1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When executing a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /** 92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 93 * 94 * @adev: amdgpu_device pointer 95 * @vm: amdgpu_vm pointer 96 * @pasid: the pasid the VM is using on this GPU 97 * 98 * Set the pasid this VM is using on this GPU, can also be used to remove the 99 * pasid by passing in zero. 100 * 101 */ 102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 103 u32 pasid) 104 { 105 int r; 106 107 if (vm->pasid == pasid) 108 return 0; 109 110 if (vm->pasid) { 111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 112 if (r < 0) 113 return r; 114 115 vm->pasid = 0; 116 } 117 118 if (pasid) { 119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 120 GFP_KERNEL)); 121 if (r < 0) 122 return r; 123 124 vm->pasid = pasid; 125 } 126 127 128 return 0; 129 } 130 131 /* 132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 133 * happens while holding this lock anywhere to prevent deadlocks when 134 * an MMU notifier runs in reclaim-FS context. 135 */ 136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 137 { 138 mutex_lock(&vm->eviction_lock); 139 vm->saved_flags = memalloc_noreclaim_save(); 140 } 141 142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 143 { 144 if (mutex_trylock(&vm->eviction_lock)) { 145 vm->saved_flags = memalloc_noreclaim_save(); 146 return 1; 147 } 148 return 0; 149 } 150 151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 152 { 153 memalloc_noreclaim_restore(vm->saved_flags); 154 mutex_unlock(&vm->eviction_lock); 155 } 156 157 /** 158 * amdgpu_vm_level_shift - return the addr shift for each level 159 * 160 * @adev: amdgpu_device pointer 161 * @level: VMPT level 162 * 163 * Returns: 164 * The number of bits the pfn needs to be right shifted for a level. 165 */ 166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 167 unsigned level) 168 { 169 switch (level) { 170 case AMDGPU_VM_PDB2: 171 case AMDGPU_VM_PDB1: 172 case AMDGPU_VM_PDB0: 173 return 9 * (AMDGPU_VM_PDB0 - level) + 174 adev->vm_manager.block_size; 175 case AMDGPU_VM_PTB: 176 return 0; 177 default: 178 return ~0; 179 } 180 } 181 182 /** 183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The number of entries in a page directory or page table. 190 */ 191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 192 unsigned level) 193 { 194 unsigned shift = amdgpu_vm_level_shift(adev, 195 adev->vm_manager.root_level); 196 197 if (level == adev->vm_manager.root_level) 198 /* For the root directory */ 199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 200 >> shift; 201 else if (level != AMDGPU_VM_PTB) 202 /* Everything in between */ 203 return 512; 204 else 205 /* For the page tables on the leaves */ 206 return AMDGPU_VM_PTE_COUNT(adev); 207 } 208 209 /** 210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 211 * 212 * @adev: amdgpu_device pointer 213 * 214 * Returns: 215 * The number of entries in the root page directory which needs the ATS setting. 216 */ 217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 218 { 219 unsigned shift; 220 221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 223 } 224 225 /** 226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 227 * 228 * @adev: amdgpu_device pointer 229 * @level: VMPT level 230 * 231 * Returns: 232 * The mask to extract the entry number of a PD/PT from an address. 233 */ 234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 235 unsigned int level) 236 { 237 if (level <= adev->vm_manager.root_level) 238 return 0xffffffff; 239 else if (level != AMDGPU_VM_PTB) 240 return 0x1ff; 241 else 242 return AMDGPU_VM_PTE_COUNT(adev) - 1; 243 } 244 245 /** 246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 247 * 248 * @adev: amdgpu_device pointer 249 * @level: VMPT level 250 * 251 * Returns: 252 * The size of the BO for a page directory or page table in bytes. 253 */ 254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 255 { 256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 257 } 258 259 /** 260 * amdgpu_vm_bo_evicted - vm_bo is evicted 261 * 262 * @vm_bo: vm_bo which is evicted 263 * 264 * State for PDs/PTs and per VM BOs which are not at the location they should 265 * be. 266 */ 267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 struct amdgpu_vm *vm = vm_bo->vm; 270 struct amdgpu_bo *bo = vm_bo->bo; 271 272 vm_bo->moved = true; 273 if (bo->tbo.type == ttm_bo_type_kernel) 274 list_move(&vm_bo->vm_status, &vm->evicted); 275 else 276 list_move_tail(&vm_bo->vm_status, &vm->evicted); 277 } 278 /** 279 * amdgpu_vm_bo_moved - vm_bo is moved 280 * 281 * @vm_bo: vm_bo which is moved 282 * 283 * State for per VM BOs which are moved, but that change is not yet reflected 284 * in the page tables. 285 */ 286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 289 } 290 291 /** 292 * amdgpu_vm_bo_idle - vm_bo is idle 293 * 294 * @vm_bo: vm_bo which is now idle 295 * 296 * State for PDs/PTs and per VM BOs which have gone through the state machine 297 * and are now idle. 298 */ 299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 300 { 301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 302 vm_bo->moved = false; 303 } 304 305 /** 306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 307 * 308 * @vm_bo: vm_bo which is now invalidated 309 * 310 * State for normal BOs which are invalidated and that change not yet reflected 311 * in the PTs. 312 */ 313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 314 { 315 spin_lock(&vm_bo->vm->invalidated_lock); 316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 317 spin_unlock(&vm_bo->vm->invalidated_lock); 318 } 319 320 /** 321 * amdgpu_vm_bo_relocated - vm_bo is reloacted 322 * 323 * @vm_bo: vm_bo which is relocated 324 * 325 * State for PDs/PTs which needs to update their parent PD. 326 * For the root PD, just move to idle state. 327 */ 328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 329 { 330 if (vm_bo->bo->parent) 331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 332 else 333 amdgpu_vm_bo_idle(vm_bo); 334 } 335 336 /** 337 * amdgpu_vm_bo_done - vm_bo is done 338 * 339 * @vm_bo: vm_bo which is now done 340 * 341 * State for normal BOs which are invalidated and that change has been updated 342 * in the PTs. 343 */ 344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 345 { 346 spin_lock(&vm_bo->vm->invalidated_lock); 347 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 348 spin_unlock(&vm_bo->vm->invalidated_lock); 349 } 350 351 /** 352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 353 * 354 * @base: base structure for tracking BO usage in a VM 355 * @vm: vm to which bo is to be added 356 * @bo: amdgpu buffer object 357 * 358 * Initialize a bo_va_base structure and add it to the appropriate lists 359 * 360 */ 361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 362 struct amdgpu_vm *vm, 363 struct amdgpu_bo *bo) 364 { 365 base->vm = vm; 366 base->bo = bo; 367 base->next = NULL; 368 INIT_LIST_HEAD(&base->vm_status); 369 370 if (!bo) 371 return; 372 base->next = bo->vm_bo; 373 bo->vm_bo = base; 374 375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 376 return; 377 378 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 379 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 380 amdgpu_vm_bo_relocated(base); 381 else 382 amdgpu_vm_bo_idle(base); 383 384 if (bo->preferred_domains & 385 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 386 return; 387 388 /* 389 * we checked all the prerequisites, but it looks like this per vm bo 390 * is currently evicted. add the bo to the evicted list to make sure it 391 * is validated on next vm use to avoid fault. 392 * */ 393 amdgpu_vm_bo_evicted(base); 394 } 395 396 /** 397 * amdgpu_vm_pt_parent - get the parent page directory 398 * 399 * @pt: child page table 400 * 401 * Helper to get the parent entry for the child page table. NULL if we are at 402 * the root page directory. 403 */ 404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 405 { 406 struct amdgpu_bo *parent = pt->bo->parent; 407 408 if (!parent) 409 return NULL; 410 411 return parent->vm_bo; 412 } 413 414 /* 415 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 416 */ 417 struct amdgpu_vm_pt_cursor { 418 uint64_t pfn; 419 struct amdgpu_vm_bo_base *parent; 420 struct amdgpu_vm_bo_base *entry; 421 unsigned level; 422 }; 423 424 /** 425 * amdgpu_vm_pt_start - start PD/PT walk 426 * 427 * @adev: amdgpu_device pointer 428 * @vm: amdgpu_vm structure 429 * @start: start address of the walk 430 * @cursor: state to initialize 431 * 432 * Initialize a amdgpu_vm_pt_cursor to start a walk. 433 */ 434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 435 struct amdgpu_vm *vm, uint64_t start, 436 struct amdgpu_vm_pt_cursor *cursor) 437 { 438 cursor->pfn = start; 439 cursor->parent = NULL; 440 cursor->entry = &vm->root; 441 cursor->level = adev->vm_manager.root_level; 442 } 443 444 /** 445 * amdgpu_vm_pt_descendant - go to child node 446 * 447 * @adev: amdgpu_device pointer 448 * @cursor: current state 449 * 450 * Walk to the child node of the current node. 451 * Returns: 452 * True if the walk was possible, false otherwise. 453 */ 454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 455 struct amdgpu_vm_pt_cursor *cursor) 456 { 457 unsigned mask, shift, idx; 458 459 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 460 !cursor->entry->bo) 461 return false; 462 463 mask = amdgpu_vm_entries_mask(adev, cursor->level); 464 shift = amdgpu_vm_level_shift(adev, cursor->level); 465 466 ++cursor->level; 467 idx = (cursor->pfn >> shift) & mask; 468 cursor->parent = cursor->entry; 469 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 470 return true; 471 } 472 473 /** 474 * amdgpu_vm_pt_sibling - go to sibling node 475 * 476 * @adev: amdgpu_device pointer 477 * @cursor: current state 478 * 479 * Walk to the sibling node of the current node. 480 * Returns: 481 * True if the walk was possible, false otherwise. 482 */ 483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 484 struct amdgpu_vm_pt_cursor *cursor) 485 { 486 unsigned shift, num_entries; 487 488 /* Root doesn't have a sibling */ 489 if (!cursor->parent) 490 return false; 491 492 /* Go to our parents and see if we got a sibling */ 493 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 494 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 495 496 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 497 return false; 498 499 cursor->pfn += 1ULL << shift; 500 cursor->pfn &= ~((1ULL << shift) - 1); 501 ++cursor->entry; 502 return true; 503 } 504 505 /** 506 * amdgpu_vm_pt_ancestor - go to parent node 507 * 508 * @cursor: current state 509 * 510 * Walk to the parent node of the current node. 511 * Returns: 512 * True if the walk was possible, false otherwise. 513 */ 514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 515 { 516 if (!cursor->parent) 517 return false; 518 519 --cursor->level; 520 cursor->entry = cursor->parent; 521 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 522 return true; 523 } 524 525 /** 526 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 527 * 528 * @adev: amdgpu_device pointer 529 * @cursor: current state 530 * 531 * Walk the PD/PT tree to the next node. 532 */ 533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 534 struct amdgpu_vm_pt_cursor *cursor) 535 { 536 /* First try a newborn child */ 537 if (amdgpu_vm_pt_descendant(adev, cursor)) 538 return; 539 540 /* If that didn't worked try to find a sibling */ 541 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 542 /* No sibling, go to our parents and grandparents */ 543 if (!amdgpu_vm_pt_ancestor(cursor)) { 544 cursor->pfn = ~0ll; 545 return; 546 } 547 } 548 } 549 550 /** 551 * amdgpu_vm_pt_first_dfs - start a deep first search 552 * 553 * @adev: amdgpu_device structure 554 * @vm: amdgpu_vm structure 555 * @start: optional cursor to start with 556 * @cursor: state to initialize 557 * 558 * Starts a deep first traversal of the PD/PT tree. 559 */ 560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 561 struct amdgpu_vm *vm, 562 struct amdgpu_vm_pt_cursor *start, 563 struct amdgpu_vm_pt_cursor *cursor) 564 { 565 if (start) 566 *cursor = *start; 567 else 568 amdgpu_vm_pt_start(adev, vm, 0, cursor); 569 while (amdgpu_vm_pt_descendant(adev, cursor)); 570 } 571 572 /** 573 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 574 * 575 * @start: starting point for the search 576 * @entry: current entry 577 * 578 * Returns: 579 * True when the search should continue, false otherwise. 580 */ 581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 582 struct amdgpu_vm_bo_base *entry) 583 { 584 return entry && (!start || entry != start->entry); 585 } 586 587 /** 588 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 589 * 590 * @adev: amdgpu_device structure 591 * @cursor: current state 592 * 593 * Move the cursor to the next node in a deep first search. 594 */ 595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 596 struct amdgpu_vm_pt_cursor *cursor) 597 { 598 if (!cursor->entry) 599 return; 600 601 if (!cursor->parent) 602 cursor->entry = NULL; 603 else if (amdgpu_vm_pt_sibling(adev, cursor)) 604 while (amdgpu_vm_pt_descendant(adev, cursor)); 605 else 606 amdgpu_vm_pt_ancestor(cursor); 607 } 608 609 /* 610 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 611 */ 612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 613 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 614 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 615 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 617 618 /** 619 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 620 * 621 * @vm: vm providing the BOs 622 * @validated: head of validation list 623 * @entry: entry to add 624 * 625 * Add the page directory to the list of BOs to 626 * validate for command submission. 627 */ 628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 629 struct list_head *validated, 630 struct amdgpu_bo_list_entry *entry) 631 { 632 entry->priority = 0; 633 entry->tv.bo = &vm->root.bo->tbo; 634 /* Two for VM updates, one for TTM and one for the CS job */ 635 entry->tv.num_shared = 4; 636 entry->user_pages = NULL; 637 list_add(&entry->tv.head, validated); 638 } 639 640 /** 641 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 642 * 643 * @adev: amdgpu device pointer 644 * @vm: vm providing the BOs 645 * 646 * Move all BOs to the end of LRU and remember their positions to put them 647 * together. 648 */ 649 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 650 struct amdgpu_vm *vm) 651 { 652 spin_lock(&adev->mman.bdev.lru_lock); 653 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 654 spin_unlock(&adev->mman.bdev.lru_lock); 655 } 656 657 /** 658 * amdgpu_vm_validate_pt_bos - validate the page table BOs 659 * 660 * @adev: amdgpu device pointer 661 * @vm: vm providing the BOs 662 * @validate: callback to do the validation 663 * @param: parameter for the validation callback 664 * 665 * Validate the page table BOs on command submission if neccessary. 666 * 667 * Returns: 668 * Validation result. 669 */ 670 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 671 int (*validate)(void *p, struct amdgpu_bo *bo), 672 void *param) 673 { 674 struct amdgpu_vm_bo_base *bo_base, *tmp; 675 int r; 676 677 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 678 struct amdgpu_bo *bo = bo_base->bo; 679 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 680 681 r = validate(param, bo); 682 if (r) 683 return r; 684 if (shadow) { 685 r = validate(param, shadow); 686 if (r) 687 return r; 688 } 689 690 if (bo->tbo.type != ttm_bo_type_kernel) { 691 amdgpu_vm_bo_moved(bo_base); 692 } else { 693 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 694 amdgpu_vm_bo_relocated(bo_base); 695 } 696 } 697 698 amdgpu_vm_eviction_lock(vm); 699 vm->evicting = false; 700 amdgpu_vm_eviction_unlock(vm); 701 702 return 0; 703 } 704 705 /** 706 * amdgpu_vm_ready - check VM is ready for updates 707 * 708 * @vm: VM to check 709 * 710 * Check if all VM PDs/PTs are ready for updates 711 * 712 * Returns: 713 * True if eviction list is empty. 714 */ 715 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 716 { 717 return list_empty(&vm->evicted); 718 } 719 720 /** 721 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 722 * 723 * @adev: amdgpu_device pointer 724 * @vm: VM to clear BO from 725 * @vmbo: BO to clear 726 * @immediate: use an immediate update 727 * 728 * Root PD needs to be reserved when calling this. 729 * 730 * Returns: 731 * 0 on success, errno otherwise. 732 */ 733 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 734 struct amdgpu_vm *vm, 735 struct amdgpu_bo_vm *vmbo, 736 bool immediate) 737 { 738 struct ttm_operation_ctx ctx = { true, false }; 739 unsigned level = adev->vm_manager.root_level; 740 struct amdgpu_vm_update_params params; 741 struct amdgpu_bo *ancestor = &vmbo->bo; 742 struct amdgpu_bo *bo = &vmbo->bo; 743 unsigned entries, ats_entries; 744 uint64_t addr; 745 int r, idx; 746 747 /* Figure out our place in the hierarchy */ 748 if (ancestor->parent) { 749 ++level; 750 while (ancestor->parent->parent) { 751 ++level; 752 ancestor = ancestor->parent; 753 } 754 } 755 756 entries = amdgpu_bo_size(bo) / 8; 757 if (!vm->pte_support_ats) { 758 ats_entries = 0; 759 760 } else if (!bo->parent) { 761 ats_entries = amdgpu_vm_num_ats_entries(adev); 762 ats_entries = min(ats_entries, entries); 763 entries -= ats_entries; 764 765 } else { 766 struct amdgpu_vm_bo_base *pt; 767 768 pt = ancestor->vm_bo; 769 ats_entries = amdgpu_vm_num_ats_entries(adev); 770 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 771 ats_entries = 0; 772 } else { 773 ats_entries = entries; 774 entries = 0; 775 } 776 } 777 778 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 779 if (r) 780 return r; 781 782 if (vmbo->shadow) { 783 struct amdgpu_bo *shadow = vmbo->shadow; 784 785 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 786 if (r) 787 return r; 788 } 789 790 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 791 return -ENODEV; 792 793 r = vm->update_funcs->map_table(vmbo); 794 if (r) 795 goto exit; 796 797 memset(¶ms, 0, sizeof(params)); 798 params.adev = adev; 799 params.vm = vm; 800 params.immediate = immediate; 801 802 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 803 if (r) 804 goto exit; 805 806 addr = 0; 807 if (ats_entries) { 808 uint64_t value = 0, flags; 809 810 flags = AMDGPU_PTE_DEFAULT_ATC; 811 if (level != AMDGPU_VM_PTB) { 812 /* Handle leaf PDEs as PTEs */ 813 flags |= AMDGPU_PDE_PTE; 814 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 815 } 816 817 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 818 value, flags); 819 if (r) 820 goto exit; 821 822 addr += ats_entries * 8; 823 } 824 825 if (entries) { 826 uint64_t value = 0, flags = 0; 827 828 if (adev->asic_type >= CHIP_VEGA10) { 829 if (level != AMDGPU_VM_PTB) { 830 /* Handle leaf PDEs as PTEs */ 831 flags |= AMDGPU_PDE_PTE; 832 amdgpu_gmc_get_vm_pde(adev, level, 833 &value, &flags); 834 } else { 835 /* Workaround for fault priority problem on GMC9 */ 836 flags = AMDGPU_PTE_EXECUTABLE; 837 } 838 } 839 840 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 841 value, flags); 842 if (r) 843 goto exit; 844 } 845 846 r = vm->update_funcs->commit(¶ms, NULL); 847 exit: 848 drm_dev_exit(idx); 849 return r; 850 } 851 852 /** 853 * amdgpu_vm_pt_create - create bo for PD/PT 854 * 855 * @adev: amdgpu_device pointer 856 * @vm: requesting vm 857 * @level: the page table level 858 * @immediate: use a immediate update 859 * @vmbo: pointer to the buffer object pointer 860 */ 861 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 862 struct amdgpu_vm *vm, 863 int level, bool immediate, 864 struct amdgpu_bo_vm **vmbo) 865 { 866 struct amdgpu_bo_param bp; 867 struct amdgpu_bo *bo; 868 struct dma_resv *resv; 869 unsigned int num_entries; 870 int r; 871 872 memset(&bp, 0, sizeof(bp)); 873 874 bp.size = amdgpu_vm_bo_size(adev, level); 875 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 876 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 877 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 878 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 879 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 880 881 if (level < AMDGPU_VM_PTB) 882 num_entries = amdgpu_vm_num_entries(adev, level); 883 else 884 num_entries = 0; 885 886 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 887 888 if (vm->use_cpu_for_update) 889 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 890 891 bp.type = ttm_bo_type_kernel; 892 bp.no_wait_gpu = immediate; 893 if (vm->root.bo) 894 bp.resv = vm->root.bo->tbo.base.resv; 895 896 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 897 if (r) 898 return r; 899 900 bo = &(*vmbo)->bo; 901 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 902 (*vmbo)->shadow = NULL; 903 return 0; 904 } 905 906 if (!bp.resv) 907 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 908 NULL)); 909 resv = bp.resv; 910 memset(&bp, 0, sizeof(bp)); 911 bp.size = amdgpu_vm_bo_size(adev, level); 912 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 913 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 914 bp.type = ttm_bo_type_kernel; 915 bp.resv = bo->tbo.base.resv; 916 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 917 918 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 919 920 if (!resv) 921 dma_resv_unlock(bo->tbo.base.resv); 922 923 if (r) { 924 amdgpu_bo_unref(&bo); 925 return r; 926 } 927 928 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 929 amdgpu_bo_add_to_shadow_list(*vmbo); 930 931 return 0; 932 } 933 934 /** 935 * amdgpu_vm_alloc_pts - Allocate a specific page table 936 * 937 * @adev: amdgpu_device pointer 938 * @vm: VM to allocate page tables for 939 * @cursor: Which page table to allocate 940 * @immediate: use an immediate update 941 * 942 * Make sure a specific page table or directory is allocated. 943 * 944 * Returns: 945 * 1 if page table needed to be allocated, 0 if page table was already 946 * allocated, negative errno if an error occurred. 947 */ 948 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 949 struct amdgpu_vm *vm, 950 struct amdgpu_vm_pt_cursor *cursor, 951 bool immediate) 952 { 953 struct amdgpu_vm_bo_base *entry = cursor->entry; 954 struct amdgpu_bo *pt_bo; 955 struct amdgpu_bo_vm *pt; 956 int r; 957 958 if (entry->bo) 959 return 0; 960 961 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 962 if (r) 963 return r; 964 965 /* Keep a reference to the root directory to avoid 966 * freeing them up in the wrong order. 967 */ 968 pt_bo = &pt->bo; 969 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 970 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 971 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 972 if (r) 973 goto error_free_pt; 974 975 return 0; 976 977 error_free_pt: 978 amdgpu_bo_unref(&pt->shadow); 979 amdgpu_bo_unref(&pt_bo); 980 return r; 981 } 982 983 /** 984 * amdgpu_vm_free_table - fre one PD/PT 985 * 986 * @entry: PDE to free 987 */ 988 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 989 { 990 struct amdgpu_bo *shadow; 991 992 if (!entry->bo) 993 return; 994 995 shadow = amdgpu_bo_shadowed(entry->bo); 996 if (shadow) { 997 ttm_bo_set_bulk_move(&shadow->tbo, NULL); 998 amdgpu_bo_unref(&shadow); 999 } 1000 1001 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 1002 entry->bo->vm_bo = NULL; 1003 list_del(&entry->vm_status); 1004 amdgpu_bo_unref(&entry->bo); 1005 } 1006 1007 /** 1008 * amdgpu_vm_free_pts - free PD/PT levels 1009 * 1010 * @adev: amdgpu device structure 1011 * @vm: amdgpu vm structure 1012 * @start: optional cursor where to start freeing PDs/PTs 1013 * 1014 * Free the page directory or page table level and all sub levels. 1015 */ 1016 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1017 struct amdgpu_vm *vm, 1018 struct amdgpu_vm_pt_cursor *start) 1019 { 1020 struct amdgpu_vm_pt_cursor cursor; 1021 struct amdgpu_vm_bo_base *entry; 1022 1023 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1024 amdgpu_vm_free_table(entry); 1025 1026 if (start) 1027 amdgpu_vm_free_table(start->entry); 1028 } 1029 1030 /** 1031 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1032 * 1033 * @adev: amdgpu_device pointer 1034 */ 1035 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1036 { 1037 const struct amdgpu_ip_block *ip_block; 1038 bool has_compute_vm_bug; 1039 struct amdgpu_ring *ring; 1040 int i; 1041 1042 has_compute_vm_bug = false; 1043 1044 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1045 if (ip_block) { 1046 /* Compute has a VM bug for GFX version < 7. 1047 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1048 if (ip_block->version->major <= 7) 1049 has_compute_vm_bug = true; 1050 else if (ip_block->version->major == 8) 1051 if (adev->gfx.mec_fw_version < 673) 1052 has_compute_vm_bug = true; 1053 } 1054 1055 for (i = 0; i < adev->num_rings; i++) { 1056 ring = adev->rings[i]; 1057 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1058 /* only compute rings */ 1059 ring->has_compute_vm_bug = has_compute_vm_bug; 1060 else 1061 ring->has_compute_vm_bug = false; 1062 } 1063 } 1064 1065 /** 1066 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1067 * 1068 * @ring: ring on which the job will be submitted 1069 * @job: job to submit 1070 * 1071 * Returns: 1072 * True if sync is needed. 1073 */ 1074 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1075 struct amdgpu_job *job) 1076 { 1077 struct amdgpu_device *adev = ring->adev; 1078 unsigned vmhub = ring->funcs->vmhub; 1079 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1080 struct amdgpu_vmid *id; 1081 bool gds_switch_needed; 1082 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1083 1084 if (job->vmid == 0) 1085 return false; 1086 id = &id_mgr->ids[job->vmid]; 1087 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1088 id->gds_base != job->gds_base || 1089 id->gds_size != job->gds_size || 1090 id->gws_base != job->gws_base || 1091 id->gws_size != job->gws_size || 1092 id->oa_base != job->oa_base || 1093 id->oa_size != job->oa_size); 1094 1095 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1096 return true; 1097 1098 return vm_flush_needed || gds_switch_needed; 1099 } 1100 1101 /** 1102 * amdgpu_vm_flush - hardware flush the vm 1103 * 1104 * @ring: ring to use for flush 1105 * @job: related job 1106 * @need_pipe_sync: is pipe sync needed 1107 * 1108 * Emit a VM flush when it is necessary. 1109 * 1110 * Returns: 1111 * 0 on success, errno otherwise. 1112 */ 1113 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1114 bool need_pipe_sync) 1115 { 1116 struct amdgpu_device *adev = ring->adev; 1117 unsigned vmhub = ring->funcs->vmhub; 1118 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1119 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1120 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1121 id->gds_base != job->gds_base || 1122 id->gds_size != job->gds_size || 1123 id->gws_base != job->gws_base || 1124 id->gws_size != job->gws_size || 1125 id->oa_base != job->oa_base || 1126 id->oa_size != job->oa_size); 1127 bool vm_flush_needed = job->vm_needs_flush; 1128 struct dma_fence *fence = NULL; 1129 bool pasid_mapping_needed = false; 1130 unsigned patch_offset = 0; 1131 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1132 int r; 1133 1134 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1135 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1136 1137 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1138 gds_switch_needed = true; 1139 vm_flush_needed = true; 1140 pasid_mapping_needed = true; 1141 } 1142 1143 mutex_lock(&id_mgr->lock); 1144 if (id->pasid != job->pasid || !id->pasid_mapping || 1145 !dma_fence_is_signaled(id->pasid_mapping)) 1146 pasid_mapping_needed = true; 1147 mutex_unlock(&id_mgr->lock); 1148 1149 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1150 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1151 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1152 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1153 ring->funcs->emit_wreg; 1154 1155 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1156 return 0; 1157 1158 if (ring->funcs->init_cond_exec) 1159 patch_offset = amdgpu_ring_init_cond_exec(ring); 1160 1161 if (need_pipe_sync) 1162 amdgpu_ring_emit_pipeline_sync(ring); 1163 1164 if (vm_flush_needed) { 1165 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1166 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1167 } 1168 1169 if (pasid_mapping_needed) 1170 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1171 1172 if (vm_flush_needed || pasid_mapping_needed) { 1173 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1174 if (r) 1175 return r; 1176 } 1177 1178 if (vm_flush_needed) { 1179 mutex_lock(&id_mgr->lock); 1180 dma_fence_put(id->last_flush); 1181 id->last_flush = dma_fence_get(fence); 1182 id->current_gpu_reset_count = 1183 atomic_read(&adev->gpu_reset_counter); 1184 mutex_unlock(&id_mgr->lock); 1185 } 1186 1187 if (pasid_mapping_needed) { 1188 mutex_lock(&id_mgr->lock); 1189 id->pasid = job->pasid; 1190 dma_fence_put(id->pasid_mapping); 1191 id->pasid_mapping = dma_fence_get(fence); 1192 mutex_unlock(&id_mgr->lock); 1193 } 1194 dma_fence_put(fence); 1195 1196 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1197 id->gds_base = job->gds_base; 1198 id->gds_size = job->gds_size; 1199 id->gws_base = job->gws_base; 1200 id->gws_size = job->gws_size; 1201 id->oa_base = job->oa_base; 1202 id->oa_size = job->oa_size; 1203 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1204 job->gds_size, job->gws_base, 1205 job->gws_size, job->oa_base, 1206 job->oa_size); 1207 } 1208 1209 if (ring->funcs->patch_cond_exec) 1210 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1211 1212 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1213 if (ring->funcs->emit_switch_buffer) { 1214 amdgpu_ring_emit_switch_buffer(ring); 1215 amdgpu_ring_emit_switch_buffer(ring); 1216 } 1217 return 0; 1218 } 1219 1220 /** 1221 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1222 * 1223 * @vm: requested vm 1224 * @bo: requested buffer object 1225 * 1226 * Find @bo inside the requested vm. 1227 * Search inside the @bos vm list for the requested vm 1228 * Returns the found bo_va or NULL if none is found 1229 * 1230 * Object has to be reserved! 1231 * 1232 * Returns: 1233 * Found bo_va or NULL. 1234 */ 1235 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1236 struct amdgpu_bo *bo) 1237 { 1238 struct amdgpu_vm_bo_base *base; 1239 1240 for (base = bo->vm_bo; base; base = base->next) { 1241 if (base->vm != vm) 1242 continue; 1243 1244 return container_of(base, struct amdgpu_bo_va, base); 1245 } 1246 return NULL; 1247 } 1248 1249 /** 1250 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1251 * 1252 * @pages_addr: optional DMA address to use for lookup 1253 * @addr: the unmapped addr 1254 * 1255 * Look up the physical address of the page that the pte resolves 1256 * to. 1257 * 1258 * Returns: 1259 * The pointer for the page table entry. 1260 */ 1261 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1262 { 1263 uint64_t result; 1264 1265 /* page table offset */ 1266 result = pages_addr[addr >> PAGE_SHIFT]; 1267 1268 /* in case cpu page size != gpu page size*/ 1269 result |= addr & (~PAGE_MASK); 1270 1271 result &= 0xFFFFFFFFFFFFF000ULL; 1272 1273 return result; 1274 } 1275 1276 /** 1277 * amdgpu_vm_update_pde - update a single level in the hierarchy 1278 * 1279 * @params: parameters for the update 1280 * @vm: requested vm 1281 * @entry: entry to update 1282 * 1283 * Makes sure the requested entry in parent is up to date. 1284 */ 1285 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1286 struct amdgpu_vm *vm, 1287 struct amdgpu_vm_bo_base *entry) 1288 { 1289 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1290 struct amdgpu_bo *bo = parent->bo, *pbo; 1291 uint64_t pde, pt, flags; 1292 unsigned level; 1293 1294 for (level = 0, pbo = bo->parent; pbo; ++level) 1295 pbo = pbo->parent; 1296 1297 level += params->adev->vm_manager.root_level; 1298 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1299 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1300 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1301 1, 0, flags); 1302 } 1303 1304 /** 1305 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1306 * 1307 * @adev: amdgpu_device pointer 1308 * @vm: related vm 1309 * 1310 * Mark all PD level as invalid after an error. 1311 */ 1312 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1313 struct amdgpu_vm *vm) 1314 { 1315 struct amdgpu_vm_pt_cursor cursor; 1316 struct amdgpu_vm_bo_base *entry; 1317 1318 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1319 if (entry->bo && !entry->moved) 1320 amdgpu_vm_bo_relocated(entry); 1321 } 1322 1323 /** 1324 * amdgpu_vm_update_pdes - make sure that all directories are valid 1325 * 1326 * @adev: amdgpu_device pointer 1327 * @vm: requested vm 1328 * @immediate: submit immediately to the paging queue 1329 * 1330 * Makes sure all directories are up to date. 1331 * 1332 * Returns: 1333 * 0 for success, error for failure. 1334 */ 1335 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1336 struct amdgpu_vm *vm, bool immediate) 1337 { 1338 struct amdgpu_vm_update_params params; 1339 int r, idx; 1340 1341 if (list_empty(&vm->relocated)) 1342 return 0; 1343 1344 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1345 return -ENODEV; 1346 1347 memset(¶ms, 0, sizeof(params)); 1348 params.adev = adev; 1349 params.vm = vm; 1350 params.immediate = immediate; 1351 1352 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1353 if (r) 1354 goto exit; 1355 1356 while (!list_empty(&vm->relocated)) { 1357 struct amdgpu_vm_bo_base *entry; 1358 1359 entry = list_first_entry(&vm->relocated, 1360 struct amdgpu_vm_bo_base, 1361 vm_status); 1362 amdgpu_vm_bo_idle(entry); 1363 1364 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1365 if (r) 1366 goto error; 1367 } 1368 1369 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1370 if (r) 1371 goto error; 1372 drm_dev_exit(idx); 1373 return 0; 1374 1375 error: 1376 amdgpu_vm_invalidate_pds(adev, vm); 1377 exit: 1378 drm_dev_exit(idx); 1379 return r; 1380 } 1381 1382 /* 1383 * amdgpu_vm_update_flags - figure out flags for PTE updates 1384 * 1385 * Make sure to set the right flags for the PTEs at the desired level. 1386 */ 1387 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1388 struct amdgpu_bo_vm *pt, unsigned int level, 1389 uint64_t pe, uint64_t addr, 1390 unsigned int count, uint32_t incr, 1391 uint64_t flags) 1392 1393 { 1394 if (level != AMDGPU_VM_PTB) { 1395 flags |= AMDGPU_PDE_PTE; 1396 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1397 1398 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1399 !(flags & AMDGPU_PTE_VALID) && 1400 !(flags & AMDGPU_PTE_PRT)) { 1401 1402 /* Workaround for fault priority problem on GMC9 */ 1403 flags |= AMDGPU_PTE_EXECUTABLE; 1404 } 1405 1406 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1407 flags); 1408 } 1409 1410 /** 1411 * amdgpu_vm_fragment - get fragment for PTEs 1412 * 1413 * @params: see amdgpu_vm_update_params definition 1414 * @start: first PTE to handle 1415 * @end: last PTE to handle 1416 * @flags: hw mapping flags 1417 * @frag: resulting fragment size 1418 * @frag_end: end of this fragment 1419 * 1420 * Returns the first possible fragment for the start and end address. 1421 */ 1422 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1423 uint64_t start, uint64_t end, uint64_t flags, 1424 unsigned int *frag, uint64_t *frag_end) 1425 { 1426 /** 1427 * The MC L1 TLB supports variable sized pages, based on a fragment 1428 * field in the PTE. When this field is set to a non-zero value, page 1429 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1430 * flags are considered valid for all PTEs within the fragment range 1431 * and corresponding mappings are assumed to be physically contiguous. 1432 * 1433 * The L1 TLB can store a single PTE for the whole fragment, 1434 * significantly increasing the space available for translation 1435 * caching. This leads to large improvements in throughput when the 1436 * TLB is under pressure. 1437 * 1438 * The L2 TLB distributes small and large fragments into two 1439 * asymmetric partitions. The large fragment cache is significantly 1440 * larger. Thus, we try to use large fragments wherever possible. 1441 * Userspace can support this by aligning virtual base address and 1442 * allocation size to the fragment size. 1443 * 1444 * Starting with Vega10 the fragment size only controls the L1. The L2 1445 * is now directly feed with small/huge/giant pages from the walker. 1446 */ 1447 unsigned max_frag; 1448 1449 if (params->adev->asic_type < CHIP_VEGA10) 1450 max_frag = params->adev->vm_manager.fragment_size; 1451 else 1452 max_frag = 31; 1453 1454 /* system pages are non continuously */ 1455 if (params->pages_addr) { 1456 *frag = 0; 1457 *frag_end = end; 1458 return; 1459 } 1460 1461 /* This intentionally wraps around if no bit is set */ 1462 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1463 if (*frag >= max_frag) { 1464 *frag = max_frag; 1465 *frag_end = end & ~((1ULL << max_frag) - 1); 1466 } else { 1467 *frag_end = start + (1 << *frag); 1468 } 1469 } 1470 1471 /** 1472 * amdgpu_vm_update_ptes - make sure that page tables are valid 1473 * 1474 * @params: see amdgpu_vm_update_params definition 1475 * @start: start of GPU address range 1476 * @end: end of GPU address range 1477 * @dst: destination address to map to, the next dst inside the function 1478 * @flags: mapping flags 1479 * 1480 * Update the page tables in the range @start - @end. 1481 * 1482 * Returns: 1483 * 0 for success, -EINVAL for failure. 1484 */ 1485 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1486 uint64_t start, uint64_t end, 1487 uint64_t dst, uint64_t flags) 1488 { 1489 struct amdgpu_device *adev = params->adev; 1490 struct amdgpu_vm_pt_cursor cursor; 1491 uint64_t frag_start = start, frag_end; 1492 unsigned int frag; 1493 int r; 1494 1495 /* figure out the initial fragment */ 1496 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1497 1498 /* walk over the address space and update the PTs */ 1499 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1500 while (cursor.pfn < end) { 1501 unsigned shift, parent_shift, mask; 1502 uint64_t incr, entry_end, pe_start; 1503 struct amdgpu_bo *pt; 1504 1505 if (!params->unlocked) { 1506 /* make sure that the page tables covering the 1507 * address range are actually allocated 1508 */ 1509 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1510 &cursor, params->immediate); 1511 if (r) 1512 return r; 1513 } 1514 1515 shift = amdgpu_vm_level_shift(adev, cursor.level); 1516 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1517 if (params->unlocked) { 1518 /* Unlocked updates are only allowed on the leaves */ 1519 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1520 continue; 1521 } else if (adev->asic_type < CHIP_VEGA10 && 1522 (flags & AMDGPU_PTE_VALID)) { 1523 /* No huge page support before GMC v9 */ 1524 if (cursor.level != AMDGPU_VM_PTB) { 1525 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1526 return -ENOENT; 1527 continue; 1528 } 1529 } else if (frag < shift) { 1530 /* We can't use this level when the fragment size is 1531 * smaller than the address shift. Go to the next 1532 * child entry and try again. 1533 */ 1534 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1535 continue; 1536 } else if (frag >= parent_shift) { 1537 /* If the fragment size is even larger than the parent 1538 * shift we should go up one level and check it again. 1539 */ 1540 if (!amdgpu_vm_pt_ancestor(&cursor)) 1541 return -EINVAL; 1542 continue; 1543 } 1544 1545 pt = cursor.entry->bo; 1546 if (!pt) { 1547 /* We need all PDs and PTs for mapping something, */ 1548 if (flags & AMDGPU_PTE_VALID) 1549 return -ENOENT; 1550 1551 /* but unmapping something can happen at a higher 1552 * level. 1553 */ 1554 if (!amdgpu_vm_pt_ancestor(&cursor)) 1555 return -EINVAL; 1556 1557 pt = cursor.entry->bo; 1558 shift = parent_shift; 1559 frag_end = max(frag_end, ALIGN(frag_start + 1, 1560 1ULL << shift)); 1561 } 1562 1563 /* Looks good so far, calculate parameters for the update */ 1564 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1565 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1566 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1567 entry_end = ((uint64_t)mask + 1) << shift; 1568 entry_end += cursor.pfn & ~(entry_end - 1); 1569 entry_end = min(entry_end, end); 1570 1571 do { 1572 struct amdgpu_vm *vm = params->vm; 1573 uint64_t upd_end = min(entry_end, frag_end); 1574 unsigned nptes = (upd_end - frag_start) >> shift; 1575 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1576 1577 /* This can happen when we set higher level PDs to 1578 * silent to stop fault floods. 1579 */ 1580 nptes = max(nptes, 1u); 1581 1582 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1583 nptes, dst, incr, upd_flags, 1584 vm->task_info.pid, 1585 vm->immediate.fence_context); 1586 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1587 cursor.level, pe_start, dst, 1588 nptes, incr, upd_flags); 1589 1590 pe_start += nptes * 8; 1591 dst += nptes * incr; 1592 1593 frag_start = upd_end; 1594 if (frag_start >= frag_end) { 1595 /* figure out the next fragment */ 1596 amdgpu_vm_fragment(params, frag_start, end, 1597 flags, &frag, &frag_end); 1598 if (frag < shift) 1599 break; 1600 } 1601 } while (frag_start < entry_end); 1602 1603 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1604 /* Free all child entries. 1605 * Update the tables with the flags and addresses and free up subsequent 1606 * tables in the case of huge pages or freed up areas. 1607 * This is the maximum you can free, because all other page tables are not 1608 * completely covered by the range and so potentially still in use. 1609 */ 1610 while (cursor.pfn < frag_start) { 1611 /* Make sure previous mapping is freed */ 1612 if (cursor.entry->bo) { 1613 params->table_freed = true; 1614 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1615 } 1616 amdgpu_vm_pt_next(adev, &cursor); 1617 } 1618 1619 } else if (frag >= shift) { 1620 /* or just move on to the next on the same level. */ 1621 amdgpu_vm_pt_next(adev, &cursor); 1622 } 1623 } 1624 1625 return 0; 1626 } 1627 1628 /** 1629 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1630 * 1631 * @adev: amdgpu_device pointer of the VM 1632 * @bo_adev: amdgpu_device pointer of the mapped BO 1633 * @vm: requested vm 1634 * @immediate: immediate submission in a page fault 1635 * @unlocked: unlocked invalidation during MM callback 1636 * @resv: fences we need to sync to 1637 * @start: start of mapped range 1638 * @last: last mapped entry 1639 * @flags: flags for the entries 1640 * @offset: offset into nodes and pages_addr 1641 * @res: ttm_resource to map 1642 * @pages_addr: DMA addresses to use for mapping 1643 * @fence: optional resulting fence 1644 * @table_freed: return true if page table is freed 1645 * 1646 * Fill in the page table entries between @start and @last. 1647 * 1648 * Returns: 1649 * 0 for success, -EINVAL for failure. 1650 */ 1651 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1652 struct amdgpu_device *bo_adev, 1653 struct amdgpu_vm *vm, bool immediate, 1654 bool unlocked, struct dma_resv *resv, 1655 uint64_t start, uint64_t last, 1656 uint64_t flags, uint64_t offset, 1657 struct ttm_resource *res, 1658 dma_addr_t *pages_addr, 1659 struct dma_fence **fence, 1660 bool *table_freed) 1661 { 1662 struct amdgpu_vm_update_params params; 1663 struct amdgpu_res_cursor cursor; 1664 enum amdgpu_sync_mode sync_mode; 1665 int r, idx; 1666 1667 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1668 return -ENODEV; 1669 1670 memset(¶ms, 0, sizeof(params)); 1671 params.adev = adev; 1672 params.vm = vm; 1673 params.immediate = immediate; 1674 params.pages_addr = pages_addr; 1675 params.unlocked = unlocked; 1676 1677 /* Implicitly sync to command submissions in the same VM before 1678 * unmapping. Sync to moving fences before mapping. 1679 */ 1680 if (!(flags & AMDGPU_PTE_VALID)) 1681 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1682 else 1683 sync_mode = AMDGPU_SYNC_EXPLICIT; 1684 1685 amdgpu_vm_eviction_lock(vm); 1686 if (vm->evicting) { 1687 r = -EBUSY; 1688 goto error_unlock; 1689 } 1690 1691 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1692 struct dma_fence *tmp = dma_fence_get_stub(); 1693 1694 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1695 swap(vm->last_unlocked, tmp); 1696 dma_fence_put(tmp); 1697 } 1698 1699 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1700 if (r) 1701 goto error_unlock; 1702 1703 amdgpu_res_first(pages_addr ? NULL : res, offset, 1704 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1705 while (cursor.remaining) { 1706 uint64_t tmp, num_entries, addr; 1707 1708 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1709 if (pages_addr) { 1710 bool contiguous = true; 1711 1712 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1713 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1714 uint64_t count; 1715 1716 contiguous = pages_addr[pfn + 1] == 1717 pages_addr[pfn] + PAGE_SIZE; 1718 1719 tmp = num_entries / 1720 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1721 for (count = 2; count < tmp; ++count) { 1722 uint64_t idx = pfn + count; 1723 1724 if (contiguous != (pages_addr[idx] == 1725 pages_addr[idx - 1] + PAGE_SIZE)) 1726 break; 1727 } 1728 num_entries = count * 1729 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1730 } 1731 1732 if (!contiguous) { 1733 addr = cursor.start; 1734 params.pages_addr = pages_addr; 1735 } else { 1736 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1737 params.pages_addr = NULL; 1738 } 1739 1740 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1741 addr = bo_adev->vm_manager.vram_base_offset + 1742 cursor.start; 1743 } else { 1744 addr = 0; 1745 } 1746 1747 tmp = start + num_entries; 1748 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1749 if (r) 1750 goto error_unlock; 1751 1752 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1753 start = tmp; 1754 } 1755 1756 r = vm->update_funcs->commit(¶ms, fence); 1757 1758 if (table_freed) 1759 *table_freed = *table_freed || params.table_freed; 1760 1761 error_unlock: 1762 amdgpu_vm_eviction_unlock(vm); 1763 drm_dev_exit(idx); 1764 return r; 1765 } 1766 1767 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1768 uint64_t *gtt_mem, uint64_t *cpu_mem) 1769 { 1770 struct amdgpu_bo_va *bo_va, *tmp; 1771 1772 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1773 if (!bo_va->base.bo) 1774 continue; 1775 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1776 gtt_mem, cpu_mem); 1777 } 1778 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1779 if (!bo_va->base.bo) 1780 continue; 1781 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1782 gtt_mem, cpu_mem); 1783 } 1784 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1785 if (!bo_va->base.bo) 1786 continue; 1787 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1788 gtt_mem, cpu_mem); 1789 } 1790 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1791 if (!bo_va->base.bo) 1792 continue; 1793 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1794 gtt_mem, cpu_mem); 1795 } 1796 spin_lock(&vm->invalidated_lock); 1797 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1798 if (!bo_va->base.bo) 1799 continue; 1800 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1801 gtt_mem, cpu_mem); 1802 } 1803 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1804 if (!bo_va->base.bo) 1805 continue; 1806 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1807 gtt_mem, cpu_mem); 1808 } 1809 spin_unlock(&vm->invalidated_lock); 1810 } 1811 /** 1812 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1813 * 1814 * @adev: amdgpu_device pointer 1815 * @bo_va: requested BO and VM object 1816 * @clear: if true clear the entries 1817 * @table_freed: return true if page table is freed 1818 * 1819 * Fill in the page table entries for @bo_va. 1820 * 1821 * Returns: 1822 * 0 for success, -EINVAL for failure. 1823 */ 1824 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1825 bool clear, bool *table_freed) 1826 { 1827 struct amdgpu_bo *bo = bo_va->base.bo; 1828 struct amdgpu_vm *vm = bo_va->base.vm; 1829 struct amdgpu_bo_va_mapping *mapping; 1830 dma_addr_t *pages_addr = NULL; 1831 struct ttm_resource *mem; 1832 struct dma_fence **last_update; 1833 struct dma_resv *resv; 1834 uint64_t flags; 1835 struct amdgpu_device *bo_adev = adev; 1836 int r; 1837 1838 if (clear || !bo) { 1839 mem = NULL; 1840 resv = vm->root.bo->tbo.base.resv; 1841 } else { 1842 struct drm_gem_object *obj = &bo->tbo.base; 1843 1844 resv = bo->tbo.base.resv; 1845 if (obj->import_attach && bo_va->is_xgmi) { 1846 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1847 struct drm_gem_object *gobj = dma_buf->priv; 1848 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1849 1850 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1851 bo = gem_to_amdgpu_bo(gobj); 1852 } 1853 mem = bo->tbo.resource; 1854 if (mem->mem_type == TTM_PL_TT || 1855 mem->mem_type == AMDGPU_PL_PREEMPT) 1856 pages_addr = bo->tbo.ttm->dma_address; 1857 } 1858 1859 if (bo) { 1860 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1861 1862 if (amdgpu_bo_encrypted(bo)) 1863 flags |= AMDGPU_PTE_TMZ; 1864 1865 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1866 } else { 1867 flags = 0x0; 1868 } 1869 1870 if (clear || (bo && bo->tbo.base.resv == 1871 vm->root.bo->tbo.base.resv)) 1872 last_update = &vm->last_update; 1873 else 1874 last_update = &bo_va->last_pt_update; 1875 1876 if (!clear && bo_va->base.moved) { 1877 bo_va->base.moved = false; 1878 list_splice_init(&bo_va->valids, &bo_va->invalids); 1879 1880 } else if (bo_va->cleared != clear) { 1881 list_splice_init(&bo_va->valids, &bo_va->invalids); 1882 } 1883 1884 list_for_each_entry(mapping, &bo_va->invalids, list) { 1885 uint64_t update_flags = flags; 1886 1887 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1888 * but in case of something, we filter the flags in first place 1889 */ 1890 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1891 update_flags &= ~AMDGPU_PTE_READABLE; 1892 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1893 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1894 1895 /* Apply ASIC specific mapping flags */ 1896 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1897 1898 trace_amdgpu_vm_bo_update(mapping); 1899 1900 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1901 resv, mapping->start, 1902 mapping->last, update_flags, 1903 mapping->offset, mem, 1904 pages_addr, last_update, table_freed); 1905 if (r) 1906 return r; 1907 } 1908 1909 /* If the BO is not in its preferred location add it back to 1910 * the evicted list so that it gets validated again on the 1911 * next command submission. 1912 */ 1913 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1914 uint32_t mem_type = bo->tbo.resource->mem_type; 1915 1916 if (!(bo->preferred_domains & 1917 amdgpu_mem_type_to_domain(mem_type))) 1918 amdgpu_vm_bo_evicted(&bo_va->base); 1919 else 1920 amdgpu_vm_bo_idle(&bo_va->base); 1921 } else { 1922 amdgpu_vm_bo_done(&bo_va->base); 1923 } 1924 1925 list_splice_init(&bo_va->invalids, &bo_va->valids); 1926 bo_va->cleared = clear; 1927 1928 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1929 list_for_each_entry(mapping, &bo_va->valids, list) 1930 trace_amdgpu_vm_bo_mapping(mapping); 1931 } 1932 1933 return 0; 1934 } 1935 1936 /** 1937 * amdgpu_vm_update_prt_state - update the global PRT state 1938 * 1939 * @adev: amdgpu_device pointer 1940 */ 1941 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1942 { 1943 unsigned long flags; 1944 bool enable; 1945 1946 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1947 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1948 adev->gmc.gmc_funcs->set_prt(adev, enable); 1949 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1950 } 1951 1952 /** 1953 * amdgpu_vm_prt_get - add a PRT user 1954 * 1955 * @adev: amdgpu_device pointer 1956 */ 1957 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1958 { 1959 if (!adev->gmc.gmc_funcs->set_prt) 1960 return; 1961 1962 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1963 amdgpu_vm_update_prt_state(adev); 1964 } 1965 1966 /** 1967 * amdgpu_vm_prt_put - drop a PRT user 1968 * 1969 * @adev: amdgpu_device pointer 1970 */ 1971 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1972 { 1973 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1974 amdgpu_vm_update_prt_state(adev); 1975 } 1976 1977 /** 1978 * amdgpu_vm_prt_cb - callback for updating the PRT status 1979 * 1980 * @fence: fence for the callback 1981 * @_cb: the callback function 1982 */ 1983 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1984 { 1985 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1986 1987 amdgpu_vm_prt_put(cb->adev); 1988 kfree(cb); 1989 } 1990 1991 /** 1992 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1993 * 1994 * @adev: amdgpu_device pointer 1995 * @fence: fence for the callback 1996 */ 1997 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1998 struct dma_fence *fence) 1999 { 2000 struct amdgpu_prt_cb *cb; 2001 2002 if (!adev->gmc.gmc_funcs->set_prt) 2003 return; 2004 2005 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2006 if (!cb) { 2007 /* Last resort when we are OOM */ 2008 if (fence) 2009 dma_fence_wait(fence, false); 2010 2011 amdgpu_vm_prt_put(adev); 2012 } else { 2013 cb->adev = adev; 2014 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2015 amdgpu_vm_prt_cb)) 2016 amdgpu_vm_prt_cb(fence, &cb->cb); 2017 } 2018 } 2019 2020 /** 2021 * amdgpu_vm_free_mapping - free a mapping 2022 * 2023 * @adev: amdgpu_device pointer 2024 * @vm: requested vm 2025 * @mapping: mapping to be freed 2026 * @fence: fence of the unmap operation 2027 * 2028 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2029 */ 2030 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2031 struct amdgpu_vm *vm, 2032 struct amdgpu_bo_va_mapping *mapping, 2033 struct dma_fence *fence) 2034 { 2035 if (mapping->flags & AMDGPU_PTE_PRT) 2036 amdgpu_vm_add_prt_cb(adev, fence); 2037 kfree(mapping); 2038 } 2039 2040 /** 2041 * amdgpu_vm_prt_fini - finish all prt mappings 2042 * 2043 * @adev: amdgpu_device pointer 2044 * @vm: requested vm 2045 * 2046 * Register a cleanup callback to disable PRT support after VM dies. 2047 */ 2048 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2049 { 2050 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2051 struct dma_resv_iter cursor; 2052 struct dma_fence *fence; 2053 2054 dma_resv_for_each_fence(&cursor, resv, true, fence) { 2055 /* Add a callback for each fence in the reservation object */ 2056 amdgpu_vm_prt_get(adev); 2057 amdgpu_vm_add_prt_cb(adev, fence); 2058 } 2059 } 2060 2061 /** 2062 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2063 * 2064 * @adev: amdgpu_device pointer 2065 * @vm: requested vm 2066 * @fence: optional resulting fence (unchanged if no work needed to be done 2067 * or if an error occurred) 2068 * 2069 * Make sure all freed BOs are cleared in the PT. 2070 * PTs have to be reserved and mutex must be locked! 2071 * 2072 * Returns: 2073 * 0 for success. 2074 * 2075 */ 2076 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2077 struct amdgpu_vm *vm, 2078 struct dma_fence **fence) 2079 { 2080 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2081 struct amdgpu_bo_va_mapping *mapping; 2082 uint64_t init_pte_value = 0; 2083 struct dma_fence *f = NULL; 2084 int r; 2085 2086 while (!list_empty(&vm->freed)) { 2087 mapping = list_first_entry(&vm->freed, 2088 struct amdgpu_bo_va_mapping, list); 2089 list_del(&mapping->list); 2090 2091 if (vm->pte_support_ats && 2092 mapping->start < AMDGPU_GMC_HOLE_START) 2093 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2094 2095 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2096 resv, mapping->start, 2097 mapping->last, init_pte_value, 2098 0, NULL, NULL, &f, NULL); 2099 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2100 if (r) { 2101 dma_fence_put(f); 2102 return r; 2103 } 2104 } 2105 2106 if (fence && f) { 2107 dma_fence_put(*fence); 2108 *fence = f; 2109 } else { 2110 dma_fence_put(f); 2111 } 2112 2113 return 0; 2114 2115 } 2116 2117 /** 2118 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2119 * 2120 * @adev: amdgpu_device pointer 2121 * @vm: requested vm 2122 * 2123 * Make sure all BOs which are moved are updated in the PTs. 2124 * 2125 * Returns: 2126 * 0 for success. 2127 * 2128 * PTs have to be reserved! 2129 */ 2130 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2131 struct amdgpu_vm *vm) 2132 { 2133 struct amdgpu_bo_va *bo_va, *tmp; 2134 struct dma_resv *resv; 2135 bool clear; 2136 int r; 2137 2138 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2139 /* Per VM BOs never need to bo cleared in the page tables */ 2140 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2141 if (r) 2142 return r; 2143 } 2144 2145 spin_lock(&vm->invalidated_lock); 2146 while (!list_empty(&vm->invalidated)) { 2147 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2148 base.vm_status); 2149 resv = bo_va->base.bo->tbo.base.resv; 2150 spin_unlock(&vm->invalidated_lock); 2151 2152 /* Try to reserve the BO to avoid clearing its ptes */ 2153 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2154 clear = false; 2155 /* Somebody else is using the BO right now */ 2156 else 2157 clear = true; 2158 2159 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2160 if (r) 2161 return r; 2162 2163 if (!clear) 2164 dma_resv_unlock(resv); 2165 spin_lock(&vm->invalidated_lock); 2166 } 2167 spin_unlock(&vm->invalidated_lock); 2168 2169 return 0; 2170 } 2171 2172 /** 2173 * amdgpu_vm_bo_add - add a bo to a specific vm 2174 * 2175 * @adev: amdgpu_device pointer 2176 * @vm: requested vm 2177 * @bo: amdgpu buffer object 2178 * 2179 * Add @bo into the requested vm. 2180 * Add @bo to the list of bos associated with the vm 2181 * 2182 * Returns: 2183 * Newly added bo_va or NULL for failure 2184 * 2185 * Object has to be reserved! 2186 */ 2187 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2188 struct amdgpu_vm *vm, 2189 struct amdgpu_bo *bo) 2190 { 2191 struct amdgpu_bo_va *bo_va; 2192 2193 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2194 if (bo_va == NULL) { 2195 return NULL; 2196 } 2197 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2198 2199 bo_va->ref_count = 1; 2200 INIT_LIST_HEAD(&bo_va->valids); 2201 INIT_LIST_HEAD(&bo_va->invalids); 2202 2203 if (!bo) 2204 return bo_va; 2205 2206 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2207 bo_va->is_xgmi = true; 2208 /* Power up XGMI if it can be potentially used */ 2209 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2210 } 2211 2212 return bo_va; 2213 } 2214 2215 2216 /** 2217 * amdgpu_vm_bo_insert_map - insert a new mapping 2218 * 2219 * @adev: amdgpu_device pointer 2220 * @bo_va: bo_va to store the address 2221 * @mapping: the mapping to insert 2222 * 2223 * Insert a new mapping into all structures. 2224 */ 2225 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2226 struct amdgpu_bo_va *bo_va, 2227 struct amdgpu_bo_va_mapping *mapping) 2228 { 2229 struct amdgpu_vm *vm = bo_va->base.vm; 2230 struct amdgpu_bo *bo = bo_va->base.bo; 2231 2232 mapping->bo_va = bo_va; 2233 list_add(&mapping->list, &bo_va->invalids); 2234 amdgpu_vm_it_insert(mapping, &vm->va); 2235 2236 if (mapping->flags & AMDGPU_PTE_PRT) 2237 amdgpu_vm_prt_get(adev); 2238 2239 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2240 !bo_va->base.moved) { 2241 list_move(&bo_va->base.vm_status, &vm->moved); 2242 } 2243 trace_amdgpu_vm_bo_map(bo_va, mapping); 2244 } 2245 2246 /** 2247 * amdgpu_vm_bo_map - map bo inside a vm 2248 * 2249 * @adev: amdgpu_device pointer 2250 * @bo_va: bo_va to store the address 2251 * @saddr: where to map the BO 2252 * @offset: requested offset in the BO 2253 * @size: BO size in bytes 2254 * @flags: attributes of pages (read/write/valid/etc.) 2255 * 2256 * Add a mapping of the BO at the specefied addr into the VM. 2257 * 2258 * Returns: 2259 * 0 for success, error for failure. 2260 * 2261 * Object has to be reserved and unreserved outside! 2262 */ 2263 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2264 struct amdgpu_bo_va *bo_va, 2265 uint64_t saddr, uint64_t offset, 2266 uint64_t size, uint64_t flags) 2267 { 2268 struct amdgpu_bo_va_mapping *mapping, *tmp; 2269 struct amdgpu_bo *bo = bo_va->base.bo; 2270 struct amdgpu_vm *vm = bo_va->base.vm; 2271 uint64_t eaddr; 2272 2273 /* validate the parameters */ 2274 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2275 size == 0 || size & ~PAGE_MASK) 2276 return -EINVAL; 2277 2278 /* make sure object fit at this offset */ 2279 eaddr = saddr + size - 1; 2280 if (saddr >= eaddr || 2281 (bo && offset + size > amdgpu_bo_size(bo)) || 2282 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2283 return -EINVAL; 2284 2285 saddr /= AMDGPU_GPU_PAGE_SIZE; 2286 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2287 2288 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2289 if (tmp) { 2290 /* bo and tmp overlap, invalid addr */ 2291 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2292 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2293 tmp->start, tmp->last + 1); 2294 return -EINVAL; 2295 } 2296 2297 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2298 if (!mapping) 2299 return -ENOMEM; 2300 2301 mapping->start = saddr; 2302 mapping->last = eaddr; 2303 mapping->offset = offset; 2304 mapping->flags = flags; 2305 2306 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2307 2308 return 0; 2309 } 2310 2311 /** 2312 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2313 * 2314 * @adev: amdgpu_device pointer 2315 * @bo_va: bo_va to store the address 2316 * @saddr: where to map the BO 2317 * @offset: requested offset in the BO 2318 * @size: BO size in bytes 2319 * @flags: attributes of pages (read/write/valid/etc.) 2320 * 2321 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2322 * mappings as we do so. 2323 * 2324 * Returns: 2325 * 0 for success, error for failure. 2326 * 2327 * Object has to be reserved and unreserved outside! 2328 */ 2329 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2330 struct amdgpu_bo_va *bo_va, 2331 uint64_t saddr, uint64_t offset, 2332 uint64_t size, uint64_t flags) 2333 { 2334 struct amdgpu_bo_va_mapping *mapping; 2335 struct amdgpu_bo *bo = bo_va->base.bo; 2336 uint64_t eaddr; 2337 int r; 2338 2339 /* validate the parameters */ 2340 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2341 size == 0 || size & ~PAGE_MASK) 2342 return -EINVAL; 2343 2344 /* make sure object fit at this offset */ 2345 eaddr = saddr + size - 1; 2346 if (saddr >= eaddr || 2347 (bo && offset + size > amdgpu_bo_size(bo)) || 2348 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2349 return -EINVAL; 2350 2351 /* Allocate all the needed memory */ 2352 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2353 if (!mapping) 2354 return -ENOMEM; 2355 2356 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2357 if (r) { 2358 kfree(mapping); 2359 return r; 2360 } 2361 2362 saddr /= AMDGPU_GPU_PAGE_SIZE; 2363 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2364 2365 mapping->start = saddr; 2366 mapping->last = eaddr; 2367 mapping->offset = offset; 2368 mapping->flags = flags; 2369 2370 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2371 2372 return 0; 2373 } 2374 2375 /** 2376 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2377 * 2378 * @adev: amdgpu_device pointer 2379 * @bo_va: bo_va to remove the address from 2380 * @saddr: where to the BO is mapped 2381 * 2382 * Remove a mapping of the BO at the specefied addr from the VM. 2383 * 2384 * Returns: 2385 * 0 for success, error for failure. 2386 * 2387 * Object has to be reserved and unreserved outside! 2388 */ 2389 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2390 struct amdgpu_bo_va *bo_va, 2391 uint64_t saddr) 2392 { 2393 struct amdgpu_bo_va_mapping *mapping; 2394 struct amdgpu_vm *vm = bo_va->base.vm; 2395 bool valid = true; 2396 2397 saddr /= AMDGPU_GPU_PAGE_SIZE; 2398 2399 list_for_each_entry(mapping, &bo_va->valids, list) { 2400 if (mapping->start == saddr) 2401 break; 2402 } 2403 2404 if (&mapping->list == &bo_va->valids) { 2405 valid = false; 2406 2407 list_for_each_entry(mapping, &bo_va->invalids, list) { 2408 if (mapping->start == saddr) 2409 break; 2410 } 2411 2412 if (&mapping->list == &bo_va->invalids) 2413 return -ENOENT; 2414 } 2415 2416 list_del(&mapping->list); 2417 amdgpu_vm_it_remove(mapping, &vm->va); 2418 mapping->bo_va = NULL; 2419 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2420 2421 if (valid) 2422 list_add(&mapping->list, &vm->freed); 2423 else 2424 amdgpu_vm_free_mapping(adev, vm, mapping, 2425 bo_va->last_pt_update); 2426 2427 return 0; 2428 } 2429 2430 /** 2431 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2432 * 2433 * @adev: amdgpu_device pointer 2434 * @vm: VM structure to use 2435 * @saddr: start of the range 2436 * @size: size of the range 2437 * 2438 * Remove all mappings in a range, split them as appropriate. 2439 * 2440 * Returns: 2441 * 0 for success, error for failure. 2442 */ 2443 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2444 struct amdgpu_vm *vm, 2445 uint64_t saddr, uint64_t size) 2446 { 2447 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2448 LIST_HEAD(removed); 2449 uint64_t eaddr; 2450 2451 eaddr = saddr + size - 1; 2452 saddr /= AMDGPU_GPU_PAGE_SIZE; 2453 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2454 2455 /* Allocate all the needed memory */ 2456 before = kzalloc(sizeof(*before), GFP_KERNEL); 2457 if (!before) 2458 return -ENOMEM; 2459 INIT_LIST_HEAD(&before->list); 2460 2461 after = kzalloc(sizeof(*after), GFP_KERNEL); 2462 if (!after) { 2463 kfree(before); 2464 return -ENOMEM; 2465 } 2466 INIT_LIST_HEAD(&after->list); 2467 2468 /* Now gather all removed mappings */ 2469 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2470 while (tmp) { 2471 /* Remember mapping split at the start */ 2472 if (tmp->start < saddr) { 2473 before->start = tmp->start; 2474 before->last = saddr - 1; 2475 before->offset = tmp->offset; 2476 before->flags = tmp->flags; 2477 before->bo_va = tmp->bo_va; 2478 list_add(&before->list, &tmp->bo_va->invalids); 2479 } 2480 2481 /* Remember mapping split at the end */ 2482 if (tmp->last > eaddr) { 2483 after->start = eaddr + 1; 2484 after->last = tmp->last; 2485 after->offset = tmp->offset; 2486 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2487 after->flags = tmp->flags; 2488 after->bo_va = tmp->bo_va; 2489 list_add(&after->list, &tmp->bo_va->invalids); 2490 } 2491 2492 list_del(&tmp->list); 2493 list_add(&tmp->list, &removed); 2494 2495 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2496 } 2497 2498 /* And free them up */ 2499 list_for_each_entry_safe(tmp, next, &removed, list) { 2500 amdgpu_vm_it_remove(tmp, &vm->va); 2501 list_del(&tmp->list); 2502 2503 if (tmp->start < saddr) 2504 tmp->start = saddr; 2505 if (tmp->last > eaddr) 2506 tmp->last = eaddr; 2507 2508 tmp->bo_va = NULL; 2509 list_add(&tmp->list, &vm->freed); 2510 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2511 } 2512 2513 /* Insert partial mapping before the range */ 2514 if (!list_empty(&before->list)) { 2515 amdgpu_vm_it_insert(before, &vm->va); 2516 if (before->flags & AMDGPU_PTE_PRT) 2517 amdgpu_vm_prt_get(adev); 2518 } else { 2519 kfree(before); 2520 } 2521 2522 /* Insert partial mapping after the range */ 2523 if (!list_empty(&after->list)) { 2524 amdgpu_vm_it_insert(after, &vm->va); 2525 if (after->flags & AMDGPU_PTE_PRT) 2526 amdgpu_vm_prt_get(adev); 2527 } else { 2528 kfree(after); 2529 } 2530 2531 return 0; 2532 } 2533 2534 /** 2535 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2536 * 2537 * @vm: the requested VM 2538 * @addr: the address 2539 * 2540 * Find a mapping by it's address. 2541 * 2542 * Returns: 2543 * The amdgpu_bo_va_mapping matching for addr or NULL 2544 * 2545 */ 2546 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2547 uint64_t addr) 2548 { 2549 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2550 } 2551 2552 /** 2553 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2554 * 2555 * @vm: the requested vm 2556 * @ticket: CS ticket 2557 * 2558 * Trace all mappings of BOs reserved during a command submission. 2559 */ 2560 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2561 { 2562 struct amdgpu_bo_va_mapping *mapping; 2563 2564 if (!trace_amdgpu_vm_bo_cs_enabled()) 2565 return; 2566 2567 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2568 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2569 if (mapping->bo_va && mapping->bo_va->base.bo) { 2570 struct amdgpu_bo *bo; 2571 2572 bo = mapping->bo_va->base.bo; 2573 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2574 ticket) 2575 continue; 2576 } 2577 2578 trace_amdgpu_vm_bo_cs(mapping); 2579 } 2580 } 2581 2582 /** 2583 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2584 * 2585 * @adev: amdgpu_device pointer 2586 * @bo_va: requested bo_va 2587 * 2588 * Remove @bo_va->bo from the requested vm. 2589 * 2590 * Object have to be reserved! 2591 */ 2592 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2593 struct amdgpu_bo_va *bo_va) 2594 { 2595 struct amdgpu_bo_va_mapping *mapping, *next; 2596 struct amdgpu_bo *bo = bo_va->base.bo; 2597 struct amdgpu_vm *vm = bo_va->base.vm; 2598 struct amdgpu_vm_bo_base **base; 2599 2600 if (bo) { 2601 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2602 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2603 2604 for (base = &bo_va->base.bo->vm_bo; *base; 2605 base = &(*base)->next) { 2606 if (*base != &bo_va->base) 2607 continue; 2608 2609 *base = bo_va->base.next; 2610 break; 2611 } 2612 } 2613 2614 spin_lock(&vm->invalidated_lock); 2615 list_del(&bo_va->base.vm_status); 2616 spin_unlock(&vm->invalidated_lock); 2617 2618 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2619 list_del(&mapping->list); 2620 amdgpu_vm_it_remove(mapping, &vm->va); 2621 mapping->bo_va = NULL; 2622 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2623 list_add(&mapping->list, &vm->freed); 2624 } 2625 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2626 list_del(&mapping->list); 2627 amdgpu_vm_it_remove(mapping, &vm->va); 2628 amdgpu_vm_free_mapping(adev, vm, mapping, 2629 bo_va->last_pt_update); 2630 } 2631 2632 dma_fence_put(bo_va->last_pt_update); 2633 2634 if (bo && bo_va->is_xgmi) 2635 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2636 2637 kfree(bo_va); 2638 } 2639 2640 /** 2641 * amdgpu_vm_evictable - check if we can evict a VM 2642 * 2643 * @bo: A page table of the VM. 2644 * 2645 * Check if it is possible to evict a VM. 2646 */ 2647 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2648 { 2649 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2650 2651 /* Page tables of a destroyed VM can go away immediately */ 2652 if (!bo_base || !bo_base->vm) 2653 return true; 2654 2655 /* Don't evict VM page tables while they are busy */ 2656 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2657 return false; 2658 2659 /* Try to block ongoing updates */ 2660 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2661 return false; 2662 2663 /* Don't evict VM page tables while they are updated */ 2664 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2665 amdgpu_vm_eviction_unlock(bo_base->vm); 2666 return false; 2667 } 2668 2669 bo_base->vm->evicting = true; 2670 amdgpu_vm_eviction_unlock(bo_base->vm); 2671 return true; 2672 } 2673 2674 /** 2675 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2676 * 2677 * @adev: amdgpu_device pointer 2678 * @bo: amdgpu buffer object 2679 * @evicted: is the BO evicted 2680 * 2681 * Mark @bo as invalid. 2682 */ 2683 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2684 struct amdgpu_bo *bo, bool evicted) 2685 { 2686 struct amdgpu_vm_bo_base *bo_base; 2687 2688 /* shadow bo doesn't have bo base, its validation needs its parent */ 2689 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2690 bo = bo->parent; 2691 2692 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2693 struct amdgpu_vm *vm = bo_base->vm; 2694 2695 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2696 amdgpu_vm_bo_evicted(bo_base); 2697 continue; 2698 } 2699 2700 if (bo_base->moved) 2701 continue; 2702 bo_base->moved = true; 2703 2704 if (bo->tbo.type == ttm_bo_type_kernel) 2705 amdgpu_vm_bo_relocated(bo_base); 2706 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2707 amdgpu_vm_bo_moved(bo_base); 2708 else 2709 amdgpu_vm_bo_invalidated(bo_base); 2710 } 2711 } 2712 2713 /** 2714 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2715 * 2716 * @vm_size: VM size 2717 * 2718 * Returns: 2719 * VM page table as power of two 2720 */ 2721 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2722 { 2723 /* Total bits covered by PD + PTs */ 2724 unsigned bits = ilog2(vm_size) + 18; 2725 2726 /* Make sure the PD is 4K in size up to 8GB address space. 2727 Above that split equal between PD and PTs */ 2728 if (vm_size <= 8) 2729 return (bits - 9); 2730 else 2731 return ((bits + 3) / 2); 2732 } 2733 2734 /** 2735 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2736 * 2737 * @adev: amdgpu_device pointer 2738 * @min_vm_size: the minimum vm size in GB if it's set auto 2739 * @fragment_size_default: Default PTE fragment size 2740 * @max_level: max VMPT level 2741 * @max_bits: max address space size in bits 2742 * 2743 */ 2744 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2745 uint32_t fragment_size_default, unsigned max_level, 2746 unsigned max_bits) 2747 { 2748 unsigned int max_size = 1 << (max_bits - 30); 2749 unsigned int vm_size; 2750 uint64_t tmp; 2751 2752 /* adjust vm size first */ 2753 if (amdgpu_vm_size != -1) { 2754 vm_size = amdgpu_vm_size; 2755 if (vm_size > max_size) { 2756 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2757 amdgpu_vm_size, max_size); 2758 vm_size = max_size; 2759 } 2760 } else { 2761 struct sysinfo si; 2762 unsigned int phys_ram_gb; 2763 2764 /* Optimal VM size depends on the amount of physical 2765 * RAM available. Underlying requirements and 2766 * assumptions: 2767 * 2768 * - Need to map system memory and VRAM from all GPUs 2769 * - VRAM from other GPUs not known here 2770 * - Assume VRAM <= system memory 2771 * - On GFX8 and older, VM space can be segmented for 2772 * different MTYPEs 2773 * - Need to allow room for fragmentation, guard pages etc. 2774 * 2775 * This adds up to a rough guess of system memory x3. 2776 * Round up to power of two to maximize the available 2777 * VM size with the given page table size. 2778 */ 2779 si_meminfo(&si); 2780 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2781 (1 << 30) - 1) >> 30; 2782 vm_size = roundup_pow_of_two( 2783 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2784 } 2785 2786 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2787 2788 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2789 if (amdgpu_vm_block_size != -1) 2790 tmp >>= amdgpu_vm_block_size - 9; 2791 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2792 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2793 switch (adev->vm_manager.num_level) { 2794 case 3: 2795 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2796 break; 2797 case 2: 2798 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2799 break; 2800 case 1: 2801 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2802 break; 2803 default: 2804 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2805 } 2806 /* block size depends on vm size and hw setup*/ 2807 if (amdgpu_vm_block_size != -1) 2808 adev->vm_manager.block_size = 2809 min((unsigned)amdgpu_vm_block_size, max_bits 2810 - AMDGPU_GPU_PAGE_SHIFT 2811 - 9 * adev->vm_manager.num_level); 2812 else if (adev->vm_manager.num_level > 1) 2813 adev->vm_manager.block_size = 9; 2814 else 2815 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2816 2817 if (amdgpu_vm_fragment_size == -1) 2818 adev->vm_manager.fragment_size = fragment_size_default; 2819 else 2820 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2821 2822 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2823 vm_size, adev->vm_manager.num_level + 1, 2824 adev->vm_manager.block_size, 2825 adev->vm_manager.fragment_size); 2826 } 2827 2828 /** 2829 * amdgpu_vm_wait_idle - wait for the VM to become idle 2830 * 2831 * @vm: VM object to wait for 2832 * @timeout: timeout to wait for VM to become idle 2833 */ 2834 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2835 { 2836 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2837 true, timeout); 2838 if (timeout <= 0) 2839 return timeout; 2840 2841 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2842 } 2843 2844 /** 2845 * amdgpu_vm_init - initialize a vm instance 2846 * 2847 * @adev: amdgpu_device pointer 2848 * @vm: requested vm 2849 * 2850 * Init @vm fields. 2851 * 2852 * Returns: 2853 * 0 for success, error for failure. 2854 */ 2855 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2856 { 2857 struct amdgpu_bo *root_bo; 2858 struct amdgpu_bo_vm *root; 2859 int r, i; 2860 2861 vm->va = RB_ROOT_CACHED; 2862 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2863 vm->reserved_vmid[i] = NULL; 2864 INIT_LIST_HEAD(&vm->evicted); 2865 INIT_LIST_HEAD(&vm->relocated); 2866 INIT_LIST_HEAD(&vm->moved); 2867 INIT_LIST_HEAD(&vm->idle); 2868 INIT_LIST_HEAD(&vm->invalidated); 2869 spin_lock_init(&vm->invalidated_lock); 2870 INIT_LIST_HEAD(&vm->freed); 2871 INIT_LIST_HEAD(&vm->done); 2872 2873 /* create scheduler entities for page table updates */ 2874 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2875 adev->vm_manager.vm_pte_scheds, 2876 adev->vm_manager.vm_pte_num_scheds, NULL); 2877 if (r) 2878 return r; 2879 2880 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2881 adev->vm_manager.vm_pte_scheds, 2882 adev->vm_manager.vm_pte_num_scheds, NULL); 2883 if (r) 2884 goto error_free_immediate; 2885 2886 vm->pte_support_ats = false; 2887 vm->is_compute_context = false; 2888 2889 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2890 AMDGPU_VM_USE_CPU_FOR_GFX); 2891 2892 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2893 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2894 WARN_ONCE((vm->use_cpu_for_update && 2895 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2896 "CPU update of VM recommended only for large BAR system\n"); 2897 2898 if (vm->use_cpu_for_update) 2899 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2900 else 2901 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2902 vm->last_update = NULL; 2903 vm->last_unlocked = dma_fence_get_stub(); 2904 2905 mutex_init(&vm->eviction_lock); 2906 vm->evicting = false; 2907 2908 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2909 false, &root); 2910 if (r) 2911 goto error_free_delayed; 2912 root_bo = &root->bo; 2913 r = amdgpu_bo_reserve(root_bo, true); 2914 if (r) 2915 goto error_free_root; 2916 2917 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2918 if (r) 2919 goto error_unreserve; 2920 2921 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2922 2923 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2924 if (r) 2925 goto error_unreserve; 2926 2927 amdgpu_bo_unreserve(vm->root.bo); 2928 2929 INIT_KFIFO(vm->faults); 2930 2931 return 0; 2932 2933 error_unreserve: 2934 amdgpu_bo_unreserve(vm->root.bo); 2935 2936 error_free_root: 2937 amdgpu_bo_unref(&root->shadow); 2938 amdgpu_bo_unref(&root_bo); 2939 vm->root.bo = NULL; 2940 2941 error_free_delayed: 2942 dma_fence_put(vm->last_unlocked); 2943 drm_sched_entity_destroy(&vm->delayed); 2944 2945 error_free_immediate: 2946 drm_sched_entity_destroy(&vm->immediate); 2947 2948 return r; 2949 } 2950 2951 /** 2952 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2953 * 2954 * @adev: amdgpu_device pointer 2955 * @vm: the VM to check 2956 * 2957 * check all entries of the root PD, if any subsequent PDs are allocated, 2958 * it means there are page table creating and filling, and is no a clean 2959 * VM 2960 * 2961 * Returns: 2962 * 0 if this VM is clean 2963 */ 2964 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2965 struct amdgpu_vm *vm) 2966 { 2967 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2968 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2969 unsigned int i = 0; 2970 2971 for (i = 0; i < entries; i++) { 2972 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 2973 return -EINVAL; 2974 } 2975 2976 return 0; 2977 } 2978 2979 /** 2980 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2981 * 2982 * @adev: amdgpu_device pointer 2983 * @vm: requested vm 2984 * 2985 * This only works on GFX VMs that don't have any BOs added and no 2986 * page tables allocated yet. 2987 * 2988 * Changes the following VM parameters: 2989 * - use_cpu_for_update 2990 * - pte_supports_ats 2991 * 2992 * Reinitializes the page directory to reflect the changed ATS 2993 * setting. 2994 * 2995 * Returns: 2996 * 0 for success, -errno for errors. 2997 */ 2998 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2999 { 3000 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3001 int r; 3002 3003 r = amdgpu_bo_reserve(vm->root.bo, true); 3004 if (r) 3005 return r; 3006 3007 /* Sanity checks */ 3008 r = amdgpu_vm_check_clean_reserved(adev, vm); 3009 if (r) 3010 goto unreserve_bo; 3011 3012 /* Check if PD needs to be reinitialized and do it before 3013 * changing any other state, in case it fails. 3014 */ 3015 if (pte_support_ats != vm->pte_support_ats) { 3016 vm->pte_support_ats = pte_support_ats; 3017 r = amdgpu_vm_clear_bo(adev, vm, 3018 to_amdgpu_bo_vm(vm->root.bo), 3019 false); 3020 if (r) 3021 goto unreserve_bo; 3022 } 3023 3024 /* Update VM state */ 3025 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3026 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3027 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3028 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3029 WARN_ONCE((vm->use_cpu_for_update && 3030 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3031 "CPU update of VM recommended only for large BAR system\n"); 3032 3033 if (vm->use_cpu_for_update) { 3034 /* Sync with last SDMA update/clear before switching to CPU */ 3035 r = amdgpu_bo_sync_wait(vm->root.bo, 3036 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3037 if (r) 3038 goto unreserve_bo; 3039 3040 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3041 } else { 3042 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3043 } 3044 dma_fence_put(vm->last_update); 3045 vm->last_update = NULL; 3046 vm->is_compute_context = true; 3047 3048 /* Free the shadow bo for compute VM */ 3049 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3050 3051 goto unreserve_bo; 3052 3053 unreserve_bo: 3054 amdgpu_bo_unreserve(vm->root.bo); 3055 return r; 3056 } 3057 3058 /** 3059 * amdgpu_vm_release_compute - release a compute vm 3060 * @adev: amdgpu_device pointer 3061 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3062 * 3063 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3064 * pasid from vm. Compute should stop use of vm after this call. 3065 */ 3066 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3067 { 3068 amdgpu_vm_set_pasid(adev, vm, 0); 3069 vm->is_compute_context = false; 3070 } 3071 3072 /** 3073 * amdgpu_vm_fini - tear down a vm instance 3074 * 3075 * @adev: amdgpu_device pointer 3076 * @vm: requested vm 3077 * 3078 * Tear down @vm. 3079 * Unbind the VM and remove all bos from the vm bo list 3080 */ 3081 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3082 { 3083 struct amdgpu_bo_va_mapping *mapping, *tmp; 3084 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3085 struct amdgpu_bo *root; 3086 int i; 3087 3088 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3089 3090 root = amdgpu_bo_ref(vm->root.bo); 3091 amdgpu_bo_reserve(root, true); 3092 amdgpu_vm_set_pasid(adev, vm, 0); 3093 dma_fence_wait(vm->last_unlocked, false); 3094 dma_fence_put(vm->last_unlocked); 3095 3096 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3097 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3098 amdgpu_vm_prt_fini(adev, vm); 3099 prt_fini_needed = false; 3100 } 3101 3102 list_del(&mapping->list); 3103 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3104 } 3105 3106 amdgpu_vm_free_pts(adev, vm, NULL); 3107 amdgpu_bo_unreserve(root); 3108 amdgpu_bo_unref(&root); 3109 WARN_ON(vm->root.bo); 3110 3111 drm_sched_entity_destroy(&vm->immediate); 3112 drm_sched_entity_destroy(&vm->delayed); 3113 3114 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3115 dev_err(adev->dev, "still active bo inside vm\n"); 3116 } 3117 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3118 &vm->va.rb_root, rb) { 3119 /* Don't remove the mapping here, we don't want to trigger a 3120 * rebalance and the tree is about to be destroyed anyway. 3121 */ 3122 list_del(&mapping->list); 3123 kfree(mapping); 3124 } 3125 3126 dma_fence_put(vm->last_update); 3127 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3128 amdgpu_vmid_free_reserved(adev, vm, i); 3129 } 3130 3131 /** 3132 * amdgpu_vm_manager_init - init the VM manager 3133 * 3134 * @adev: amdgpu_device pointer 3135 * 3136 * Initialize the VM manager structures 3137 */ 3138 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3139 { 3140 unsigned i; 3141 3142 /* Concurrent flushes are only possible starting with Vega10 and 3143 * are broken on Navi10 and Navi14. 3144 */ 3145 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3146 adev->asic_type == CHIP_NAVI10 || 3147 adev->asic_type == CHIP_NAVI14); 3148 amdgpu_vmid_mgr_init(adev); 3149 3150 adev->vm_manager.fence_context = 3151 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3152 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3153 adev->vm_manager.seqno[i] = 0; 3154 3155 spin_lock_init(&adev->vm_manager.prt_lock); 3156 atomic_set(&adev->vm_manager.num_prt_users, 0); 3157 3158 /* If not overridden by the user, by default, only in large BAR systems 3159 * Compute VM tables will be updated by CPU 3160 */ 3161 #ifdef CONFIG_X86_64 3162 if (amdgpu_vm_update_mode == -1) { 3163 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3164 adev->vm_manager.vm_update_mode = 3165 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3166 else 3167 adev->vm_manager.vm_update_mode = 0; 3168 } else 3169 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3170 #else 3171 adev->vm_manager.vm_update_mode = 0; 3172 #endif 3173 3174 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3175 } 3176 3177 /** 3178 * amdgpu_vm_manager_fini - cleanup VM manager 3179 * 3180 * @adev: amdgpu_device pointer 3181 * 3182 * Cleanup the VM manager and free resources. 3183 */ 3184 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3185 { 3186 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3187 xa_destroy(&adev->vm_manager.pasids); 3188 3189 amdgpu_vmid_mgr_fini(adev); 3190 } 3191 3192 /** 3193 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3194 * 3195 * @dev: drm device pointer 3196 * @data: drm_amdgpu_vm 3197 * @filp: drm file pointer 3198 * 3199 * Returns: 3200 * 0 for success, -errno for errors. 3201 */ 3202 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3203 { 3204 union drm_amdgpu_vm *args = data; 3205 struct amdgpu_device *adev = drm_to_adev(dev); 3206 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3207 long timeout = msecs_to_jiffies(2000); 3208 int r; 3209 3210 switch (args->in.op) { 3211 case AMDGPU_VM_OP_RESERVE_VMID: 3212 /* We only have requirement to reserve vmid from gfxhub */ 3213 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3214 AMDGPU_GFXHUB_0); 3215 if (r) 3216 return r; 3217 break; 3218 case AMDGPU_VM_OP_UNRESERVE_VMID: 3219 if (amdgpu_sriov_runtime(adev)) 3220 timeout = 8 * timeout; 3221 3222 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3223 * not referenced anymore. 3224 */ 3225 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3226 if (r) 3227 return r; 3228 3229 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3230 if (r < 0) 3231 return r; 3232 3233 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3234 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3235 break; 3236 default: 3237 return -EINVAL; 3238 } 3239 3240 return 0; 3241 } 3242 3243 /** 3244 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3245 * 3246 * @adev: drm device pointer 3247 * @pasid: PASID identifier for VM 3248 * @task_info: task_info to fill. 3249 */ 3250 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3251 struct amdgpu_task_info *task_info) 3252 { 3253 struct amdgpu_vm *vm; 3254 unsigned long flags; 3255 3256 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3257 3258 vm = xa_load(&adev->vm_manager.pasids, pasid); 3259 if (vm) 3260 *task_info = vm->task_info; 3261 3262 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3263 } 3264 3265 /** 3266 * amdgpu_vm_set_task_info - Sets VMs task info. 3267 * 3268 * @vm: vm for which to set the info 3269 */ 3270 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3271 { 3272 if (vm->task_info.pid) 3273 return; 3274 3275 vm->task_info.pid = current->pid; 3276 get_task_comm(vm->task_info.task_name, current); 3277 3278 if (current->group_leader->mm != current->mm) 3279 return; 3280 3281 vm->task_info.tgid = current->group_leader->pid; 3282 get_task_comm(vm->task_info.process_name, current->group_leader); 3283 } 3284 3285 /** 3286 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3287 * @adev: amdgpu device pointer 3288 * @pasid: PASID of the VM 3289 * @addr: Address of the fault 3290 * @write_fault: true is write fault, false is read fault 3291 * 3292 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3293 * shouldn't be reported any more. 3294 */ 3295 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3296 uint64_t addr, bool write_fault) 3297 { 3298 bool is_compute_context = false; 3299 struct amdgpu_bo *root; 3300 unsigned long irqflags; 3301 uint64_t value, flags; 3302 struct amdgpu_vm *vm; 3303 int r; 3304 3305 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3306 vm = xa_load(&adev->vm_manager.pasids, pasid); 3307 if (vm) { 3308 root = amdgpu_bo_ref(vm->root.bo); 3309 is_compute_context = vm->is_compute_context; 3310 } else { 3311 root = NULL; 3312 } 3313 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3314 3315 if (!root) 3316 return false; 3317 3318 addr /= AMDGPU_GPU_PAGE_SIZE; 3319 3320 if (is_compute_context && 3321 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3322 amdgpu_bo_unref(&root); 3323 return true; 3324 } 3325 3326 r = amdgpu_bo_reserve(root, true); 3327 if (r) 3328 goto error_unref; 3329 3330 /* Double check that the VM still exists */ 3331 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3332 vm = xa_load(&adev->vm_manager.pasids, pasid); 3333 if (vm && vm->root.bo != root) 3334 vm = NULL; 3335 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3336 if (!vm) 3337 goto error_unlock; 3338 3339 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3340 AMDGPU_PTE_SYSTEM; 3341 3342 if (is_compute_context) { 3343 /* Intentionally setting invalid PTE flag 3344 * combination to force a no-retry-fault 3345 */ 3346 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3347 AMDGPU_PTE_TF; 3348 value = 0; 3349 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3350 /* Redirect the access to the dummy page */ 3351 value = adev->dummy_page_addr; 3352 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3353 AMDGPU_PTE_WRITEABLE; 3354 3355 } else { 3356 /* Let the hw retry silently on the PTE */ 3357 value = 0; 3358 } 3359 3360 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3361 if (r) { 3362 pr_debug("failed %d to reserve fence slot\n", r); 3363 goto error_unlock; 3364 } 3365 3366 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3367 addr, flags, value, NULL, NULL, NULL, 3368 NULL); 3369 if (r) 3370 goto error_unlock; 3371 3372 r = amdgpu_vm_update_pdes(adev, vm, true); 3373 3374 error_unlock: 3375 amdgpu_bo_unreserve(root); 3376 if (r < 0) 3377 DRM_ERROR("Can't handle page fault (%d)\n", r); 3378 3379 error_unref: 3380 amdgpu_bo_unref(&root); 3381 3382 return false; 3383 } 3384 3385 #if defined(CONFIG_DEBUG_FS) 3386 /** 3387 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3388 * 3389 * @vm: Requested VM for printing BO info 3390 * @m: debugfs file 3391 * 3392 * Print BO information in debugfs file for the VM 3393 */ 3394 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3395 { 3396 struct amdgpu_bo_va *bo_va, *tmp; 3397 u64 total_idle = 0; 3398 u64 total_evicted = 0; 3399 u64 total_relocated = 0; 3400 u64 total_moved = 0; 3401 u64 total_invalidated = 0; 3402 u64 total_done = 0; 3403 unsigned int total_idle_objs = 0; 3404 unsigned int total_evicted_objs = 0; 3405 unsigned int total_relocated_objs = 0; 3406 unsigned int total_moved_objs = 0; 3407 unsigned int total_invalidated_objs = 0; 3408 unsigned int total_done_objs = 0; 3409 unsigned int id = 0; 3410 3411 seq_puts(m, "\tIdle BOs:\n"); 3412 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3413 if (!bo_va->base.bo) 3414 continue; 3415 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3416 } 3417 total_idle_objs = id; 3418 id = 0; 3419 3420 seq_puts(m, "\tEvicted BOs:\n"); 3421 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3422 if (!bo_va->base.bo) 3423 continue; 3424 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3425 } 3426 total_evicted_objs = id; 3427 id = 0; 3428 3429 seq_puts(m, "\tRelocated BOs:\n"); 3430 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3431 if (!bo_va->base.bo) 3432 continue; 3433 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3434 } 3435 total_relocated_objs = id; 3436 id = 0; 3437 3438 seq_puts(m, "\tMoved BOs:\n"); 3439 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3440 if (!bo_va->base.bo) 3441 continue; 3442 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3443 } 3444 total_moved_objs = id; 3445 id = 0; 3446 3447 seq_puts(m, "\tInvalidated BOs:\n"); 3448 spin_lock(&vm->invalidated_lock); 3449 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3450 if (!bo_va->base.bo) 3451 continue; 3452 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3453 } 3454 total_invalidated_objs = id; 3455 id = 0; 3456 3457 seq_puts(m, "\tDone BOs:\n"); 3458 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3459 if (!bo_va->base.bo) 3460 continue; 3461 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3462 } 3463 spin_unlock(&vm->invalidated_lock); 3464 total_done_objs = id; 3465 3466 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3467 total_idle_objs); 3468 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3469 total_evicted_objs); 3470 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3471 total_relocated_objs); 3472 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3473 total_moved_objs); 3474 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3475 total_invalidated_objs); 3476 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3477 total_done_objs); 3478 } 3479 #endif 3480