1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34 
35 /*
36  * GPUVM
37  * GPUVM is similar to the legacy gart on older asics, however
38  * rather than there being a single global gart table
39  * for the entire GPU, there are multiple VM page tables active
40  * at any given time.  The VM page tables can contain a mix
41  * vram pages and system memory pages and system memory pages
42  * can be mapped as snooped (cached system pages) or unsnooped
43  * (uncached system pages).
44  * Each VM has an ID associated with it and there is a page table
45  * associated with each VMID.  When execting a command buffer,
46  * the kernel tells the the ring what VMID to use for that command
47  * buffer.  VMIDs are allocated dynamically as commands are submitted.
48  * The userspace drivers maintain their own address space and the kernel
49  * sets up their pages tables accordingly when they submit their
50  * command buffers and a VMID is assigned.
51  * Cayman/Trinity support up to 8 active VMs at any given time;
52  * SI supports 16.
53  */
54 
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57 
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 		     START, LAST, static, amdgpu_vm_it)
60 
61 #undef START
62 #undef LAST
63 
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65  * the number of function parameters
66  */
67 struct amdgpu_pte_update_params {
68 	/* amdgpu device we do this update for */
69 	struct amdgpu_device *adev;
70 	/* optional amdgpu_vm we do this update for */
71 	struct amdgpu_vm *vm;
72 	/* address where to copy page table entries from */
73 	uint64_t src;
74 	/* indirect buffer to fill with commands */
75 	struct amdgpu_ib *ib;
76 	/* Function which actually does the update */
77 	void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 		     uint64_t addr, unsigned count, uint32_t incr,
79 		     uint64_t flags);
80 	/* indicate update pt or its shadow */
81 	bool shadow;
82 };
83 
84 /* Helper to disable partial resident texture feature from a fence callback */
85 struct amdgpu_prt_cb {
86 	struct amdgpu_device *adev;
87 	struct dma_fence_cb cb;
88 };
89 
90 /**
91  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
92  *
93  * @adev: amdgpu_device pointer
94  *
95  * Calculate the number of entries in a page directory or page table.
96  */
97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
98 				      unsigned level)
99 {
100 	if (level == 0)
101 		/* For the root directory */
102 		return adev->vm_manager.max_pfn >>
103 			(adev->vm_manager.block_size *
104 			 adev->vm_manager.num_level);
105 	else if (level == adev->vm_manager.num_level)
106 		/* For the page tables on the leaves */
107 		return AMDGPU_VM_PTE_COUNT(adev);
108 	else
109 		/* Everything in between */
110 		return 1 << adev->vm_manager.block_size;
111 }
112 
113 /**
114  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
115  *
116  * @adev: amdgpu_device pointer
117  *
118  * Calculate the size of the BO for a page directory or page table in bytes.
119  */
120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
121 {
122 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
123 }
124 
125 /**
126  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
127  *
128  * @vm: vm providing the BOs
129  * @validated: head of validation list
130  * @entry: entry to add
131  *
132  * Add the page directory to the list of BOs to
133  * validate for command submission.
134  */
135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
136 			 struct list_head *validated,
137 			 struct amdgpu_bo_list_entry *entry)
138 {
139 	entry->robj = vm->root.bo;
140 	entry->priority = 0;
141 	entry->tv.bo = &entry->robj->tbo;
142 	entry->tv.shared = true;
143 	entry->user_pages = NULL;
144 	list_add(&entry->tv.head, validated);
145 }
146 
147 /**
148  * amdgpu_vm_validate_layer - validate a single page table level
149  *
150  * @parent: parent page table level
151  * @validate: callback to do the validation
152  * @param: parameter for the validation callback
153  *
154  * Validate the page table BOs on command submission if neccessary.
155  */
156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
157 				    int (*validate)(void *, struct amdgpu_bo *),
158 				    void *param)
159 {
160 	unsigned i;
161 	int r;
162 
163 	if (!parent->entries)
164 		return 0;
165 
166 	for (i = 0; i <= parent->last_entry_used; ++i) {
167 		struct amdgpu_vm_pt *entry = &parent->entries[i];
168 
169 		if (!entry->bo)
170 			continue;
171 
172 		r = validate(param, entry->bo);
173 		if (r)
174 			return r;
175 
176 		/*
177 		 * Recurse into the sub directory. This is harmless because we
178 		 * have only a maximum of 5 layers.
179 		 */
180 		r = amdgpu_vm_validate_level(entry, validate, param);
181 		if (r)
182 			return r;
183 	}
184 
185 	return r;
186 }
187 
188 /**
189  * amdgpu_vm_validate_pt_bos - validate the page table BOs
190  *
191  * @adev: amdgpu device pointer
192  * @vm: vm providing the BOs
193  * @validate: callback to do the validation
194  * @param: parameter for the validation callback
195  *
196  * Validate the page table BOs on command submission if neccessary.
197  */
198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
199 			      int (*validate)(void *p, struct amdgpu_bo *bo),
200 			      void *param)
201 {
202 	uint64_t num_evictions;
203 
204 	/* We only need to validate the page tables
205 	 * if they aren't already valid.
206 	 */
207 	num_evictions = atomic64_read(&adev->num_evictions);
208 	if (num_evictions == vm->last_eviction_counter)
209 		return 0;
210 
211 	return amdgpu_vm_validate_level(&vm->root, validate, param);
212 }
213 
214 /**
215  * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
216  *
217  * @adev: amdgpu device instance
218  * @vm: vm providing the BOs
219  *
220  * Move the PT BOs to the tail of the LRU.
221  */
222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
223 {
224 	unsigned i;
225 
226 	if (!parent->entries)
227 		return;
228 
229 	for (i = 0; i <= parent->last_entry_used; ++i) {
230 		struct amdgpu_vm_pt *entry = &parent->entries[i];
231 
232 		if (!entry->bo)
233 			continue;
234 
235 		ttm_bo_move_to_lru_tail(&entry->bo->tbo);
236 		amdgpu_vm_move_level_in_lru(entry);
237 	}
238 }
239 
240 /**
241  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
242  *
243  * @adev: amdgpu device instance
244  * @vm: vm providing the BOs
245  *
246  * Move the PT BOs to the tail of the LRU.
247  */
248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
249 				  struct amdgpu_vm *vm)
250 {
251 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
252 
253 	spin_lock(&glob->lru_lock);
254 	amdgpu_vm_move_level_in_lru(&vm->root);
255 	spin_unlock(&glob->lru_lock);
256 }
257 
258  /**
259  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
260  *
261  * @adev: amdgpu_device pointer
262  * @vm: requested vm
263  * @saddr: start of the address range
264  * @eaddr: end of the address range
265  *
266  * Make sure the page directories and page tables are allocated
267  */
268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
269 				  struct amdgpu_vm *vm,
270 				  struct amdgpu_vm_pt *parent,
271 				  uint64_t saddr, uint64_t eaddr,
272 				  unsigned level)
273 {
274 	unsigned shift = (adev->vm_manager.num_level - level) *
275 		adev->vm_manager.block_size;
276 	unsigned pt_idx, from, to;
277 	int r;
278 
279 	if (!parent->entries) {
280 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
281 
282 		parent->entries = drm_calloc_large(num_entries,
283 						   sizeof(struct amdgpu_vm_pt));
284 		if (!parent->entries)
285 			return -ENOMEM;
286 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
287 	}
288 
289 	from = saddr >> shift;
290 	to = eaddr >> shift;
291 	if (from >= amdgpu_vm_num_entries(adev, level) ||
292 	    to >= amdgpu_vm_num_entries(adev, level))
293 		return -EINVAL;
294 
295 	if (to > parent->last_entry_used)
296 		parent->last_entry_used = to;
297 
298 	++level;
299 	saddr = saddr & ((1 << shift) - 1);
300 	eaddr = eaddr & ((1 << shift) - 1);
301 
302 	/* walk over the address space and allocate the page tables */
303 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
304 		struct reservation_object *resv = vm->root.bo->tbo.resv;
305 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
306 		struct amdgpu_bo *pt;
307 
308 		if (!entry->bo) {
309 			r = amdgpu_bo_create(adev,
310 					     amdgpu_vm_bo_size(adev, level),
311 					     AMDGPU_GPU_PAGE_SIZE, true,
312 					     AMDGPU_GEM_DOMAIN_VRAM,
313 					     AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
314 					     AMDGPU_GEM_CREATE_SHADOW |
315 					     AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
316 					     AMDGPU_GEM_CREATE_VRAM_CLEARED,
317 					     NULL, resv, &pt);
318 			if (r)
319 				return r;
320 
321 			/* Keep a reference to the root directory to avoid
322 			* freeing them up in the wrong order.
323 			*/
324 			pt->parent = amdgpu_bo_ref(vm->root.bo);
325 
326 			entry->bo = pt;
327 			entry->addr = 0;
328 		}
329 
330 		if (level < adev->vm_manager.num_level) {
331 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
332 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
333 				((1 << shift) - 1);
334 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
335 						   sub_eaddr, level);
336 			if (r)
337 				return r;
338 		}
339 	}
340 
341 	return 0;
342 }
343 
344 /**
345  * amdgpu_vm_alloc_pts - Allocate page tables.
346  *
347  * @adev: amdgpu_device pointer
348  * @vm: VM to allocate page tables for
349  * @saddr: Start address which needs to be allocated
350  * @size: Size from start address we need.
351  *
352  * Make sure the page tables are allocated.
353  */
354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
355 			struct amdgpu_vm *vm,
356 			uint64_t saddr, uint64_t size)
357 {
358 	uint64_t last_pfn;
359 	uint64_t eaddr;
360 
361 	/* validate the parameters */
362 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
363 		return -EINVAL;
364 
365 	eaddr = saddr + size - 1;
366 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
367 	if (last_pfn >= adev->vm_manager.max_pfn) {
368 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
369 			last_pfn, adev->vm_manager.max_pfn);
370 		return -EINVAL;
371 	}
372 
373 	saddr /= AMDGPU_GPU_PAGE_SIZE;
374 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
375 
376 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
377 }
378 
379 /**
380  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
381  *
382  * @adev: amdgpu_device pointer
383  * @id: VMID structure
384  *
385  * Check if GPU reset occured since last use of the VMID.
386  */
387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
388 				    struct amdgpu_vm_id *id)
389 {
390 	return id->current_gpu_reset_count !=
391 		atomic_read(&adev->gpu_reset_counter);
392 }
393 
394 /**
395  * amdgpu_vm_grab_id - allocate the next free VMID
396  *
397  * @vm: vm to allocate id for
398  * @ring: ring we want to submit job to
399  * @sync: sync object where we add dependencies
400  * @fence: fence protecting ID from reuse
401  *
402  * Allocate an id for the vm, adding fences to the sync obj as necessary.
403  */
404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
405 		      struct amdgpu_sync *sync, struct dma_fence *fence,
406 		      struct amdgpu_job *job)
407 {
408 	struct amdgpu_device *adev = ring->adev;
409 	unsigned vmhub = ring->funcs->vmhub;
410 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
411 	uint64_t fence_context = adev->fence_context + ring->idx;
412 	struct dma_fence *updates = sync->last_vm_update;
413 	struct amdgpu_vm_id *id, *idle;
414 	struct dma_fence **fences;
415 	unsigned i;
416 	int r = 0;
417 
418 	fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
419 	if (!fences)
420 		return -ENOMEM;
421 
422 	mutex_lock(&id_mgr->lock);
423 
424 	/* Check if we have an idle VMID */
425 	i = 0;
426 	list_for_each_entry(idle, &id_mgr->ids_lru, list) {
427 		fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
428 		if (!fences[i])
429 			break;
430 		++i;
431 	}
432 
433 	/* If we can't find a idle VMID to use, wait till one becomes available */
434 	if (&idle->list == &id_mgr->ids_lru) {
435 		u64 fence_context = adev->vm_manager.fence_context + ring->idx;
436 		unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
437 		struct dma_fence_array *array;
438 		unsigned j;
439 
440 		for (j = 0; j < i; ++j)
441 			dma_fence_get(fences[j]);
442 
443 		array = dma_fence_array_create(i, fences, fence_context,
444 					   seqno, true);
445 		if (!array) {
446 			for (j = 0; j < i; ++j)
447 				dma_fence_put(fences[j]);
448 			kfree(fences);
449 			r = -ENOMEM;
450 			goto error;
451 		}
452 
453 
454 		r = amdgpu_sync_fence(ring->adev, sync, &array->base);
455 		dma_fence_put(&array->base);
456 		if (r)
457 			goto error;
458 
459 		mutex_unlock(&id_mgr->lock);
460 		return 0;
461 
462 	}
463 	kfree(fences);
464 
465 	job->vm_needs_flush = false;
466 	/* Check if we can use a VMID already assigned to this VM */
467 	list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
468 		struct dma_fence *flushed;
469 		bool needs_flush = false;
470 
471 		/* Check all the prerequisites to using this VMID */
472 		if (amdgpu_vm_had_gpu_reset(adev, id))
473 			continue;
474 
475 		if (atomic64_read(&id->owner) != vm->client_id)
476 			continue;
477 
478 		if (job->vm_pd_addr != id->pd_gpu_addr)
479 			continue;
480 
481 		if (!id->last_flush ||
482 		    (id->last_flush->context != fence_context &&
483 		     !dma_fence_is_signaled(id->last_flush)))
484 			needs_flush = true;
485 
486 		flushed  = id->flushed_updates;
487 		if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
488 			needs_flush = true;
489 
490 		/* Concurrent flushes are only possible starting with Vega10 */
491 		if (adev->asic_type < CHIP_VEGA10 && needs_flush)
492 			continue;
493 
494 		/* Good we can use this VMID. Remember this submission as
495 		 * user of the VMID.
496 		 */
497 		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
498 		if (r)
499 			goto error;
500 
501 		if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
502 			dma_fence_put(id->flushed_updates);
503 			id->flushed_updates = dma_fence_get(updates);
504 		}
505 
506 		if (needs_flush)
507 			goto needs_flush;
508 		else
509 			goto no_flush_needed;
510 
511 	};
512 
513 	/* Still no ID to use? Then use the idle one found earlier */
514 	id = idle;
515 
516 	/* Remember this submission as user of the VMID */
517 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
518 	if (r)
519 		goto error;
520 
521 	id->pd_gpu_addr = job->vm_pd_addr;
522 	dma_fence_put(id->flushed_updates);
523 	id->flushed_updates = dma_fence_get(updates);
524 	id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
525 	atomic64_set(&id->owner, vm->client_id);
526 
527 needs_flush:
528 	job->vm_needs_flush = true;
529 	dma_fence_put(id->last_flush);
530 	id->last_flush = NULL;
531 
532 no_flush_needed:
533 	list_move_tail(&id->list, &id_mgr->ids_lru);
534 
535 	job->vm_id = id - id_mgr->ids;
536 	trace_amdgpu_vm_grab_id(vm, ring, job);
537 
538 error:
539 	mutex_unlock(&id_mgr->lock);
540 	return r;
541 }
542 
543 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
544 {
545 	struct amdgpu_device *adev = ring->adev;
546 	const struct amdgpu_ip_block *ip_block;
547 
548 	if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
549 		/* only compute rings */
550 		return false;
551 
552 	ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
553 	if (!ip_block)
554 		return false;
555 
556 	if (ip_block->version->major <= 7) {
557 		/* gfx7 has no workaround */
558 		return true;
559 	} else if (ip_block->version->major == 8) {
560 		if (adev->gfx.mec_fw_version >= 673)
561 			/* gfx8 is fixed in MEC firmware 673 */
562 			return false;
563 		else
564 			return true;
565 	}
566 	return false;
567 }
568 
569 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr)
570 {
571 	u64 addr = mc_addr;
572 
573 	if (adev->gart.gart_funcs->adjust_mc_addr)
574 		addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr);
575 
576 	return addr;
577 }
578 
579 /**
580  * amdgpu_vm_flush - hardware flush the vm
581  *
582  * @ring: ring to use for flush
583  * @vm_id: vmid number to use
584  * @pd_addr: address of the page directory
585  *
586  * Emit a VM flush when it is necessary.
587  */
588 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
589 {
590 	struct amdgpu_device *adev = ring->adev;
591 	unsigned vmhub = ring->funcs->vmhub;
592 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
593 	struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
594 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
595 		id->gds_base != job->gds_base ||
596 		id->gds_size != job->gds_size ||
597 		id->gws_base != job->gws_base ||
598 		id->gws_size != job->gws_size ||
599 		id->oa_base != job->oa_base ||
600 		id->oa_size != job->oa_size);
601 	bool vm_flush_needed = job->vm_needs_flush ||
602 		amdgpu_vm_ring_has_compute_vm_bug(ring);
603 	unsigned patch_offset = 0;
604 	int r;
605 
606 	if (amdgpu_vm_had_gpu_reset(adev, id)) {
607 		gds_switch_needed = true;
608 		vm_flush_needed = true;
609 	}
610 
611 	if (!vm_flush_needed && !gds_switch_needed)
612 		return 0;
613 
614 	if (ring->funcs->init_cond_exec)
615 		patch_offset = amdgpu_ring_init_cond_exec(ring);
616 
617 	if (ring->funcs->emit_pipeline_sync && !job->need_pipeline_sync)
618 		amdgpu_ring_emit_pipeline_sync(ring);
619 
620 	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
621 		u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr);
622 		struct dma_fence *fence;
623 
624 		trace_amdgpu_vm_flush(ring, job->vm_id, pd_addr);
625 		amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr);
626 
627 		r = amdgpu_fence_emit(ring, &fence);
628 		if (r)
629 			return r;
630 
631 		mutex_lock(&id_mgr->lock);
632 		dma_fence_put(id->last_flush);
633 		id->last_flush = fence;
634 		mutex_unlock(&id_mgr->lock);
635 	}
636 
637 	if (gds_switch_needed) {
638 		id->gds_base = job->gds_base;
639 		id->gds_size = job->gds_size;
640 		id->gws_base = job->gws_base;
641 		id->gws_size = job->gws_size;
642 		id->oa_base = job->oa_base;
643 		id->oa_size = job->oa_size;
644 		amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
645 					    job->gds_size, job->gws_base,
646 					    job->gws_size, job->oa_base,
647 					    job->oa_size);
648 	}
649 
650 	if (ring->funcs->patch_cond_exec)
651 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
652 
653 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
654 	if (ring->funcs->emit_switch_buffer) {
655 		amdgpu_ring_emit_switch_buffer(ring);
656 		amdgpu_ring_emit_switch_buffer(ring);
657 	}
658 	return 0;
659 }
660 
661 /**
662  * amdgpu_vm_reset_id - reset VMID to zero
663  *
664  * @adev: amdgpu device structure
665  * @vm_id: vmid number to use
666  *
667  * Reset saved GDW, GWS and OA to force switch on next flush.
668  */
669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
670 			unsigned vmid)
671 {
672 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
673 	struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
674 
675 	id->gds_base = 0;
676 	id->gds_size = 0;
677 	id->gws_base = 0;
678 	id->gws_size = 0;
679 	id->oa_base = 0;
680 	id->oa_size = 0;
681 }
682 
683 /**
684  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
685  *
686  * @vm: requested vm
687  * @bo: requested buffer object
688  *
689  * Find @bo inside the requested vm.
690  * Search inside the @bos vm list for the requested vm
691  * Returns the found bo_va or NULL if none is found
692  *
693  * Object has to be reserved!
694  */
695 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
696 				       struct amdgpu_bo *bo)
697 {
698 	struct amdgpu_bo_va *bo_va;
699 
700 	list_for_each_entry(bo_va, &bo->va, bo_list) {
701 		if (bo_va->vm == vm) {
702 			return bo_va;
703 		}
704 	}
705 	return NULL;
706 }
707 
708 /**
709  * amdgpu_vm_do_set_ptes - helper to call the right asic function
710  *
711  * @params: see amdgpu_pte_update_params definition
712  * @pe: addr of the page entry
713  * @addr: dst addr to write into pe
714  * @count: number of page entries to update
715  * @incr: increase next addr by incr bytes
716  * @flags: hw access flags
717  *
718  * Traces the parameters and calls the right asic functions
719  * to setup the page table using the DMA.
720  */
721 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
722 				  uint64_t pe, uint64_t addr,
723 				  unsigned count, uint32_t incr,
724 				  uint64_t flags)
725 {
726 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
727 
728 	if (count < 3) {
729 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
730 				    addr | flags, count, incr);
731 
732 	} else {
733 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
734 				      count, incr, flags);
735 	}
736 }
737 
738 /**
739  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
740  *
741  * @params: see amdgpu_pte_update_params definition
742  * @pe: addr of the page entry
743  * @addr: dst addr to write into pe
744  * @count: number of page entries to update
745  * @incr: increase next addr by incr bytes
746  * @flags: hw access flags
747  *
748  * Traces the parameters and calls the DMA function to copy the PTEs.
749  */
750 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
751 				   uint64_t pe, uint64_t addr,
752 				   unsigned count, uint32_t incr,
753 				   uint64_t flags)
754 {
755 	uint64_t src = (params->src + (addr >> 12) * 8);
756 
757 
758 	trace_amdgpu_vm_copy_ptes(pe, src, count);
759 
760 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
761 }
762 
763 /**
764  * amdgpu_vm_map_gart - Resolve gart mapping of addr
765  *
766  * @pages_addr: optional DMA address to use for lookup
767  * @addr: the unmapped addr
768  *
769  * Look up the physical address of the page that the pte resolves
770  * to and return the pointer for the page table entry.
771  */
772 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
773 {
774 	uint64_t result;
775 
776 	/* page table offset */
777 	result = pages_addr[addr >> PAGE_SHIFT];
778 
779 	/* in case cpu page size != gpu page size*/
780 	result |= addr & (~PAGE_MASK);
781 
782 	result &= 0xFFFFFFFFFFFFF000ULL;
783 
784 	return result;
785 }
786 
787 /*
788  * amdgpu_vm_update_level - update a single level in the hierarchy
789  *
790  * @adev: amdgpu_device pointer
791  * @vm: requested vm
792  * @parent: parent directory
793  *
794  * Makes sure all entries in @parent are up to date.
795  * Returns 0 for success, error for failure.
796  */
797 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
798 				  struct amdgpu_vm *vm,
799 				  struct amdgpu_vm_pt *parent,
800 				  unsigned level)
801 {
802 	struct amdgpu_bo *shadow;
803 	struct amdgpu_ring *ring;
804 	uint64_t pd_addr, shadow_addr;
805 	uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
806 	uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
807 	unsigned count = 0, pt_idx, ndw;
808 	struct amdgpu_job *job;
809 	struct amdgpu_pte_update_params params;
810 	struct dma_fence *fence = NULL;
811 
812 	int r;
813 
814 	if (!parent->entries)
815 		return 0;
816 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
817 
818 	/* padding, etc. */
819 	ndw = 64;
820 
821 	/* assume the worst case */
822 	ndw += parent->last_entry_used * 6;
823 
824 	pd_addr = amdgpu_bo_gpu_offset(parent->bo);
825 
826 	shadow = parent->bo->shadow;
827 	if (shadow) {
828 		r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
829 		if (r)
830 			return r;
831 		shadow_addr = amdgpu_bo_gpu_offset(shadow);
832 		ndw *= 2;
833 	} else {
834 		shadow_addr = 0;
835 	}
836 
837 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
838 	if (r)
839 		return r;
840 
841 	memset(&params, 0, sizeof(params));
842 	params.adev = adev;
843 	params.ib = &job->ibs[0];
844 
845 	/* walk over the address space and update the directory */
846 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
847 		struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
848 		uint64_t pde, pt;
849 
850 		if (bo == NULL)
851 			continue;
852 
853 		if (bo->shadow) {
854 			struct amdgpu_bo *pt_shadow = bo->shadow;
855 
856 			r = amdgpu_ttm_bind(&pt_shadow->tbo,
857 					    &pt_shadow->tbo.mem);
858 			if (r)
859 				return r;
860 		}
861 
862 		pt = amdgpu_bo_gpu_offset(bo);
863 		if (parent->entries[pt_idx].addr == pt)
864 			continue;
865 
866 		parent->entries[pt_idx].addr = pt;
867 
868 		pde = pd_addr + pt_idx * 8;
869 		if (((last_pde + 8 * count) != pde) ||
870 		    ((last_pt + incr * count) != pt) ||
871 		    (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
872 
873 			if (count) {
874 				uint64_t pt_addr =
875 					amdgpu_vm_adjust_mc_addr(adev, last_pt);
876 
877 				if (shadow)
878 					amdgpu_vm_do_set_ptes(&params,
879 							      last_shadow,
880 							      pt_addr, count,
881 							      incr,
882 							      AMDGPU_PTE_VALID);
883 
884 				amdgpu_vm_do_set_ptes(&params, last_pde,
885 						      pt_addr, count, incr,
886 						      AMDGPU_PTE_VALID);
887 			}
888 
889 			count = 1;
890 			last_pde = pde;
891 			last_shadow = shadow_addr + pt_idx * 8;
892 			last_pt = pt;
893 		} else {
894 			++count;
895 		}
896 	}
897 
898 	if (count) {
899 		uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt);
900 
901 		if (vm->root.bo->shadow)
902 			amdgpu_vm_do_set_ptes(&params, last_shadow, pt_addr,
903 					      count, incr, AMDGPU_PTE_VALID);
904 
905 		amdgpu_vm_do_set_ptes(&params, last_pde, pt_addr,
906 				      count, incr, AMDGPU_PTE_VALID);
907 	}
908 
909 	if (params.ib->length_dw == 0) {
910 		amdgpu_job_free(job);
911 	} else {
912 		amdgpu_ring_pad_ib(ring, params.ib);
913 		amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
914 				 AMDGPU_FENCE_OWNER_VM);
915 		if (shadow)
916 			amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
917 					 AMDGPU_FENCE_OWNER_VM);
918 
919 		WARN_ON(params.ib->length_dw > ndw);
920 		r = amdgpu_job_submit(job, ring, &vm->entity,
921 				AMDGPU_FENCE_OWNER_VM, &fence);
922 		if (r)
923 			goto error_free;
924 
925 		amdgpu_bo_fence(parent->bo, fence, true);
926 		dma_fence_put(vm->last_dir_update);
927 		vm->last_dir_update = dma_fence_get(fence);
928 		dma_fence_put(fence);
929 	}
930 	/*
931 	 * Recurse into the subdirectories. This recursion is harmless because
932 	 * we only have a maximum of 5 layers.
933 	 */
934 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
935 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
936 
937 		if (!entry->bo)
938 			continue;
939 
940 		r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
941 		if (r)
942 			return r;
943 	}
944 
945 	return 0;
946 
947 error_free:
948 	amdgpu_job_free(job);
949 	return r;
950 }
951 
952 /*
953  * amdgpu_vm_update_directories - make sure that all directories are valid
954  *
955  * @adev: amdgpu_device pointer
956  * @vm: requested vm
957  *
958  * Makes sure all directories are up to date.
959  * Returns 0 for success, error for failure.
960  */
961 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
962 				 struct amdgpu_vm *vm)
963 {
964 	return amdgpu_vm_update_level(adev, vm, &vm->root, 0);
965 }
966 
967 /**
968  * amdgpu_vm_find_pt - find the page table for an address
969  *
970  * @p: see amdgpu_pte_update_params definition
971  * @addr: virtual address in question
972  *
973  * Find the page table BO for a virtual address, return NULL when none found.
974  */
975 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
976 					  uint64_t addr)
977 {
978 	struct amdgpu_vm_pt *entry = &p->vm->root;
979 	unsigned idx, level = p->adev->vm_manager.num_level;
980 
981 	while (entry->entries) {
982 		idx = addr >> (p->adev->vm_manager.block_size * level--);
983 		idx %= amdgpu_bo_size(entry->bo) / 8;
984 		entry = &entry->entries[idx];
985 	}
986 
987 	if (level)
988 		return NULL;
989 
990 	return entry->bo;
991 }
992 
993 /**
994  * amdgpu_vm_update_ptes - make sure that page tables are valid
995  *
996  * @params: see amdgpu_pte_update_params definition
997  * @vm: requested vm
998  * @start: start of GPU address range
999  * @end: end of GPU address range
1000  * @dst: destination address to map to, the next dst inside the function
1001  * @flags: mapping flags
1002  *
1003  * Update the page tables in the range @start - @end.
1004  */
1005 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1006 				  uint64_t start, uint64_t end,
1007 				  uint64_t dst, uint64_t flags)
1008 {
1009 	struct amdgpu_device *adev = params->adev;
1010 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1011 
1012 	uint64_t cur_pe_start, cur_nptes, cur_dst;
1013 	uint64_t addr; /* next GPU address to be updated */
1014 	struct amdgpu_bo *pt;
1015 	unsigned nptes; /* next number of ptes to be updated */
1016 	uint64_t next_pe_start;
1017 
1018 	/* initialize the variables */
1019 	addr = start;
1020 	pt = amdgpu_vm_get_pt(params, addr);
1021 	if (!pt) {
1022 		pr_err("PT not found, aborting update_ptes\n");
1023 		return;
1024 	}
1025 
1026 	if (params->shadow) {
1027 		if (!pt->shadow)
1028 			return;
1029 		pt = pt->shadow;
1030 	}
1031 	if ((addr & ~mask) == (end & ~mask))
1032 		nptes = end - addr;
1033 	else
1034 		nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1035 
1036 	cur_pe_start = amdgpu_bo_gpu_offset(pt);
1037 	cur_pe_start += (addr & mask) * 8;
1038 	cur_nptes = nptes;
1039 	cur_dst = dst;
1040 
1041 	/* for next ptb*/
1042 	addr += nptes;
1043 	dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1044 
1045 	/* walk over the address space and update the page tables */
1046 	while (addr < end) {
1047 		pt = amdgpu_vm_get_pt(params, addr);
1048 		if (!pt) {
1049 			pr_err("PT not found, aborting update_ptes\n");
1050 			return;
1051 		}
1052 
1053 		if (params->shadow) {
1054 			if (!pt->shadow)
1055 				return;
1056 			pt = pt->shadow;
1057 		}
1058 
1059 		if ((addr & ~mask) == (end & ~mask))
1060 			nptes = end - addr;
1061 		else
1062 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1063 
1064 		next_pe_start = amdgpu_bo_gpu_offset(pt);
1065 		next_pe_start += (addr & mask) * 8;
1066 
1067 		if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
1068 		    ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
1069 			/* The next ptb is consecutive to current ptb.
1070 			 * Don't call the update function now.
1071 			 * Will update two ptbs together in future.
1072 			*/
1073 			cur_nptes += nptes;
1074 		} else {
1075 			params->func(params, cur_pe_start, cur_dst, cur_nptes,
1076 				     AMDGPU_GPU_PAGE_SIZE, flags);
1077 
1078 			cur_pe_start = next_pe_start;
1079 			cur_nptes = nptes;
1080 			cur_dst = dst;
1081 		}
1082 
1083 		/* for next ptb*/
1084 		addr += nptes;
1085 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1086 	}
1087 
1088 	params->func(params, cur_pe_start, cur_dst, cur_nptes,
1089 		     AMDGPU_GPU_PAGE_SIZE, flags);
1090 }
1091 
1092 /*
1093  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1094  *
1095  * @params: see amdgpu_pte_update_params definition
1096  * @vm: requested vm
1097  * @start: first PTE to handle
1098  * @end: last PTE to handle
1099  * @dst: addr those PTEs should point to
1100  * @flags: hw mapping flags
1101  */
1102 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1103 				uint64_t start, uint64_t end,
1104 				uint64_t dst, uint64_t flags)
1105 {
1106 	/**
1107 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1108 	 * field in the PTE. When this field is set to a non-zero value, page
1109 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1110 	 * flags are considered valid for all PTEs within the fragment range
1111 	 * and corresponding mappings are assumed to be physically contiguous.
1112 	 *
1113 	 * The L1 TLB can store a single PTE for the whole fragment,
1114 	 * significantly increasing the space available for translation
1115 	 * caching. This leads to large improvements in throughput when the
1116 	 * TLB is under pressure.
1117 	 *
1118 	 * The L2 TLB distributes small and large fragments into two
1119 	 * asymmetric partitions. The large fragment cache is significantly
1120 	 * larger. Thus, we try to use large fragments wherever possible.
1121 	 * Userspace can support this by aligning virtual base address and
1122 	 * allocation size to the fragment size.
1123 	 */
1124 
1125 	/* SI and newer are optimized for 64KB */
1126 	uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1127 	uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1128 
1129 	uint64_t frag_start = ALIGN(start, frag_align);
1130 	uint64_t frag_end = end & ~(frag_align - 1);
1131 
1132 	/* system pages are non continuously */
1133 	if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1134 	    (frag_start >= frag_end)) {
1135 
1136 		amdgpu_vm_update_ptes(params, start, end, dst, flags);
1137 		return;
1138 	}
1139 
1140 	/* handle the 4K area at the beginning */
1141 	if (start != frag_start) {
1142 		amdgpu_vm_update_ptes(params, start, frag_start,
1143 				      dst, flags);
1144 		dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1145 	}
1146 
1147 	/* handle the area in the middle */
1148 	amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1149 			      flags | frag_flags);
1150 
1151 	/* handle the 4K area at the end */
1152 	if (frag_end != end) {
1153 		dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1154 		amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1155 	}
1156 }
1157 
1158 /**
1159  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1160  *
1161  * @adev: amdgpu_device pointer
1162  * @exclusive: fence we need to sync to
1163  * @src: address where to copy page table entries from
1164  * @pages_addr: DMA addresses to use for mapping
1165  * @vm: requested vm
1166  * @start: start of mapped range
1167  * @last: last mapped entry
1168  * @flags: flags for the entries
1169  * @addr: addr to set the area to
1170  * @fence: optional resulting fence
1171  *
1172  * Fill in the page table entries between @start and @last.
1173  * Returns 0 for success, -EINVAL for failure.
1174  */
1175 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1176 				       struct dma_fence *exclusive,
1177 				       uint64_t src,
1178 				       dma_addr_t *pages_addr,
1179 				       struct amdgpu_vm *vm,
1180 				       uint64_t start, uint64_t last,
1181 				       uint64_t flags, uint64_t addr,
1182 				       struct dma_fence **fence)
1183 {
1184 	struct amdgpu_ring *ring;
1185 	void *owner = AMDGPU_FENCE_OWNER_VM;
1186 	unsigned nptes, ncmds, ndw;
1187 	struct amdgpu_job *job;
1188 	struct amdgpu_pte_update_params params;
1189 	struct dma_fence *f = NULL;
1190 	int r;
1191 
1192 	memset(&params, 0, sizeof(params));
1193 	params.adev = adev;
1194 	params.vm = vm;
1195 	params.src = src;
1196 
1197 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1198 
1199 	/* sync to everything on unmapping */
1200 	if (!(flags & AMDGPU_PTE_VALID))
1201 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1202 
1203 	nptes = last - start + 1;
1204 
1205 	/*
1206 	 * reserve space for one command every (1 << BLOCK_SIZE)
1207 	 *  entries or 2k dwords (whatever is smaller)
1208 	 */
1209 	ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1210 
1211 	/* padding, etc. */
1212 	ndw = 64;
1213 
1214 	if (src) {
1215 		/* only copy commands needed */
1216 		ndw += ncmds * 7;
1217 
1218 		params.func = amdgpu_vm_do_copy_ptes;
1219 
1220 	} else if (pages_addr) {
1221 		/* copy commands needed */
1222 		ndw += ncmds * 7;
1223 
1224 		/* and also PTEs */
1225 		ndw += nptes * 2;
1226 
1227 		params.func = amdgpu_vm_do_copy_ptes;
1228 
1229 	} else {
1230 		/* set page commands needed */
1231 		ndw += ncmds * 10;
1232 
1233 		/* two extra commands for begin/end of fragment */
1234 		ndw += 2 * 10;
1235 
1236 		params.func = amdgpu_vm_do_set_ptes;
1237 	}
1238 
1239 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1240 	if (r)
1241 		return r;
1242 
1243 	params.ib = &job->ibs[0];
1244 
1245 	if (!src && pages_addr) {
1246 		uint64_t *pte;
1247 		unsigned i;
1248 
1249 		/* Put the PTEs at the end of the IB. */
1250 		i = ndw - nptes * 2;
1251 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1252 		params.src = job->ibs->gpu_addr + i * 4;
1253 
1254 		for (i = 0; i < nptes; ++i) {
1255 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1256 						    AMDGPU_GPU_PAGE_SIZE);
1257 			pte[i] |= flags;
1258 		}
1259 		addr = 0;
1260 	}
1261 
1262 	r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1263 	if (r)
1264 		goto error_free;
1265 
1266 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1267 			     owner);
1268 	if (r)
1269 		goto error_free;
1270 
1271 	r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1272 	if (r)
1273 		goto error_free;
1274 
1275 	params.shadow = true;
1276 	amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1277 	params.shadow = false;
1278 	amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1279 
1280 	amdgpu_ring_pad_ib(ring, params.ib);
1281 	WARN_ON(params.ib->length_dw > ndw);
1282 	r = amdgpu_job_submit(job, ring, &vm->entity,
1283 			      AMDGPU_FENCE_OWNER_VM, &f);
1284 	if (r)
1285 		goto error_free;
1286 
1287 	amdgpu_bo_fence(vm->root.bo, f, true);
1288 	dma_fence_put(*fence);
1289 	*fence = f;
1290 	return 0;
1291 
1292 error_free:
1293 	amdgpu_job_free(job);
1294 	return r;
1295 }
1296 
1297 /**
1298  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1299  *
1300  * @adev: amdgpu_device pointer
1301  * @exclusive: fence we need to sync to
1302  * @gtt_flags: flags as they are used for GTT
1303  * @pages_addr: DMA addresses to use for mapping
1304  * @vm: requested vm
1305  * @mapping: mapped range and flags to use for the update
1306  * @flags: HW flags for the mapping
1307  * @nodes: array of drm_mm_nodes with the MC addresses
1308  * @fence: optional resulting fence
1309  *
1310  * Split the mapping into smaller chunks so that each update fits
1311  * into a SDMA IB.
1312  * Returns 0 for success, -EINVAL for failure.
1313  */
1314 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1315 				      struct dma_fence *exclusive,
1316 				      uint64_t gtt_flags,
1317 				      dma_addr_t *pages_addr,
1318 				      struct amdgpu_vm *vm,
1319 				      struct amdgpu_bo_va_mapping *mapping,
1320 				      uint64_t flags,
1321 				      struct drm_mm_node *nodes,
1322 				      struct dma_fence **fence)
1323 {
1324 	uint64_t pfn, src = 0, start = mapping->start;
1325 	int r;
1326 
1327 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1328 	 * but in case of something, we filter the flags in first place
1329 	 */
1330 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1331 		flags &= ~AMDGPU_PTE_READABLE;
1332 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1333 		flags &= ~AMDGPU_PTE_WRITEABLE;
1334 
1335 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1336 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1337 
1338 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1339 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1340 
1341 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1342 	    (adev->asic_type >= CHIP_VEGA10)) {
1343 		flags |= AMDGPU_PTE_PRT;
1344 		flags &= ~AMDGPU_PTE_VALID;
1345 	}
1346 
1347 	trace_amdgpu_vm_bo_update(mapping);
1348 
1349 	pfn = mapping->offset >> PAGE_SHIFT;
1350 	if (nodes) {
1351 		while (pfn >= nodes->size) {
1352 			pfn -= nodes->size;
1353 			++nodes;
1354 		}
1355 	}
1356 
1357 	do {
1358 		uint64_t max_entries;
1359 		uint64_t addr, last;
1360 
1361 		if (nodes) {
1362 			addr = nodes->start << PAGE_SHIFT;
1363 			max_entries = (nodes->size - pfn) *
1364 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1365 		} else {
1366 			addr = 0;
1367 			max_entries = S64_MAX;
1368 		}
1369 
1370 		if (pages_addr) {
1371 			if (flags == gtt_flags)
1372 				src = adev->gart.table_addr +
1373 					(addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1374 			else
1375 				max_entries = min(max_entries, 16ull * 1024ull);
1376 			addr = 0;
1377 		} else if (flags & AMDGPU_PTE_VALID) {
1378 			addr += adev->vm_manager.vram_base_offset;
1379 		}
1380 		addr += pfn << PAGE_SHIFT;
1381 
1382 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1383 		r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1384 						src, pages_addr, vm,
1385 						start, last, flags, addr,
1386 						fence);
1387 		if (r)
1388 			return r;
1389 
1390 		pfn += last - start + 1;
1391 		if (nodes && nodes->size == pfn) {
1392 			pfn = 0;
1393 			++nodes;
1394 		}
1395 		start = last + 1;
1396 
1397 	} while (unlikely(start != mapping->last + 1));
1398 
1399 	return 0;
1400 }
1401 
1402 /**
1403  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1404  *
1405  * @adev: amdgpu_device pointer
1406  * @bo_va: requested BO and VM object
1407  * @clear: if true clear the entries
1408  *
1409  * Fill in the page table entries for @bo_va.
1410  * Returns 0 for success, -EINVAL for failure.
1411  */
1412 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1413 			struct amdgpu_bo_va *bo_va,
1414 			bool clear)
1415 {
1416 	struct amdgpu_vm *vm = bo_va->vm;
1417 	struct amdgpu_bo_va_mapping *mapping;
1418 	dma_addr_t *pages_addr = NULL;
1419 	uint64_t gtt_flags, flags;
1420 	struct ttm_mem_reg *mem;
1421 	struct drm_mm_node *nodes;
1422 	struct dma_fence *exclusive;
1423 	int r;
1424 
1425 	if (clear || !bo_va->bo) {
1426 		mem = NULL;
1427 		nodes = NULL;
1428 		exclusive = NULL;
1429 	} else {
1430 		struct ttm_dma_tt *ttm;
1431 
1432 		mem = &bo_va->bo->tbo.mem;
1433 		nodes = mem->mm_node;
1434 		if (mem->mem_type == TTM_PL_TT) {
1435 			ttm = container_of(bo_va->bo->tbo.ttm, struct
1436 					   ttm_dma_tt, ttm);
1437 			pages_addr = ttm->dma_address;
1438 		}
1439 		exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1440 	}
1441 
1442 	if (bo_va->bo) {
1443 		flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1444 		gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1445 			adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1446 			flags : 0;
1447 	} else {
1448 		flags = 0x0;
1449 		gtt_flags = ~0x0;
1450 	}
1451 
1452 	spin_lock(&vm->status_lock);
1453 	if (!list_empty(&bo_va->vm_status))
1454 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1455 	spin_unlock(&vm->status_lock);
1456 
1457 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1458 		r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1459 					       gtt_flags, pages_addr, vm,
1460 					       mapping, flags, nodes,
1461 					       &bo_va->last_pt_update);
1462 		if (r)
1463 			return r;
1464 	}
1465 
1466 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1467 		list_for_each_entry(mapping, &bo_va->valids, list)
1468 			trace_amdgpu_vm_bo_mapping(mapping);
1469 
1470 		list_for_each_entry(mapping, &bo_va->invalids, list)
1471 			trace_amdgpu_vm_bo_mapping(mapping);
1472 	}
1473 
1474 	spin_lock(&vm->status_lock);
1475 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1476 	list_del_init(&bo_va->vm_status);
1477 	if (clear)
1478 		list_add(&bo_va->vm_status, &vm->cleared);
1479 	spin_unlock(&vm->status_lock);
1480 
1481 	return 0;
1482 }
1483 
1484 /**
1485  * amdgpu_vm_update_prt_state - update the global PRT state
1486  */
1487 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1488 {
1489 	unsigned long flags;
1490 	bool enable;
1491 
1492 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1493 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1494 	adev->gart.gart_funcs->set_prt(adev, enable);
1495 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1496 }
1497 
1498 /**
1499  * amdgpu_vm_prt_get - add a PRT user
1500  */
1501 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1502 {
1503 	if (!adev->gart.gart_funcs->set_prt)
1504 		return;
1505 
1506 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1507 		amdgpu_vm_update_prt_state(adev);
1508 }
1509 
1510 /**
1511  * amdgpu_vm_prt_put - drop a PRT user
1512  */
1513 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1514 {
1515 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1516 		amdgpu_vm_update_prt_state(adev);
1517 }
1518 
1519 /**
1520  * amdgpu_vm_prt_cb - callback for updating the PRT status
1521  */
1522 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1523 {
1524 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1525 
1526 	amdgpu_vm_prt_put(cb->adev);
1527 	kfree(cb);
1528 }
1529 
1530 /**
1531  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1532  */
1533 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1534 				 struct dma_fence *fence)
1535 {
1536 	struct amdgpu_prt_cb *cb;
1537 
1538 	if (!adev->gart.gart_funcs->set_prt)
1539 		return;
1540 
1541 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1542 	if (!cb) {
1543 		/* Last resort when we are OOM */
1544 		if (fence)
1545 			dma_fence_wait(fence, false);
1546 
1547 		amdgpu_vm_prt_put(adev);
1548 	} else {
1549 		cb->adev = adev;
1550 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1551 						     amdgpu_vm_prt_cb))
1552 			amdgpu_vm_prt_cb(fence, &cb->cb);
1553 	}
1554 }
1555 
1556 /**
1557  * amdgpu_vm_free_mapping - free a mapping
1558  *
1559  * @adev: amdgpu_device pointer
1560  * @vm: requested vm
1561  * @mapping: mapping to be freed
1562  * @fence: fence of the unmap operation
1563  *
1564  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1565  */
1566 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1567 				   struct amdgpu_vm *vm,
1568 				   struct amdgpu_bo_va_mapping *mapping,
1569 				   struct dma_fence *fence)
1570 {
1571 	if (mapping->flags & AMDGPU_PTE_PRT)
1572 		amdgpu_vm_add_prt_cb(adev, fence);
1573 	kfree(mapping);
1574 }
1575 
1576 /**
1577  * amdgpu_vm_prt_fini - finish all prt mappings
1578  *
1579  * @adev: amdgpu_device pointer
1580  * @vm: requested vm
1581  *
1582  * Register a cleanup callback to disable PRT support after VM dies.
1583  */
1584 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1585 {
1586 	struct reservation_object *resv = vm->root.bo->tbo.resv;
1587 	struct dma_fence *excl, **shared;
1588 	unsigned i, shared_count;
1589 	int r;
1590 
1591 	r = reservation_object_get_fences_rcu(resv, &excl,
1592 					      &shared_count, &shared);
1593 	if (r) {
1594 		/* Not enough memory to grab the fence list, as last resort
1595 		 * block for all the fences to complete.
1596 		 */
1597 		reservation_object_wait_timeout_rcu(resv, true, false,
1598 						    MAX_SCHEDULE_TIMEOUT);
1599 		return;
1600 	}
1601 
1602 	/* Add a callback for each fence in the reservation object */
1603 	amdgpu_vm_prt_get(adev);
1604 	amdgpu_vm_add_prt_cb(adev, excl);
1605 
1606 	for (i = 0; i < shared_count; ++i) {
1607 		amdgpu_vm_prt_get(adev);
1608 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1609 	}
1610 
1611 	kfree(shared);
1612 }
1613 
1614 /**
1615  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1616  *
1617  * @adev: amdgpu_device pointer
1618  * @vm: requested vm
1619  * @fence: optional resulting fence (unchanged if no work needed to be done
1620  * or if an error occurred)
1621  *
1622  * Make sure all freed BOs are cleared in the PT.
1623  * Returns 0 for success.
1624  *
1625  * PTs have to be reserved and mutex must be locked!
1626  */
1627 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1628 			  struct amdgpu_vm *vm,
1629 			  struct dma_fence **fence)
1630 {
1631 	struct amdgpu_bo_va_mapping *mapping;
1632 	struct dma_fence *f = NULL;
1633 	int r;
1634 
1635 	while (!list_empty(&vm->freed)) {
1636 		mapping = list_first_entry(&vm->freed,
1637 			struct amdgpu_bo_va_mapping, list);
1638 		list_del(&mapping->list);
1639 
1640 		r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1641 						mapping->start, mapping->last,
1642 						0, 0, &f);
1643 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1644 		if (r) {
1645 			dma_fence_put(f);
1646 			return r;
1647 		}
1648 	}
1649 
1650 	if (fence && f) {
1651 		dma_fence_put(*fence);
1652 		*fence = f;
1653 	} else {
1654 		dma_fence_put(f);
1655 	}
1656 
1657 	return 0;
1658 
1659 }
1660 
1661 /**
1662  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1663  *
1664  * @adev: amdgpu_device pointer
1665  * @vm: requested vm
1666  *
1667  * Make sure all invalidated BOs are cleared in the PT.
1668  * Returns 0 for success.
1669  *
1670  * PTs have to be reserved and mutex must be locked!
1671  */
1672 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1673 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1674 {
1675 	struct amdgpu_bo_va *bo_va = NULL;
1676 	int r = 0;
1677 
1678 	spin_lock(&vm->status_lock);
1679 	while (!list_empty(&vm->invalidated)) {
1680 		bo_va = list_first_entry(&vm->invalidated,
1681 			struct amdgpu_bo_va, vm_status);
1682 		spin_unlock(&vm->status_lock);
1683 
1684 		r = amdgpu_vm_bo_update(adev, bo_va, true);
1685 		if (r)
1686 			return r;
1687 
1688 		spin_lock(&vm->status_lock);
1689 	}
1690 	spin_unlock(&vm->status_lock);
1691 
1692 	if (bo_va)
1693 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1694 
1695 	return r;
1696 }
1697 
1698 /**
1699  * amdgpu_vm_bo_add - add a bo to a specific vm
1700  *
1701  * @adev: amdgpu_device pointer
1702  * @vm: requested vm
1703  * @bo: amdgpu buffer object
1704  *
1705  * Add @bo into the requested vm.
1706  * Add @bo to the list of bos associated with the vm
1707  * Returns newly added bo_va or NULL for failure
1708  *
1709  * Object has to be reserved!
1710  */
1711 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1712 				      struct amdgpu_vm *vm,
1713 				      struct amdgpu_bo *bo)
1714 {
1715 	struct amdgpu_bo_va *bo_va;
1716 
1717 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1718 	if (bo_va == NULL) {
1719 		return NULL;
1720 	}
1721 	bo_va->vm = vm;
1722 	bo_va->bo = bo;
1723 	bo_va->ref_count = 1;
1724 	INIT_LIST_HEAD(&bo_va->bo_list);
1725 	INIT_LIST_HEAD(&bo_va->valids);
1726 	INIT_LIST_HEAD(&bo_va->invalids);
1727 	INIT_LIST_HEAD(&bo_va->vm_status);
1728 
1729 	if (bo)
1730 		list_add_tail(&bo_va->bo_list, &bo->va);
1731 
1732 	return bo_va;
1733 }
1734 
1735 /**
1736  * amdgpu_vm_bo_map - map bo inside a vm
1737  *
1738  * @adev: amdgpu_device pointer
1739  * @bo_va: bo_va to store the address
1740  * @saddr: where to map the BO
1741  * @offset: requested offset in the BO
1742  * @flags: attributes of pages (read/write/valid/etc.)
1743  *
1744  * Add a mapping of the BO at the specefied addr into the VM.
1745  * Returns 0 for success, error for failure.
1746  *
1747  * Object has to be reserved and unreserved outside!
1748  */
1749 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1750 		     struct amdgpu_bo_va *bo_va,
1751 		     uint64_t saddr, uint64_t offset,
1752 		     uint64_t size, uint64_t flags)
1753 {
1754 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1755 	struct amdgpu_vm *vm = bo_va->vm;
1756 	uint64_t eaddr;
1757 
1758 	/* validate the parameters */
1759 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1760 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1761 		return -EINVAL;
1762 
1763 	/* make sure object fit at this offset */
1764 	eaddr = saddr + size - 1;
1765 	if (saddr >= eaddr ||
1766 	    (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1767 		return -EINVAL;
1768 
1769 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1770 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1771 
1772 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1773 	if (tmp) {
1774 		/* bo and tmp overlap, invalid addr */
1775 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1776 			"0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
1777 			tmp->start, tmp->last + 1);
1778 		return -EINVAL;
1779 	}
1780 
1781 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1782 	if (!mapping)
1783 		return -ENOMEM;
1784 
1785 	INIT_LIST_HEAD(&mapping->list);
1786 	mapping->start = saddr;
1787 	mapping->last = eaddr;
1788 	mapping->offset = offset;
1789 	mapping->flags = flags;
1790 
1791 	list_add(&mapping->list, &bo_va->invalids);
1792 	amdgpu_vm_it_insert(mapping, &vm->va);
1793 
1794 	if (flags & AMDGPU_PTE_PRT)
1795 		amdgpu_vm_prt_get(adev);
1796 
1797 	return 0;
1798 }
1799 
1800 /**
1801  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1802  *
1803  * @adev: amdgpu_device pointer
1804  * @bo_va: bo_va to store the address
1805  * @saddr: where to map the BO
1806  * @offset: requested offset in the BO
1807  * @flags: attributes of pages (read/write/valid/etc.)
1808  *
1809  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1810  * mappings as we do so.
1811  * Returns 0 for success, error for failure.
1812  *
1813  * Object has to be reserved and unreserved outside!
1814  */
1815 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1816 			     struct amdgpu_bo_va *bo_va,
1817 			     uint64_t saddr, uint64_t offset,
1818 			     uint64_t size, uint64_t flags)
1819 {
1820 	struct amdgpu_bo_va_mapping *mapping;
1821 	struct amdgpu_vm *vm = bo_va->vm;
1822 	uint64_t eaddr;
1823 	int r;
1824 
1825 	/* validate the parameters */
1826 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1827 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1828 		return -EINVAL;
1829 
1830 	/* make sure object fit at this offset */
1831 	eaddr = saddr + size - 1;
1832 	if (saddr >= eaddr ||
1833 	    (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1834 		return -EINVAL;
1835 
1836 	/* Allocate all the needed memory */
1837 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1838 	if (!mapping)
1839 		return -ENOMEM;
1840 
1841 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
1842 	if (r) {
1843 		kfree(mapping);
1844 		return r;
1845 	}
1846 
1847 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1848 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1849 
1850 	mapping->start = saddr;
1851 	mapping->last = eaddr;
1852 	mapping->offset = offset;
1853 	mapping->flags = flags;
1854 
1855 	list_add(&mapping->list, &bo_va->invalids);
1856 	amdgpu_vm_it_insert(mapping, &vm->va);
1857 
1858 	if (flags & AMDGPU_PTE_PRT)
1859 		amdgpu_vm_prt_get(adev);
1860 
1861 	return 0;
1862 }
1863 
1864 /**
1865  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1866  *
1867  * @adev: amdgpu_device pointer
1868  * @bo_va: bo_va to remove the address from
1869  * @saddr: where to the BO is mapped
1870  *
1871  * Remove a mapping of the BO at the specefied addr from the VM.
1872  * Returns 0 for success, error for failure.
1873  *
1874  * Object has to be reserved and unreserved outside!
1875  */
1876 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1877 		       struct amdgpu_bo_va *bo_va,
1878 		       uint64_t saddr)
1879 {
1880 	struct amdgpu_bo_va_mapping *mapping;
1881 	struct amdgpu_vm *vm = bo_va->vm;
1882 	bool valid = true;
1883 
1884 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1885 
1886 	list_for_each_entry(mapping, &bo_va->valids, list) {
1887 		if (mapping->start == saddr)
1888 			break;
1889 	}
1890 
1891 	if (&mapping->list == &bo_va->valids) {
1892 		valid = false;
1893 
1894 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1895 			if (mapping->start == saddr)
1896 				break;
1897 		}
1898 
1899 		if (&mapping->list == &bo_va->invalids)
1900 			return -ENOENT;
1901 	}
1902 
1903 	list_del(&mapping->list);
1904 	amdgpu_vm_it_remove(mapping, &vm->va);
1905 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1906 
1907 	if (valid)
1908 		list_add(&mapping->list, &vm->freed);
1909 	else
1910 		amdgpu_vm_free_mapping(adev, vm, mapping,
1911 				       bo_va->last_pt_update);
1912 
1913 	return 0;
1914 }
1915 
1916 /**
1917  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1918  *
1919  * @adev: amdgpu_device pointer
1920  * @vm: VM structure to use
1921  * @saddr: start of the range
1922  * @size: size of the range
1923  *
1924  * Remove all mappings in a range, split them as appropriate.
1925  * Returns 0 for success, error for failure.
1926  */
1927 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1928 				struct amdgpu_vm *vm,
1929 				uint64_t saddr, uint64_t size)
1930 {
1931 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1932 	LIST_HEAD(removed);
1933 	uint64_t eaddr;
1934 
1935 	eaddr = saddr + size - 1;
1936 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1937 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1938 
1939 	/* Allocate all the needed memory */
1940 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1941 	if (!before)
1942 		return -ENOMEM;
1943 	INIT_LIST_HEAD(&before->list);
1944 
1945 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1946 	if (!after) {
1947 		kfree(before);
1948 		return -ENOMEM;
1949 	}
1950 	INIT_LIST_HEAD(&after->list);
1951 
1952 	/* Now gather all removed mappings */
1953 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1954 	while (tmp) {
1955 		/* Remember mapping split at the start */
1956 		if (tmp->start < saddr) {
1957 			before->start = tmp->start;
1958 			before->last = saddr - 1;
1959 			before->offset = tmp->offset;
1960 			before->flags = tmp->flags;
1961 			list_add(&before->list, &tmp->list);
1962 		}
1963 
1964 		/* Remember mapping split at the end */
1965 		if (tmp->last > eaddr) {
1966 			after->start = eaddr + 1;
1967 			after->last = tmp->last;
1968 			after->offset = tmp->offset;
1969 			after->offset += after->start - tmp->start;
1970 			after->flags = tmp->flags;
1971 			list_add(&after->list, &tmp->list);
1972 		}
1973 
1974 		list_del(&tmp->list);
1975 		list_add(&tmp->list, &removed);
1976 
1977 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1978 	}
1979 
1980 	/* And free them up */
1981 	list_for_each_entry_safe(tmp, next, &removed, list) {
1982 		amdgpu_vm_it_remove(tmp, &vm->va);
1983 		list_del(&tmp->list);
1984 
1985 		if (tmp->start < saddr)
1986 		    tmp->start = saddr;
1987 		if (tmp->last > eaddr)
1988 		    tmp->last = eaddr;
1989 
1990 		list_add(&tmp->list, &vm->freed);
1991 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1992 	}
1993 
1994 	/* Insert partial mapping before the range */
1995 	if (!list_empty(&before->list)) {
1996 		amdgpu_vm_it_insert(before, &vm->va);
1997 		if (before->flags & AMDGPU_PTE_PRT)
1998 			amdgpu_vm_prt_get(adev);
1999 	} else {
2000 		kfree(before);
2001 	}
2002 
2003 	/* Insert partial mapping after the range */
2004 	if (!list_empty(&after->list)) {
2005 		amdgpu_vm_it_insert(after, &vm->va);
2006 		if (after->flags & AMDGPU_PTE_PRT)
2007 			amdgpu_vm_prt_get(adev);
2008 	} else {
2009 		kfree(after);
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 /**
2016  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2017  *
2018  * @adev: amdgpu_device pointer
2019  * @bo_va: requested bo_va
2020  *
2021  * Remove @bo_va->bo from the requested vm.
2022  *
2023  * Object have to be reserved!
2024  */
2025 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2026 		      struct amdgpu_bo_va *bo_va)
2027 {
2028 	struct amdgpu_bo_va_mapping *mapping, *next;
2029 	struct amdgpu_vm *vm = bo_va->vm;
2030 
2031 	list_del(&bo_va->bo_list);
2032 
2033 	spin_lock(&vm->status_lock);
2034 	list_del(&bo_va->vm_status);
2035 	spin_unlock(&vm->status_lock);
2036 
2037 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2038 		list_del(&mapping->list);
2039 		amdgpu_vm_it_remove(mapping, &vm->va);
2040 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2041 		list_add(&mapping->list, &vm->freed);
2042 	}
2043 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2044 		list_del(&mapping->list);
2045 		amdgpu_vm_it_remove(mapping, &vm->va);
2046 		amdgpu_vm_free_mapping(adev, vm, mapping,
2047 				       bo_va->last_pt_update);
2048 	}
2049 
2050 	dma_fence_put(bo_va->last_pt_update);
2051 	kfree(bo_va);
2052 }
2053 
2054 /**
2055  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2056  *
2057  * @adev: amdgpu_device pointer
2058  * @vm: requested vm
2059  * @bo: amdgpu buffer object
2060  *
2061  * Mark @bo as invalid.
2062  */
2063 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2064 			     struct amdgpu_bo *bo)
2065 {
2066 	struct amdgpu_bo_va *bo_va;
2067 
2068 	list_for_each_entry(bo_va, &bo->va, bo_list) {
2069 		spin_lock(&bo_va->vm->status_lock);
2070 		if (list_empty(&bo_va->vm_status))
2071 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2072 		spin_unlock(&bo_va->vm->status_lock);
2073 	}
2074 }
2075 
2076 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2077 {
2078 	/* Total bits covered by PD + PTs */
2079 	unsigned bits = ilog2(vm_size) + 18;
2080 
2081 	/* Make sure the PD is 4K in size up to 8GB address space.
2082 	   Above that split equal between PD and PTs */
2083 	if (vm_size <= 8)
2084 		return (bits - 9);
2085 	else
2086 		return ((bits + 3) / 2);
2087 }
2088 
2089 /**
2090  * amdgpu_vm_adjust_size - adjust vm size and block size
2091  *
2092  * @adev: amdgpu_device pointer
2093  * @vm_size: the default vm size if it's set auto
2094  */
2095 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2096 {
2097 	/* adjust vm size firstly */
2098 	if (amdgpu_vm_size == -1)
2099 		adev->vm_manager.vm_size = vm_size;
2100 	else
2101 		adev->vm_manager.vm_size = amdgpu_vm_size;
2102 
2103 	/* block size depends on vm size */
2104 	if (amdgpu_vm_block_size == -1)
2105 		adev->vm_manager.block_size =
2106 			amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2107 	else
2108 		adev->vm_manager.block_size = amdgpu_vm_block_size;
2109 
2110 	DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2111 		adev->vm_manager.vm_size, adev->vm_manager.block_size);
2112 }
2113 
2114 /**
2115  * amdgpu_vm_init - initialize a vm instance
2116  *
2117  * @adev: amdgpu_device pointer
2118  * @vm: requested vm
2119  *
2120  * Init @vm fields.
2121  */
2122 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2123 {
2124 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2125 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2126 	unsigned ring_instance;
2127 	struct amdgpu_ring *ring;
2128 	struct amd_sched_rq *rq;
2129 	int r;
2130 
2131 	vm->va = RB_ROOT;
2132 	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2133 	spin_lock_init(&vm->status_lock);
2134 	INIT_LIST_HEAD(&vm->invalidated);
2135 	INIT_LIST_HEAD(&vm->cleared);
2136 	INIT_LIST_HEAD(&vm->freed);
2137 
2138 	/* create scheduler entity for page table updates */
2139 
2140 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2141 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2142 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2143 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2144 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
2145 				  rq, amdgpu_sched_jobs);
2146 	if (r)
2147 		return r;
2148 
2149 	vm->last_dir_update = NULL;
2150 
2151 	r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2152 			     AMDGPU_GEM_DOMAIN_VRAM,
2153 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2154 			     AMDGPU_GEM_CREATE_SHADOW |
2155 			     AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2156 			     AMDGPU_GEM_CREATE_VRAM_CLEARED,
2157 			     NULL, NULL, &vm->root.bo);
2158 	if (r)
2159 		goto error_free_sched_entity;
2160 
2161 	r = amdgpu_bo_reserve(vm->root.bo, false);
2162 	if (r)
2163 		goto error_free_root;
2164 
2165 	vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2166 	amdgpu_bo_unreserve(vm->root.bo);
2167 
2168 	return 0;
2169 
2170 error_free_root:
2171 	amdgpu_bo_unref(&vm->root.bo->shadow);
2172 	amdgpu_bo_unref(&vm->root.bo);
2173 	vm->root.bo = NULL;
2174 
2175 error_free_sched_entity:
2176 	amd_sched_entity_fini(&ring->sched, &vm->entity);
2177 
2178 	return r;
2179 }
2180 
2181 /**
2182  * amdgpu_vm_free_levels - free PD/PT levels
2183  *
2184  * @level: PD/PT starting level to free
2185  *
2186  * Free the page directory or page table level and all sub levels.
2187  */
2188 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2189 {
2190 	unsigned i;
2191 
2192 	if (level->bo) {
2193 		amdgpu_bo_unref(&level->bo->shadow);
2194 		amdgpu_bo_unref(&level->bo);
2195 	}
2196 
2197 	if (level->entries)
2198 		for (i = 0; i <= level->last_entry_used; i++)
2199 			amdgpu_vm_free_levels(&level->entries[i]);
2200 
2201 	drm_free_large(level->entries);
2202 }
2203 
2204 /**
2205  * amdgpu_vm_fini - tear down a vm instance
2206  *
2207  * @adev: amdgpu_device pointer
2208  * @vm: requested vm
2209  *
2210  * Tear down @vm.
2211  * Unbind the VM and remove all bos from the vm bo list
2212  */
2213 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2214 {
2215 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2216 	bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2217 
2218 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2219 
2220 	if (!RB_EMPTY_ROOT(&vm->va)) {
2221 		dev_err(adev->dev, "still active bo inside vm\n");
2222 	}
2223 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2224 		list_del(&mapping->list);
2225 		amdgpu_vm_it_remove(mapping, &vm->va);
2226 		kfree(mapping);
2227 	}
2228 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2229 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2230 			amdgpu_vm_prt_fini(adev, vm);
2231 			prt_fini_needed = false;
2232 		}
2233 
2234 		list_del(&mapping->list);
2235 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2236 	}
2237 
2238 	amdgpu_vm_free_levels(&vm->root);
2239 	dma_fence_put(vm->last_dir_update);
2240 }
2241 
2242 /**
2243  * amdgpu_vm_manager_init - init the VM manager
2244  *
2245  * @adev: amdgpu_device pointer
2246  *
2247  * Initialize the VM manager structures
2248  */
2249 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2250 {
2251 	unsigned i, j;
2252 
2253 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2254 		struct amdgpu_vm_id_manager *id_mgr =
2255 			&adev->vm_manager.id_mgr[i];
2256 
2257 		mutex_init(&id_mgr->lock);
2258 		INIT_LIST_HEAD(&id_mgr->ids_lru);
2259 
2260 		/* skip over VMID 0, since it is the system VM */
2261 		for (j = 1; j < id_mgr->num_ids; ++j) {
2262 			amdgpu_vm_reset_id(adev, i, j);
2263 			amdgpu_sync_create(&id_mgr->ids[i].active);
2264 			list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2265 		}
2266 	}
2267 
2268 	adev->vm_manager.fence_context =
2269 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2270 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2271 		adev->vm_manager.seqno[i] = 0;
2272 
2273 
2274 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2275 	atomic64_set(&adev->vm_manager.client_counter, 0);
2276 	spin_lock_init(&adev->vm_manager.prt_lock);
2277 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2278 }
2279 
2280 /**
2281  * amdgpu_vm_manager_fini - cleanup VM manager
2282  *
2283  * @adev: amdgpu_device pointer
2284  *
2285  * Cleanup the VM manager and free resources.
2286  */
2287 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2288 {
2289 	unsigned i, j;
2290 
2291 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2292 		struct amdgpu_vm_id_manager *id_mgr =
2293 			&adev->vm_manager.id_mgr[i];
2294 
2295 		mutex_destroy(&id_mgr->lock);
2296 		for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2297 			struct amdgpu_vm_id *id = &id_mgr->ids[j];
2298 
2299 			amdgpu_sync_free(&id->active);
2300 			dma_fence_put(id->flushed_updates);
2301 			dma_fence_put(id->last_flush);
2302 		}
2303 	}
2304 }
2305