xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 
37 /*
38  * GPUVM
39  * GPUVM is similar to the legacy gart on older asics, however
40  * rather than there being a single global gart table
41  * for the entire GPU, there are multiple VM page tables active
42  * at any given time.  The VM page tables can contain a mix
43  * vram pages and system memory pages and system memory pages
44  * can be mapped as snooped (cached system pages) or unsnooped
45  * (uncached system pages).
46  * Each VM has an ID associated with it and there is a page table
47  * associated with each VMID.  When execting a command buffer,
48  * the kernel tells the the ring what VMID to use for that command
49  * buffer.  VMIDs are allocated dynamically as commands are submitted.
50  * The userspace drivers maintain their own address space and the kernel
51  * sets up their pages tables accordingly when they submit their
52  * command buffers and a VMID is assigned.
53  * Cayman/Trinity support up to 8 active VMs at any given time;
54  * SI supports 16.
55  */
56 
57 #define START(node) ((node)->start)
58 #define LAST(node) ((node)->last)
59 
60 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
61 		     START, LAST, static, amdgpu_vm_it)
62 
63 #undef START
64 #undef LAST
65 
66 /* Local structure. Encapsulate some VM table update parameters to reduce
67  * the number of function parameters
68  */
69 struct amdgpu_pte_update_params {
70 	/* amdgpu device we do this update for */
71 	struct amdgpu_device *adev;
72 	/* optional amdgpu_vm we do this update for */
73 	struct amdgpu_vm *vm;
74 	/* address where to copy page table entries from */
75 	uint64_t src;
76 	/* indirect buffer to fill with commands */
77 	struct amdgpu_ib *ib;
78 	/* Function which actually does the update */
79 	void (*func)(struct amdgpu_pte_update_params *params,
80 		     struct amdgpu_bo *bo, uint64_t pe,
81 		     uint64_t addr, unsigned count, uint32_t incr,
82 		     uint64_t flags);
83 	/* The next two are used during VM update by CPU
84 	 *  DMA addresses to use for mapping
85 	 *  Kernel pointer of PD/PT BO that needs to be updated
86 	 */
87 	dma_addr_t *pages_addr;
88 	void *kptr;
89 };
90 
91 /* Helper to disable partial resident texture feature from a fence callback */
92 struct amdgpu_prt_cb {
93 	struct amdgpu_device *adev;
94 	struct dma_fence_cb cb;
95 };
96 
97 /**
98  * amdgpu_vm_level_shift - return the addr shift for each level
99  *
100  * @adev: amdgpu_device pointer
101  *
102  * Returns the number of bits the pfn needs to be right shifted for a level.
103  */
104 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
105 				      unsigned level)
106 {
107 	unsigned shift = 0xff;
108 
109 	switch (level) {
110 	case AMDGPU_VM_PDB2:
111 	case AMDGPU_VM_PDB1:
112 	case AMDGPU_VM_PDB0:
113 		shift = 9 * (AMDGPU_VM_PDB0 - level) +
114 			adev->vm_manager.block_size;
115 		break;
116 	case AMDGPU_VM_PTB:
117 		shift = 0;
118 		break;
119 	default:
120 		dev_err(adev->dev, "the level%d isn't supported.\n", level);
121 	}
122 
123 	return shift;
124 }
125 
126 /**
127  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
128  *
129  * @adev: amdgpu_device pointer
130  *
131  * Calculate the number of entries in a page directory or page table.
132  */
133 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
134 				      unsigned level)
135 {
136 	unsigned shift = amdgpu_vm_level_shift(adev,
137 					       adev->vm_manager.root_level);
138 
139 	if (level == adev->vm_manager.root_level)
140 		/* For the root directory */
141 		return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift;
142 	else if (level != AMDGPU_VM_PTB)
143 		/* Everything in between */
144 		return 512;
145 	else
146 		/* For the page tables on the leaves */
147 		return AMDGPU_VM_PTE_COUNT(adev);
148 }
149 
150 /**
151  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
152  *
153  * @adev: amdgpu_device pointer
154  *
155  * Calculate the size of the BO for a page directory or page table in bytes.
156  */
157 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
158 {
159 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
160 }
161 
162 /**
163  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
164  *
165  * @vm: vm providing the BOs
166  * @validated: head of validation list
167  * @entry: entry to add
168  *
169  * Add the page directory to the list of BOs to
170  * validate for command submission.
171  */
172 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
173 			 struct list_head *validated,
174 			 struct amdgpu_bo_list_entry *entry)
175 {
176 	entry->robj = vm->root.base.bo;
177 	entry->priority = 0;
178 	entry->tv.bo = &entry->robj->tbo;
179 	entry->tv.shared = true;
180 	entry->user_pages = NULL;
181 	list_add(&entry->tv.head, validated);
182 }
183 
184 /**
185  * amdgpu_vm_validate_pt_bos - validate the page table BOs
186  *
187  * @adev: amdgpu device pointer
188  * @vm: vm providing the BOs
189  * @validate: callback to do the validation
190  * @param: parameter for the validation callback
191  *
192  * Validate the page table BOs on command submission if neccessary.
193  */
194 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
195 			      int (*validate)(void *p, struct amdgpu_bo *bo),
196 			      void *param)
197 {
198 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
199 	int r;
200 
201 	spin_lock(&vm->status_lock);
202 	while (!list_empty(&vm->evicted)) {
203 		struct amdgpu_vm_bo_base *bo_base;
204 		struct amdgpu_bo *bo;
205 
206 		bo_base = list_first_entry(&vm->evicted,
207 					   struct amdgpu_vm_bo_base,
208 					   vm_status);
209 		spin_unlock(&vm->status_lock);
210 
211 		bo = bo_base->bo;
212 		BUG_ON(!bo);
213 		if (bo->parent) {
214 			r = validate(param, bo);
215 			if (r)
216 				return r;
217 
218 			spin_lock(&glob->lru_lock);
219 			ttm_bo_move_to_lru_tail(&bo->tbo);
220 			if (bo->shadow)
221 				ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
222 			spin_unlock(&glob->lru_lock);
223 		}
224 
225 		if (bo->tbo.type == ttm_bo_type_kernel &&
226 		    vm->use_cpu_for_update) {
227 			r = amdgpu_bo_kmap(bo, NULL);
228 			if (r)
229 				return r;
230 		}
231 
232 		spin_lock(&vm->status_lock);
233 		if (bo->tbo.type != ttm_bo_type_kernel)
234 			list_move(&bo_base->vm_status, &vm->moved);
235 		else
236 			list_move(&bo_base->vm_status, &vm->relocated);
237 	}
238 	spin_unlock(&vm->status_lock);
239 
240 	return 0;
241 }
242 
243 /**
244  * amdgpu_vm_ready - check VM is ready for updates
245  *
246  * @vm: VM to check
247  *
248  * Check if all VM PDs/PTs are ready for updates
249  */
250 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
251 {
252 	bool ready;
253 
254 	spin_lock(&vm->status_lock);
255 	ready = list_empty(&vm->evicted);
256 	spin_unlock(&vm->status_lock);
257 
258 	return ready;
259 }
260 
261 /**
262  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
263  *
264  * @adev: amdgpu_device pointer
265  * @bo: BO to clear
266  * @level: level this BO is at
267  *
268  * Root PD needs to be reserved when calling this.
269  */
270 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
271 			      struct amdgpu_vm *vm, struct amdgpu_bo *bo,
272 			      unsigned level, bool pte_support_ats)
273 {
274 	struct ttm_operation_ctx ctx = { true, false };
275 	struct dma_fence *fence = NULL;
276 	unsigned entries, ats_entries;
277 	struct amdgpu_ring *ring;
278 	struct amdgpu_job *job;
279 	uint64_t addr;
280 	int r;
281 
282 	addr = amdgpu_bo_gpu_offset(bo);
283 	entries = amdgpu_bo_size(bo) / 8;
284 
285 	if (pte_support_ats) {
286 		if (level == adev->vm_manager.root_level) {
287 			ats_entries = amdgpu_vm_level_shift(adev, level);
288 			ats_entries += AMDGPU_GPU_PAGE_SHIFT;
289 			ats_entries = AMDGPU_VA_HOLE_START >> ats_entries;
290 			ats_entries = min(ats_entries, entries);
291 			entries -= ats_entries;
292 		} else {
293 			ats_entries = entries;
294 			entries = 0;
295 		}
296 	} else {
297 		ats_entries = 0;
298 	}
299 
300 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
301 
302 	r = reservation_object_reserve_shared(bo->tbo.resv);
303 	if (r)
304 		return r;
305 
306 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
307 	if (r)
308 		goto error;
309 
310 	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
311 	if (r)
312 		goto error;
313 
314 	if (ats_entries) {
315 		uint64_t ats_value;
316 
317 		ats_value = AMDGPU_PTE_DEFAULT_ATC;
318 		if (level != AMDGPU_VM_PTB)
319 			ats_value |= AMDGPU_PDE_PTE;
320 
321 		amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
322 				      ats_entries, 0, ats_value);
323 		addr += ats_entries * 8;
324 	}
325 
326 	if (entries)
327 		amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
328 				      entries, 0, 0);
329 
330 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
331 
332 	WARN_ON(job->ibs[0].length_dw > 64);
333 	r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv,
334 			     AMDGPU_FENCE_OWNER_UNDEFINED, false);
335 	if (r)
336 		goto error_free;
337 
338 	r = amdgpu_job_submit(job, ring, &vm->entity,
339 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
340 	if (r)
341 		goto error_free;
342 
343 	amdgpu_bo_fence(bo, fence, true);
344 	dma_fence_put(fence);
345 
346 	if (bo->shadow)
347 		return amdgpu_vm_clear_bo(adev, vm, bo->shadow,
348 					  level, pte_support_ats);
349 
350 	return 0;
351 
352 error_free:
353 	amdgpu_job_free(job);
354 
355 error:
356 	return r;
357 }
358 
359 /**
360  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
361  *
362  * @adev: amdgpu_device pointer
363  * @vm: requested vm
364  * @saddr: start of the address range
365  * @eaddr: end of the address range
366  *
367  * Make sure the page directories and page tables are allocated
368  */
369 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
370 				  struct amdgpu_vm *vm,
371 				  struct amdgpu_vm_pt *parent,
372 				  uint64_t saddr, uint64_t eaddr,
373 				  unsigned level, bool ats)
374 {
375 	unsigned shift = amdgpu_vm_level_shift(adev, level);
376 	unsigned pt_idx, from, to;
377 	u64 flags;
378 	int r;
379 
380 	if (!parent->entries) {
381 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
382 
383 		parent->entries = kvmalloc_array(num_entries,
384 						   sizeof(struct amdgpu_vm_pt),
385 						   GFP_KERNEL | __GFP_ZERO);
386 		if (!parent->entries)
387 			return -ENOMEM;
388 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
389 	}
390 
391 	from = saddr >> shift;
392 	to = eaddr >> shift;
393 	if (from >= amdgpu_vm_num_entries(adev, level) ||
394 	    to >= amdgpu_vm_num_entries(adev, level))
395 		return -EINVAL;
396 
397 	++level;
398 	saddr = saddr & ((1 << shift) - 1);
399 	eaddr = eaddr & ((1 << shift) - 1);
400 
401 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
402 	if (vm->use_cpu_for_update)
403 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
404 	else
405 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
406 				AMDGPU_GEM_CREATE_SHADOW);
407 
408 	/* walk over the address space and allocate the page tables */
409 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
410 		struct reservation_object *resv = vm->root.base.bo->tbo.resv;
411 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
412 		struct amdgpu_bo *pt;
413 
414 		if (!entry->base.bo) {
415 			r = amdgpu_bo_create(adev,
416 					     amdgpu_vm_bo_size(adev, level),
417 					     AMDGPU_GPU_PAGE_SIZE,
418 					     AMDGPU_GEM_DOMAIN_VRAM, flags,
419 					     ttm_bo_type_kernel, resv, &pt);
420 			if (r)
421 				return r;
422 
423 			r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats);
424 			if (r) {
425 				amdgpu_bo_unref(&pt->shadow);
426 				amdgpu_bo_unref(&pt);
427 				return r;
428 			}
429 
430 			if (vm->use_cpu_for_update) {
431 				r = amdgpu_bo_kmap(pt, NULL);
432 				if (r) {
433 					amdgpu_bo_unref(&pt->shadow);
434 					amdgpu_bo_unref(&pt);
435 					return r;
436 				}
437 			}
438 
439 			/* Keep a reference to the root directory to avoid
440 			* freeing them up in the wrong order.
441 			*/
442 			pt->parent = amdgpu_bo_ref(parent->base.bo);
443 
444 			entry->base.vm = vm;
445 			entry->base.bo = pt;
446 			list_add_tail(&entry->base.bo_list, &pt->va);
447 			spin_lock(&vm->status_lock);
448 			list_add(&entry->base.vm_status, &vm->relocated);
449 			spin_unlock(&vm->status_lock);
450 		}
451 
452 		if (level < AMDGPU_VM_PTB) {
453 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
454 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
455 				((1 << shift) - 1);
456 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
457 						   sub_eaddr, level, ats);
458 			if (r)
459 				return r;
460 		}
461 	}
462 
463 	return 0;
464 }
465 
466 /**
467  * amdgpu_vm_alloc_pts - Allocate page tables.
468  *
469  * @adev: amdgpu_device pointer
470  * @vm: VM to allocate page tables for
471  * @saddr: Start address which needs to be allocated
472  * @size: Size from start address we need.
473  *
474  * Make sure the page tables are allocated.
475  */
476 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
477 			struct amdgpu_vm *vm,
478 			uint64_t saddr, uint64_t size)
479 {
480 	uint64_t eaddr;
481 	bool ats = false;
482 
483 	/* validate the parameters */
484 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
485 		return -EINVAL;
486 
487 	eaddr = saddr + size - 1;
488 
489 	if (vm->pte_support_ats)
490 		ats = saddr < AMDGPU_VA_HOLE_START;
491 
492 	saddr /= AMDGPU_GPU_PAGE_SIZE;
493 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
494 
495 	if (eaddr >= adev->vm_manager.max_pfn) {
496 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
497 			eaddr, adev->vm_manager.max_pfn);
498 		return -EINVAL;
499 	}
500 
501 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr,
502 				      adev->vm_manager.root_level, ats);
503 }
504 
505 /**
506  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
507  *
508  * @adev: amdgpu_device pointer
509  */
510 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
511 {
512 	const struct amdgpu_ip_block *ip_block;
513 	bool has_compute_vm_bug;
514 	struct amdgpu_ring *ring;
515 	int i;
516 
517 	has_compute_vm_bug = false;
518 
519 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
520 	if (ip_block) {
521 		/* Compute has a VM bug for GFX version < 7.
522 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
523 		if (ip_block->version->major <= 7)
524 			has_compute_vm_bug = true;
525 		else if (ip_block->version->major == 8)
526 			if (adev->gfx.mec_fw_version < 673)
527 				has_compute_vm_bug = true;
528 	}
529 
530 	for (i = 0; i < adev->num_rings; i++) {
531 		ring = adev->rings[i];
532 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
533 			/* only compute rings */
534 			ring->has_compute_vm_bug = has_compute_vm_bug;
535 		else
536 			ring->has_compute_vm_bug = false;
537 	}
538 }
539 
540 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
541 				  struct amdgpu_job *job)
542 {
543 	struct amdgpu_device *adev = ring->adev;
544 	unsigned vmhub = ring->funcs->vmhub;
545 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
546 	struct amdgpu_vmid *id;
547 	bool gds_switch_needed;
548 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
549 
550 	if (job->vmid == 0)
551 		return false;
552 	id = &id_mgr->ids[job->vmid];
553 	gds_switch_needed = ring->funcs->emit_gds_switch && (
554 		id->gds_base != job->gds_base ||
555 		id->gds_size != job->gds_size ||
556 		id->gws_base != job->gws_base ||
557 		id->gws_size != job->gws_size ||
558 		id->oa_base != job->oa_base ||
559 		id->oa_size != job->oa_size);
560 
561 	if (amdgpu_vmid_had_gpu_reset(adev, id))
562 		return true;
563 
564 	return vm_flush_needed || gds_switch_needed;
565 }
566 
567 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
568 {
569 	return (adev->gmc.real_vram_size == adev->gmc.visible_vram_size);
570 }
571 
572 /**
573  * amdgpu_vm_flush - hardware flush the vm
574  *
575  * @ring: ring to use for flush
576  * @vmid: vmid number to use
577  * @pd_addr: address of the page directory
578  *
579  * Emit a VM flush when it is necessary.
580  */
581 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
582 {
583 	struct amdgpu_device *adev = ring->adev;
584 	unsigned vmhub = ring->funcs->vmhub;
585 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
586 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
587 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
588 		id->gds_base != job->gds_base ||
589 		id->gds_size != job->gds_size ||
590 		id->gws_base != job->gws_base ||
591 		id->gws_size != job->gws_size ||
592 		id->oa_base != job->oa_base ||
593 		id->oa_size != job->oa_size);
594 	bool vm_flush_needed = job->vm_needs_flush;
595 	bool pasid_mapping_needed = id->pasid != job->pasid ||
596 		!id->pasid_mapping ||
597 		!dma_fence_is_signaled(id->pasid_mapping);
598 	struct dma_fence *fence = NULL;
599 	unsigned patch_offset = 0;
600 	int r;
601 
602 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
603 		gds_switch_needed = true;
604 		vm_flush_needed = true;
605 		pasid_mapping_needed = true;
606 	}
607 
608 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
609 	vm_flush_needed &= !!ring->funcs->emit_vm_flush;
610 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
611 		ring->funcs->emit_wreg;
612 
613 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
614 		return 0;
615 
616 	if (ring->funcs->init_cond_exec)
617 		patch_offset = amdgpu_ring_init_cond_exec(ring);
618 
619 	if (need_pipe_sync)
620 		amdgpu_ring_emit_pipeline_sync(ring);
621 
622 	if (vm_flush_needed) {
623 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
624 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
625 	}
626 
627 	if (pasid_mapping_needed)
628 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
629 
630 	if (vm_flush_needed || pasid_mapping_needed) {
631 		r = amdgpu_fence_emit(ring, &fence);
632 		if (r)
633 			return r;
634 	}
635 
636 	if (vm_flush_needed) {
637 		mutex_lock(&id_mgr->lock);
638 		dma_fence_put(id->last_flush);
639 		id->last_flush = dma_fence_get(fence);
640 		id->current_gpu_reset_count =
641 			atomic_read(&adev->gpu_reset_counter);
642 		mutex_unlock(&id_mgr->lock);
643 	}
644 
645 	if (pasid_mapping_needed) {
646 		id->pasid = job->pasid;
647 		dma_fence_put(id->pasid_mapping);
648 		id->pasid_mapping = dma_fence_get(fence);
649 	}
650 	dma_fence_put(fence);
651 
652 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
653 		id->gds_base = job->gds_base;
654 		id->gds_size = job->gds_size;
655 		id->gws_base = job->gws_base;
656 		id->gws_size = job->gws_size;
657 		id->oa_base = job->oa_base;
658 		id->oa_size = job->oa_size;
659 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
660 					    job->gds_size, job->gws_base,
661 					    job->gws_size, job->oa_base,
662 					    job->oa_size);
663 	}
664 
665 	if (ring->funcs->patch_cond_exec)
666 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
667 
668 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
669 	if (ring->funcs->emit_switch_buffer) {
670 		amdgpu_ring_emit_switch_buffer(ring);
671 		amdgpu_ring_emit_switch_buffer(ring);
672 	}
673 	return 0;
674 }
675 
676 /**
677  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
678  *
679  * @vm: requested vm
680  * @bo: requested buffer object
681  *
682  * Find @bo inside the requested vm.
683  * Search inside the @bos vm list for the requested vm
684  * Returns the found bo_va or NULL if none is found
685  *
686  * Object has to be reserved!
687  */
688 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
689 				       struct amdgpu_bo *bo)
690 {
691 	struct amdgpu_bo_va *bo_va;
692 
693 	list_for_each_entry(bo_va, &bo->va, base.bo_list) {
694 		if (bo_va->base.vm == vm) {
695 			return bo_va;
696 		}
697 	}
698 	return NULL;
699 }
700 
701 /**
702  * amdgpu_vm_do_set_ptes - helper to call the right asic function
703  *
704  * @params: see amdgpu_pte_update_params definition
705  * @bo: PD/PT to update
706  * @pe: addr of the page entry
707  * @addr: dst addr to write into pe
708  * @count: number of page entries to update
709  * @incr: increase next addr by incr bytes
710  * @flags: hw access flags
711  *
712  * Traces the parameters and calls the right asic functions
713  * to setup the page table using the DMA.
714  */
715 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
716 				  struct amdgpu_bo *bo,
717 				  uint64_t pe, uint64_t addr,
718 				  unsigned count, uint32_t incr,
719 				  uint64_t flags)
720 {
721 	pe += amdgpu_bo_gpu_offset(bo);
722 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
723 
724 	if (count < 3) {
725 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
726 				    addr | flags, count, incr);
727 
728 	} else {
729 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
730 				      count, incr, flags);
731 	}
732 }
733 
734 /**
735  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
736  *
737  * @params: see amdgpu_pte_update_params definition
738  * @bo: PD/PT to update
739  * @pe: addr of the page entry
740  * @addr: dst addr to write into pe
741  * @count: number of page entries to update
742  * @incr: increase next addr by incr bytes
743  * @flags: hw access flags
744  *
745  * Traces the parameters and calls the DMA function to copy the PTEs.
746  */
747 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
748 				   struct amdgpu_bo *bo,
749 				   uint64_t pe, uint64_t addr,
750 				   unsigned count, uint32_t incr,
751 				   uint64_t flags)
752 {
753 	uint64_t src = (params->src + (addr >> 12) * 8);
754 
755 	pe += amdgpu_bo_gpu_offset(bo);
756 	trace_amdgpu_vm_copy_ptes(pe, src, count);
757 
758 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
759 }
760 
761 /**
762  * amdgpu_vm_map_gart - Resolve gart mapping of addr
763  *
764  * @pages_addr: optional DMA address to use for lookup
765  * @addr: the unmapped addr
766  *
767  * Look up the physical address of the page that the pte resolves
768  * to and return the pointer for the page table entry.
769  */
770 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
771 {
772 	uint64_t result;
773 
774 	/* page table offset */
775 	result = pages_addr[addr >> PAGE_SHIFT];
776 
777 	/* in case cpu page size != gpu page size*/
778 	result |= addr & (~PAGE_MASK);
779 
780 	result &= 0xFFFFFFFFFFFFF000ULL;
781 
782 	return result;
783 }
784 
785 /**
786  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
787  *
788  * @params: see amdgpu_pte_update_params definition
789  * @bo: PD/PT to update
790  * @pe: kmap addr of the page entry
791  * @addr: dst addr to write into pe
792  * @count: number of page entries to update
793  * @incr: increase next addr by incr bytes
794  * @flags: hw access flags
795  *
796  * Write count number of PT/PD entries directly.
797  */
798 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
799 				   struct amdgpu_bo *bo,
800 				   uint64_t pe, uint64_t addr,
801 				   unsigned count, uint32_t incr,
802 				   uint64_t flags)
803 {
804 	unsigned int i;
805 	uint64_t value;
806 
807 	pe += (unsigned long)amdgpu_bo_kptr(bo);
808 
809 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
810 
811 	for (i = 0; i < count; i++) {
812 		value = params->pages_addr ?
813 			amdgpu_vm_map_gart(params->pages_addr, addr) :
814 			addr;
815 		amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
816 				       i, value, flags);
817 		addr += incr;
818 	}
819 }
820 
821 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
822 			     void *owner)
823 {
824 	struct amdgpu_sync sync;
825 	int r;
826 
827 	amdgpu_sync_create(&sync);
828 	amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false);
829 	r = amdgpu_sync_wait(&sync, true);
830 	amdgpu_sync_free(&sync);
831 
832 	return r;
833 }
834 
835 /*
836  * amdgpu_vm_update_pde - update a single level in the hierarchy
837  *
838  * @param: parameters for the update
839  * @vm: requested vm
840  * @parent: parent directory
841  * @entry: entry to update
842  *
843  * Makes sure the requested entry in parent is up to date.
844  */
845 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
846 				 struct amdgpu_vm *vm,
847 				 struct amdgpu_vm_pt *parent,
848 				 struct amdgpu_vm_pt *entry)
849 {
850 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
851 	uint64_t pde, pt, flags;
852 	unsigned level;
853 
854 	/* Don't update huge pages here */
855 	if (entry->huge)
856 		return;
857 
858 	for (level = 0, pbo = bo->parent; pbo; ++level)
859 		pbo = pbo->parent;
860 
861 	level += params->adev->vm_manager.root_level;
862 	pt = amdgpu_bo_gpu_offset(entry->base.bo);
863 	flags = AMDGPU_PTE_VALID;
864 	amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags);
865 	pde = (entry - parent->entries) * 8;
866 	if (bo->shadow)
867 		params->func(params, bo->shadow, pde, pt, 1, 0, flags);
868 	params->func(params, bo, pde, pt, 1, 0, flags);
869 }
870 
871 /*
872  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
873  *
874  * @parent: parent PD
875  *
876  * Mark all PD level as invalid after an error.
877  */
878 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev,
879 				       struct amdgpu_vm *vm,
880 				       struct amdgpu_vm_pt *parent,
881 				       unsigned level)
882 {
883 	unsigned pt_idx, num_entries;
884 
885 	/*
886 	 * Recurse into the subdirectories. This recursion is harmless because
887 	 * we only have a maximum of 5 layers.
888 	 */
889 	num_entries = amdgpu_vm_num_entries(adev, level);
890 	for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) {
891 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
892 
893 		if (!entry->base.bo)
894 			continue;
895 
896 		spin_lock(&vm->status_lock);
897 		if (list_empty(&entry->base.vm_status))
898 			list_add(&entry->base.vm_status, &vm->relocated);
899 		spin_unlock(&vm->status_lock);
900 		amdgpu_vm_invalidate_level(adev, vm, entry, level + 1);
901 	}
902 }
903 
904 /*
905  * amdgpu_vm_update_directories - make sure that all directories are valid
906  *
907  * @adev: amdgpu_device pointer
908  * @vm: requested vm
909  *
910  * Makes sure all directories are up to date.
911  * Returns 0 for success, error for failure.
912  */
913 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
914 				 struct amdgpu_vm *vm)
915 {
916 	struct amdgpu_pte_update_params params;
917 	struct amdgpu_job *job;
918 	unsigned ndw = 0;
919 	int r = 0;
920 
921 	if (list_empty(&vm->relocated))
922 		return 0;
923 
924 restart:
925 	memset(&params, 0, sizeof(params));
926 	params.adev = adev;
927 
928 	if (vm->use_cpu_for_update) {
929 		r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
930 		if (unlikely(r))
931 			return r;
932 
933 		params.func = amdgpu_vm_cpu_set_ptes;
934 	} else {
935 		ndw = 512 * 8;
936 		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
937 		if (r)
938 			return r;
939 
940 		params.ib = &job->ibs[0];
941 		params.func = amdgpu_vm_do_set_ptes;
942 	}
943 
944 	spin_lock(&vm->status_lock);
945 	while (!list_empty(&vm->relocated)) {
946 		struct amdgpu_vm_bo_base *bo_base, *parent;
947 		struct amdgpu_vm_pt *pt, *entry;
948 		struct amdgpu_bo *bo;
949 
950 		bo_base = list_first_entry(&vm->relocated,
951 					   struct amdgpu_vm_bo_base,
952 					   vm_status);
953 		list_del_init(&bo_base->vm_status);
954 		spin_unlock(&vm->status_lock);
955 
956 		bo = bo_base->bo->parent;
957 		if (!bo) {
958 			spin_lock(&vm->status_lock);
959 			continue;
960 		}
961 
962 		parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base,
963 					  bo_list);
964 		pt = container_of(parent, struct amdgpu_vm_pt, base);
965 		entry = container_of(bo_base, struct amdgpu_vm_pt, base);
966 
967 		amdgpu_vm_update_pde(&params, vm, pt, entry);
968 
969 		spin_lock(&vm->status_lock);
970 		if (!vm->use_cpu_for_update &&
971 		    (ndw - params.ib->length_dw) < 32)
972 			break;
973 	}
974 	spin_unlock(&vm->status_lock);
975 
976 	if (vm->use_cpu_for_update) {
977 		/* Flush HDP */
978 		mb();
979 		amdgpu_asic_flush_hdp(adev, NULL);
980 	} else if (params.ib->length_dw == 0) {
981 		amdgpu_job_free(job);
982 	} else {
983 		struct amdgpu_bo *root = vm->root.base.bo;
984 		struct amdgpu_ring *ring;
985 		struct dma_fence *fence;
986 
987 		ring = container_of(vm->entity.sched, struct amdgpu_ring,
988 				    sched);
989 
990 		amdgpu_ring_pad_ib(ring, params.ib);
991 		amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
992 				 AMDGPU_FENCE_OWNER_VM, false);
993 		WARN_ON(params.ib->length_dw > ndw);
994 		r = amdgpu_job_submit(job, ring, &vm->entity,
995 				      AMDGPU_FENCE_OWNER_VM, &fence);
996 		if (r)
997 			goto error;
998 
999 		amdgpu_bo_fence(root, fence, true);
1000 		dma_fence_put(vm->last_update);
1001 		vm->last_update = fence;
1002 	}
1003 
1004 	if (!list_empty(&vm->relocated))
1005 		goto restart;
1006 
1007 	return 0;
1008 
1009 error:
1010 	amdgpu_vm_invalidate_level(adev, vm, &vm->root,
1011 				   adev->vm_manager.root_level);
1012 	amdgpu_job_free(job);
1013 	return r;
1014 }
1015 
1016 /**
1017  * amdgpu_vm_find_entry - find the entry for an address
1018  *
1019  * @p: see amdgpu_pte_update_params definition
1020  * @addr: virtual address in question
1021  * @entry: resulting entry or NULL
1022  * @parent: parent entry
1023  *
1024  * Find the vm_pt entry and it's parent for the given address.
1025  */
1026 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1027 			 struct amdgpu_vm_pt **entry,
1028 			 struct amdgpu_vm_pt **parent)
1029 {
1030 	unsigned level = p->adev->vm_manager.root_level;
1031 
1032 	*parent = NULL;
1033 	*entry = &p->vm->root;
1034 	while ((*entry)->entries) {
1035 		unsigned shift = amdgpu_vm_level_shift(p->adev, level++);
1036 
1037 		*parent = *entry;
1038 		*entry = &(*entry)->entries[addr >> shift];
1039 		addr &= (1ULL << shift) - 1;
1040 	}
1041 
1042 	if (level != AMDGPU_VM_PTB)
1043 		*entry = NULL;
1044 }
1045 
1046 /**
1047  * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1048  *
1049  * @p: see amdgpu_pte_update_params definition
1050  * @entry: vm_pt entry to check
1051  * @parent: parent entry
1052  * @nptes: number of PTEs updated with this operation
1053  * @dst: destination address where the PTEs should point to
1054  * @flags: access flags fro the PTEs
1055  *
1056  * Check if we can update the PD with a huge page.
1057  */
1058 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1059 					struct amdgpu_vm_pt *entry,
1060 					struct amdgpu_vm_pt *parent,
1061 					unsigned nptes, uint64_t dst,
1062 					uint64_t flags)
1063 {
1064 	uint64_t pde;
1065 
1066 	/* In the case of a mixed PT the PDE must point to it*/
1067 	if (p->adev->asic_type >= CHIP_VEGA10 && !p->src &&
1068 	    nptes == AMDGPU_VM_PTE_COUNT(p->adev)) {
1069 		/* Set the huge page flag to stop scanning at this PDE */
1070 		flags |= AMDGPU_PDE_PTE;
1071 	}
1072 
1073 	if (!(flags & AMDGPU_PDE_PTE)) {
1074 		if (entry->huge) {
1075 			/* Add the entry to the relocated list to update it. */
1076 			entry->huge = false;
1077 			spin_lock(&p->vm->status_lock);
1078 			list_move(&entry->base.vm_status, &p->vm->relocated);
1079 			spin_unlock(&p->vm->status_lock);
1080 		}
1081 		return;
1082 	}
1083 
1084 	entry->huge = true;
1085 	amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags);
1086 
1087 	pde = (entry - parent->entries) * 8;
1088 	if (parent->base.bo->shadow)
1089 		p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags);
1090 	p->func(p, parent->base.bo, pde, dst, 1, 0, flags);
1091 }
1092 
1093 /**
1094  * amdgpu_vm_update_ptes - make sure that page tables are valid
1095  *
1096  * @params: see amdgpu_pte_update_params definition
1097  * @vm: requested vm
1098  * @start: start of GPU address range
1099  * @end: end of GPU address range
1100  * @dst: destination address to map to, the next dst inside the function
1101  * @flags: mapping flags
1102  *
1103  * Update the page tables in the range @start - @end.
1104  * Returns 0 for success, -EINVAL for failure.
1105  */
1106 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1107 				  uint64_t start, uint64_t end,
1108 				  uint64_t dst, uint64_t flags)
1109 {
1110 	struct amdgpu_device *adev = params->adev;
1111 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1112 
1113 	uint64_t addr, pe_start;
1114 	struct amdgpu_bo *pt;
1115 	unsigned nptes;
1116 
1117 	/* walk over the address space and update the page tables */
1118 	for (addr = start; addr < end; addr += nptes,
1119 	     dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1120 		struct amdgpu_vm_pt *entry, *parent;
1121 
1122 		amdgpu_vm_get_entry(params, addr, &entry, &parent);
1123 		if (!entry)
1124 			return -ENOENT;
1125 
1126 		if ((addr & ~mask) == (end & ~mask))
1127 			nptes = end - addr;
1128 		else
1129 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1130 
1131 		amdgpu_vm_handle_huge_pages(params, entry, parent,
1132 					    nptes, dst, flags);
1133 		/* We don't need to update PTEs for huge pages */
1134 		if (entry->huge)
1135 			continue;
1136 
1137 		pt = entry->base.bo;
1138 		pe_start = (addr & mask) * 8;
1139 		if (pt->shadow)
1140 			params->func(params, pt->shadow, pe_start, dst, nptes,
1141 				     AMDGPU_GPU_PAGE_SIZE, flags);
1142 		params->func(params, pt, pe_start, dst, nptes,
1143 			     AMDGPU_GPU_PAGE_SIZE, flags);
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1151  *
1152  * @params: see amdgpu_pte_update_params definition
1153  * @vm: requested vm
1154  * @start: first PTE to handle
1155  * @end: last PTE to handle
1156  * @dst: addr those PTEs should point to
1157  * @flags: hw mapping flags
1158  * Returns 0 for success, -EINVAL for failure.
1159  */
1160 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1161 				uint64_t start, uint64_t end,
1162 				uint64_t dst, uint64_t flags)
1163 {
1164 	/**
1165 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1166 	 * field in the PTE. When this field is set to a non-zero value, page
1167 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1168 	 * flags are considered valid for all PTEs within the fragment range
1169 	 * and corresponding mappings are assumed to be physically contiguous.
1170 	 *
1171 	 * The L1 TLB can store a single PTE for the whole fragment,
1172 	 * significantly increasing the space available for translation
1173 	 * caching. This leads to large improvements in throughput when the
1174 	 * TLB is under pressure.
1175 	 *
1176 	 * The L2 TLB distributes small and large fragments into two
1177 	 * asymmetric partitions. The large fragment cache is significantly
1178 	 * larger. Thus, we try to use large fragments wherever possible.
1179 	 * Userspace can support this by aligning virtual base address and
1180 	 * allocation size to the fragment size.
1181 	 */
1182 	unsigned max_frag = params->adev->vm_manager.fragment_size;
1183 	int r;
1184 
1185 	/* system pages are non continuously */
1186 	if (params->src || !(flags & AMDGPU_PTE_VALID))
1187 		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1188 
1189 	while (start != end) {
1190 		uint64_t frag_flags, frag_end;
1191 		unsigned frag;
1192 
1193 		/* This intentionally wraps around if no bit is set */
1194 		frag = min((unsigned)ffs(start) - 1,
1195 			   (unsigned)fls64(end - start) - 1);
1196 		if (frag >= max_frag) {
1197 			frag_flags = AMDGPU_PTE_FRAG(max_frag);
1198 			frag_end = end & ~((1ULL << max_frag) - 1);
1199 		} else {
1200 			frag_flags = AMDGPU_PTE_FRAG(frag);
1201 			frag_end = start + (1 << frag);
1202 		}
1203 
1204 		r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
1205 					  flags | frag_flags);
1206 		if (r)
1207 			return r;
1208 
1209 		dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
1210 		start = frag_end;
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 /**
1217  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1218  *
1219  * @adev: amdgpu_device pointer
1220  * @exclusive: fence we need to sync to
1221  * @pages_addr: DMA addresses to use for mapping
1222  * @vm: requested vm
1223  * @start: start of mapped range
1224  * @last: last mapped entry
1225  * @flags: flags for the entries
1226  * @addr: addr to set the area to
1227  * @fence: optional resulting fence
1228  *
1229  * Fill in the page table entries between @start and @last.
1230  * Returns 0 for success, -EINVAL for failure.
1231  */
1232 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1233 				       struct dma_fence *exclusive,
1234 				       dma_addr_t *pages_addr,
1235 				       struct amdgpu_vm *vm,
1236 				       uint64_t start, uint64_t last,
1237 				       uint64_t flags, uint64_t addr,
1238 				       struct dma_fence **fence)
1239 {
1240 	struct amdgpu_ring *ring;
1241 	void *owner = AMDGPU_FENCE_OWNER_VM;
1242 	unsigned nptes, ncmds, ndw;
1243 	struct amdgpu_job *job;
1244 	struct amdgpu_pte_update_params params;
1245 	struct dma_fence *f = NULL;
1246 	int r;
1247 
1248 	memset(&params, 0, sizeof(params));
1249 	params.adev = adev;
1250 	params.vm = vm;
1251 
1252 	/* sync to everything on unmapping */
1253 	if (!(flags & AMDGPU_PTE_VALID))
1254 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1255 
1256 	if (vm->use_cpu_for_update) {
1257 		/* params.src is used as flag to indicate system Memory */
1258 		if (pages_addr)
1259 			params.src = ~0;
1260 
1261 		/* Wait for PT BOs to be free. PTs share the same resv. object
1262 		 * as the root PD BO
1263 		 */
1264 		r = amdgpu_vm_wait_pd(adev, vm, owner);
1265 		if (unlikely(r))
1266 			return r;
1267 
1268 		params.func = amdgpu_vm_cpu_set_ptes;
1269 		params.pages_addr = pages_addr;
1270 		return amdgpu_vm_frag_ptes(&params, start, last + 1,
1271 					   addr, flags);
1272 	}
1273 
1274 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1275 
1276 	nptes = last - start + 1;
1277 
1278 	/*
1279 	 * reserve space for two commands every (1 << BLOCK_SIZE)
1280 	 *  entries or 2k dwords (whatever is smaller)
1281          *
1282          * The second command is for the shadow pagetables.
1283 	 */
1284 	if (vm->root.base.bo->shadow)
1285 		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1286 	else
1287 		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1288 
1289 	/* padding, etc. */
1290 	ndw = 64;
1291 
1292 	if (pages_addr) {
1293 		/* copy commands needed */
1294 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1295 
1296 		/* and also PTEs */
1297 		ndw += nptes * 2;
1298 
1299 		params.func = amdgpu_vm_do_copy_ptes;
1300 
1301 	} else {
1302 		/* set page commands needed */
1303 		ndw += ncmds * 10;
1304 
1305 		/* extra commands for begin/end fragments */
1306 		ndw += 2 * 10 * adev->vm_manager.fragment_size;
1307 
1308 		params.func = amdgpu_vm_do_set_ptes;
1309 	}
1310 
1311 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1312 	if (r)
1313 		return r;
1314 
1315 	params.ib = &job->ibs[0];
1316 
1317 	if (pages_addr) {
1318 		uint64_t *pte;
1319 		unsigned i;
1320 
1321 		/* Put the PTEs at the end of the IB. */
1322 		i = ndw - nptes * 2;
1323 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1324 		params.src = job->ibs->gpu_addr + i * 4;
1325 
1326 		for (i = 0; i < nptes; ++i) {
1327 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1328 						    AMDGPU_GPU_PAGE_SIZE);
1329 			pte[i] |= flags;
1330 		}
1331 		addr = 0;
1332 	}
1333 
1334 	r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1335 	if (r)
1336 		goto error_free;
1337 
1338 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1339 			     owner, false);
1340 	if (r)
1341 		goto error_free;
1342 
1343 	r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
1344 	if (r)
1345 		goto error_free;
1346 
1347 	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1348 	if (r)
1349 		goto error_free;
1350 
1351 	amdgpu_ring_pad_ib(ring, params.ib);
1352 	WARN_ON(params.ib->length_dw > ndw);
1353 	r = amdgpu_job_submit(job, ring, &vm->entity,
1354 			      AMDGPU_FENCE_OWNER_VM, &f);
1355 	if (r)
1356 		goto error_free;
1357 
1358 	amdgpu_bo_fence(vm->root.base.bo, f, true);
1359 	dma_fence_put(*fence);
1360 	*fence = f;
1361 	return 0;
1362 
1363 error_free:
1364 	amdgpu_job_free(job);
1365 	return r;
1366 }
1367 
1368 /**
1369  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1370  *
1371  * @adev: amdgpu_device pointer
1372  * @exclusive: fence we need to sync to
1373  * @pages_addr: DMA addresses to use for mapping
1374  * @vm: requested vm
1375  * @mapping: mapped range and flags to use for the update
1376  * @flags: HW flags for the mapping
1377  * @nodes: array of drm_mm_nodes with the MC addresses
1378  * @fence: optional resulting fence
1379  *
1380  * Split the mapping into smaller chunks so that each update fits
1381  * into a SDMA IB.
1382  * Returns 0 for success, -EINVAL for failure.
1383  */
1384 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1385 				      struct dma_fence *exclusive,
1386 				      dma_addr_t *pages_addr,
1387 				      struct amdgpu_vm *vm,
1388 				      struct amdgpu_bo_va_mapping *mapping,
1389 				      uint64_t flags,
1390 				      struct drm_mm_node *nodes,
1391 				      struct dma_fence **fence)
1392 {
1393 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1394 	uint64_t pfn, start = mapping->start;
1395 	int r;
1396 
1397 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1398 	 * but in case of something, we filter the flags in first place
1399 	 */
1400 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1401 		flags &= ~AMDGPU_PTE_READABLE;
1402 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1403 		flags &= ~AMDGPU_PTE_WRITEABLE;
1404 
1405 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1406 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1407 
1408 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1409 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1410 
1411 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1412 	    (adev->asic_type >= CHIP_VEGA10)) {
1413 		flags |= AMDGPU_PTE_PRT;
1414 		flags &= ~AMDGPU_PTE_VALID;
1415 	}
1416 
1417 	trace_amdgpu_vm_bo_update(mapping);
1418 
1419 	pfn = mapping->offset >> PAGE_SHIFT;
1420 	if (nodes) {
1421 		while (pfn >= nodes->size) {
1422 			pfn -= nodes->size;
1423 			++nodes;
1424 		}
1425 	}
1426 
1427 	do {
1428 		dma_addr_t *dma_addr = NULL;
1429 		uint64_t max_entries;
1430 		uint64_t addr, last;
1431 
1432 		if (nodes) {
1433 			addr = nodes->start << PAGE_SHIFT;
1434 			max_entries = (nodes->size - pfn) *
1435 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1436 		} else {
1437 			addr = 0;
1438 			max_entries = S64_MAX;
1439 		}
1440 
1441 		if (pages_addr) {
1442 			uint64_t count;
1443 
1444 			max_entries = min(max_entries, 16ull * 1024ull);
1445 			for (count = 1; count < max_entries; ++count) {
1446 				uint64_t idx = pfn + count;
1447 
1448 				if (pages_addr[idx] !=
1449 				    (pages_addr[idx - 1] + PAGE_SIZE))
1450 					break;
1451 			}
1452 
1453 			if (count < min_linear_pages) {
1454 				addr = pfn << PAGE_SHIFT;
1455 				dma_addr = pages_addr;
1456 			} else {
1457 				addr = pages_addr[pfn];
1458 				max_entries = count;
1459 			}
1460 
1461 		} else if (flags & AMDGPU_PTE_VALID) {
1462 			addr += adev->vm_manager.vram_base_offset;
1463 			addr += pfn << PAGE_SHIFT;
1464 		}
1465 
1466 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1467 		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1468 						start, last, flags, addr,
1469 						fence);
1470 		if (r)
1471 			return r;
1472 
1473 		pfn += last - start + 1;
1474 		if (nodes && nodes->size == pfn) {
1475 			pfn = 0;
1476 			++nodes;
1477 		}
1478 		start = last + 1;
1479 
1480 	} while (unlikely(start != mapping->last + 1));
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1487  *
1488  * @adev: amdgpu_device pointer
1489  * @bo_va: requested BO and VM object
1490  * @clear: if true clear the entries
1491  *
1492  * Fill in the page table entries for @bo_va.
1493  * Returns 0 for success, -EINVAL for failure.
1494  */
1495 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1496 			struct amdgpu_bo_va *bo_va,
1497 			bool clear)
1498 {
1499 	struct amdgpu_bo *bo = bo_va->base.bo;
1500 	struct amdgpu_vm *vm = bo_va->base.vm;
1501 	struct amdgpu_bo_va_mapping *mapping;
1502 	dma_addr_t *pages_addr = NULL;
1503 	struct ttm_mem_reg *mem;
1504 	struct drm_mm_node *nodes;
1505 	struct dma_fence *exclusive, **last_update;
1506 	uint64_t flags;
1507 	int r;
1508 
1509 	if (clear || !bo_va->base.bo) {
1510 		mem = NULL;
1511 		nodes = NULL;
1512 		exclusive = NULL;
1513 	} else {
1514 		struct ttm_dma_tt *ttm;
1515 
1516 		mem = &bo_va->base.bo->tbo.mem;
1517 		nodes = mem->mm_node;
1518 		if (mem->mem_type == TTM_PL_TT) {
1519 			ttm = container_of(bo_va->base.bo->tbo.ttm,
1520 					   struct ttm_dma_tt, ttm);
1521 			pages_addr = ttm->dma_address;
1522 		}
1523 		exclusive = reservation_object_get_excl(bo->tbo.resv);
1524 	}
1525 
1526 	if (bo)
1527 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1528 	else
1529 		flags = 0x0;
1530 
1531 	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1532 		last_update = &vm->last_update;
1533 	else
1534 		last_update = &bo_va->last_pt_update;
1535 
1536 	if (!clear && bo_va->base.moved) {
1537 		bo_va->base.moved = false;
1538 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1539 
1540 	} else if (bo_va->cleared != clear) {
1541 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1542 	}
1543 
1544 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1545 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1546 					       mapping, flags, nodes,
1547 					       last_update);
1548 		if (r)
1549 			return r;
1550 	}
1551 
1552 	if (vm->use_cpu_for_update) {
1553 		/* Flush HDP */
1554 		mb();
1555 		amdgpu_asic_flush_hdp(adev, NULL);
1556 	}
1557 
1558 	spin_lock(&vm->status_lock);
1559 	list_del_init(&bo_va->base.vm_status);
1560 	spin_unlock(&vm->status_lock);
1561 
1562 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1563 	bo_va->cleared = clear;
1564 
1565 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1566 		list_for_each_entry(mapping, &bo_va->valids, list)
1567 			trace_amdgpu_vm_bo_mapping(mapping);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /**
1574  * amdgpu_vm_update_prt_state - update the global PRT state
1575  */
1576 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1577 {
1578 	unsigned long flags;
1579 	bool enable;
1580 
1581 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1582 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1583 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1584 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1585 }
1586 
1587 /**
1588  * amdgpu_vm_prt_get - add a PRT user
1589  */
1590 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1591 {
1592 	if (!adev->gmc.gmc_funcs->set_prt)
1593 		return;
1594 
1595 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1596 		amdgpu_vm_update_prt_state(adev);
1597 }
1598 
1599 /**
1600  * amdgpu_vm_prt_put - drop a PRT user
1601  */
1602 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1603 {
1604 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1605 		amdgpu_vm_update_prt_state(adev);
1606 }
1607 
1608 /**
1609  * amdgpu_vm_prt_cb - callback for updating the PRT status
1610  */
1611 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1612 {
1613 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1614 
1615 	amdgpu_vm_prt_put(cb->adev);
1616 	kfree(cb);
1617 }
1618 
1619 /**
1620  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1621  */
1622 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1623 				 struct dma_fence *fence)
1624 {
1625 	struct amdgpu_prt_cb *cb;
1626 
1627 	if (!adev->gmc.gmc_funcs->set_prt)
1628 		return;
1629 
1630 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1631 	if (!cb) {
1632 		/* Last resort when we are OOM */
1633 		if (fence)
1634 			dma_fence_wait(fence, false);
1635 
1636 		amdgpu_vm_prt_put(adev);
1637 	} else {
1638 		cb->adev = adev;
1639 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1640 						     amdgpu_vm_prt_cb))
1641 			amdgpu_vm_prt_cb(fence, &cb->cb);
1642 	}
1643 }
1644 
1645 /**
1646  * amdgpu_vm_free_mapping - free a mapping
1647  *
1648  * @adev: amdgpu_device pointer
1649  * @vm: requested vm
1650  * @mapping: mapping to be freed
1651  * @fence: fence of the unmap operation
1652  *
1653  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1654  */
1655 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1656 				   struct amdgpu_vm *vm,
1657 				   struct amdgpu_bo_va_mapping *mapping,
1658 				   struct dma_fence *fence)
1659 {
1660 	if (mapping->flags & AMDGPU_PTE_PRT)
1661 		amdgpu_vm_add_prt_cb(adev, fence);
1662 	kfree(mapping);
1663 }
1664 
1665 /**
1666  * amdgpu_vm_prt_fini - finish all prt mappings
1667  *
1668  * @adev: amdgpu_device pointer
1669  * @vm: requested vm
1670  *
1671  * Register a cleanup callback to disable PRT support after VM dies.
1672  */
1673 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1674 {
1675 	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1676 	struct dma_fence *excl, **shared;
1677 	unsigned i, shared_count;
1678 	int r;
1679 
1680 	r = reservation_object_get_fences_rcu(resv, &excl,
1681 					      &shared_count, &shared);
1682 	if (r) {
1683 		/* Not enough memory to grab the fence list, as last resort
1684 		 * block for all the fences to complete.
1685 		 */
1686 		reservation_object_wait_timeout_rcu(resv, true, false,
1687 						    MAX_SCHEDULE_TIMEOUT);
1688 		return;
1689 	}
1690 
1691 	/* Add a callback for each fence in the reservation object */
1692 	amdgpu_vm_prt_get(adev);
1693 	amdgpu_vm_add_prt_cb(adev, excl);
1694 
1695 	for (i = 0; i < shared_count; ++i) {
1696 		amdgpu_vm_prt_get(adev);
1697 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1698 	}
1699 
1700 	kfree(shared);
1701 }
1702 
1703 /**
1704  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1705  *
1706  * @adev: amdgpu_device pointer
1707  * @vm: requested vm
1708  * @fence: optional resulting fence (unchanged if no work needed to be done
1709  * or if an error occurred)
1710  *
1711  * Make sure all freed BOs are cleared in the PT.
1712  * Returns 0 for success.
1713  *
1714  * PTs have to be reserved and mutex must be locked!
1715  */
1716 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1717 			  struct amdgpu_vm *vm,
1718 			  struct dma_fence **fence)
1719 {
1720 	struct amdgpu_bo_va_mapping *mapping;
1721 	uint64_t init_pte_value = 0;
1722 	struct dma_fence *f = NULL;
1723 	int r;
1724 
1725 	while (!list_empty(&vm->freed)) {
1726 		mapping = list_first_entry(&vm->freed,
1727 			struct amdgpu_bo_va_mapping, list);
1728 		list_del(&mapping->list);
1729 
1730 		if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START)
1731 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1732 
1733 		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1734 						mapping->start, mapping->last,
1735 						init_pte_value, 0, &f);
1736 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1737 		if (r) {
1738 			dma_fence_put(f);
1739 			return r;
1740 		}
1741 	}
1742 
1743 	if (fence && f) {
1744 		dma_fence_put(*fence);
1745 		*fence = f;
1746 	} else {
1747 		dma_fence_put(f);
1748 	}
1749 
1750 	return 0;
1751 
1752 }
1753 
1754 /**
1755  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1756  *
1757  * @adev: amdgpu_device pointer
1758  * @vm: requested vm
1759  * @sync: sync object to add fences to
1760  *
1761  * Make sure all BOs which are moved are updated in the PTs.
1762  * Returns 0 for success.
1763  *
1764  * PTs have to be reserved!
1765  */
1766 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1767 			   struct amdgpu_vm *vm)
1768 {
1769 	bool clear;
1770 	int r = 0;
1771 
1772 	spin_lock(&vm->status_lock);
1773 	while (!list_empty(&vm->moved)) {
1774 		struct amdgpu_bo_va *bo_va;
1775 		struct reservation_object *resv;
1776 
1777 		bo_va = list_first_entry(&vm->moved,
1778 			struct amdgpu_bo_va, base.vm_status);
1779 		spin_unlock(&vm->status_lock);
1780 
1781 		resv = bo_va->base.bo->tbo.resv;
1782 
1783 		/* Per VM BOs never need to bo cleared in the page tables */
1784 		if (resv == vm->root.base.bo->tbo.resv)
1785 			clear = false;
1786 		/* Try to reserve the BO to avoid clearing its ptes */
1787 		else if (!amdgpu_vm_debug && reservation_object_trylock(resv))
1788 			clear = false;
1789 		/* Somebody else is using the BO right now */
1790 		else
1791 			clear = true;
1792 
1793 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1794 		if (r)
1795 			return r;
1796 
1797 		if (!clear && resv != vm->root.base.bo->tbo.resv)
1798 			reservation_object_unlock(resv);
1799 
1800 		spin_lock(&vm->status_lock);
1801 	}
1802 	spin_unlock(&vm->status_lock);
1803 
1804 	return r;
1805 }
1806 
1807 /**
1808  * amdgpu_vm_bo_add - add a bo to a specific vm
1809  *
1810  * @adev: amdgpu_device pointer
1811  * @vm: requested vm
1812  * @bo: amdgpu buffer object
1813  *
1814  * Add @bo into the requested vm.
1815  * Add @bo to the list of bos associated with the vm
1816  * Returns newly added bo_va or NULL for failure
1817  *
1818  * Object has to be reserved!
1819  */
1820 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1821 				      struct amdgpu_vm *vm,
1822 				      struct amdgpu_bo *bo)
1823 {
1824 	struct amdgpu_bo_va *bo_va;
1825 
1826 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1827 	if (bo_va == NULL) {
1828 		return NULL;
1829 	}
1830 	bo_va->base.vm = vm;
1831 	bo_va->base.bo = bo;
1832 	INIT_LIST_HEAD(&bo_va->base.bo_list);
1833 	INIT_LIST_HEAD(&bo_va->base.vm_status);
1834 
1835 	bo_va->ref_count = 1;
1836 	INIT_LIST_HEAD(&bo_va->valids);
1837 	INIT_LIST_HEAD(&bo_va->invalids);
1838 
1839 	if (!bo)
1840 		return bo_va;
1841 
1842 	list_add_tail(&bo_va->base.bo_list, &bo->va);
1843 
1844 	if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
1845 		return bo_va;
1846 
1847 	if (bo->preferred_domains &
1848 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
1849 		return bo_va;
1850 
1851 	/*
1852 	 * We checked all the prerequisites, but it looks like this per VM BO
1853 	 * is currently evicted. add the BO to the evicted list to make sure it
1854 	 * is validated on next VM use to avoid fault.
1855 	 * */
1856 	spin_lock(&vm->status_lock);
1857 	list_move_tail(&bo_va->base.vm_status, &vm->evicted);
1858 	spin_unlock(&vm->status_lock);
1859 
1860 	return bo_va;
1861 }
1862 
1863 
1864 /**
1865  * amdgpu_vm_bo_insert_mapping - insert a new mapping
1866  *
1867  * @adev: amdgpu_device pointer
1868  * @bo_va: bo_va to store the address
1869  * @mapping: the mapping to insert
1870  *
1871  * Insert a new mapping into all structures.
1872  */
1873 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1874 				    struct amdgpu_bo_va *bo_va,
1875 				    struct amdgpu_bo_va_mapping *mapping)
1876 {
1877 	struct amdgpu_vm *vm = bo_va->base.vm;
1878 	struct amdgpu_bo *bo = bo_va->base.bo;
1879 
1880 	mapping->bo_va = bo_va;
1881 	list_add(&mapping->list, &bo_va->invalids);
1882 	amdgpu_vm_it_insert(mapping, &vm->va);
1883 
1884 	if (mapping->flags & AMDGPU_PTE_PRT)
1885 		amdgpu_vm_prt_get(adev);
1886 
1887 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
1888 		spin_lock(&vm->status_lock);
1889 		if (list_empty(&bo_va->base.vm_status))
1890 			list_add(&bo_va->base.vm_status, &vm->moved);
1891 		spin_unlock(&vm->status_lock);
1892 	}
1893 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1894 }
1895 
1896 /**
1897  * amdgpu_vm_bo_map - map bo inside a vm
1898  *
1899  * @adev: amdgpu_device pointer
1900  * @bo_va: bo_va to store the address
1901  * @saddr: where to map the BO
1902  * @offset: requested offset in the BO
1903  * @flags: attributes of pages (read/write/valid/etc.)
1904  *
1905  * Add a mapping of the BO at the specefied addr into the VM.
1906  * Returns 0 for success, error for failure.
1907  *
1908  * Object has to be reserved and unreserved outside!
1909  */
1910 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1911 		     struct amdgpu_bo_va *bo_va,
1912 		     uint64_t saddr, uint64_t offset,
1913 		     uint64_t size, uint64_t flags)
1914 {
1915 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1916 	struct amdgpu_bo *bo = bo_va->base.bo;
1917 	struct amdgpu_vm *vm = bo_va->base.vm;
1918 	uint64_t eaddr;
1919 
1920 	/* validate the parameters */
1921 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1922 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1923 		return -EINVAL;
1924 
1925 	/* make sure object fit at this offset */
1926 	eaddr = saddr + size - 1;
1927 	if (saddr >= eaddr ||
1928 	    (bo && offset + size > amdgpu_bo_size(bo)))
1929 		return -EINVAL;
1930 
1931 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1932 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1933 
1934 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1935 	if (tmp) {
1936 		/* bo and tmp overlap, invalid addr */
1937 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1938 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1939 			tmp->start, tmp->last + 1);
1940 		return -EINVAL;
1941 	}
1942 
1943 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1944 	if (!mapping)
1945 		return -ENOMEM;
1946 
1947 	mapping->start = saddr;
1948 	mapping->last = eaddr;
1949 	mapping->offset = offset;
1950 	mapping->flags = flags;
1951 
1952 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1953 
1954 	return 0;
1955 }
1956 
1957 /**
1958  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1959  *
1960  * @adev: amdgpu_device pointer
1961  * @bo_va: bo_va to store the address
1962  * @saddr: where to map the BO
1963  * @offset: requested offset in the BO
1964  * @flags: attributes of pages (read/write/valid/etc.)
1965  *
1966  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1967  * mappings as we do so.
1968  * Returns 0 for success, error for failure.
1969  *
1970  * Object has to be reserved and unreserved outside!
1971  */
1972 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1973 			     struct amdgpu_bo_va *bo_va,
1974 			     uint64_t saddr, uint64_t offset,
1975 			     uint64_t size, uint64_t flags)
1976 {
1977 	struct amdgpu_bo_va_mapping *mapping;
1978 	struct amdgpu_bo *bo = bo_va->base.bo;
1979 	uint64_t eaddr;
1980 	int r;
1981 
1982 	/* validate the parameters */
1983 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1984 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1985 		return -EINVAL;
1986 
1987 	/* make sure object fit at this offset */
1988 	eaddr = saddr + size - 1;
1989 	if (saddr >= eaddr ||
1990 	    (bo && offset + size > amdgpu_bo_size(bo)))
1991 		return -EINVAL;
1992 
1993 	/* Allocate all the needed memory */
1994 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1995 	if (!mapping)
1996 		return -ENOMEM;
1997 
1998 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1999 	if (r) {
2000 		kfree(mapping);
2001 		return r;
2002 	}
2003 
2004 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2005 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2006 
2007 	mapping->start = saddr;
2008 	mapping->last = eaddr;
2009 	mapping->offset = offset;
2010 	mapping->flags = flags;
2011 
2012 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2013 
2014 	return 0;
2015 }
2016 
2017 /**
2018  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2019  *
2020  * @adev: amdgpu_device pointer
2021  * @bo_va: bo_va to remove the address from
2022  * @saddr: where to the BO is mapped
2023  *
2024  * Remove a mapping of the BO at the specefied addr from the VM.
2025  * Returns 0 for success, error for failure.
2026  *
2027  * Object has to be reserved and unreserved outside!
2028  */
2029 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2030 		       struct amdgpu_bo_va *bo_va,
2031 		       uint64_t saddr)
2032 {
2033 	struct amdgpu_bo_va_mapping *mapping;
2034 	struct amdgpu_vm *vm = bo_va->base.vm;
2035 	bool valid = true;
2036 
2037 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2038 
2039 	list_for_each_entry(mapping, &bo_va->valids, list) {
2040 		if (mapping->start == saddr)
2041 			break;
2042 	}
2043 
2044 	if (&mapping->list == &bo_va->valids) {
2045 		valid = false;
2046 
2047 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2048 			if (mapping->start == saddr)
2049 				break;
2050 		}
2051 
2052 		if (&mapping->list == &bo_va->invalids)
2053 			return -ENOENT;
2054 	}
2055 
2056 	list_del(&mapping->list);
2057 	amdgpu_vm_it_remove(mapping, &vm->va);
2058 	mapping->bo_va = NULL;
2059 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2060 
2061 	if (valid)
2062 		list_add(&mapping->list, &vm->freed);
2063 	else
2064 		amdgpu_vm_free_mapping(adev, vm, mapping,
2065 				       bo_va->last_pt_update);
2066 
2067 	return 0;
2068 }
2069 
2070 /**
2071  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2072  *
2073  * @adev: amdgpu_device pointer
2074  * @vm: VM structure to use
2075  * @saddr: start of the range
2076  * @size: size of the range
2077  *
2078  * Remove all mappings in a range, split them as appropriate.
2079  * Returns 0 for success, error for failure.
2080  */
2081 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2082 				struct amdgpu_vm *vm,
2083 				uint64_t saddr, uint64_t size)
2084 {
2085 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2086 	LIST_HEAD(removed);
2087 	uint64_t eaddr;
2088 
2089 	eaddr = saddr + size - 1;
2090 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2091 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2092 
2093 	/* Allocate all the needed memory */
2094 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2095 	if (!before)
2096 		return -ENOMEM;
2097 	INIT_LIST_HEAD(&before->list);
2098 
2099 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2100 	if (!after) {
2101 		kfree(before);
2102 		return -ENOMEM;
2103 	}
2104 	INIT_LIST_HEAD(&after->list);
2105 
2106 	/* Now gather all removed mappings */
2107 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2108 	while (tmp) {
2109 		/* Remember mapping split at the start */
2110 		if (tmp->start < saddr) {
2111 			before->start = tmp->start;
2112 			before->last = saddr - 1;
2113 			before->offset = tmp->offset;
2114 			before->flags = tmp->flags;
2115 			list_add(&before->list, &tmp->list);
2116 		}
2117 
2118 		/* Remember mapping split at the end */
2119 		if (tmp->last > eaddr) {
2120 			after->start = eaddr + 1;
2121 			after->last = tmp->last;
2122 			after->offset = tmp->offset;
2123 			after->offset += after->start - tmp->start;
2124 			after->flags = tmp->flags;
2125 			list_add(&after->list, &tmp->list);
2126 		}
2127 
2128 		list_del(&tmp->list);
2129 		list_add(&tmp->list, &removed);
2130 
2131 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2132 	}
2133 
2134 	/* And free them up */
2135 	list_for_each_entry_safe(tmp, next, &removed, list) {
2136 		amdgpu_vm_it_remove(tmp, &vm->va);
2137 		list_del(&tmp->list);
2138 
2139 		if (tmp->start < saddr)
2140 		    tmp->start = saddr;
2141 		if (tmp->last > eaddr)
2142 		    tmp->last = eaddr;
2143 
2144 		tmp->bo_va = NULL;
2145 		list_add(&tmp->list, &vm->freed);
2146 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2147 	}
2148 
2149 	/* Insert partial mapping before the range */
2150 	if (!list_empty(&before->list)) {
2151 		amdgpu_vm_it_insert(before, &vm->va);
2152 		if (before->flags & AMDGPU_PTE_PRT)
2153 			amdgpu_vm_prt_get(adev);
2154 	} else {
2155 		kfree(before);
2156 	}
2157 
2158 	/* Insert partial mapping after the range */
2159 	if (!list_empty(&after->list)) {
2160 		amdgpu_vm_it_insert(after, &vm->va);
2161 		if (after->flags & AMDGPU_PTE_PRT)
2162 			amdgpu_vm_prt_get(adev);
2163 	} else {
2164 		kfree(after);
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 /**
2171  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2172  *
2173  * @vm: the requested VM
2174  *
2175  * Find a mapping by it's address.
2176  */
2177 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2178 							 uint64_t addr)
2179 {
2180 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2181 }
2182 
2183 /**
2184  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2185  *
2186  * @adev: amdgpu_device pointer
2187  * @bo_va: requested bo_va
2188  *
2189  * Remove @bo_va->bo from the requested vm.
2190  *
2191  * Object have to be reserved!
2192  */
2193 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2194 		      struct amdgpu_bo_va *bo_va)
2195 {
2196 	struct amdgpu_bo_va_mapping *mapping, *next;
2197 	struct amdgpu_vm *vm = bo_va->base.vm;
2198 
2199 	list_del(&bo_va->base.bo_list);
2200 
2201 	spin_lock(&vm->status_lock);
2202 	list_del(&bo_va->base.vm_status);
2203 	spin_unlock(&vm->status_lock);
2204 
2205 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2206 		list_del(&mapping->list);
2207 		amdgpu_vm_it_remove(mapping, &vm->va);
2208 		mapping->bo_va = NULL;
2209 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2210 		list_add(&mapping->list, &vm->freed);
2211 	}
2212 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2213 		list_del(&mapping->list);
2214 		amdgpu_vm_it_remove(mapping, &vm->va);
2215 		amdgpu_vm_free_mapping(adev, vm, mapping,
2216 				       bo_va->last_pt_update);
2217 	}
2218 
2219 	dma_fence_put(bo_va->last_pt_update);
2220 	kfree(bo_va);
2221 }
2222 
2223 /**
2224  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2225  *
2226  * @adev: amdgpu_device pointer
2227  * @vm: requested vm
2228  * @bo: amdgpu buffer object
2229  *
2230  * Mark @bo as invalid.
2231  */
2232 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2233 			     struct amdgpu_bo *bo, bool evicted)
2234 {
2235 	struct amdgpu_vm_bo_base *bo_base;
2236 
2237 	list_for_each_entry(bo_base, &bo->va, bo_list) {
2238 		struct amdgpu_vm *vm = bo_base->vm;
2239 
2240 		bo_base->moved = true;
2241 		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2242 			spin_lock(&bo_base->vm->status_lock);
2243 			if (bo->tbo.type == ttm_bo_type_kernel)
2244 				list_move(&bo_base->vm_status, &vm->evicted);
2245 			else
2246 				list_move_tail(&bo_base->vm_status,
2247 					       &vm->evicted);
2248 			spin_unlock(&bo_base->vm->status_lock);
2249 			continue;
2250 		}
2251 
2252 		if (bo->tbo.type == ttm_bo_type_kernel) {
2253 			spin_lock(&bo_base->vm->status_lock);
2254 			if (list_empty(&bo_base->vm_status))
2255 				list_add(&bo_base->vm_status, &vm->relocated);
2256 			spin_unlock(&bo_base->vm->status_lock);
2257 			continue;
2258 		}
2259 
2260 		spin_lock(&bo_base->vm->status_lock);
2261 		if (list_empty(&bo_base->vm_status))
2262 			list_add(&bo_base->vm_status, &vm->moved);
2263 		spin_unlock(&bo_base->vm->status_lock);
2264 	}
2265 }
2266 
2267 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2268 {
2269 	/* Total bits covered by PD + PTs */
2270 	unsigned bits = ilog2(vm_size) + 18;
2271 
2272 	/* Make sure the PD is 4K in size up to 8GB address space.
2273 	   Above that split equal between PD and PTs */
2274 	if (vm_size <= 8)
2275 		return (bits - 9);
2276 	else
2277 		return ((bits + 3) / 2);
2278 }
2279 
2280 /**
2281  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2282  *
2283  * @adev: amdgpu_device pointer
2284  * @vm_size: the default vm size if it's set auto
2285  */
2286 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size,
2287 			   uint32_t fragment_size_default, unsigned max_level,
2288 			   unsigned max_bits)
2289 {
2290 	uint64_t tmp;
2291 
2292 	/* adjust vm size first */
2293 	if (amdgpu_vm_size != -1) {
2294 		unsigned max_size = 1 << (max_bits - 30);
2295 
2296 		vm_size = amdgpu_vm_size;
2297 		if (vm_size > max_size) {
2298 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2299 				 amdgpu_vm_size, max_size);
2300 			vm_size = max_size;
2301 		}
2302 	}
2303 
2304 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2305 
2306 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2307 	if (amdgpu_vm_block_size != -1)
2308 		tmp >>= amdgpu_vm_block_size - 9;
2309 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2310 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2311 	switch (adev->vm_manager.num_level) {
2312 	case 3:
2313 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2314 		break;
2315 	case 2:
2316 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2317 		break;
2318 	case 1:
2319 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2320 		break;
2321 	default:
2322 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2323 	}
2324 	/* block size depends on vm size and hw setup*/
2325 	if (amdgpu_vm_block_size != -1)
2326 		adev->vm_manager.block_size =
2327 			min((unsigned)amdgpu_vm_block_size, max_bits
2328 			    - AMDGPU_GPU_PAGE_SHIFT
2329 			    - 9 * adev->vm_manager.num_level);
2330 	else if (adev->vm_manager.num_level > 1)
2331 		adev->vm_manager.block_size = 9;
2332 	else
2333 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2334 
2335 	if (amdgpu_vm_fragment_size == -1)
2336 		adev->vm_manager.fragment_size = fragment_size_default;
2337 	else
2338 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2339 
2340 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2341 		 vm_size, adev->vm_manager.num_level + 1,
2342 		 adev->vm_manager.block_size,
2343 		 adev->vm_manager.fragment_size);
2344 }
2345 
2346 /**
2347  * amdgpu_vm_init - initialize a vm instance
2348  *
2349  * @adev: amdgpu_device pointer
2350  * @vm: requested vm
2351  * @vm_context: Indicates if it GFX or Compute context
2352  *
2353  * Init @vm fields.
2354  */
2355 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2356 		   int vm_context, unsigned int pasid)
2357 {
2358 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2359 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2360 	unsigned ring_instance;
2361 	struct amdgpu_ring *ring;
2362 	struct drm_sched_rq *rq;
2363 	unsigned long size;
2364 	uint64_t flags;
2365 	int r, i;
2366 
2367 	vm->va = RB_ROOT_CACHED;
2368 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2369 		vm->reserved_vmid[i] = NULL;
2370 	spin_lock_init(&vm->status_lock);
2371 	INIT_LIST_HEAD(&vm->evicted);
2372 	INIT_LIST_HEAD(&vm->relocated);
2373 	INIT_LIST_HEAD(&vm->moved);
2374 	INIT_LIST_HEAD(&vm->freed);
2375 
2376 	/* create scheduler entity for page table updates */
2377 
2378 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2379 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2380 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2381 	rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2382 	r = drm_sched_entity_init(&ring->sched, &vm->entity,
2383 				  rq, amdgpu_sched_jobs, NULL);
2384 	if (r)
2385 		return r;
2386 
2387 	vm->pte_support_ats = false;
2388 
2389 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2390 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2391 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2392 
2393 		if (adev->asic_type == CHIP_RAVEN)
2394 			vm->pte_support_ats = true;
2395 	} else {
2396 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2397 						AMDGPU_VM_USE_CPU_FOR_GFX);
2398 	}
2399 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2400 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2401 	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2402 		  "CPU update of VM recommended only for large BAR system\n");
2403 	vm->last_update = NULL;
2404 
2405 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
2406 	if (vm->use_cpu_for_update)
2407 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2408 	else
2409 		flags |= AMDGPU_GEM_CREATE_SHADOW;
2410 
2411 	size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level);
2412 	r = amdgpu_bo_create(adev, size, align, AMDGPU_GEM_DOMAIN_VRAM, flags,
2413 			     ttm_bo_type_kernel, NULL, &vm->root.base.bo);
2414 	if (r)
2415 		goto error_free_sched_entity;
2416 
2417 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2418 	if (r)
2419 		goto error_free_root;
2420 
2421 	r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
2422 			       adev->vm_manager.root_level,
2423 			       vm->pte_support_ats);
2424 	if (r)
2425 		goto error_unreserve;
2426 
2427 	vm->root.base.vm = vm;
2428 	list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
2429 	list_add_tail(&vm->root.base.vm_status, &vm->evicted);
2430 	amdgpu_bo_unreserve(vm->root.base.bo);
2431 
2432 	if (pasid) {
2433 		unsigned long flags;
2434 
2435 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2436 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2437 			      GFP_ATOMIC);
2438 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2439 		if (r < 0)
2440 			goto error_free_root;
2441 
2442 		vm->pasid = pasid;
2443 	}
2444 
2445 	INIT_KFIFO(vm->faults);
2446 	vm->fault_credit = 16;
2447 
2448 	return 0;
2449 
2450 error_unreserve:
2451 	amdgpu_bo_unreserve(vm->root.base.bo);
2452 
2453 error_free_root:
2454 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2455 	amdgpu_bo_unref(&vm->root.base.bo);
2456 	vm->root.base.bo = NULL;
2457 
2458 error_free_sched_entity:
2459 	drm_sched_entity_fini(&ring->sched, &vm->entity);
2460 
2461 	return r;
2462 }
2463 
2464 /**
2465  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2466  *
2467  * This only works on GFX VMs that don't have any BOs added and no
2468  * page tables allocated yet.
2469  *
2470  * Changes the following VM parameters:
2471  * - use_cpu_for_update
2472  * - pte_supports_ats
2473  * - pasid (old PASID is released, because compute manages its own PASIDs)
2474  *
2475  * Reinitializes the page directory to reflect the changed ATS
2476  * setting. May leave behind an unused shadow BO for the page
2477  * directory when switching from SDMA updates to CPU updates.
2478  *
2479  * Returns 0 for success, -errno for errors.
2480  */
2481 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2482 {
2483 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2484 	int r;
2485 
2486 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2487 	if (r)
2488 		return r;
2489 
2490 	/* Sanity checks */
2491 	if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
2492 		r = -EINVAL;
2493 		goto error;
2494 	}
2495 
2496 	/* Check if PD needs to be reinitialized and do it before
2497 	 * changing any other state, in case it fails.
2498 	 */
2499 	if (pte_support_ats != vm->pte_support_ats) {
2500 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
2501 			       adev->vm_manager.root_level,
2502 			       pte_support_ats);
2503 		if (r)
2504 			goto error;
2505 	}
2506 
2507 	/* Update VM state */
2508 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2509 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2510 	vm->pte_support_ats = pte_support_ats;
2511 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2512 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2513 	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2514 		  "CPU update of VM recommended only for large BAR system\n");
2515 
2516 	if (vm->pasid) {
2517 		unsigned long flags;
2518 
2519 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2520 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2521 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2522 
2523 		vm->pasid = 0;
2524 	}
2525 
2526 error:
2527 	amdgpu_bo_unreserve(vm->root.base.bo);
2528 	return r;
2529 }
2530 
2531 /**
2532  * amdgpu_vm_free_levels - free PD/PT levels
2533  *
2534  * @adev: amdgpu device structure
2535  * @parent: PD/PT starting level to free
2536  * @level: level of parent structure
2537  *
2538  * Free the page directory or page table level and all sub levels.
2539  */
2540 static void amdgpu_vm_free_levels(struct amdgpu_device *adev,
2541 				  struct amdgpu_vm_pt *parent,
2542 				  unsigned level)
2543 {
2544 	unsigned i, num_entries = amdgpu_vm_num_entries(adev, level);
2545 
2546 	if (parent->base.bo) {
2547 		list_del(&parent->base.bo_list);
2548 		list_del(&parent->base.vm_status);
2549 		amdgpu_bo_unref(&parent->base.bo->shadow);
2550 		amdgpu_bo_unref(&parent->base.bo);
2551 	}
2552 
2553 	if (parent->entries)
2554 		for (i = 0; i < num_entries; i++)
2555 			amdgpu_vm_free_levels(adev, &parent->entries[i],
2556 					      level + 1);
2557 
2558 	kvfree(parent->entries);
2559 }
2560 
2561 /**
2562  * amdgpu_vm_fini - tear down a vm instance
2563  *
2564  * @adev: amdgpu_device pointer
2565  * @vm: requested vm
2566  *
2567  * Tear down @vm.
2568  * Unbind the VM and remove all bos from the vm bo list
2569  */
2570 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2571 {
2572 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2573 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2574 	struct amdgpu_bo *root;
2575 	u64 fault;
2576 	int i, r;
2577 
2578 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2579 
2580 	/* Clear pending page faults from IH when the VM is destroyed */
2581 	while (kfifo_get(&vm->faults, &fault))
2582 		amdgpu_ih_clear_fault(adev, fault);
2583 
2584 	if (vm->pasid) {
2585 		unsigned long flags;
2586 
2587 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2588 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2589 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2590 	}
2591 
2592 	drm_sched_entity_fini(vm->entity.sched, &vm->entity);
2593 
2594 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2595 		dev_err(adev->dev, "still active bo inside vm\n");
2596 	}
2597 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2598 					     &vm->va.rb_root, rb) {
2599 		list_del(&mapping->list);
2600 		amdgpu_vm_it_remove(mapping, &vm->va);
2601 		kfree(mapping);
2602 	}
2603 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2604 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2605 			amdgpu_vm_prt_fini(adev, vm);
2606 			prt_fini_needed = false;
2607 		}
2608 
2609 		list_del(&mapping->list);
2610 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2611 	}
2612 
2613 	root = amdgpu_bo_ref(vm->root.base.bo);
2614 	r = amdgpu_bo_reserve(root, true);
2615 	if (r) {
2616 		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2617 	} else {
2618 		amdgpu_vm_free_levels(adev, &vm->root,
2619 				      adev->vm_manager.root_level);
2620 		amdgpu_bo_unreserve(root);
2621 	}
2622 	amdgpu_bo_unref(&root);
2623 	dma_fence_put(vm->last_update);
2624 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2625 		amdgpu_vmid_free_reserved(adev, vm, i);
2626 }
2627 
2628 /**
2629  * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID
2630  *
2631  * @adev: amdgpu_device pointer
2632  * @pasid: PASID do identify the VM
2633  *
2634  * This function is expected to be called in interrupt context. Returns
2635  * true if there was fault credit, false otherwise
2636  */
2637 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev,
2638 				  unsigned int pasid)
2639 {
2640 	struct amdgpu_vm *vm;
2641 
2642 	spin_lock(&adev->vm_manager.pasid_lock);
2643 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
2644 	if (!vm) {
2645 		/* VM not found, can't track fault credit */
2646 		spin_unlock(&adev->vm_manager.pasid_lock);
2647 		return true;
2648 	}
2649 
2650 	/* No lock needed. only accessed by IRQ handler */
2651 	if (!vm->fault_credit) {
2652 		/* Too many faults in this VM */
2653 		spin_unlock(&adev->vm_manager.pasid_lock);
2654 		return false;
2655 	}
2656 
2657 	vm->fault_credit--;
2658 	spin_unlock(&adev->vm_manager.pasid_lock);
2659 	return true;
2660 }
2661 
2662 /**
2663  * amdgpu_vm_manager_init - init the VM manager
2664  *
2665  * @adev: amdgpu_device pointer
2666  *
2667  * Initialize the VM manager structures
2668  */
2669 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2670 {
2671 	unsigned i;
2672 
2673 	amdgpu_vmid_mgr_init(adev);
2674 
2675 	adev->vm_manager.fence_context =
2676 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2677 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2678 		adev->vm_manager.seqno[i] = 0;
2679 
2680 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2681 	spin_lock_init(&adev->vm_manager.prt_lock);
2682 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2683 
2684 	/* If not overridden by the user, by default, only in large BAR systems
2685 	 * Compute VM tables will be updated by CPU
2686 	 */
2687 #ifdef CONFIG_X86_64
2688 	if (amdgpu_vm_update_mode == -1) {
2689 		if (amdgpu_vm_is_large_bar(adev))
2690 			adev->vm_manager.vm_update_mode =
2691 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2692 		else
2693 			adev->vm_manager.vm_update_mode = 0;
2694 	} else
2695 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2696 #else
2697 	adev->vm_manager.vm_update_mode = 0;
2698 #endif
2699 
2700 	idr_init(&adev->vm_manager.pasid_idr);
2701 	spin_lock_init(&adev->vm_manager.pasid_lock);
2702 }
2703 
2704 /**
2705  * amdgpu_vm_manager_fini - cleanup VM manager
2706  *
2707  * @adev: amdgpu_device pointer
2708  *
2709  * Cleanup the VM manager and free resources.
2710  */
2711 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2712 {
2713 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2714 	idr_destroy(&adev->vm_manager.pasid_idr);
2715 
2716 	amdgpu_vmid_mgr_fini(adev);
2717 }
2718 
2719 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2720 {
2721 	union drm_amdgpu_vm *args = data;
2722 	struct amdgpu_device *adev = dev->dev_private;
2723 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2724 	int r;
2725 
2726 	switch (args->in.op) {
2727 	case AMDGPU_VM_OP_RESERVE_VMID:
2728 		/* current, we only have requirement to reserve vmid from gfxhub */
2729 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
2730 		if (r)
2731 			return r;
2732 		break;
2733 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2734 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
2735 		break;
2736 	default:
2737 		return -EINVAL;
2738 	}
2739 
2740 	return 0;
2741 }
2742