 1370 * 1371 * Fill in the page table entries for @bo_va. 1372 * Returns 0 for success, -EINVAL for failure. 1373 */ 1374 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1375 struct amdgpu_bo_va *bo_va, 1376 bool clear) 1377 { 1378 struct amdgpu_vm *vm = bo_va->vm; 1379 struct amdgpu_bo_va_mapping *mapping; 1380 dma_addr_t *pages_addr = NULL; 1381 uint64_t gtt_flags, flags; 1382 struct ttm_mem_reg *mem; 1383 struct drm_mm_node *nodes; 1384 struct dma_fence *exclusive; 1385 int r; 1386 1387 if (clear || !bo_va->bo) { 1388 mem = NULL; 1389 nodes = NULL; 1390 exclusive = NULL; 1391 } else { 1392 struct ttm_dma_tt *ttm; 1393 1394 mem = &bo_va->bo->tbo.mem; 1395 nodes = mem->mm_node; 1396 if (mem->mem_type == TTM_PL_TT) { 1397 ttm = container_of(bo_va->bo->tbo.ttm, struct 1398 ttm_dma_tt, ttm); 1399 pages_addr = ttm->dma_address; 1400 } 1401 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv); 1402 } 1403 1404 if (bo_va->bo) { 1405 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 1406 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) && 1407 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ? 1408 flags : 0; 1409 } else { 1410 flags = 0x0; 1411 gtt_flags = ~0x0; 1412 } 1413 1414 spin_lock(&vm->status_lock); 1415 if (!list_empty(&bo_va->vm_status)) 1416 list_splice_init(&bo_va->valids, &bo_va->invalids); 1417 spin_unlock(&vm->status_lock); 1418 1419 list_for_each_entry(mapping, &bo_va->invalids, list) { 1420 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1421 gtt_flags, pages_addr, vm, 1422 mapping, flags, nodes, 1423 &bo_va->last_pt_update); 1424 if (r) 1425 return r; 1426 } 1427 1428 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1429 list_for_each_entry(mapping, &bo_va->valids, list) 1430 trace_amdgpu_vm_bo_mapping(mapping); 1431 1432 list_for_each_entry(mapping, &bo_va->invalids, list) 1433 trace_amdgpu_vm_bo_mapping(mapping); 1434 } 1435 1436 spin_lock(&vm->status_lock); 1437 list_splice_init(&bo_va->invalids, &bo_va->valids); 1438 list_del_init(&bo_va->vm_status); 1439 if (clear) 1440 list_add(&bo_va->vm_status, &vm->cleared); 1441 spin_unlock(&vm->status_lock); 1442 1443 return 0; 1444 } 1445 1446 /** 1447 * amdgpu_vm_update_prt_state - update the global PRT state 1448 */ 1449 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1450 { 1451 unsigned long flags; 1452 bool enable; 1453 1454 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1455 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1456 adev->gart.gart_funcs->set_prt(adev, enable); 1457 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1458 } 1459 1460 /** 1461 * amdgpu_vm_prt_get - add a PRT user 1462 */ 1463 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1464 { 1465 if (!adev->gart.gart_funcs->set_prt) 1466 return; 1467 1468 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1469 amdgpu_vm_update_prt_state(adev); 1470 } 1471 1472 /** 1473 * amdgpu_vm_prt_put - drop a PRT user 1474 */ 1475 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1476 { 1477 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1478 amdgpu_vm_update_prt_state(adev); 1479 } 1480 1481 /** 1482 * amdgpu_vm_prt_cb - callback for updating the PRT status 1483 */ 1484 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1485 { 1486 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1487 1488 amdgpu_vm_prt_put(cb->adev); 1489 kfree(cb); 1490 } 1491 1492 /** 1493 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1494 */ 1495 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1496 struct dma_fence *fence) 1497 { 1498 struct amdgpu_prt_cb *cb; 1499 1500 if (!adev->gart.gart_funcs->set_prt) 1501 return; 1502 1503 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1504 if (!cb) { 1505 /* Last resort when we are OOM */ 1506 if (fence) 1507 dma_fence_wait(fence, false); 1508 1509 amdgpu_vm_prt_put(cb->adev); 1510 } else { 1511 cb->adev = adev; 1512 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1513 amdgpu_vm_prt_cb)) 1514 amdgpu_vm_prt_cb(fence, &cb->cb); 1515 } 1516 } 1517 1518 /** 1519 * amdgpu_vm_free_mapping - free a mapping 1520 * 1521 * @adev: amdgpu_device pointer 1522 * @vm: requested vm 1523 * @mapping: mapping to be freed 1524 * @fence: fence of the unmap operation 1525 * 1526 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1527 */ 1528 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1529 struct amdgpu_vm *vm, 1530 struct amdgpu_bo_va_mapping *mapping, 1531 struct dma_fence *fence) 1532 { 1533 if (mapping->flags & AMDGPU_PTE_PRT) 1534 amdgpu_vm_add_prt_cb(adev, fence); 1535 kfree(mapping); 1536 } 1537 1538 /** 1539 * amdgpu_vm_prt_fini - finish all prt mappings 1540 * 1541 * @adev: amdgpu_device pointer 1542 * @vm: requested vm 1543 * 1544 * Register a cleanup callback to disable PRT support after VM dies. 1545 */ 1546 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1547 { 1548 struct reservation_object *resv = vm->root.bo->tbo.resv; 1549 struct dma_fence *excl, **shared; 1550 unsigned i, shared_count; 1551 int r; 1552 1553 r = reservation_object_get_fences_rcu(resv, &excl, 1554 &shared_count, &shared); 1555 if (r) { 1556 /* Not enough memory to grab the fence list, as last resort 1557 * block for all the fences to complete. 1558 */ 1559 reservation_object_wait_timeout_rcu(resv, true, false, 1560 MAX_SCHEDULE_TIMEOUT); 1561 return; 1562 } 1563 1564 /* Add a callback for each fence in the reservation object */ 1565 amdgpu_vm_prt_get(adev); 1566 amdgpu_vm_add_prt_cb(adev, excl); 1567 1568 for (i = 0; i < shared_count; ++i) { 1569 amdgpu_vm_prt_get(adev); 1570 amdgpu_vm_add_prt_cb(adev, shared[i]); 1571 } 1572 1573 kfree(shared); 1574 } 1575 1576 /** 1577 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1578 * 1579 * @adev: amdgpu_device pointer 1580 * @vm: requested vm 1581 * @fence: optional resulting fence (unchanged if no work needed to be done 1582 * or if an error occurred) 1583 * 1584 * Make sure all freed BOs are cleared in the PT. 1585 * Returns 0 for success. 1586 * 1587 * PTs have to be reserved and mutex must be locked! 1588 */ 1589 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1590 struct amdgpu_vm *vm, 1591 struct dma_fence **fence) 1592 { 1593 struct amdgpu_bo_va_mapping *mapping; 1594 struct dma_fence *f = NULL; 1595 int r; 1596 1597 while (!list_empty(&vm->freed)) { 1598 mapping = list_first_entry(&vm->freed, 1599 struct amdgpu_bo_va_mapping, list); 1600 list_del(&mapping->list); 1601 1602 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping, 1603 0, 0, &f); 1604 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1605 if (r) { 1606 dma_fence_put(f); 1607 return r; 1608 } 1609 } 1610 1611 if (fence && f) { 1612 dma_fence_put(*fence); 1613 *fence = f; 1614 } else { 1615 dma_fence_put(f); 1616 } 1617 1618 return 0; 1619 1620 } 1621 1622 /** 1623 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1624 * 1625 * @adev: amdgpu_device pointer 1626 * @vm: requested vm 1627 * 1628 * Make sure all invalidated BOs are cleared in the PT. 1629 * Returns 0 for success. 1630 * 1631 * PTs have to be reserved and mutex must be locked! 1632 */ 1633 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1634 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1635 { 1636 struct amdgpu_bo_va *bo_va = NULL; 1637 int r = 0; 1638 1639 spin_lock(&vm->status_lock); 1640 while (!list_empty(&vm->invalidated)) { 1641 bo_va = list_first_entry(&vm->invalidated, 1642 struct amdgpu_bo_va, vm_status); 1643 spin_unlock(&vm->status_lock); 1644 1645 r = amdgpu_vm_bo_update(adev, bo_va, true); 1646 if (r) 1647 return r; 1648 1649 spin_lock(&vm->status_lock); 1650 } 1651 spin_unlock(&vm->status_lock); 1652 1653 if (bo_va) 1654 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1655 1656 return r; 1657 } 1658 1659 /** 1660 * amdgpu_vm_bo_add - add a bo to a specific vm 1661 * 1662 * @adev: amdgpu_device pointer 1663 * @vm: requested vm 1664 * @bo: amdgpu buffer object 1665 * 1666 * Add @bo into the requested vm. 1667 * Add @bo to the list of bos associated with the vm 1668 * Returns newly added bo_va or NULL for failure 1669 * 1670 * Object has to be reserved! 1671 */ 1672 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1673 struct amdgpu_vm *vm, 1674 struct amdgpu_bo *bo) 1675 { 1676 struct amdgpu_bo_va *bo_va; 1677 1678 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1679 if (bo_va == NULL) { 1680 return NULL; 1681 } 1682 bo_va->vm = vm; 1683 bo_va->bo = bo; 1684 bo_va->ref_count = 1; 1685 INIT_LIST_HEAD(&bo_va->bo_list); 1686 INIT_LIST_HEAD(&bo_va->valids); 1687 INIT_LIST_HEAD(&bo_va->invalids); 1688 INIT_LIST_HEAD(&bo_va->vm_status); 1689 1690 if (bo) 1691 list_add_tail(&bo_va->bo_list, &bo->va); 1692 1693 return bo_va; 1694 } 1695 1696 /** 1697 * amdgpu_vm_bo_map - map bo inside a vm 1698 * 1699 * @adev: amdgpu_device pointer 1700 * @bo_va: bo_va to store the address 1701 * @saddr: where to map the BO 1702 * @offset: requested offset in the BO 1703 * @flags: attributes of pages (read/write/valid/etc.) 1704 * 1705 * Add a mapping of the BO at the specefied addr into the VM. 1706 * Returns 0 for success, error for failure. 1707 * 1708 * Object has to be reserved and unreserved outside! 1709 */ 1710 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1711 struct amdgpu_bo_va *bo_va, 1712 uint64_t saddr, uint64_t offset, 1713 uint64_t size, uint64_t flags) 1714 { 1715 struct amdgpu_bo_va_mapping *mapping; 1716 struct amdgpu_vm *vm = bo_va->vm; 1717 struct interval_tree_node *it; 1718 uint64_t eaddr; 1719 1720 /* validate the parameters */ 1721 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1722 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1723 return -EINVAL; 1724 1725 /* make sure object fit at this offset */ 1726 eaddr = saddr + size - 1; 1727 if (saddr >= eaddr || 1728 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1729 return -EINVAL; 1730 1731 saddr /= AMDGPU_GPU_PAGE_SIZE; 1732 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1733 1734 it = interval_tree_iter_first(&vm->va, saddr, eaddr); 1735 if (it) { 1736 struct amdgpu_bo_va_mapping *tmp; 1737 tmp = container_of(it, struct amdgpu_bo_va_mapping, it); 1738 /* bo and tmp overlap, invalid addr */ 1739 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1740 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr, 1741 tmp->it.start, tmp->it.last + 1); 1742 return -EINVAL; 1743 } 1744 1745 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1746 if (!mapping) 1747 return -ENOMEM; 1748 1749 INIT_LIST_HEAD(&mapping->list); 1750 mapping->it.start = saddr; 1751 mapping->it.last = eaddr; 1752 mapping->offset = offset; 1753 mapping->flags = flags; 1754 1755 list_add(&mapping->list, &bo_va->invalids); 1756 interval_tree_insert(&mapping->it, &vm->va); 1757 1758 if (flags & AMDGPU_PTE_PRT) 1759 amdgpu_vm_prt_get(adev); 1760 1761 return 0; 1762 } 1763 1764 /** 1765 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1766 * 1767 * @adev: amdgpu_device pointer 1768 * @bo_va: bo_va to store the address 1769 * @saddr: where to map the BO 1770 * @offset: requested offset in the BO 1771 * @flags: attributes of pages (read/write/valid/etc.) 1772 * 1773 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1774 * mappings as we do so. 1775 * Returns 0 for success, error for failure. 1776 * 1777 * Object has to be reserved and unreserved outside! 1778 */ 1779 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1780 struct amdgpu_bo_va *bo_va, 1781 uint64_t saddr, uint64_t offset, 1782 uint64_t size, uint64_t flags) 1783 { 1784 struct amdgpu_bo_va_mapping *mapping; 1785 struct amdgpu_vm *vm = bo_va->vm; 1786 uint64_t eaddr; 1787 int r; 1788 1789 /* validate the parameters */ 1790 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1791 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1792 return -EINVAL; 1793 1794 /* make sure object fit at this offset */ 1795 eaddr = saddr + size - 1; 1796 if (saddr >= eaddr || 1797 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1798 return -EINVAL; 1799 1800 /* Allocate all the needed memory */ 1801 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1802 if (!mapping) 1803 return -ENOMEM; 1804 1805 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size); 1806 if (r) { 1807 kfree(mapping); 1808 return r; 1809 } 1810 1811 saddr /= AMDGPU_GPU_PAGE_SIZE; 1812 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1813 1814 mapping->it.start = saddr; 1815 mapping->it.last = eaddr; 1816 mapping->offset = offset; 1817 mapping->flags = flags; 1818 1819 list_add(&mapping->list, &bo_va->invalids); 1820 interval_tree_insert(&mapping->it, &vm->va); 1821 1822 if (flags & AMDGPU_PTE_PRT) 1823 amdgpu_vm_prt_get(adev); 1824 1825 return 0; 1826 } 1827 1828 /** 1829 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1830 * 1831 * @adev: amdgpu_device pointer 1832 * @bo_va: bo_va to remove the address from 1833 * @saddr: where to the BO is mapped 1834 * 1835 * Remove a mapping of the BO at the specefied addr from the VM. 1836 * Returns 0 for success, error for failure. 1837 * 1838 * Object has to be reserved and unreserved outside! 1839 */ 1840 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1841 struct amdgpu_bo_va *bo_va, 1842 uint64_t saddr) 1843 { 1844 struct amdgpu_bo_va_mapping *mapping; 1845 struct amdgpu_vm *vm = bo_va->vm; 1846 bool valid = true; 1847 1848 saddr /= AMDGPU_GPU_PAGE_SIZE; 1849 1850 list_for_each_entry(mapping, &bo_va->valids, list) { 1851 if (mapping->it.start == saddr) 1852 break; 1853 } 1854 1855 if (&mapping->list == &bo_va->valids) { 1856 valid = false; 1857 1858 list_for_each_entry(mapping, &bo_va->invalids, list) { 1859 if (mapping->it.start == saddr) 1860 break; 1861 } 1862 1863 if (&mapping->list == &bo_va->invalids) 1864 return -ENOENT; 1865 } 1866 1867 list_del(&mapping->list); 1868 interval_tree_remove(&mapping->it, &vm->va); 1869 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1870 1871 if (valid) 1872 list_add(&mapping->list, &vm->freed); 1873 else 1874 amdgpu_vm_free_mapping(adev, vm, mapping, 1875 bo_va->last_pt_update); 1876 1877 return 0; 1878 } 1879 1880 /** 1881 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1882 * 1883 * @adev: amdgpu_device pointer 1884 * @vm: VM structure to use 1885 * @saddr: start of the range 1886 * @size: size of the range 1887 * 1888 * Remove all mappings in a range, split them as appropriate. 1889 * Returns 0 for success, error for failure. 1890 */ 1891 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1892 struct amdgpu_vm *vm, 1893 uint64_t saddr, uint64_t size) 1894 { 1895 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1896 struct interval_tree_node *it; 1897 LIST_HEAD(removed); 1898 uint64_t eaddr; 1899 1900 eaddr = saddr + size - 1; 1901 saddr /= AMDGPU_GPU_PAGE_SIZE; 1902 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1903 1904 /* Allocate all the needed memory */ 1905 before = kzalloc(sizeof(*before), GFP_KERNEL); 1906 if (!before) 1907 return -ENOMEM; 1908 INIT_LIST_HEAD(&before->list); 1909 1910 after = kzalloc(sizeof(*after), GFP_KERNEL); 1911 if (!after) { 1912 kfree(before); 1913 return -ENOMEM; 1914 } 1915 INIT_LIST_HEAD(&after->list); 1916 1917 /* Now gather all removed mappings */ 1918 it = interval_tree_iter_first(&vm->va, saddr, eaddr); 1919 while (it) { 1920 tmp = container_of(it, struct amdgpu_bo_va_mapping, it); 1921 it = interval_tree_iter_next(it, saddr, eaddr); 1922 1923 /* Remember mapping split at the start */ 1924 if (tmp->it.start < saddr) { 1925 before->it.start = tmp->it.start; 1926 before->it.last = saddr - 1; 1927 before->offset = tmp->offset; 1928 before->flags = tmp->flags; 1929 list_add(&before->list, &tmp->list); 1930 } 1931 1932 /* Remember mapping split at the end */ 1933 if (tmp->it.last > eaddr) { 1934 after->it.start = eaddr + 1; 1935 after->it.last = tmp->it.last; 1936 after->offset = tmp->offset; 1937 after->offset += after->it.start - tmp->it.start; 1938 after->flags = tmp->flags; 1939 list_add(&after->list, &tmp->list); 1940 } 1941 1942 list_del(&tmp->list); 1943 list_add(&tmp->list, &removed); 1944 } 1945 1946 /* And free them up */ 1947 list_for_each_entry_safe(tmp, next, &removed, list) { 1948 interval_tree_remove(&tmp->it, &vm->va); 1949 list_del(&tmp->list); 1950 1951 if (tmp->it.start < saddr) 1952 tmp->it.start = saddr; 1953 if (tmp->it.last > eaddr) 1954 tmp->it.last = eaddr; 1955 1956 list_add(&tmp->list, &vm->freed); 1957 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1958 } 1959 1960 /* Insert partial mapping before the range */ 1961 if (!list_empty(&before->list)) { 1962 interval_tree_insert(&before->it, &vm->va); 1963 if (before->flags & AMDGPU_PTE_PRT) 1964 amdgpu_vm_prt_get(adev); 1965 } else { 1966 kfree(before); 1967 } 1968 1969 /* Insert partial mapping after the range */ 1970 if (!list_empty(&after->list)) { 1971 interval_tree_insert(&after->it, &vm->va); 1972 if (after->flags & AMDGPU_PTE_PRT) 1973 amdgpu_vm_prt_get(adev); 1974 } else { 1975 kfree(after); 1976 } 1977 1978 return 0; 1979 } 1980 1981 /** 1982 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 1983 * 1984 * @adev: amdgpu_device pointer 1985 * @bo_va: requested bo_va 1986 * 1987 * Remove @bo_va->bo from the requested vm. 1988 * 1989 * Object have to be reserved! 1990 */ 1991 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 1992 struct amdgpu_bo_va *bo_va) 1993 { 1994 struct amdgpu_bo_va_mapping *mapping, *next; 1995 struct amdgpu_vm *vm = bo_va->vm; 1996 1997 list_del(&bo_va->bo_list); 1998 1999 spin_lock(&vm->status_lock); 2000 list_del(&bo_va->vm_status); 2001 spin_unlock(&vm->status_lock); 2002 2003 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2004 list_del(&mapping->list); 2005 interval_tree_remove(&mapping->it, &vm->va); 2006 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2007 list_add(&mapping->list, &vm->freed); 2008 } 2009 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2010 list_del(&mapping->list); 2011 interval_tree_remove(&mapping->it, &vm->va); 2012 amdgpu_vm_free_mapping(adev, vm, mapping, 2013 bo_va->last_pt_update); 2014 } 2015 2016 dma_fence_put(bo_va->last_pt_update); 2017 kfree(bo_va); 2018 } 2019 2020 /** 2021 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2022 * 2023 * @adev: amdgpu_device pointer 2024 * @vm: requested vm 2025 * @bo: amdgpu buffer object 2026 * 2027 * Mark @bo as invalid. 2028 */ 2029 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2030 struct amdgpu_bo *bo) 2031 { 2032 struct amdgpu_bo_va *bo_va; 2033 2034 list_for_each_entry(bo_va, &bo->va, bo_list) { 2035 spin_lock(&bo_va->vm->status_lock); 2036 if (list_empty(&bo_va->vm_status)) 2037 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 2038 spin_unlock(&bo_va->vm->status_lock); 2039 } 2040 } 2041 2042 /** 2043 * amdgpu_vm_init - initialize a vm instance 2044 * 2045 * @adev: amdgpu_device pointer 2046 * @vm: requested vm 2047 * 2048 * Init @vm fields. 2049 */ 2050 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2051 { 2052 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2053 AMDGPU_VM_PTE_COUNT * 8); 2054 unsigned ring_instance; 2055 struct amdgpu_ring *ring; 2056 struct amd_sched_rq *rq; 2057 int i, r; 2058 2059 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2060 vm->ids[i] = NULL; 2061 vm->va = RB_ROOT; 2062 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 2063 spin_lock_init(&vm->status_lock); 2064 INIT_LIST_HEAD(&vm->invalidated); 2065 INIT_LIST_HEAD(&vm->cleared); 2066 INIT_LIST_HEAD(&vm->freed); 2067 2068 /* create scheduler entity for page table updates */ 2069 2070 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2071 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2072 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2073 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 2074 r = amd_sched_entity_init(&ring->sched, &vm->entity, 2075 rq, amdgpu_sched_jobs); 2076 if (r) 2077 return r; 2078 2079 vm->last_dir_update = NULL; 2080 2081 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, 2082 AMDGPU_GEM_DOMAIN_VRAM, 2083 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2084 AMDGPU_GEM_CREATE_SHADOW | 2085 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2086 AMDGPU_GEM_CREATE_VRAM_CLEARED, 2087 NULL, NULL, &vm->root.bo); 2088 if (r) 2089 goto error_free_sched_entity; 2090 2091 r = amdgpu_bo_reserve(vm->root.bo, false); 2092 if (r) 2093 goto error_free_root; 2094 2095 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 2096 amdgpu_bo_unreserve(vm->root.bo); 2097 2098 return 0; 2099 2100 error_free_root: 2101 amdgpu_bo_unref(&vm->root.bo->shadow); 2102 amdgpu_bo_unref(&vm->root.bo); 2103 vm->root.bo = NULL; 2104 2105 error_free_sched_entity: 2106 amd_sched_entity_fini(&ring->sched, &vm->entity); 2107 2108 return r; 2109 } 2110 2111 /** 2112 * amdgpu_vm_free_levels - free PD/PT levels 2113 * 2114 * @level: PD/PT starting level to free 2115 * 2116 * Free the page directory or page table level and all sub levels. 2117 */ 2118 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) 2119 { 2120 unsigned i; 2121 2122 if (level->bo) { 2123 amdgpu_bo_unref(&level->bo->shadow); 2124 amdgpu_bo_unref(&level->bo); 2125 } 2126 2127 if (level->entries) 2128 for (i = 0; i <= level->last_entry_used; i++) 2129 amdgpu_vm_free_levels(&level->entries[i]); 2130 2131 drm_free_large(level->entries); 2132 } 2133 2134 /** 2135 * amdgpu_vm_fini - tear down a vm instance 2136 * 2137 * @adev: amdgpu_device pointer 2138 * @vm: requested vm 2139 * 2140 * Tear down @vm. 2141 * Unbind the VM and remove all bos from the vm bo list 2142 */ 2143 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2144 { 2145 struct amdgpu_bo_va_mapping *mapping, *tmp; 2146 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; 2147 2148 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 2149 2150 if (!RB_EMPTY_ROOT(&vm->va)) { 2151 dev_err(adev->dev, "still active bo inside vm\n"); 2152 } 2153 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) { 2154 list_del(&mapping->list); 2155 interval_tree_remove(&mapping->it, &vm->va); 2156 kfree(mapping); 2157 } 2158 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2159 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2160 amdgpu_vm_prt_fini(adev, vm); 2161 prt_fini_needed = false; 2162 } 2163 2164 list_del(&mapping->list); 2165 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2166 } 2167 2168 amdgpu_vm_free_levels(&vm->root); 2169 dma_fence_put(vm->last_dir_update); 2170 } 2171 2172 /** 2173 * amdgpu_vm_manager_init - init the VM manager 2174 * 2175 * @adev: amdgpu_device pointer 2176 * 2177 * Initialize the VM manager structures 2178 */ 2179 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2180 { 2181 unsigned i; 2182 2183 INIT_LIST_HEAD(&adev->vm_manager.ids_lru); 2184 2185 /* skip over VMID 0, since it is the system VM */ 2186 for (i = 1; i < adev->vm_manager.num_ids; ++i) { 2187 amdgpu_vm_reset_id(adev, i); 2188 amdgpu_sync_create(&adev->vm_manager.ids[i].active); 2189 list_add_tail(&adev->vm_manager.ids[i].list, 2190 &adev->vm_manager.ids_lru); 2191 } 2192 2193 adev->vm_manager.fence_context = 2194 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2195 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2196 adev->vm_manager.seqno[i] = 0; 2197 2198 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2199 atomic64_set(&adev->vm_manager.client_counter, 0); 2200 spin_lock_init(&adev->vm_manager.prt_lock); 2201 atomic_set(&adev->vm_manager.num_prt_users, 0); 2202 } 2203 2204 /** 2205 * amdgpu_vm_manager_fini - cleanup VM manager 2206 * 2207 * @adev: amdgpu_device pointer 2208 * 2209 * Cleanup the VM manager and free resources. 2210 */ 2211 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2212 { 2213 unsigned i; 2214 2215 for (i = 0; i < AMDGPU_NUM_VM; ++i) { 2216 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i]; 2217 2218 dma_fence_put(adev->vm_manager.ids[i].first); 2219 amdgpu_sync_free(&adev->vm_manager.ids[i].active); 2220 dma_fence_put(id->flushed_updates); 2221 dma_fence_put(id->last_flush); 2222 } 2223 } 2224