1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When executing a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /**
92  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93  *
94  * @adev: amdgpu_device pointer
95  * @vm: amdgpu_vm pointer
96  * @pasid: the pasid the VM is using on this GPU
97  *
98  * Set the pasid this VM is using on this GPU, can also be used to remove the
99  * pasid by passing in zero.
100  *
101  */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 			u32 pasid)
104 {
105 	int r;
106 
107 	if (vm->pasid == pasid)
108 		return 0;
109 
110 	if (vm->pasid) {
111 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 		if (r < 0)
113 			return r;
114 
115 		vm->pasid = 0;
116 	}
117 
118 	if (pasid) {
119 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 					GFP_KERNEL));
121 		if (r < 0)
122 			return r;
123 
124 		vm->pasid = pasid;
125 	}
126 
127 
128 	return 0;
129 }
130 
131 /*
132  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133  * happens while holding this lock anywhere to prevent deadlocks when
134  * an MMU notifier runs in reclaim-FS context.
135  */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138 	mutex_lock(&vm->eviction_lock);
139 	vm->saved_flags = memalloc_noreclaim_save();
140 }
141 
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144 	if (mutex_trylock(&vm->eviction_lock)) {
145 		vm->saved_flags = memalloc_noreclaim_save();
146 		return 1;
147 	}
148 	return 0;
149 }
150 
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153 	memalloc_noreclaim_restore(vm->saved_flags);
154 	mutex_unlock(&vm->eviction_lock);
155 }
156 
157 /**
158  * amdgpu_vm_level_shift - return the addr shift for each level
159  *
160  * @adev: amdgpu_device pointer
161  * @level: VMPT level
162  *
163  * Returns:
164  * The number of bits the pfn needs to be right shifted for a level.
165  */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 				      unsigned level)
168 {
169 	switch (level) {
170 	case AMDGPU_VM_PDB2:
171 	case AMDGPU_VM_PDB1:
172 	case AMDGPU_VM_PDB0:
173 		return 9 * (AMDGPU_VM_PDB0 - level) +
174 			adev->vm_manager.block_size;
175 	case AMDGPU_VM_PTB:
176 		return 0;
177 	default:
178 		return ~0;
179 	}
180 }
181 
182 /**
183  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The number of entries in a page directory or page table.
190  */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 				      unsigned level)
193 {
194 	unsigned shift = amdgpu_vm_level_shift(adev,
195 					       adev->vm_manager.root_level);
196 
197 	if (level == adev->vm_manager.root_level)
198 		/* For the root directory */
199 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 			>> shift;
201 	else if (level != AMDGPU_VM_PTB)
202 		/* Everything in between */
203 		return 512;
204 	else
205 		/* For the page tables on the leaves */
206 		return AMDGPU_VM_PTE_COUNT(adev);
207 }
208 
209 /**
210  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211  *
212  * @adev: amdgpu_device pointer
213  *
214  * Returns:
215  * The number of entries in the root page directory which needs the ATS setting.
216  */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219 	unsigned shift;
220 
221 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224 
225 /**
226  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227  *
228  * @adev: amdgpu_device pointer
229  * @level: VMPT level
230  *
231  * Returns:
232  * The mask to extract the entry number of a PD/PT from an address.
233  */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 				       unsigned int level)
236 {
237 	if (level <= adev->vm_manager.root_level)
238 		return 0xffffffff;
239 	else if (level != AMDGPU_VM_PTB)
240 		return 0x1ff;
241 	else
242 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244 
245 /**
246  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247  *
248  * @adev: amdgpu_device pointer
249  * @level: VMPT level
250  *
251  * Returns:
252  * The size of the BO for a page directory or page table in bytes.
253  */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258 
259 /**
260  * amdgpu_vm_bo_evicted - vm_bo is evicted
261  *
262  * @vm_bo: vm_bo which is evicted
263  *
264  * State for PDs/PTs and per VM BOs which are not at the location they should
265  * be.
266  */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	struct amdgpu_vm *vm = vm_bo->vm;
270 	struct amdgpu_bo *bo = vm_bo->bo;
271 
272 	vm_bo->moved = true;
273 	if (bo->tbo.type == ttm_bo_type_kernel)
274 		list_move(&vm_bo->vm_status, &vm->evicted);
275 	else
276 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279  * amdgpu_vm_bo_moved - vm_bo is moved
280  *
281  * @vm_bo: vm_bo which is moved
282  *
283  * State for per VM BOs which are moved, but that change is not yet reflected
284  * in the page tables.
285  */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290 
291 /**
292  * amdgpu_vm_bo_idle - vm_bo is idle
293  *
294  * @vm_bo: vm_bo which is now idle
295  *
296  * State for PDs/PTs and per VM BOs which have gone through the state machine
297  * and are now idle.
298  */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 	vm_bo->moved = false;
303 }
304 
305 /**
306  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307  *
308  * @vm_bo: vm_bo which is now invalidated
309  *
310  * State for normal BOs which are invalidated and that change not yet reflected
311  * in the PTs.
312  */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315 	spin_lock(&vm_bo->vm->invalidated_lock);
316 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 	spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319 
320 /**
321  * amdgpu_vm_bo_relocated - vm_bo is reloacted
322  *
323  * @vm_bo: vm_bo which is relocated
324  *
325  * State for PDs/PTs which needs to update their parent PD.
326  * For the root PD, just move to idle state.
327  */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330 	if (vm_bo->bo->parent)
331 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 	else
333 		amdgpu_vm_bo_idle(vm_bo);
334 }
335 
336 /**
337  * amdgpu_vm_bo_done - vm_bo is done
338  *
339  * @vm_bo: vm_bo which is now done
340  *
341  * State for normal BOs which are invalidated and that change has been updated
342  * in the PTs.
343  */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346 	spin_lock(&vm_bo->vm->invalidated_lock);
347 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 	spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350 
351 /**
352  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353  *
354  * @base: base structure for tracking BO usage in a VM
355  * @vm: vm to which bo is to be added
356  * @bo: amdgpu buffer object
357  *
358  * Initialize a bo_va_base structure and add it to the appropriate lists
359  *
360  */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 				   struct amdgpu_vm *vm,
363 				   struct amdgpu_bo *bo)
364 {
365 	base->vm = vm;
366 	base->bo = bo;
367 	base->next = NULL;
368 	INIT_LIST_HEAD(&base->vm_status);
369 
370 	if (!bo)
371 		return;
372 	base->next = bo->vm_bo;
373 	bo->vm_bo = base;
374 
375 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 		return;
377 
378 	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
379 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380 		amdgpu_vm_bo_relocated(base);
381 	else
382 		amdgpu_vm_bo_idle(base);
383 
384 	if (bo->preferred_domains &
385 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386 		return;
387 
388 	/*
389 	 * we checked all the prerequisites, but it looks like this per vm bo
390 	 * is currently evicted. add the bo to the evicted list to make sure it
391 	 * is validated on next vm use to avoid fault.
392 	 * */
393 	amdgpu_vm_bo_evicted(base);
394 }
395 
396 /**
397  * amdgpu_vm_pt_parent - get the parent page directory
398  *
399  * @pt: child page table
400  *
401  * Helper to get the parent entry for the child page table. NULL if we are at
402  * the root page directory.
403  */
404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405 {
406 	struct amdgpu_bo *parent = pt->bo->parent;
407 
408 	if (!parent)
409 		return NULL;
410 
411 	return parent->vm_bo;
412 }
413 
414 /*
415  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416  */
417 struct amdgpu_vm_pt_cursor {
418 	uint64_t pfn;
419 	struct amdgpu_vm_bo_base *parent;
420 	struct amdgpu_vm_bo_base *entry;
421 	unsigned level;
422 };
423 
424 /**
425  * amdgpu_vm_pt_start - start PD/PT walk
426  *
427  * @adev: amdgpu_device pointer
428  * @vm: amdgpu_vm structure
429  * @start: start address of the walk
430  * @cursor: state to initialize
431  *
432  * Initialize a amdgpu_vm_pt_cursor to start a walk.
433  */
434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435 			       struct amdgpu_vm *vm, uint64_t start,
436 			       struct amdgpu_vm_pt_cursor *cursor)
437 {
438 	cursor->pfn = start;
439 	cursor->parent = NULL;
440 	cursor->entry = &vm->root;
441 	cursor->level = adev->vm_manager.root_level;
442 }
443 
444 /**
445  * amdgpu_vm_pt_descendant - go to child node
446  *
447  * @adev: amdgpu_device pointer
448  * @cursor: current state
449  *
450  * Walk to the child node of the current node.
451  * Returns:
452  * True if the walk was possible, false otherwise.
453  */
454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455 				    struct amdgpu_vm_pt_cursor *cursor)
456 {
457 	unsigned mask, shift, idx;
458 
459 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460 	    !cursor->entry->bo)
461 		return false;
462 
463 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
464 	shift = amdgpu_vm_level_shift(adev, cursor->level);
465 
466 	++cursor->level;
467 	idx = (cursor->pfn >> shift) & mask;
468 	cursor->parent = cursor->entry;
469 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470 	return true;
471 }
472 
473 /**
474  * amdgpu_vm_pt_sibling - go to sibling node
475  *
476  * @adev: amdgpu_device pointer
477  * @cursor: current state
478  *
479  * Walk to the sibling node of the current node.
480  * Returns:
481  * True if the walk was possible, false otherwise.
482  */
483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484 				 struct amdgpu_vm_pt_cursor *cursor)
485 {
486 	unsigned shift, num_entries;
487 
488 	/* Root doesn't have a sibling */
489 	if (!cursor->parent)
490 		return false;
491 
492 	/* Go to our parents and see if we got a sibling */
493 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495 
496 	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497 		return false;
498 
499 	cursor->pfn += 1ULL << shift;
500 	cursor->pfn &= ~((1ULL << shift) - 1);
501 	++cursor->entry;
502 	return true;
503 }
504 
505 /**
506  * amdgpu_vm_pt_ancestor - go to parent node
507  *
508  * @cursor: current state
509  *
510  * Walk to the parent node of the current node.
511  * Returns:
512  * True if the walk was possible, false otherwise.
513  */
514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515 {
516 	if (!cursor->parent)
517 		return false;
518 
519 	--cursor->level;
520 	cursor->entry = cursor->parent;
521 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522 	return true;
523 }
524 
525 /**
526  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527  *
528  * @adev: amdgpu_device pointer
529  * @cursor: current state
530  *
531  * Walk the PD/PT tree to the next node.
532  */
533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534 			      struct amdgpu_vm_pt_cursor *cursor)
535 {
536 	/* First try a newborn child */
537 	if (amdgpu_vm_pt_descendant(adev, cursor))
538 		return;
539 
540 	/* If that didn't worked try to find a sibling */
541 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542 		/* No sibling, go to our parents and grandparents */
543 		if (!amdgpu_vm_pt_ancestor(cursor)) {
544 			cursor->pfn = ~0ll;
545 			return;
546 		}
547 	}
548 }
549 
550 /**
551  * amdgpu_vm_pt_first_dfs - start a deep first search
552  *
553  * @adev: amdgpu_device structure
554  * @vm: amdgpu_vm structure
555  * @start: optional cursor to start with
556  * @cursor: state to initialize
557  *
558  * Starts a deep first traversal of the PD/PT tree.
559  */
560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561 				   struct amdgpu_vm *vm,
562 				   struct amdgpu_vm_pt_cursor *start,
563 				   struct amdgpu_vm_pt_cursor *cursor)
564 {
565 	if (start)
566 		*cursor = *start;
567 	else
568 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
569 	while (amdgpu_vm_pt_descendant(adev, cursor));
570 }
571 
572 /**
573  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574  *
575  * @start: starting point for the search
576  * @entry: current entry
577  *
578  * Returns:
579  * True when the search should continue, false otherwise.
580  */
581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582 				      struct amdgpu_vm_bo_base *entry)
583 {
584 	return entry && (!start || entry != start->entry);
585 }
586 
587 /**
588  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589  *
590  * @adev: amdgpu_device structure
591  * @cursor: current state
592  *
593  * Move the cursor to the next node in a deep first search.
594  */
595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596 				  struct amdgpu_vm_pt_cursor *cursor)
597 {
598 	if (!cursor->entry)
599 		return;
600 
601 	if (!cursor->parent)
602 		cursor->entry = NULL;
603 	else if (amdgpu_vm_pt_sibling(adev, cursor))
604 		while (amdgpu_vm_pt_descendant(adev, cursor));
605 	else
606 		amdgpu_vm_pt_ancestor(cursor);
607 }
608 
609 /*
610  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611  */
612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
613 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
614 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
616 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617 
618 /**
619  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620  *
621  * @vm: vm providing the BOs
622  * @validated: head of validation list
623  * @entry: entry to add
624  *
625  * Add the page directory to the list of BOs to
626  * validate for command submission.
627  */
628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629 			 struct list_head *validated,
630 			 struct amdgpu_bo_list_entry *entry)
631 {
632 	entry->priority = 0;
633 	entry->tv.bo = &vm->root.bo->tbo;
634 	/* Two for VM updates, one for TTM and one for the CS job */
635 	entry->tv.num_shared = 4;
636 	entry->user_pages = NULL;
637 	list_add(&entry->tv.head, validated);
638 }
639 
640 /**
641  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
642  *
643  * @adev: amdgpu device pointer
644  * @vm: vm providing the BOs
645  *
646  * Move all BOs to the end of LRU and remember their positions to put them
647  * together.
648  */
649 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
650 				struct amdgpu_vm *vm)
651 {
652 	spin_lock(&adev->mman.bdev.lru_lock);
653 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
654 	spin_unlock(&adev->mman.bdev.lru_lock);
655 }
656 
657 /**
658  * amdgpu_vm_validate_pt_bos - validate the page table BOs
659  *
660  * @adev: amdgpu device pointer
661  * @vm: vm providing the BOs
662  * @validate: callback to do the validation
663  * @param: parameter for the validation callback
664  *
665  * Validate the page table BOs on command submission if neccessary.
666  *
667  * Returns:
668  * Validation result.
669  */
670 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
671 			      int (*validate)(void *p, struct amdgpu_bo *bo),
672 			      void *param)
673 {
674 	struct amdgpu_vm_bo_base *bo_base, *tmp;
675 	int r;
676 
677 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
678 		struct amdgpu_bo *bo = bo_base->bo;
679 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
680 
681 		r = validate(param, bo);
682 		if (r)
683 			return r;
684 		if (shadow) {
685 			r = validate(param, shadow);
686 			if (r)
687 				return r;
688 		}
689 
690 		if (bo->tbo.type != ttm_bo_type_kernel) {
691 			amdgpu_vm_bo_moved(bo_base);
692 		} else {
693 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
694 			amdgpu_vm_bo_relocated(bo_base);
695 		}
696 	}
697 
698 	amdgpu_vm_eviction_lock(vm);
699 	vm->evicting = false;
700 	amdgpu_vm_eviction_unlock(vm);
701 
702 	return 0;
703 }
704 
705 /**
706  * amdgpu_vm_ready - check VM is ready for updates
707  *
708  * @vm: VM to check
709  *
710  * Check if all VM PDs/PTs are ready for updates
711  *
712  * Returns:
713  * True if eviction list is empty.
714  */
715 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
716 {
717 	return list_empty(&vm->evicted);
718 }
719 
720 /**
721  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
722  *
723  * @adev: amdgpu_device pointer
724  * @vm: VM to clear BO from
725  * @vmbo: BO to clear
726  * @immediate: use an immediate update
727  *
728  * Root PD needs to be reserved when calling this.
729  *
730  * Returns:
731  * 0 on success, errno otherwise.
732  */
733 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
734 			      struct amdgpu_vm *vm,
735 			      struct amdgpu_bo_vm *vmbo,
736 			      bool immediate)
737 {
738 	struct ttm_operation_ctx ctx = { true, false };
739 	unsigned level = adev->vm_manager.root_level;
740 	struct amdgpu_vm_update_params params;
741 	struct amdgpu_bo *ancestor = &vmbo->bo;
742 	struct amdgpu_bo *bo = &vmbo->bo;
743 	unsigned entries, ats_entries;
744 	uint64_t addr;
745 	int r, idx;
746 
747 	/* Figure out our place in the hierarchy */
748 	if (ancestor->parent) {
749 		++level;
750 		while (ancestor->parent->parent) {
751 			++level;
752 			ancestor = ancestor->parent;
753 		}
754 	}
755 
756 	entries = amdgpu_bo_size(bo) / 8;
757 	if (!vm->pte_support_ats) {
758 		ats_entries = 0;
759 
760 	} else if (!bo->parent) {
761 		ats_entries = amdgpu_vm_num_ats_entries(adev);
762 		ats_entries = min(ats_entries, entries);
763 		entries -= ats_entries;
764 
765 	} else {
766 		struct amdgpu_vm_bo_base *pt;
767 
768 		pt = ancestor->vm_bo;
769 		ats_entries = amdgpu_vm_num_ats_entries(adev);
770 		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
771 			ats_entries = 0;
772 		} else {
773 			ats_entries = entries;
774 			entries = 0;
775 		}
776 	}
777 
778 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
779 	if (r)
780 		return r;
781 
782 	if (vmbo->shadow) {
783 		struct amdgpu_bo *shadow = vmbo->shadow;
784 
785 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
786 		if (r)
787 			return r;
788 	}
789 
790 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
791 		return -ENODEV;
792 
793 	r = vm->update_funcs->map_table(vmbo);
794 	if (r)
795 		goto exit;
796 
797 	memset(&params, 0, sizeof(params));
798 	params.adev = adev;
799 	params.vm = vm;
800 	params.immediate = immediate;
801 
802 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
803 	if (r)
804 		goto exit;
805 
806 	addr = 0;
807 	if (ats_entries) {
808 		uint64_t value = 0, flags;
809 
810 		flags = AMDGPU_PTE_DEFAULT_ATC;
811 		if (level != AMDGPU_VM_PTB) {
812 			/* Handle leaf PDEs as PTEs */
813 			flags |= AMDGPU_PDE_PTE;
814 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
815 		}
816 
817 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
818 					     value, flags);
819 		if (r)
820 			goto exit;
821 
822 		addr += ats_entries * 8;
823 	}
824 
825 	if (entries) {
826 		uint64_t value = 0, flags = 0;
827 
828 		if (adev->asic_type >= CHIP_VEGA10) {
829 			if (level != AMDGPU_VM_PTB) {
830 				/* Handle leaf PDEs as PTEs */
831 				flags |= AMDGPU_PDE_PTE;
832 				amdgpu_gmc_get_vm_pde(adev, level,
833 						      &value, &flags);
834 			} else {
835 				/* Workaround for fault priority problem on GMC9 */
836 				flags = AMDGPU_PTE_EXECUTABLE;
837 			}
838 		}
839 
840 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
841 					     value, flags);
842 		if (r)
843 			goto exit;
844 	}
845 
846 	r = vm->update_funcs->commit(&params, NULL);
847 exit:
848 	drm_dev_exit(idx);
849 	return r;
850 }
851 
852 /**
853  * amdgpu_vm_pt_create - create bo for PD/PT
854  *
855  * @adev: amdgpu_device pointer
856  * @vm: requesting vm
857  * @level: the page table level
858  * @immediate: use a immediate update
859  * @vmbo: pointer to the buffer object pointer
860  */
861 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
862 			       struct amdgpu_vm *vm,
863 			       int level, bool immediate,
864 			       struct amdgpu_bo_vm **vmbo)
865 {
866 	struct amdgpu_bo_param bp;
867 	struct amdgpu_bo *bo;
868 	struct dma_resv *resv;
869 	unsigned int num_entries;
870 	int r;
871 
872 	memset(&bp, 0, sizeof(bp));
873 
874 	bp.size = amdgpu_vm_bo_size(adev, level);
875 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
876 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
877 	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
878 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
879 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
880 
881 	if (level < AMDGPU_VM_PTB)
882 		num_entries = amdgpu_vm_num_entries(adev, level);
883 	else
884 		num_entries = 0;
885 
886 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
887 
888 	if (vm->use_cpu_for_update)
889 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
890 
891 	bp.type = ttm_bo_type_kernel;
892 	bp.no_wait_gpu = immediate;
893 	if (vm->root.bo)
894 		bp.resv = vm->root.bo->tbo.base.resv;
895 
896 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
897 	if (r)
898 		return r;
899 
900 	bo = &(*vmbo)->bo;
901 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
902 		(*vmbo)->shadow = NULL;
903 		return 0;
904 	}
905 
906 	if (!bp.resv)
907 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
908 				      NULL));
909 	resv = bp.resv;
910 	memset(&bp, 0, sizeof(bp));
911 	bp.size = amdgpu_vm_bo_size(adev, level);
912 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
913 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
914 	bp.type = ttm_bo_type_kernel;
915 	bp.resv = bo->tbo.base.resv;
916 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
917 
918 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
919 
920 	if (!resv)
921 		dma_resv_unlock(bo->tbo.base.resv);
922 
923 	if (r) {
924 		amdgpu_bo_unref(&bo);
925 		return r;
926 	}
927 
928 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
929 	amdgpu_bo_add_to_shadow_list(*vmbo);
930 
931 	return 0;
932 }
933 
934 /**
935  * amdgpu_vm_alloc_pts - Allocate a specific page table
936  *
937  * @adev: amdgpu_device pointer
938  * @vm: VM to allocate page tables for
939  * @cursor: Which page table to allocate
940  * @immediate: use an immediate update
941  *
942  * Make sure a specific page table or directory is allocated.
943  *
944  * Returns:
945  * 1 if page table needed to be allocated, 0 if page table was already
946  * allocated, negative errno if an error occurred.
947  */
948 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
949 			       struct amdgpu_vm *vm,
950 			       struct amdgpu_vm_pt_cursor *cursor,
951 			       bool immediate)
952 {
953 	struct amdgpu_vm_bo_base *entry = cursor->entry;
954 	struct amdgpu_bo *pt_bo;
955 	struct amdgpu_bo_vm *pt;
956 	int r;
957 
958 	if (entry->bo)
959 		return 0;
960 
961 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
962 	if (r)
963 		return r;
964 
965 	/* Keep a reference to the root directory to avoid
966 	 * freeing them up in the wrong order.
967 	 */
968 	pt_bo = &pt->bo;
969 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
970 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
971 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
972 	if (r)
973 		goto error_free_pt;
974 
975 	return 0;
976 
977 error_free_pt:
978 	amdgpu_bo_unref(&pt->shadow);
979 	amdgpu_bo_unref(&pt_bo);
980 	return r;
981 }
982 
983 /**
984  * amdgpu_vm_free_table - fre one PD/PT
985  *
986  * @entry: PDE to free
987  */
988 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
989 {
990 	struct amdgpu_bo *shadow;
991 
992 	if (!entry->bo)
993 		return;
994 
995 	shadow = amdgpu_bo_shadowed(entry->bo);
996 	if (shadow) {
997 		ttm_bo_set_bulk_move(&shadow->tbo, NULL);
998 		amdgpu_bo_unref(&shadow);
999 	}
1000 
1001 	ttm_bo_set_bulk_move(&entry->bo->tbo, NULL);
1002 	entry->bo->vm_bo = NULL;
1003 	list_del(&entry->vm_status);
1004 	amdgpu_bo_unref(&entry->bo);
1005 }
1006 
1007 /**
1008  * amdgpu_vm_free_pts - free PD/PT levels
1009  *
1010  * @adev: amdgpu device structure
1011  * @vm: amdgpu vm structure
1012  * @start: optional cursor where to start freeing PDs/PTs
1013  *
1014  * Free the page directory or page table level and all sub levels.
1015  */
1016 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1017 			       struct amdgpu_vm *vm,
1018 			       struct amdgpu_vm_pt_cursor *start)
1019 {
1020 	struct amdgpu_vm_pt_cursor cursor;
1021 	struct amdgpu_vm_bo_base *entry;
1022 
1023 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1024 		amdgpu_vm_free_table(entry);
1025 
1026 	if (start)
1027 		amdgpu_vm_free_table(start->entry);
1028 }
1029 
1030 /**
1031  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1032  *
1033  * @adev: amdgpu_device pointer
1034  */
1035 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1036 {
1037 	const struct amdgpu_ip_block *ip_block;
1038 	bool has_compute_vm_bug;
1039 	struct amdgpu_ring *ring;
1040 	int i;
1041 
1042 	has_compute_vm_bug = false;
1043 
1044 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1045 	if (ip_block) {
1046 		/* Compute has a VM bug for GFX version < 7.
1047 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1048 		if (ip_block->version->major <= 7)
1049 			has_compute_vm_bug = true;
1050 		else if (ip_block->version->major == 8)
1051 			if (adev->gfx.mec_fw_version < 673)
1052 				has_compute_vm_bug = true;
1053 	}
1054 
1055 	for (i = 0; i < adev->num_rings; i++) {
1056 		ring = adev->rings[i];
1057 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1058 			/* only compute rings */
1059 			ring->has_compute_vm_bug = has_compute_vm_bug;
1060 		else
1061 			ring->has_compute_vm_bug = false;
1062 	}
1063 }
1064 
1065 /**
1066  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1067  *
1068  * @ring: ring on which the job will be submitted
1069  * @job: job to submit
1070  *
1071  * Returns:
1072  * True if sync is needed.
1073  */
1074 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1075 				  struct amdgpu_job *job)
1076 {
1077 	struct amdgpu_device *adev = ring->adev;
1078 	unsigned vmhub = ring->funcs->vmhub;
1079 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1080 	struct amdgpu_vmid *id;
1081 	bool gds_switch_needed;
1082 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1083 
1084 	if (job->vmid == 0)
1085 		return false;
1086 	id = &id_mgr->ids[job->vmid];
1087 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1088 		id->gds_base != job->gds_base ||
1089 		id->gds_size != job->gds_size ||
1090 		id->gws_base != job->gws_base ||
1091 		id->gws_size != job->gws_size ||
1092 		id->oa_base != job->oa_base ||
1093 		id->oa_size != job->oa_size);
1094 
1095 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1096 		return true;
1097 
1098 	return vm_flush_needed || gds_switch_needed;
1099 }
1100 
1101 /**
1102  * amdgpu_vm_flush - hardware flush the vm
1103  *
1104  * @ring: ring to use for flush
1105  * @job:  related job
1106  * @need_pipe_sync: is pipe sync needed
1107  *
1108  * Emit a VM flush when it is necessary.
1109  *
1110  * Returns:
1111  * 0 on success, errno otherwise.
1112  */
1113 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1114 		    bool need_pipe_sync)
1115 {
1116 	struct amdgpu_device *adev = ring->adev;
1117 	unsigned vmhub = ring->funcs->vmhub;
1118 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1119 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1120 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1121 		id->gds_base != job->gds_base ||
1122 		id->gds_size != job->gds_size ||
1123 		id->gws_base != job->gws_base ||
1124 		id->gws_size != job->gws_size ||
1125 		id->oa_base != job->oa_base ||
1126 		id->oa_size != job->oa_size);
1127 	bool vm_flush_needed = job->vm_needs_flush;
1128 	struct dma_fence *fence = NULL;
1129 	bool pasid_mapping_needed = false;
1130 	unsigned patch_offset = 0;
1131 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1132 	int r;
1133 
1134 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1135 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1136 
1137 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1138 		gds_switch_needed = true;
1139 		vm_flush_needed = true;
1140 		pasid_mapping_needed = true;
1141 	}
1142 
1143 	mutex_lock(&id_mgr->lock);
1144 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1145 	    !dma_fence_is_signaled(id->pasid_mapping))
1146 		pasid_mapping_needed = true;
1147 	mutex_unlock(&id_mgr->lock);
1148 
1149 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1150 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1151 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1152 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1153 		ring->funcs->emit_wreg;
1154 
1155 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1156 		return 0;
1157 
1158 	if (ring->funcs->init_cond_exec)
1159 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1160 
1161 	if (need_pipe_sync)
1162 		amdgpu_ring_emit_pipeline_sync(ring);
1163 
1164 	if (vm_flush_needed) {
1165 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1166 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1167 	}
1168 
1169 	if (pasid_mapping_needed)
1170 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1171 
1172 	if (vm_flush_needed || pasid_mapping_needed) {
1173 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1174 		if (r)
1175 			return r;
1176 	}
1177 
1178 	if (vm_flush_needed) {
1179 		mutex_lock(&id_mgr->lock);
1180 		dma_fence_put(id->last_flush);
1181 		id->last_flush = dma_fence_get(fence);
1182 		id->current_gpu_reset_count =
1183 			atomic_read(&adev->gpu_reset_counter);
1184 		mutex_unlock(&id_mgr->lock);
1185 	}
1186 
1187 	if (pasid_mapping_needed) {
1188 		mutex_lock(&id_mgr->lock);
1189 		id->pasid = job->pasid;
1190 		dma_fence_put(id->pasid_mapping);
1191 		id->pasid_mapping = dma_fence_get(fence);
1192 		mutex_unlock(&id_mgr->lock);
1193 	}
1194 	dma_fence_put(fence);
1195 
1196 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1197 		id->gds_base = job->gds_base;
1198 		id->gds_size = job->gds_size;
1199 		id->gws_base = job->gws_base;
1200 		id->gws_size = job->gws_size;
1201 		id->oa_base = job->oa_base;
1202 		id->oa_size = job->oa_size;
1203 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1204 					    job->gds_size, job->gws_base,
1205 					    job->gws_size, job->oa_base,
1206 					    job->oa_size);
1207 	}
1208 
1209 	if (ring->funcs->patch_cond_exec)
1210 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1211 
1212 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1213 	if (ring->funcs->emit_switch_buffer) {
1214 		amdgpu_ring_emit_switch_buffer(ring);
1215 		amdgpu_ring_emit_switch_buffer(ring);
1216 	}
1217 	return 0;
1218 }
1219 
1220 /**
1221  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1222  *
1223  * @vm: requested vm
1224  * @bo: requested buffer object
1225  *
1226  * Find @bo inside the requested vm.
1227  * Search inside the @bos vm list for the requested vm
1228  * Returns the found bo_va or NULL if none is found
1229  *
1230  * Object has to be reserved!
1231  *
1232  * Returns:
1233  * Found bo_va or NULL.
1234  */
1235 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1236 				       struct amdgpu_bo *bo)
1237 {
1238 	struct amdgpu_vm_bo_base *base;
1239 
1240 	for (base = bo->vm_bo; base; base = base->next) {
1241 		if (base->vm != vm)
1242 			continue;
1243 
1244 		return container_of(base, struct amdgpu_bo_va, base);
1245 	}
1246 	return NULL;
1247 }
1248 
1249 /**
1250  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1251  *
1252  * @pages_addr: optional DMA address to use for lookup
1253  * @addr: the unmapped addr
1254  *
1255  * Look up the physical address of the page that the pte resolves
1256  * to.
1257  *
1258  * Returns:
1259  * The pointer for the page table entry.
1260  */
1261 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1262 {
1263 	uint64_t result;
1264 
1265 	/* page table offset */
1266 	result = pages_addr[addr >> PAGE_SHIFT];
1267 
1268 	/* in case cpu page size != gpu page size*/
1269 	result |= addr & (~PAGE_MASK);
1270 
1271 	result &= 0xFFFFFFFFFFFFF000ULL;
1272 
1273 	return result;
1274 }
1275 
1276 /**
1277  * amdgpu_vm_update_pde - update a single level in the hierarchy
1278  *
1279  * @params: parameters for the update
1280  * @vm: requested vm
1281  * @entry: entry to update
1282  *
1283  * Makes sure the requested entry in parent is up to date.
1284  */
1285 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1286 				struct amdgpu_vm *vm,
1287 				struct amdgpu_vm_bo_base *entry)
1288 {
1289 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1290 	struct amdgpu_bo *bo = parent->bo, *pbo;
1291 	uint64_t pde, pt, flags;
1292 	unsigned level;
1293 
1294 	for (level = 0, pbo = bo->parent; pbo; ++level)
1295 		pbo = pbo->parent;
1296 
1297 	level += params->adev->vm_manager.root_level;
1298 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1299 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1300 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1301 					1, 0, flags);
1302 }
1303 
1304 /**
1305  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1306  *
1307  * @adev: amdgpu_device pointer
1308  * @vm: related vm
1309  *
1310  * Mark all PD level as invalid after an error.
1311  */
1312 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1313 				     struct amdgpu_vm *vm)
1314 {
1315 	struct amdgpu_vm_pt_cursor cursor;
1316 	struct amdgpu_vm_bo_base *entry;
1317 
1318 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1319 		if (entry->bo && !entry->moved)
1320 			amdgpu_vm_bo_relocated(entry);
1321 }
1322 
1323 /**
1324  * amdgpu_vm_update_pdes - make sure that all directories are valid
1325  *
1326  * @adev: amdgpu_device pointer
1327  * @vm: requested vm
1328  * @immediate: submit immediately to the paging queue
1329  *
1330  * Makes sure all directories are up to date.
1331  *
1332  * Returns:
1333  * 0 for success, error for failure.
1334  */
1335 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1336 			  struct amdgpu_vm *vm, bool immediate)
1337 {
1338 	struct amdgpu_vm_update_params params;
1339 	int r, idx;
1340 
1341 	if (list_empty(&vm->relocated))
1342 		return 0;
1343 
1344 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1345 		return -ENODEV;
1346 
1347 	memset(&params, 0, sizeof(params));
1348 	params.adev = adev;
1349 	params.vm = vm;
1350 	params.immediate = immediate;
1351 
1352 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1353 	if (r)
1354 		goto exit;
1355 
1356 	while (!list_empty(&vm->relocated)) {
1357 		struct amdgpu_vm_bo_base *entry;
1358 
1359 		entry = list_first_entry(&vm->relocated,
1360 					 struct amdgpu_vm_bo_base,
1361 					 vm_status);
1362 		amdgpu_vm_bo_idle(entry);
1363 
1364 		r = amdgpu_vm_update_pde(&params, vm, entry);
1365 		if (r)
1366 			goto error;
1367 	}
1368 
1369 	r = vm->update_funcs->commit(&params, &vm->last_update);
1370 	if (r)
1371 		goto error;
1372 	drm_dev_exit(idx);
1373 	return 0;
1374 
1375 error:
1376 	amdgpu_vm_invalidate_pds(adev, vm);
1377 exit:
1378 	drm_dev_exit(idx);
1379 	return r;
1380 }
1381 
1382 /*
1383  * amdgpu_vm_update_flags - figure out flags for PTE updates
1384  *
1385  * Make sure to set the right flags for the PTEs at the desired level.
1386  */
1387 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1388 				   struct amdgpu_bo_vm *pt, unsigned int level,
1389 				   uint64_t pe, uint64_t addr,
1390 				   unsigned int count, uint32_t incr,
1391 				   uint64_t flags)
1392 
1393 {
1394 	if (level != AMDGPU_VM_PTB) {
1395 		flags |= AMDGPU_PDE_PTE;
1396 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1397 
1398 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1399 		   !(flags & AMDGPU_PTE_VALID) &&
1400 		   !(flags & AMDGPU_PTE_PRT)) {
1401 
1402 		/* Workaround for fault priority problem on GMC9 */
1403 		flags |= AMDGPU_PTE_EXECUTABLE;
1404 	}
1405 
1406 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1407 					 flags);
1408 }
1409 
1410 /**
1411  * amdgpu_vm_fragment - get fragment for PTEs
1412  *
1413  * @params: see amdgpu_vm_update_params definition
1414  * @start: first PTE to handle
1415  * @end: last PTE to handle
1416  * @flags: hw mapping flags
1417  * @frag: resulting fragment size
1418  * @frag_end: end of this fragment
1419  *
1420  * Returns the first possible fragment for the start and end address.
1421  */
1422 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1423 			       uint64_t start, uint64_t end, uint64_t flags,
1424 			       unsigned int *frag, uint64_t *frag_end)
1425 {
1426 	/**
1427 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1428 	 * field in the PTE. When this field is set to a non-zero value, page
1429 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1430 	 * flags are considered valid for all PTEs within the fragment range
1431 	 * and corresponding mappings are assumed to be physically contiguous.
1432 	 *
1433 	 * The L1 TLB can store a single PTE for the whole fragment,
1434 	 * significantly increasing the space available for translation
1435 	 * caching. This leads to large improvements in throughput when the
1436 	 * TLB is under pressure.
1437 	 *
1438 	 * The L2 TLB distributes small and large fragments into two
1439 	 * asymmetric partitions. The large fragment cache is significantly
1440 	 * larger. Thus, we try to use large fragments wherever possible.
1441 	 * Userspace can support this by aligning virtual base address and
1442 	 * allocation size to the fragment size.
1443 	 *
1444 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1445 	 * is now directly feed with small/huge/giant pages from the walker.
1446 	 */
1447 	unsigned max_frag;
1448 
1449 	if (params->adev->asic_type < CHIP_VEGA10)
1450 		max_frag = params->adev->vm_manager.fragment_size;
1451 	else
1452 		max_frag = 31;
1453 
1454 	/* system pages are non continuously */
1455 	if (params->pages_addr) {
1456 		*frag = 0;
1457 		*frag_end = end;
1458 		return;
1459 	}
1460 
1461 	/* This intentionally wraps around if no bit is set */
1462 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1463 	if (*frag >= max_frag) {
1464 		*frag = max_frag;
1465 		*frag_end = end & ~((1ULL << max_frag) - 1);
1466 	} else {
1467 		*frag_end = start + (1 << *frag);
1468 	}
1469 }
1470 
1471 /**
1472  * amdgpu_vm_update_ptes - make sure that page tables are valid
1473  *
1474  * @params: see amdgpu_vm_update_params definition
1475  * @start: start of GPU address range
1476  * @end: end of GPU address range
1477  * @dst: destination address to map to, the next dst inside the function
1478  * @flags: mapping flags
1479  *
1480  * Update the page tables in the range @start - @end.
1481  *
1482  * Returns:
1483  * 0 for success, -EINVAL for failure.
1484  */
1485 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1486 				 uint64_t start, uint64_t end,
1487 				 uint64_t dst, uint64_t flags)
1488 {
1489 	struct amdgpu_device *adev = params->adev;
1490 	struct amdgpu_vm_pt_cursor cursor;
1491 	uint64_t frag_start = start, frag_end;
1492 	unsigned int frag;
1493 	int r;
1494 
1495 	/* figure out the initial fragment */
1496 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1497 
1498 	/* walk over the address space and update the PTs */
1499 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1500 	while (cursor.pfn < end) {
1501 		unsigned shift, parent_shift, mask;
1502 		uint64_t incr, entry_end, pe_start;
1503 		struct amdgpu_bo *pt;
1504 
1505 		if (!params->unlocked) {
1506 			/* make sure that the page tables covering the
1507 			 * address range are actually allocated
1508 			 */
1509 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1510 						&cursor, params->immediate);
1511 			if (r)
1512 				return r;
1513 		}
1514 
1515 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1516 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1517 		if (params->unlocked) {
1518 			/* Unlocked updates are only allowed on the leaves */
1519 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1520 				continue;
1521 		} else if (adev->asic_type < CHIP_VEGA10 &&
1522 			   (flags & AMDGPU_PTE_VALID)) {
1523 			/* No huge page support before GMC v9 */
1524 			if (cursor.level != AMDGPU_VM_PTB) {
1525 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1526 					return -ENOENT;
1527 				continue;
1528 			}
1529 		} else if (frag < shift) {
1530 			/* We can't use this level when the fragment size is
1531 			 * smaller than the address shift. Go to the next
1532 			 * child entry and try again.
1533 			 */
1534 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1535 				continue;
1536 		} else if (frag >= parent_shift) {
1537 			/* If the fragment size is even larger than the parent
1538 			 * shift we should go up one level and check it again.
1539 			 */
1540 			if (!amdgpu_vm_pt_ancestor(&cursor))
1541 				return -EINVAL;
1542 			continue;
1543 		}
1544 
1545 		pt = cursor.entry->bo;
1546 		if (!pt) {
1547 			/* We need all PDs and PTs for mapping something, */
1548 			if (flags & AMDGPU_PTE_VALID)
1549 				return -ENOENT;
1550 
1551 			/* but unmapping something can happen at a higher
1552 			 * level.
1553 			 */
1554 			if (!amdgpu_vm_pt_ancestor(&cursor))
1555 				return -EINVAL;
1556 
1557 			pt = cursor.entry->bo;
1558 			shift = parent_shift;
1559 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1560 				   1ULL << shift));
1561 		}
1562 
1563 		/* Looks good so far, calculate parameters for the update */
1564 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1565 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1566 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1567 		entry_end = ((uint64_t)mask + 1) << shift;
1568 		entry_end += cursor.pfn & ~(entry_end - 1);
1569 		entry_end = min(entry_end, end);
1570 
1571 		do {
1572 			struct amdgpu_vm *vm = params->vm;
1573 			uint64_t upd_end = min(entry_end, frag_end);
1574 			unsigned nptes = (upd_end - frag_start) >> shift;
1575 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1576 
1577 			/* This can happen when we set higher level PDs to
1578 			 * silent to stop fault floods.
1579 			 */
1580 			nptes = max(nptes, 1u);
1581 
1582 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1583 						    nptes, dst, incr, upd_flags,
1584 						    vm->task_info.pid,
1585 						    vm->immediate.fence_context);
1586 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1587 					       cursor.level, pe_start, dst,
1588 					       nptes, incr, upd_flags);
1589 
1590 			pe_start += nptes * 8;
1591 			dst += nptes * incr;
1592 
1593 			frag_start = upd_end;
1594 			if (frag_start >= frag_end) {
1595 				/* figure out the next fragment */
1596 				amdgpu_vm_fragment(params, frag_start, end,
1597 						   flags, &frag, &frag_end);
1598 				if (frag < shift)
1599 					break;
1600 			}
1601 		} while (frag_start < entry_end);
1602 
1603 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1604 			/* Free all child entries.
1605 			 * Update the tables with the flags and addresses and free up subsequent
1606 			 * tables in the case of huge pages or freed up areas.
1607 			 * This is the maximum you can free, because all other page tables are not
1608 			 * completely covered by the range and so potentially still in use.
1609 			 */
1610 			while (cursor.pfn < frag_start) {
1611 				/* Make sure previous mapping is freed */
1612 				if (cursor.entry->bo) {
1613 					params->table_freed = true;
1614 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1615 				}
1616 				amdgpu_vm_pt_next(adev, &cursor);
1617 			}
1618 
1619 		} else if (frag >= shift) {
1620 			/* or just move on to the next on the same level. */
1621 			amdgpu_vm_pt_next(adev, &cursor);
1622 		}
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /**
1629  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1630  *
1631  * @adev: amdgpu_device pointer of the VM
1632  * @bo_adev: amdgpu_device pointer of the mapped BO
1633  * @vm: requested vm
1634  * @immediate: immediate submission in a page fault
1635  * @unlocked: unlocked invalidation during MM callback
1636  * @resv: fences we need to sync to
1637  * @start: start of mapped range
1638  * @last: last mapped entry
1639  * @flags: flags for the entries
1640  * @offset: offset into nodes and pages_addr
1641  * @res: ttm_resource to map
1642  * @pages_addr: DMA addresses to use for mapping
1643  * @fence: optional resulting fence
1644  * @table_freed: return true if page table is freed
1645  *
1646  * Fill in the page table entries between @start and @last.
1647  *
1648  * Returns:
1649  * 0 for success, -EINVAL for failure.
1650  */
1651 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1652 				struct amdgpu_device *bo_adev,
1653 				struct amdgpu_vm *vm, bool immediate,
1654 				bool unlocked, struct dma_resv *resv,
1655 				uint64_t start, uint64_t last,
1656 				uint64_t flags, uint64_t offset,
1657 				struct ttm_resource *res,
1658 				dma_addr_t *pages_addr,
1659 				struct dma_fence **fence,
1660 				bool *table_freed)
1661 {
1662 	struct amdgpu_vm_update_params params;
1663 	struct amdgpu_res_cursor cursor;
1664 	enum amdgpu_sync_mode sync_mode;
1665 	int r, idx;
1666 
1667 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1668 		return -ENODEV;
1669 
1670 	memset(&params, 0, sizeof(params));
1671 	params.adev = adev;
1672 	params.vm = vm;
1673 	params.immediate = immediate;
1674 	params.pages_addr = pages_addr;
1675 	params.unlocked = unlocked;
1676 
1677 	/* Implicitly sync to command submissions in the same VM before
1678 	 * unmapping. Sync to moving fences before mapping.
1679 	 */
1680 	if (!(flags & AMDGPU_PTE_VALID))
1681 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1682 	else
1683 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1684 
1685 	amdgpu_vm_eviction_lock(vm);
1686 	if (vm->evicting) {
1687 		r = -EBUSY;
1688 		goto error_unlock;
1689 	}
1690 
1691 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1692 		struct dma_fence *tmp = dma_fence_get_stub();
1693 
1694 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1695 		swap(vm->last_unlocked, tmp);
1696 		dma_fence_put(tmp);
1697 	}
1698 
1699 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1700 	if (r)
1701 		goto error_unlock;
1702 
1703 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1704 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1705 	while (cursor.remaining) {
1706 		uint64_t tmp, num_entries, addr;
1707 
1708 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1709 		if (pages_addr) {
1710 			bool contiguous = true;
1711 
1712 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1713 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1714 				uint64_t count;
1715 
1716 				contiguous = pages_addr[pfn + 1] ==
1717 					pages_addr[pfn] + PAGE_SIZE;
1718 
1719 				tmp = num_entries /
1720 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1721 				for (count = 2; count < tmp; ++count) {
1722 					uint64_t idx = pfn + count;
1723 
1724 					if (contiguous != (pages_addr[idx] ==
1725 					    pages_addr[idx - 1] + PAGE_SIZE))
1726 						break;
1727 				}
1728 				num_entries = count *
1729 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1730 			}
1731 
1732 			if (!contiguous) {
1733 				addr = cursor.start;
1734 				params.pages_addr = pages_addr;
1735 			} else {
1736 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1737 				params.pages_addr = NULL;
1738 			}
1739 
1740 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1741 			addr = bo_adev->vm_manager.vram_base_offset +
1742 				cursor.start;
1743 		} else {
1744 			addr = 0;
1745 		}
1746 
1747 		tmp = start + num_entries;
1748 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1749 		if (r)
1750 			goto error_unlock;
1751 
1752 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1753 		start = tmp;
1754 	}
1755 
1756 	r = vm->update_funcs->commit(&params, fence);
1757 
1758 	if (table_freed)
1759 		*table_freed = *table_freed || params.table_freed;
1760 
1761 error_unlock:
1762 	amdgpu_vm_eviction_unlock(vm);
1763 	drm_dev_exit(idx);
1764 	return r;
1765 }
1766 
1767 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1768 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1769 {
1770 	struct amdgpu_bo_va *bo_va, *tmp;
1771 
1772 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1773 		if (!bo_va->base.bo)
1774 			continue;
1775 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1776 				gtt_mem, cpu_mem);
1777 	}
1778 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1779 		if (!bo_va->base.bo)
1780 			continue;
1781 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1782 				gtt_mem, cpu_mem);
1783 	}
1784 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1785 		if (!bo_va->base.bo)
1786 			continue;
1787 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1788 				gtt_mem, cpu_mem);
1789 	}
1790 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1791 		if (!bo_va->base.bo)
1792 			continue;
1793 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1794 				gtt_mem, cpu_mem);
1795 	}
1796 	spin_lock(&vm->invalidated_lock);
1797 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1798 		if (!bo_va->base.bo)
1799 			continue;
1800 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1801 				gtt_mem, cpu_mem);
1802 	}
1803 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1804 		if (!bo_va->base.bo)
1805 			continue;
1806 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1807 				gtt_mem, cpu_mem);
1808 	}
1809 	spin_unlock(&vm->invalidated_lock);
1810 }
1811 /**
1812  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1813  *
1814  * @adev: amdgpu_device pointer
1815  * @bo_va: requested BO and VM object
1816  * @clear: if true clear the entries
1817  * @table_freed: return true if page table is freed
1818  *
1819  * Fill in the page table entries for @bo_va.
1820  *
1821  * Returns:
1822  * 0 for success, -EINVAL for failure.
1823  */
1824 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1825 			bool clear, bool *table_freed)
1826 {
1827 	struct amdgpu_bo *bo = bo_va->base.bo;
1828 	struct amdgpu_vm *vm = bo_va->base.vm;
1829 	struct amdgpu_bo_va_mapping *mapping;
1830 	dma_addr_t *pages_addr = NULL;
1831 	struct ttm_resource *mem;
1832 	struct dma_fence **last_update;
1833 	struct dma_resv *resv;
1834 	uint64_t flags;
1835 	struct amdgpu_device *bo_adev = adev;
1836 	int r;
1837 
1838 	if (clear || !bo) {
1839 		mem = NULL;
1840 		resv = vm->root.bo->tbo.base.resv;
1841 	} else {
1842 		struct drm_gem_object *obj = &bo->tbo.base;
1843 
1844 		resv = bo->tbo.base.resv;
1845 		if (obj->import_attach && bo_va->is_xgmi) {
1846 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1847 			struct drm_gem_object *gobj = dma_buf->priv;
1848 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1849 
1850 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1851 				bo = gem_to_amdgpu_bo(gobj);
1852 		}
1853 		mem = bo->tbo.resource;
1854 		if (mem->mem_type == TTM_PL_TT ||
1855 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1856 			pages_addr = bo->tbo.ttm->dma_address;
1857 	}
1858 
1859 	if (bo) {
1860 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1861 
1862 		if (amdgpu_bo_encrypted(bo))
1863 			flags |= AMDGPU_PTE_TMZ;
1864 
1865 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1866 	} else {
1867 		flags = 0x0;
1868 	}
1869 
1870 	if (clear || (bo && bo->tbo.base.resv ==
1871 		      vm->root.bo->tbo.base.resv))
1872 		last_update = &vm->last_update;
1873 	else
1874 		last_update = &bo_va->last_pt_update;
1875 
1876 	if (!clear && bo_va->base.moved) {
1877 		bo_va->base.moved = false;
1878 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1879 
1880 	} else if (bo_va->cleared != clear) {
1881 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1882 	}
1883 
1884 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1885 		uint64_t update_flags = flags;
1886 
1887 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1888 		 * but in case of something, we filter the flags in first place
1889 		 */
1890 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1891 			update_flags &= ~AMDGPU_PTE_READABLE;
1892 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1893 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1894 
1895 		/* Apply ASIC specific mapping flags */
1896 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1897 
1898 		trace_amdgpu_vm_bo_update(mapping);
1899 
1900 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1901 						resv, mapping->start,
1902 						mapping->last, update_flags,
1903 						mapping->offset, mem,
1904 						pages_addr, last_update, table_freed);
1905 		if (r)
1906 			return r;
1907 	}
1908 
1909 	/* If the BO is not in its preferred location add it back to
1910 	 * the evicted list so that it gets validated again on the
1911 	 * next command submission.
1912 	 */
1913 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1914 		uint32_t mem_type = bo->tbo.resource->mem_type;
1915 
1916 		if (!(bo->preferred_domains &
1917 		      amdgpu_mem_type_to_domain(mem_type)))
1918 			amdgpu_vm_bo_evicted(&bo_va->base);
1919 		else
1920 			amdgpu_vm_bo_idle(&bo_va->base);
1921 	} else {
1922 		amdgpu_vm_bo_done(&bo_va->base);
1923 	}
1924 
1925 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1926 	bo_va->cleared = clear;
1927 
1928 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1929 		list_for_each_entry(mapping, &bo_va->valids, list)
1930 			trace_amdgpu_vm_bo_mapping(mapping);
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 /**
1937  * amdgpu_vm_update_prt_state - update the global PRT state
1938  *
1939  * @adev: amdgpu_device pointer
1940  */
1941 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1942 {
1943 	unsigned long flags;
1944 	bool enable;
1945 
1946 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1947 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1948 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1949 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1950 }
1951 
1952 /**
1953  * amdgpu_vm_prt_get - add a PRT user
1954  *
1955  * @adev: amdgpu_device pointer
1956  */
1957 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1958 {
1959 	if (!adev->gmc.gmc_funcs->set_prt)
1960 		return;
1961 
1962 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1963 		amdgpu_vm_update_prt_state(adev);
1964 }
1965 
1966 /**
1967  * amdgpu_vm_prt_put - drop a PRT user
1968  *
1969  * @adev: amdgpu_device pointer
1970  */
1971 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1972 {
1973 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1974 		amdgpu_vm_update_prt_state(adev);
1975 }
1976 
1977 /**
1978  * amdgpu_vm_prt_cb - callback for updating the PRT status
1979  *
1980  * @fence: fence for the callback
1981  * @_cb: the callback function
1982  */
1983 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1984 {
1985 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1986 
1987 	amdgpu_vm_prt_put(cb->adev);
1988 	kfree(cb);
1989 }
1990 
1991 /**
1992  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1993  *
1994  * @adev: amdgpu_device pointer
1995  * @fence: fence for the callback
1996  */
1997 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1998 				 struct dma_fence *fence)
1999 {
2000 	struct amdgpu_prt_cb *cb;
2001 
2002 	if (!adev->gmc.gmc_funcs->set_prt)
2003 		return;
2004 
2005 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2006 	if (!cb) {
2007 		/* Last resort when we are OOM */
2008 		if (fence)
2009 			dma_fence_wait(fence, false);
2010 
2011 		amdgpu_vm_prt_put(adev);
2012 	} else {
2013 		cb->adev = adev;
2014 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2015 						     amdgpu_vm_prt_cb))
2016 			amdgpu_vm_prt_cb(fence, &cb->cb);
2017 	}
2018 }
2019 
2020 /**
2021  * amdgpu_vm_free_mapping - free a mapping
2022  *
2023  * @adev: amdgpu_device pointer
2024  * @vm: requested vm
2025  * @mapping: mapping to be freed
2026  * @fence: fence of the unmap operation
2027  *
2028  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2029  */
2030 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2031 				   struct amdgpu_vm *vm,
2032 				   struct amdgpu_bo_va_mapping *mapping,
2033 				   struct dma_fence *fence)
2034 {
2035 	if (mapping->flags & AMDGPU_PTE_PRT)
2036 		amdgpu_vm_add_prt_cb(adev, fence);
2037 	kfree(mapping);
2038 }
2039 
2040 /**
2041  * amdgpu_vm_prt_fini - finish all prt mappings
2042  *
2043  * @adev: amdgpu_device pointer
2044  * @vm: requested vm
2045  *
2046  * Register a cleanup callback to disable PRT support after VM dies.
2047  */
2048 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2049 {
2050 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2051 	struct dma_resv_iter cursor;
2052 	struct dma_fence *fence;
2053 
2054 	dma_resv_for_each_fence(&cursor, resv, true, fence) {
2055 		/* Add a callback for each fence in the reservation object */
2056 		amdgpu_vm_prt_get(adev);
2057 		amdgpu_vm_add_prt_cb(adev, fence);
2058 	}
2059 }
2060 
2061 /**
2062  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2063  *
2064  * @adev: amdgpu_device pointer
2065  * @vm: requested vm
2066  * @fence: optional resulting fence (unchanged if no work needed to be done
2067  * or if an error occurred)
2068  *
2069  * Make sure all freed BOs are cleared in the PT.
2070  * PTs have to be reserved and mutex must be locked!
2071  *
2072  * Returns:
2073  * 0 for success.
2074  *
2075  */
2076 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2077 			  struct amdgpu_vm *vm,
2078 			  struct dma_fence **fence)
2079 {
2080 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2081 	struct amdgpu_bo_va_mapping *mapping;
2082 	uint64_t init_pte_value = 0;
2083 	struct dma_fence *f = NULL;
2084 	int r;
2085 
2086 	while (!list_empty(&vm->freed)) {
2087 		mapping = list_first_entry(&vm->freed,
2088 			struct amdgpu_bo_va_mapping, list);
2089 		list_del(&mapping->list);
2090 
2091 		if (vm->pte_support_ats &&
2092 		    mapping->start < AMDGPU_GMC_HOLE_START)
2093 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2094 
2095 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2096 						resv, mapping->start,
2097 						mapping->last, init_pte_value,
2098 						0, NULL, NULL, &f, NULL);
2099 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2100 		if (r) {
2101 			dma_fence_put(f);
2102 			return r;
2103 		}
2104 	}
2105 
2106 	if (fence && f) {
2107 		dma_fence_put(*fence);
2108 		*fence = f;
2109 	} else {
2110 		dma_fence_put(f);
2111 	}
2112 
2113 	return 0;
2114 
2115 }
2116 
2117 /**
2118  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2119  *
2120  * @adev: amdgpu_device pointer
2121  * @vm: requested vm
2122  *
2123  * Make sure all BOs which are moved are updated in the PTs.
2124  *
2125  * Returns:
2126  * 0 for success.
2127  *
2128  * PTs have to be reserved!
2129  */
2130 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2131 			   struct amdgpu_vm *vm)
2132 {
2133 	struct amdgpu_bo_va *bo_va, *tmp;
2134 	struct dma_resv *resv;
2135 	bool clear;
2136 	int r;
2137 
2138 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2139 		/* Per VM BOs never need to bo cleared in the page tables */
2140 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2141 		if (r)
2142 			return r;
2143 	}
2144 
2145 	spin_lock(&vm->invalidated_lock);
2146 	while (!list_empty(&vm->invalidated)) {
2147 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2148 					 base.vm_status);
2149 		resv = bo_va->base.bo->tbo.base.resv;
2150 		spin_unlock(&vm->invalidated_lock);
2151 
2152 		/* Try to reserve the BO to avoid clearing its ptes */
2153 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2154 			clear = false;
2155 		/* Somebody else is using the BO right now */
2156 		else
2157 			clear = true;
2158 
2159 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2160 		if (r)
2161 			return r;
2162 
2163 		if (!clear)
2164 			dma_resv_unlock(resv);
2165 		spin_lock(&vm->invalidated_lock);
2166 	}
2167 	spin_unlock(&vm->invalidated_lock);
2168 
2169 	return 0;
2170 }
2171 
2172 /**
2173  * amdgpu_vm_bo_add - add a bo to a specific vm
2174  *
2175  * @adev: amdgpu_device pointer
2176  * @vm: requested vm
2177  * @bo: amdgpu buffer object
2178  *
2179  * Add @bo into the requested vm.
2180  * Add @bo to the list of bos associated with the vm
2181  *
2182  * Returns:
2183  * Newly added bo_va or NULL for failure
2184  *
2185  * Object has to be reserved!
2186  */
2187 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2188 				      struct amdgpu_vm *vm,
2189 				      struct amdgpu_bo *bo)
2190 {
2191 	struct amdgpu_bo_va *bo_va;
2192 
2193 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2194 	if (bo_va == NULL) {
2195 		return NULL;
2196 	}
2197 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2198 
2199 	bo_va->ref_count = 1;
2200 	INIT_LIST_HEAD(&bo_va->valids);
2201 	INIT_LIST_HEAD(&bo_va->invalids);
2202 
2203 	if (!bo)
2204 		return bo_va;
2205 
2206 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2207 		bo_va->is_xgmi = true;
2208 		/* Power up XGMI if it can be potentially used */
2209 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2210 	}
2211 
2212 	return bo_va;
2213 }
2214 
2215 
2216 /**
2217  * amdgpu_vm_bo_insert_map - insert a new mapping
2218  *
2219  * @adev: amdgpu_device pointer
2220  * @bo_va: bo_va to store the address
2221  * @mapping: the mapping to insert
2222  *
2223  * Insert a new mapping into all structures.
2224  */
2225 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2226 				    struct amdgpu_bo_va *bo_va,
2227 				    struct amdgpu_bo_va_mapping *mapping)
2228 {
2229 	struct amdgpu_vm *vm = bo_va->base.vm;
2230 	struct amdgpu_bo *bo = bo_va->base.bo;
2231 
2232 	mapping->bo_va = bo_va;
2233 	list_add(&mapping->list, &bo_va->invalids);
2234 	amdgpu_vm_it_insert(mapping, &vm->va);
2235 
2236 	if (mapping->flags & AMDGPU_PTE_PRT)
2237 		amdgpu_vm_prt_get(adev);
2238 
2239 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2240 	    !bo_va->base.moved) {
2241 		list_move(&bo_va->base.vm_status, &vm->moved);
2242 	}
2243 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2244 }
2245 
2246 /**
2247  * amdgpu_vm_bo_map - map bo inside a vm
2248  *
2249  * @adev: amdgpu_device pointer
2250  * @bo_va: bo_va to store the address
2251  * @saddr: where to map the BO
2252  * @offset: requested offset in the BO
2253  * @size: BO size in bytes
2254  * @flags: attributes of pages (read/write/valid/etc.)
2255  *
2256  * Add a mapping of the BO at the specefied addr into the VM.
2257  *
2258  * Returns:
2259  * 0 for success, error for failure.
2260  *
2261  * Object has to be reserved and unreserved outside!
2262  */
2263 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2264 		     struct amdgpu_bo_va *bo_va,
2265 		     uint64_t saddr, uint64_t offset,
2266 		     uint64_t size, uint64_t flags)
2267 {
2268 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2269 	struct amdgpu_bo *bo = bo_va->base.bo;
2270 	struct amdgpu_vm *vm = bo_va->base.vm;
2271 	uint64_t eaddr;
2272 
2273 	/* validate the parameters */
2274 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2275 	    size == 0 || size & ~PAGE_MASK)
2276 		return -EINVAL;
2277 
2278 	/* make sure object fit at this offset */
2279 	eaddr = saddr + size - 1;
2280 	if (saddr >= eaddr ||
2281 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2282 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2283 		return -EINVAL;
2284 
2285 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2286 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2287 
2288 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2289 	if (tmp) {
2290 		/* bo and tmp overlap, invalid addr */
2291 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2292 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2293 			tmp->start, tmp->last + 1);
2294 		return -EINVAL;
2295 	}
2296 
2297 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2298 	if (!mapping)
2299 		return -ENOMEM;
2300 
2301 	mapping->start = saddr;
2302 	mapping->last = eaddr;
2303 	mapping->offset = offset;
2304 	mapping->flags = flags;
2305 
2306 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2313  *
2314  * @adev: amdgpu_device pointer
2315  * @bo_va: bo_va to store the address
2316  * @saddr: where to map the BO
2317  * @offset: requested offset in the BO
2318  * @size: BO size in bytes
2319  * @flags: attributes of pages (read/write/valid/etc.)
2320  *
2321  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2322  * mappings as we do so.
2323  *
2324  * Returns:
2325  * 0 for success, error for failure.
2326  *
2327  * Object has to be reserved and unreserved outside!
2328  */
2329 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2330 			     struct amdgpu_bo_va *bo_va,
2331 			     uint64_t saddr, uint64_t offset,
2332 			     uint64_t size, uint64_t flags)
2333 {
2334 	struct amdgpu_bo_va_mapping *mapping;
2335 	struct amdgpu_bo *bo = bo_va->base.bo;
2336 	uint64_t eaddr;
2337 	int r;
2338 
2339 	/* validate the parameters */
2340 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2341 	    size == 0 || size & ~PAGE_MASK)
2342 		return -EINVAL;
2343 
2344 	/* make sure object fit at this offset */
2345 	eaddr = saddr + size - 1;
2346 	if (saddr >= eaddr ||
2347 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2348 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2349 		return -EINVAL;
2350 
2351 	/* Allocate all the needed memory */
2352 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2353 	if (!mapping)
2354 		return -ENOMEM;
2355 
2356 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2357 	if (r) {
2358 		kfree(mapping);
2359 		return r;
2360 	}
2361 
2362 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2363 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2364 
2365 	mapping->start = saddr;
2366 	mapping->last = eaddr;
2367 	mapping->offset = offset;
2368 	mapping->flags = flags;
2369 
2370 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2371 
2372 	return 0;
2373 }
2374 
2375 /**
2376  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2377  *
2378  * @adev: amdgpu_device pointer
2379  * @bo_va: bo_va to remove the address from
2380  * @saddr: where to the BO is mapped
2381  *
2382  * Remove a mapping of the BO at the specefied addr from the VM.
2383  *
2384  * Returns:
2385  * 0 for success, error for failure.
2386  *
2387  * Object has to be reserved and unreserved outside!
2388  */
2389 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2390 		       struct amdgpu_bo_va *bo_va,
2391 		       uint64_t saddr)
2392 {
2393 	struct amdgpu_bo_va_mapping *mapping;
2394 	struct amdgpu_vm *vm = bo_va->base.vm;
2395 	bool valid = true;
2396 
2397 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2398 
2399 	list_for_each_entry(mapping, &bo_va->valids, list) {
2400 		if (mapping->start == saddr)
2401 			break;
2402 	}
2403 
2404 	if (&mapping->list == &bo_va->valids) {
2405 		valid = false;
2406 
2407 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2408 			if (mapping->start == saddr)
2409 				break;
2410 		}
2411 
2412 		if (&mapping->list == &bo_va->invalids)
2413 			return -ENOENT;
2414 	}
2415 
2416 	list_del(&mapping->list);
2417 	amdgpu_vm_it_remove(mapping, &vm->va);
2418 	mapping->bo_va = NULL;
2419 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2420 
2421 	if (valid)
2422 		list_add(&mapping->list, &vm->freed);
2423 	else
2424 		amdgpu_vm_free_mapping(adev, vm, mapping,
2425 				       bo_va->last_pt_update);
2426 
2427 	return 0;
2428 }
2429 
2430 /**
2431  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2432  *
2433  * @adev: amdgpu_device pointer
2434  * @vm: VM structure to use
2435  * @saddr: start of the range
2436  * @size: size of the range
2437  *
2438  * Remove all mappings in a range, split them as appropriate.
2439  *
2440  * Returns:
2441  * 0 for success, error for failure.
2442  */
2443 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2444 				struct amdgpu_vm *vm,
2445 				uint64_t saddr, uint64_t size)
2446 {
2447 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2448 	LIST_HEAD(removed);
2449 	uint64_t eaddr;
2450 
2451 	eaddr = saddr + size - 1;
2452 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2453 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2454 
2455 	/* Allocate all the needed memory */
2456 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2457 	if (!before)
2458 		return -ENOMEM;
2459 	INIT_LIST_HEAD(&before->list);
2460 
2461 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2462 	if (!after) {
2463 		kfree(before);
2464 		return -ENOMEM;
2465 	}
2466 	INIT_LIST_HEAD(&after->list);
2467 
2468 	/* Now gather all removed mappings */
2469 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2470 	while (tmp) {
2471 		/* Remember mapping split at the start */
2472 		if (tmp->start < saddr) {
2473 			before->start = tmp->start;
2474 			before->last = saddr - 1;
2475 			before->offset = tmp->offset;
2476 			before->flags = tmp->flags;
2477 			before->bo_va = tmp->bo_va;
2478 			list_add(&before->list, &tmp->bo_va->invalids);
2479 		}
2480 
2481 		/* Remember mapping split at the end */
2482 		if (tmp->last > eaddr) {
2483 			after->start = eaddr + 1;
2484 			after->last = tmp->last;
2485 			after->offset = tmp->offset;
2486 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2487 			after->flags = tmp->flags;
2488 			after->bo_va = tmp->bo_va;
2489 			list_add(&after->list, &tmp->bo_va->invalids);
2490 		}
2491 
2492 		list_del(&tmp->list);
2493 		list_add(&tmp->list, &removed);
2494 
2495 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2496 	}
2497 
2498 	/* And free them up */
2499 	list_for_each_entry_safe(tmp, next, &removed, list) {
2500 		amdgpu_vm_it_remove(tmp, &vm->va);
2501 		list_del(&tmp->list);
2502 
2503 		if (tmp->start < saddr)
2504 		    tmp->start = saddr;
2505 		if (tmp->last > eaddr)
2506 		    tmp->last = eaddr;
2507 
2508 		tmp->bo_va = NULL;
2509 		list_add(&tmp->list, &vm->freed);
2510 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2511 	}
2512 
2513 	/* Insert partial mapping before the range */
2514 	if (!list_empty(&before->list)) {
2515 		amdgpu_vm_it_insert(before, &vm->va);
2516 		if (before->flags & AMDGPU_PTE_PRT)
2517 			amdgpu_vm_prt_get(adev);
2518 	} else {
2519 		kfree(before);
2520 	}
2521 
2522 	/* Insert partial mapping after the range */
2523 	if (!list_empty(&after->list)) {
2524 		amdgpu_vm_it_insert(after, &vm->va);
2525 		if (after->flags & AMDGPU_PTE_PRT)
2526 			amdgpu_vm_prt_get(adev);
2527 	} else {
2528 		kfree(after);
2529 	}
2530 
2531 	return 0;
2532 }
2533 
2534 /**
2535  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2536  *
2537  * @vm: the requested VM
2538  * @addr: the address
2539  *
2540  * Find a mapping by it's address.
2541  *
2542  * Returns:
2543  * The amdgpu_bo_va_mapping matching for addr or NULL
2544  *
2545  */
2546 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2547 							 uint64_t addr)
2548 {
2549 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2550 }
2551 
2552 /**
2553  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2554  *
2555  * @vm: the requested vm
2556  * @ticket: CS ticket
2557  *
2558  * Trace all mappings of BOs reserved during a command submission.
2559  */
2560 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2561 {
2562 	struct amdgpu_bo_va_mapping *mapping;
2563 
2564 	if (!trace_amdgpu_vm_bo_cs_enabled())
2565 		return;
2566 
2567 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2568 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2569 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2570 			struct amdgpu_bo *bo;
2571 
2572 			bo = mapping->bo_va->base.bo;
2573 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2574 			    ticket)
2575 				continue;
2576 		}
2577 
2578 		trace_amdgpu_vm_bo_cs(mapping);
2579 	}
2580 }
2581 
2582 /**
2583  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2584  *
2585  * @adev: amdgpu_device pointer
2586  * @bo_va: requested bo_va
2587  *
2588  * Remove @bo_va->bo from the requested vm.
2589  *
2590  * Object have to be reserved!
2591  */
2592 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2593 		      struct amdgpu_bo_va *bo_va)
2594 {
2595 	struct amdgpu_bo_va_mapping *mapping, *next;
2596 	struct amdgpu_bo *bo = bo_va->base.bo;
2597 	struct amdgpu_vm *vm = bo_va->base.vm;
2598 	struct amdgpu_vm_bo_base **base;
2599 
2600 	if (bo) {
2601 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2602 			ttm_bo_set_bulk_move(&bo->tbo, NULL);
2603 
2604 		for (base = &bo_va->base.bo->vm_bo; *base;
2605 		     base = &(*base)->next) {
2606 			if (*base != &bo_va->base)
2607 				continue;
2608 
2609 			*base = bo_va->base.next;
2610 			break;
2611 		}
2612 	}
2613 
2614 	spin_lock(&vm->invalidated_lock);
2615 	list_del(&bo_va->base.vm_status);
2616 	spin_unlock(&vm->invalidated_lock);
2617 
2618 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2619 		list_del(&mapping->list);
2620 		amdgpu_vm_it_remove(mapping, &vm->va);
2621 		mapping->bo_va = NULL;
2622 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2623 		list_add(&mapping->list, &vm->freed);
2624 	}
2625 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2626 		list_del(&mapping->list);
2627 		amdgpu_vm_it_remove(mapping, &vm->va);
2628 		amdgpu_vm_free_mapping(adev, vm, mapping,
2629 				       bo_va->last_pt_update);
2630 	}
2631 
2632 	dma_fence_put(bo_va->last_pt_update);
2633 
2634 	if (bo && bo_va->is_xgmi)
2635 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2636 
2637 	kfree(bo_va);
2638 }
2639 
2640 /**
2641  * amdgpu_vm_evictable - check if we can evict a VM
2642  *
2643  * @bo: A page table of the VM.
2644  *
2645  * Check if it is possible to evict a VM.
2646  */
2647 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2648 {
2649 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2650 
2651 	/* Page tables of a destroyed VM can go away immediately */
2652 	if (!bo_base || !bo_base->vm)
2653 		return true;
2654 
2655 	/* Don't evict VM page tables while they are busy */
2656 	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2657 		return false;
2658 
2659 	/* Try to block ongoing updates */
2660 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2661 		return false;
2662 
2663 	/* Don't evict VM page tables while they are updated */
2664 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2665 		amdgpu_vm_eviction_unlock(bo_base->vm);
2666 		return false;
2667 	}
2668 
2669 	bo_base->vm->evicting = true;
2670 	amdgpu_vm_eviction_unlock(bo_base->vm);
2671 	return true;
2672 }
2673 
2674 /**
2675  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2676  *
2677  * @adev: amdgpu_device pointer
2678  * @bo: amdgpu buffer object
2679  * @evicted: is the BO evicted
2680  *
2681  * Mark @bo as invalid.
2682  */
2683 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2684 			     struct amdgpu_bo *bo, bool evicted)
2685 {
2686 	struct amdgpu_vm_bo_base *bo_base;
2687 
2688 	/* shadow bo doesn't have bo base, its validation needs its parent */
2689 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2690 		bo = bo->parent;
2691 
2692 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2693 		struct amdgpu_vm *vm = bo_base->vm;
2694 
2695 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2696 			amdgpu_vm_bo_evicted(bo_base);
2697 			continue;
2698 		}
2699 
2700 		if (bo_base->moved)
2701 			continue;
2702 		bo_base->moved = true;
2703 
2704 		if (bo->tbo.type == ttm_bo_type_kernel)
2705 			amdgpu_vm_bo_relocated(bo_base);
2706 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2707 			amdgpu_vm_bo_moved(bo_base);
2708 		else
2709 			amdgpu_vm_bo_invalidated(bo_base);
2710 	}
2711 }
2712 
2713 /**
2714  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2715  *
2716  * @vm_size: VM size
2717  *
2718  * Returns:
2719  * VM page table as power of two
2720  */
2721 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2722 {
2723 	/* Total bits covered by PD + PTs */
2724 	unsigned bits = ilog2(vm_size) + 18;
2725 
2726 	/* Make sure the PD is 4K in size up to 8GB address space.
2727 	   Above that split equal between PD and PTs */
2728 	if (vm_size <= 8)
2729 		return (bits - 9);
2730 	else
2731 		return ((bits + 3) / 2);
2732 }
2733 
2734 /**
2735  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2736  *
2737  * @adev: amdgpu_device pointer
2738  * @min_vm_size: the minimum vm size in GB if it's set auto
2739  * @fragment_size_default: Default PTE fragment size
2740  * @max_level: max VMPT level
2741  * @max_bits: max address space size in bits
2742  *
2743  */
2744 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2745 			   uint32_t fragment_size_default, unsigned max_level,
2746 			   unsigned max_bits)
2747 {
2748 	unsigned int max_size = 1 << (max_bits - 30);
2749 	unsigned int vm_size;
2750 	uint64_t tmp;
2751 
2752 	/* adjust vm size first */
2753 	if (amdgpu_vm_size != -1) {
2754 		vm_size = amdgpu_vm_size;
2755 		if (vm_size > max_size) {
2756 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2757 				 amdgpu_vm_size, max_size);
2758 			vm_size = max_size;
2759 		}
2760 	} else {
2761 		struct sysinfo si;
2762 		unsigned int phys_ram_gb;
2763 
2764 		/* Optimal VM size depends on the amount of physical
2765 		 * RAM available. Underlying requirements and
2766 		 * assumptions:
2767 		 *
2768 		 *  - Need to map system memory and VRAM from all GPUs
2769 		 *     - VRAM from other GPUs not known here
2770 		 *     - Assume VRAM <= system memory
2771 		 *  - On GFX8 and older, VM space can be segmented for
2772 		 *    different MTYPEs
2773 		 *  - Need to allow room for fragmentation, guard pages etc.
2774 		 *
2775 		 * This adds up to a rough guess of system memory x3.
2776 		 * Round up to power of two to maximize the available
2777 		 * VM size with the given page table size.
2778 		 */
2779 		si_meminfo(&si);
2780 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2781 			       (1 << 30) - 1) >> 30;
2782 		vm_size = roundup_pow_of_two(
2783 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2784 	}
2785 
2786 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2787 
2788 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2789 	if (amdgpu_vm_block_size != -1)
2790 		tmp >>= amdgpu_vm_block_size - 9;
2791 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2792 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2793 	switch (adev->vm_manager.num_level) {
2794 	case 3:
2795 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2796 		break;
2797 	case 2:
2798 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2799 		break;
2800 	case 1:
2801 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2802 		break;
2803 	default:
2804 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2805 	}
2806 	/* block size depends on vm size and hw setup*/
2807 	if (amdgpu_vm_block_size != -1)
2808 		adev->vm_manager.block_size =
2809 			min((unsigned)amdgpu_vm_block_size, max_bits
2810 			    - AMDGPU_GPU_PAGE_SHIFT
2811 			    - 9 * adev->vm_manager.num_level);
2812 	else if (adev->vm_manager.num_level > 1)
2813 		adev->vm_manager.block_size = 9;
2814 	else
2815 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2816 
2817 	if (amdgpu_vm_fragment_size == -1)
2818 		adev->vm_manager.fragment_size = fragment_size_default;
2819 	else
2820 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2821 
2822 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2823 		 vm_size, adev->vm_manager.num_level + 1,
2824 		 adev->vm_manager.block_size,
2825 		 adev->vm_manager.fragment_size);
2826 }
2827 
2828 /**
2829  * amdgpu_vm_wait_idle - wait for the VM to become idle
2830  *
2831  * @vm: VM object to wait for
2832  * @timeout: timeout to wait for VM to become idle
2833  */
2834 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2835 {
2836 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2837 					true, timeout);
2838 	if (timeout <= 0)
2839 		return timeout;
2840 
2841 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2842 }
2843 
2844 /**
2845  * amdgpu_vm_init - initialize a vm instance
2846  *
2847  * @adev: amdgpu_device pointer
2848  * @vm: requested vm
2849  *
2850  * Init @vm fields.
2851  *
2852  * Returns:
2853  * 0 for success, error for failure.
2854  */
2855 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2856 {
2857 	struct amdgpu_bo *root_bo;
2858 	struct amdgpu_bo_vm *root;
2859 	int r, i;
2860 
2861 	vm->va = RB_ROOT_CACHED;
2862 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2863 		vm->reserved_vmid[i] = NULL;
2864 	INIT_LIST_HEAD(&vm->evicted);
2865 	INIT_LIST_HEAD(&vm->relocated);
2866 	INIT_LIST_HEAD(&vm->moved);
2867 	INIT_LIST_HEAD(&vm->idle);
2868 	INIT_LIST_HEAD(&vm->invalidated);
2869 	spin_lock_init(&vm->invalidated_lock);
2870 	INIT_LIST_HEAD(&vm->freed);
2871 	INIT_LIST_HEAD(&vm->done);
2872 
2873 	/* create scheduler entities for page table updates */
2874 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2875 				  adev->vm_manager.vm_pte_scheds,
2876 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2877 	if (r)
2878 		return r;
2879 
2880 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2881 				  adev->vm_manager.vm_pte_scheds,
2882 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2883 	if (r)
2884 		goto error_free_immediate;
2885 
2886 	vm->pte_support_ats = false;
2887 	vm->is_compute_context = false;
2888 
2889 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2890 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2891 
2892 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2893 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2894 	WARN_ONCE((vm->use_cpu_for_update &&
2895 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2896 		  "CPU update of VM recommended only for large BAR system\n");
2897 
2898 	if (vm->use_cpu_for_update)
2899 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2900 	else
2901 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2902 	vm->last_update = NULL;
2903 	vm->last_unlocked = dma_fence_get_stub();
2904 
2905 	mutex_init(&vm->eviction_lock);
2906 	vm->evicting = false;
2907 
2908 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2909 				false, &root);
2910 	if (r)
2911 		goto error_free_delayed;
2912 	root_bo = &root->bo;
2913 	r = amdgpu_bo_reserve(root_bo, true);
2914 	if (r)
2915 		goto error_free_root;
2916 
2917 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2918 	if (r)
2919 		goto error_unreserve;
2920 
2921 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2922 
2923 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2924 	if (r)
2925 		goto error_unreserve;
2926 
2927 	amdgpu_bo_unreserve(vm->root.bo);
2928 
2929 	INIT_KFIFO(vm->faults);
2930 
2931 	return 0;
2932 
2933 error_unreserve:
2934 	amdgpu_bo_unreserve(vm->root.bo);
2935 
2936 error_free_root:
2937 	amdgpu_bo_unref(&root->shadow);
2938 	amdgpu_bo_unref(&root_bo);
2939 	vm->root.bo = NULL;
2940 
2941 error_free_delayed:
2942 	dma_fence_put(vm->last_unlocked);
2943 	drm_sched_entity_destroy(&vm->delayed);
2944 
2945 error_free_immediate:
2946 	drm_sched_entity_destroy(&vm->immediate);
2947 
2948 	return r;
2949 }
2950 
2951 /**
2952  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2953  *
2954  * @adev: amdgpu_device pointer
2955  * @vm: the VM to check
2956  *
2957  * check all entries of the root PD, if any subsequent PDs are allocated,
2958  * it means there are page table creating and filling, and is no a clean
2959  * VM
2960  *
2961  * Returns:
2962  *	0 if this VM is clean
2963  */
2964 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2965 					  struct amdgpu_vm *vm)
2966 {
2967 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2968 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2969 	unsigned int i = 0;
2970 
2971 	for (i = 0; i < entries; i++) {
2972 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
2973 			return -EINVAL;
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 /**
2980  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2981  *
2982  * @adev: amdgpu_device pointer
2983  * @vm: requested vm
2984  *
2985  * This only works on GFX VMs that don't have any BOs added and no
2986  * page tables allocated yet.
2987  *
2988  * Changes the following VM parameters:
2989  * - use_cpu_for_update
2990  * - pte_supports_ats
2991  *
2992  * Reinitializes the page directory to reflect the changed ATS
2993  * setting.
2994  *
2995  * Returns:
2996  * 0 for success, -errno for errors.
2997  */
2998 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2999 {
3000 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3001 	int r;
3002 
3003 	r = amdgpu_bo_reserve(vm->root.bo, true);
3004 	if (r)
3005 		return r;
3006 
3007 	/* Sanity checks */
3008 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3009 	if (r)
3010 		goto unreserve_bo;
3011 
3012 	/* Check if PD needs to be reinitialized and do it before
3013 	 * changing any other state, in case it fails.
3014 	 */
3015 	if (pte_support_ats != vm->pte_support_ats) {
3016 		vm->pte_support_ats = pte_support_ats;
3017 		r = amdgpu_vm_clear_bo(adev, vm,
3018 				       to_amdgpu_bo_vm(vm->root.bo),
3019 				       false);
3020 		if (r)
3021 			goto unreserve_bo;
3022 	}
3023 
3024 	/* Update VM state */
3025 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3026 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3027 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3028 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3029 	WARN_ONCE((vm->use_cpu_for_update &&
3030 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3031 		  "CPU update of VM recommended only for large BAR system\n");
3032 
3033 	if (vm->use_cpu_for_update) {
3034 		/* Sync with last SDMA update/clear before switching to CPU */
3035 		r = amdgpu_bo_sync_wait(vm->root.bo,
3036 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3037 		if (r)
3038 			goto unreserve_bo;
3039 
3040 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3041 	} else {
3042 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3043 	}
3044 	dma_fence_put(vm->last_update);
3045 	vm->last_update = NULL;
3046 	vm->is_compute_context = true;
3047 
3048 	/* Free the shadow bo for compute VM */
3049 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3050 
3051 	goto unreserve_bo;
3052 
3053 unreserve_bo:
3054 	amdgpu_bo_unreserve(vm->root.bo);
3055 	return r;
3056 }
3057 
3058 /**
3059  * amdgpu_vm_release_compute - release a compute vm
3060  * @adev: amdgpu_device pointer
3061  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3062  *
3063  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3064  * pasid from vm. Compute should stop use of vm after this call.
3065  */
3066 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3067 {
3068 	amdgpu_vm_set_pasid(adev, vm, 0);
3069 	vm->is_compute_context = false;
3070 }
3071 
3072 /**
3073  * amdgpu_vm_fini - tear down a vm instance
3074  *
3075  * @adev: amdgpu_device pointer
3076  * @vm: requested vm
3077  *
3078  * Tear down @vm.
3079  * Unbind the VM and remove all bos from the vm bo list
3080  */
3081 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3082 {
3083 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3084 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3085 	struct amdgpu_bo *root;
3086 	int i;
3087 
3088 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3089 
3090 	root = amdgpu_bo_ref(vm->root.bo);
3091 	amdgpu_bo_reserve(root, true);
3092 	amdgpu_vm_set_pasid(adev, vm, 0);
3093 	dma_fence_wait(vm->last_unlocked, false);
3094 	dma_fence_put(vm->last_unlocked);
3095 
3096 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3097 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3098 			amdgpu_vm_prt_fini(adev, vm);
3099 			prt_fini_needed = false;
3100 		}
3101 
3102 		list_del(&mapping->list);
3103 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3104 	}
3105 
3106 	amdgpu_vm_free_pts(adev, vm, NULL);
3107 	amdgpu_bo_unreserve(root);
3108 	amdgpu_bo_unref(&root);
3109 	WARN_ON(vm->root.bo);
3110 
3111 	drm_sched_entity_destroy(&vm->immediate);
3112 	drm_sched_entity_destroy(&vm->delayed);
3113 
3114 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3115 		dev_err(adev->dev, "still active bo inside vm\n");
3116 	}
3117 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3118 					     &vm->va.rb_root, rb) {
3119 		/* Don't remove the mapping here, we don't want to trigger a
3120 		 * rebalance and the tree is about to be destroyed anyway.
3121 		 */
3122 		list_del(&mapping->list);
3123 		kfree(mapping);
3124 	}
3125 
3126 	dma_fence_put(vm->last_update);
3127 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3128 		amdgpu_vmid_free_reserved(adev, vm, i);
3129 }
3130 
3131 /**
3132  * amdgpu_vm_manager_init - init the VM manager
3133  *
3134  * @adev: amdgpu_device pointer
3135  *
3136  * Initialize the VM manager structures
3137  */
3138 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3139 {
3140 	unsigned i;
3141 
3142 	/* Concurrent flushes are only possible starting with Vega10 and
3143 	 * are broken on Navi10 and Navi14.
3144 	 */
3145 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3146 					      adev->asic_type == CHIP_NAVI10 ||
3147 					      adev->asic_type == CHIP_NAVI14);
3148 	amdgpu_vmid_mgr_init(adev);
3149 
3150 	adev->vm_manager.fence_context =
3151 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3152 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3153 		adev->vm_manager.seqno[i] = 0;
3154 
3155 	spin_lock_init(&adev->vm_manager.prt_lock);
3156 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3157 
3158 	/* If not overridden by the user, by default, only in large BAR systems
3159 	 * Compute VM tables will be updated by CPU
3160 	 */
3161 #ifdef CONFIG_X86_64
3162 	if (amdgpu_vm_update_mode == -1) {
3163 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3164 			adev->vm_manager.vm_update_mode =
3165 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3166 		else
3167 			adev->vm_manager.vm_update_mode = 0;
3168 	} else
3169 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3170 #else
3171 	adev->vm_manager.vm_update_mode = 0;
3172 #endif
3173 
3174 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3175 }
3176 
3177 /**
3178  * amdgpu_vm_manager_fini - cleanup VM manager
3179  *
3180  * @adev: amdgpu_device pointer
3181  *
3182  * Cleanup the VM manager and free resources.
3183  */
3184 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3185 {
3186 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3187 	xa_destroy(&adev->vm_manager.pasids);
3188 
3189 	amdgpu_vmid_mgr_fini(adev);
3190 }
3191 
3192 /**
3193  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3194  *
3195  * @dev: drm device pointer
3196  * @data: drm_amdgpu_vm
3197  * @filp: drm file pointer
3198  *
3199  * Returns:
3200  * 0 for success, -errno for errors.
3201  */
3202 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3203 {
3204 	union drm_amdgpu_vm *args = data;
3205 	struct amdgpu_device *adev = drm_to_adev(dev);
3206 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3207 	long timeout = msecs_to_jiffies(2000);
3208 	int r;
3209 
3210 	switch (args->in.op) {
3211 	case AMDGPU_VM_OP_RESERVE_VMID:
3212 		/* We only have requirement to reserve vmid from gfxhub */
3213 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3214 					       AMDGPU_GFXHUB_0);
3215 		if (r)
3216 			return r;
3217 		break;
3218 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3219 		if (amdgpu_sriov_runtime(adev))
3220 			timeout = 8 * timeout;
3221 
3222 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3223 		 * not referenced anymore.
3224 		 */
3225 		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3226 		if (r)
3227 			return r;
3228 
3229 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3230 		if (r < 0)
3231 			return r;
3232 
3233 		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3234 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3235 		break;
3236 	default:
3237 		return -EINVAL;
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 /**
3244  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3245  *
3246  * @adev: drm device pointer
3247  * @pasid: PASID identifier for VM
3248  * @task_info: task_info to fill.
3249  */
3250 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3251 			 struct amdgpu_task_info *task_info)
3252 {
3253 	struct amdgpu_vm *vm;
3254 	unsigned long flags;
3255 
3256 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3257 
3258 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3259 	if (vm)
3260 		*task_info = vm->task_info;
3261 
3262 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3263 }
3264 
3265 /**
3266  * amdgpu_vm_set_task_info - Sets VMs task info.
3267  *
3268  * @vm: vm for which to set the info
3269  */
3270 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3271 {
3272 	if (vm->task_info.pid)
3273 		return;
3274 
3275 	vm->task_info.pid = current->pid;
3276 	get_task_comm(vm->task_info.task_name, current);
3277 
3278 	if (current->group_leader->mm != current->mm)
3279 		return;
3280 
3281 	vm->task_info.tgid = current->group_leader->pid;
3282 	get_task_comm(vm->task_info.process_name, current->group_leader);
3283 }
3284 
3285 /**
3286  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3287  * @adev: amdgpu device pointer
3288  * @pasid: PASID of the VM
3289  * @addr: Address of the fault
3290  * @write_fault: true is write fault, false is read fault
3291  *
3292  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3293  * shouldn't be reported any more.
3294  */
3295 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3296 			    uint64_t addr, bool write_fault)
3297 {
3298 	bool is_compute_context = false;
3299 	struct amdgpu_bo *root;
3300 	unsigned long irqflags;
3301 	uint64_t value, flags;
3302 	struct amdgpu_vm *vm;
3303 	int r;
3304 
3305 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3306 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3307 	if (vm) {
3308 		root = amdgpu_bo_ref(vm->root.bo);
3309 		is_compute_context = vm->is_compute_context;
3310 	} else {
3311 		root = NULL;
3312 	}
3313 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3314 
3315 	if (!root)
3316 		return false;
3317 
3318 	addr /= AMDGPU_GPU_PAGE_SIZE;
3319 
3320 	if (is_compute_context &&
3321 	    !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3322 		amdgpu_bo_unref(&root);
3323 		return true;
3324 	}
3325 
3326 	r = amdgpu_bo_reserve(root, true);
3327 	if (r)
3328 		goto error_unref;
3329 
3330 	/* Double check that the VM still exists */
3331 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3332 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3333 	if (vm && vm->root.bo != root)
3334 		vm = NULL;
3335 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3336 	if (!vm)
3337 		goto error_unlock;
3338 
3339 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3340 		AMDGPU_PTE_SYSTEM;
3341 
3342 	if (is_compute_context) {
3343 		/* Intentionally setting invalid PTE flag
3344 		 * combination to force a no-retry-fault
3345 		 */
3346 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3347 			AMDGPU_PTE_TF;
3348 		value = 0;
3349 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3350 		/* Redirect the access to the dummy page */
3351 		value = adev->dummy_page_addr;
3352 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3353 			AMDGPU_PTE_WRITEABLE;
3354 
3355 	} else {
3356 		/* Let the hw retry silently on the PTE */
3357 		value = 0;
3358 	}
3359 
3360 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3361 	if (r) {
3362 		pr_debug("failed %d to reserve fence slot\n", r);
3363 		goto error_unlock;
3364 	}
3365 
3366 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3367 					addr, flags, value, NULL, NULL, NULL,
3368 					NULL);
3369 	if (r)
3370 		goto error_unlock;
3371 
3372 	r = amdgpu_vm_update_pdes(adev, vm, true);
3373 
3374 error_unlock:
3375 	amdgpu_bo_unreserve(root);
3376 	if (r < 0)
3377 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3378 
3379 error_unref:
3380 	amdgpu_bo_unref(&root);
3381 
3382 	return false;
3383 }
3384 
3385 #if defined(CONFIG_DEBUG_FS)
3386 /**
3387  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3388  *
3389  * @vm: Requested VM for printing BO info
3390  * @m: debugfs file
3391  *
3392  * Print BO information in debugfs file for the VM
3393  */
3394 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3395 {
3396 	struct amdgpu_bo_va *bo_va, *tmp;
3397 	u64 total_idle = 0;
3398 	u64 total_evicted = 0;
3399 	u64 total_relocated = 0;
3400 	u64 total_moved = 0;
3401 	u64 total_invalidated = 0;
3402 	u64 total_done = 0;
3403 	unsigned int total_idle_objs = 0;
3404 	unsigned int total_evicted_objs = 0;
3405 	unsigned int total_relocated_objs = 0;
3406 	unsigned int total_moved_objs = 0;
3407 	unsigned int total_invalidated_objs = 0;
3408 	unsigned int total_done_objs = 0;
3409 	unsigned int id = 0;
3410 
3411 	seq_puts(m, "\tIdle BOs:\n");
3412 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3413 		if (!bo_va->base.bo)
3414 			continue;
3415 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3416 	}
3417 	total_idle_objs = id;
3418 	id = 0;
3419 
3420 	seq_puts(m, "\tEvicted BOs:\n");
3421 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3422 		if (!bo_va->base.bo)
3423 			continue;
3424 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3425 	}
3426 	total_evicted_objs = id;
3427 	id = 0;
3428 
3429 	seq_puts(m, "\tRelocated BOs:\n");
3430 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3431 		if (!bo_va->base.bo)
3432 			continue;
3433 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3434 	}
3435 	total_relocated_objs = id;
3436 	id = 0;
3437 
3438 	seq_puts(m, "\tMoved BOs:\n");
3439 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3440 		if (!bo_va->base.bo)
3441 			continue;
3442 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3443 	}
3444 	total_moved_objs = id;
3445 	id = 0;
3446 
3447 	seq_puts(m, "\tInvalidated BOs:\n");
3448 	spin_lock(&vm->invalidated_lock);
3449 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3450 		if (!bo_va->base.bo)
3451 			continue;
3452 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3453 	}
3454 	total_invalidated_objs = id;
3455 	id = 0;
3456 
3457 	seq_puts(m, "\tDone BOs:\n");
3458 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3459 		if (!bo_va->base.bo)
3460 			continue;
3461 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3462 	}
3463 	spin_unlock(&vm->invalidated_lock);
3464 	total_done_objs = id;
3465 
3466 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3467 		   total_idle_objs);
3468 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3469 		   total_evicted_objs);
3470 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3471 		   total_relocated_objs);
3472 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3473 		   total_moved_objs);
3474 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3475 		   total_invalidated_objs);
3476 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3477 		   total_done_objs);
3478 }
3479 #endif
3480