1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <drm/drmP.h> 31 #include <drm/amdgpu_drm.h> 32 #include "amdgpu.h" 33 #include "amdgpu_trace.h" 34 35 /* 36 * GPUVM 37 * GPUVM is similar to the legacy gart on older asics, however 38 * rather than there being a single global gart table 39 * for the entire GPU, there are multiple VM page tables active 40 * at any given time. The VM page tables can contain a mix 41 * vram pages and system memory pages and system memory pages 42 * can be mapped as snooped (cached system pages) or unsnooped 43 * (uncached system pages). 44 * Each VM has an ID associated with it and there is a page table 45 * associated with each VMID. When execting a command buffer, 46 * the kernel tells the the ring what VMID to use for that command 47 * buffer. VMIDs are allocated dynamically as commands are submitted. 48 * The userspace drivers maintain their own address space and the kernel 49 * sets up their pages tables accordingly when they submit their 50 * command buffers and a VMID is assigned. 51 * Cayman/Trinity support up to 8 active VMs at any given time; 52 * SI supports 16. 53 */ 54 55 #define START(node) ((node)->start) 56 #define LAST(node) ((node)->last) 57 58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 59 START, LAST, static, amdgpu_vm_it) 60 61 #undef START 62 #undef LAST 63 64 /* Local structure. Encapsulate some VM table update parameters to reduce 65 * the number of function parameters 66 */ 67 struct amdgpu_pte_update_params { 68 /* amdgpu device we do this update for */ 69 struct amdgpu_device *adev; 70 /* optional amdgpu_vm we do this update for */ 71 struct amdgpu_vm *vm; 72 /* address where to copy page table entries from */ 73 uint64_t src; 74 /* indirect buffer to fill with commands */ 75 struct amdgpu_ib *ib; 76 /* Function which actually does the update */ 77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 78 uint64_t addr, unsigned count, uint32_t incr, 79 uint64_t flags); 80 /* indicate update pt or its shadow */ 81 bool shadow; 82 }; 83 84 /* Helper to disable partial resident texture feature from a fence callback */ 85 struct amdgpu_prt_cb { 86 struct amdgpu_device *adev; 87 struct dma_fence_cb cb; 88 }; 89 90 /** 91 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 92 * 93 * @adev: amdgpu_device pointer 94 * 95 * Calculate the number of entries in a page directory or page table. 96 */ 97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 98 unsigned level) 99 { 100 if (level == 0) 101 /* For the root directory */ 102 return adev->vm_manager.max_pfn >> 103 (adev->vm_manager.block_size * 104 adev->vm_manager.num_level); 105 else if (level == adev->vm_manager.num_level) 106 /* For the page tables on the leaves */ 107 return AMDGPU_VM_PTE_COUNT(adev); 108 else 109 /* Everything in between */ 110 return 1 << adev->vm_manager.block_size; 111 } 112 113 /** 114 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 115 * 116 * @adev: amdgpu_device pointer 117 * 118 * Calculate the size of the BO for a page directory or page table in bytes. 119 */ 120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 121 { 122 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 123 } 124 125 /** 126 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 127 * 128 * @vm: vm providing the BOs 129 * @validated: head of validation list 130 * @entry: entry to add 131 * 132 * Add the page directory to the list of BOs to 133 * validate for command submission. 134 */ 135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 136 struct list_head *validated, 137 struct amdgpu_bo_list_entry *entry) 138 { 139 entry->robj = vm->root.bo; 140 entry->priority = 0; 141 entry->tv.bo = &entry->robj->tbo; 142 entry->tv.shared = true; 143 entry->user_pages = NULL; 144 list_add(&entry->tv.head, validated); 145 } 146 147 /** 148 * amdgpu_vm_validate_layer - validate a single page table level 149 * 150 * @parent: parent page table level 151 * @validate: callback to do the validation 152 * @param: parameter for the validation callback 153 * 154 * Validate the page table BOs on command submission if neccessary. 155 */ 156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent, 157 int (*validate)(void *, struct amdgpu_bo *), 158 void *param) 159 { 160 unsigned i; 161 int r; 162 163 if (!parent->entries) 164 return 0; 165 166 for (i = 0; i <= parent->last_entry_used; ++i) { 167 struct amdgpu_vm_pt *entry = &parent->entries[i]; 168 169 if (!entry->bo) 170 continue; 171 172 r = validate(param, entry->bo); 173 if (r) 174 return r; 175 176 /* 177 * Recurse into the sub directory. This is harmless because we 178 * have only a maximum of 5 layers. 179 */ 180 r = amdgpu_vm_validate_level(entry, validate, param); 181 if (r) 182 return r; 183 } 184 185 return r; 186 } 187 188 /** 189 * amdgpu_vm_validate_pt_bos - validate the page table BOs 190 * 191 * @adev: amdgpu device pointer 192 * @vm: vm providing the BOs 193 * @validate: callback to do the validation 194 * @param: parameter for the validation callback 195 * 196 * Validate the page table BOs on command submission if neccessary. 197 */ 198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 199 int (*validate)(void *p, struct amdgpu_bo *bo), 200 void *param) 201 { 202 uint64_t num_evictions; 203 204 /* We only need to validate the page tables 205 * if they aren't already valid. 206 */ 207 num_evictions = atomic64_read(&adev->num_evictions); 208 if (num_evictions == vm->last_eviction_counter) 209 return 0; 210 211 return amdgpu_vm_validate_level(&vm->root, validate, param); 212 } 213 214 /** 215 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail 216 * 217 * @adev: amdgpu device instance 218 * @vm: vm providing the BOs 219 * 220 * Move the PT BOs to the tail of the LRU. 221 */ 222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent) 223 { 224 unsigned i; 225 226 if (!parent->entries) 227 return; 228 229 for (i = 0; i <= parent->last_entry_used; ++i) { 230 struct amdgpu_vm_pt *entry = &parent->entries[i]; 231 232 if (!entry->bo) 233 continue; 234 235 ttm_bo_move_to_lru_tail(&entry->bo->tbo); 236 amdgpu_vm_move_level_in_lru(entry); 237 } 238 } 239 240 /** 241 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 242 * 243 * @adev: amdgpu device instance 244 * @vm: vm providing the BOs 245 * 246 * Move the PT BOs to the tail of the LRU. 247 */ 248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 249 struct amdgpu_vm *vm) 250 { 251 struct ttm_bo_global *glob = adev->mman.bdev.glob; 252 253 spin_lock(&glob->lru_lock); 254 amdgpu_vm_move_level_in_lru(&vm->root); 255 spin_unlock(&glob->lru_lock); 256 } 257 258 /** 259 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 260 * 261 * @adev: amdgpu_device pointer 262 * @vm: requested vm 263 * @saddr: start of the address range 264 * @eaddr: end of the address range 265 * 266 * Make sure the page directories and page tables are allocated 267 */ 268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 269 struct amdgpu_vm *vm, 270 struct amdgpu_vm_pt *parent, 271 uint64_t saddr, uint64_t eaddr, 272 unsigned level) 273 { 274 unsigned shift = (adev->vm_manager.num_level - level) * 275 adev->vm_manager.block_size; 276 unsigned pt_idx, from, to; 277 int r; 278 279 if (!parent->entries) { 280 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 281 282 parent->entries = drm_calloc_large(num_entries, 283 sizeof(struct amdgpu_vm_pt)); 284 if (!parent->entries) 285 return -ENOMEM; 286 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 287 } 288 289 from = saddr >> shift; 290 to = eaddr >> shift; 291 if (from >= amdgpu_vm_num_entries(adev, level) || 292 to >= amdgpu_vm_num_entries(adev, level)) 293 return -EINVAL; 294 295 if (to > parent->last_entry_used) 296 parent->last_entry_used = to; 297 298 ++level; 299 saddr = saddr & ((1 << shift) - 1); 300 eaddr = eaddr & ((1 << shift) - 1); 301 302 /* walk over the address space and allocate the page tables */ 303 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 304 struct reservation_object *resv = vm->root.bo->tbo.resv; 305 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 306 struct amdgpu_bo *pt; 307 308 if (!entry->bo) { 309 r = amdgpu_bo_create(adev, 310 amdgpu_vm_bo_size(adev, level), 311 AMDGPU_GPU_PAGE_SIZE, true, 312 AMDGPU_GEM_DOMAIN_VRAM, 313 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 314 AMDGPU_GEM_CREATE_SHADOW | 315 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 316 AMDGPU_GEM_CREATE_VRAM_CLEARED, 317 NULL, resv, &pt); 318 if (r) 319 return r; 320 321 /* Keep a reference to the root directory to avoid 322 * freeing them up in the wrong order. 323 */ 324 pt->parent = amdgpu_bo_ref(vm->root.bo); 325 326 entry->bo = pt; 327 entry->addr = 0; 328 } 329 330 if (level < adev->vm_manager.num_level) { 331 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 332 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 333 ((1 << shift) - 1); 334 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 335 sub_eaddr, level); 336 if (r) 337 return r; 338 } 339 } 340 341 return 0; 342 } 343 344 /** 345 * amdgpu_vm_alloc_pts - Allocate page tables. 346 * 347 * @adev: amdgpu_device pointer 348 * @vm: VM to allocate page tables for 349 * @saddr: Start address which needs to be allocated 350 * @size: Size from start address we need. 351 * 352 * Make sure the page tables are allocated. 353 */ 354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 355 struct amdgpu_vm *vm, 356 uint64_t saddr, uint64_t size) 357 { 358 uint64_t last_pfn; 359 uint64_t eaddr; 360 361 /* validate the parameters */ 362 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 363 return -EINVAL; 364 365 eaddr = saddr + size - 1; 366 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 367 if (last_pfn >= adev->vm_manager.max_pfn) { 368 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 369 last_pfn, adev->vm_manager.max_pfn); 370 return -EINVAL; 371 } 372 373 saddr /= AMDGPU_GPU_PAGE_SIZE; 374 eaddr /= AMDGPU_GPU_PAGE_SIZE; 375 376 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); 377 } 378 379 /** 380 * amdgpu_vm_had_gpu_reset - check if reset occured since last use 381 * 382 * @adev: amdgpu_device pointer 383 * @id: VMID structure 384 * 385 * Check if GPU reset occured since last use of the VMID. 386 */ 387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev, 388 struct amdgpu_vm_id *id) 389 { 390 return id->current_gpu_reset_count != 391 atomic_read(&adev->gpu_reset_counter); 392 } 393 394 /** 395 * amdgpu_vm_grab_id - allocate the next free VMID 396 * 397 * @vm: vm to allocate id for 398 * @ring: ring we want to submit job to 399 * @sync: sync object where we add dependencies 400 * @fence: fence protecting ID from reuse 401 * 402 * Allocate an id for the vm, adding fences to the sync obj as necessary. 403 */ 404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 405 struct amdgpu_sync *sync, struct dma_fence *fence, 406 struct amdgpu_job *job) 407 { 408 struct amdgpu_device *adev = ring->adev; 409 unsigned vmhub = ring->funcs->vmhub; 410 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 411 uint64_t fence_context = adev->fence_context + ring->idx; 412 struct dma_fence *updates = sync->last_vm_update; 413 struct amdgpu_vm_id *id, *idle; 414 struct dma_fence **fences; 415 unsigned i; 416 int r = 0; 417 418 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL); 419 if (!fences) 420 return -ENOMEM; 421 422 mutex_lock(&id_mgr->lock); 423 424 /* Check if we have an idle VMID */ 425 i = 0; 426 list_for_each_entry(idle, &id_mgr->ids_lru, list) { 427 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 428 if (!fences[i]) 429 break; 430 ++i; 431 } 432 433 /* If we can't find a idle VMID to use, wait till one becomes available */ 434 if (&idle->list == &id_mgr->ids_lru) { 435 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 436 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 437 struct dma_fence_array *array; 438 unsigned j; 439 440 for (j = 0; j < i; ++j) 441 dma_fence_get(fences[j]); 442 443 array = dma_fence_array_create(i, fences, fence_context, 444 seqno, true); 445 if (!array) { 446 for (j = 0; j < i; ++j) 447 dma_fence_put(fences[j]); 448 kfree(fences); 449 r = -ENOMEM; 450 goto error; 451 } 452 453 454 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 455 dma_fence_put(&array->base); 456 if (r) 457 goto error; 458 459 mutex_unlock(&id_mgr->lock); 460 return 0; 461 462 } 463 kfree(fences); 464 465 job->vm_needs_flush = false; 466 /* Check if we can use a VMID already assigned to this VM */ 467 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) { 468 struct dma_fence *flushed; 469 bool needs_flush = false; 470 471 /* Check all the prerequisites to using this VMID */ 472 if (amdgpu_vm_had_gpu_reset(adev, id)) 473 continue; 474 475 if (atomic64_read(&id->owner) != vm->client_id) 476 continue; 477 478 if (job->vm_pd_addr != id->pd_gpu_addr) 479 continue; 480 481 if (!id->last_flush || 482 (id->last_flush->context != fence_context && 483 !dma_fence_is_signaled(id->last_flush))) 484 needs_flush = true; 485 486 flushed = id->flushed_updates; 487 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) 488 needs_flush = true; 489 490 /* Concurrent flushes are only possible starting with Vega10 */ 491 if (adev->asic_type < CHIP_VEGA10 && needs_flush) 492 continue; 493 494 /* Good we can use this VMID. Remember this submission as 495 * user of the VMID. 496 */ 497 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 498 if (r) 499 goto error; 500 501 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) { 502 dma_fence_put(id->flushed_updates); 503 id->flushed_updates = dma_fence_get(updates); 504 } 505 506 if (needs_flush) 507 goto needs_flush; 508 else 509 goto no_flush_needed; 510 511 }; 512 513 /* Still no ID to use? Then use the idle one found earlier */ 514 id = idle; 515 516 /* Remember this submission as user of the VMID */ 517 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 518 if (r) 519 goto error; 520 521 id->pd_gpu_addr = job->vm_pd_addr; 522 dma_fence_put(id->flushed_updates); 523 id->flushed_updates = dma_fence_get(updates); 524 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 525 atomic64_set(&id->owner, vm->client_id); 526 527 needs_flush: 528 job->vm_needs_flush = true; 529 dma_fence_put(id->last_flush); 530 id->last_flush = NULL; 531 532 no_flush_needed: 533 list_move_tail(&id->list, &id_mgr->ids_lru); 534 535 job->vm_id = id - id_mgr->ids; 536 trace_amdgpu_vm_grab_id(vm, ring, job); 537 538 error: 539 mutex_unlock(&id_mgr->lock); 540 return r; 541 } 542 543 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring) 544 { 545 struct amdgpu_device *adev = ring->adev; 546 const struct amdgpu_ip_block *ip_block; 547 548 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE) 549 /* only compute rings */ 550 return false; 551 552 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 553 if (!ip_block) 554 return false; 555 556 if (ip_block->version->major <= 7) { 557 /* gfx7 has no workaround */ 558 return true; 559 } else if (ip_block->version->major == 8) { 560 if (adev->gfx.mec_fw_version >= 673) 561 /* gfx8 is fixed in MEC firmware 673 */ 562 return false; 563 else 564 return true; 565 } 566 return false; 567 } 568 569 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr) 570 { 571 u64 addr = mc_addr; 572 573 if (adev->gart.gart_funcs->adjust_mc_addr) 574 addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr); 575 576 return addr; 577 } 578 579 /** 580 * amdgpu_vm_flush - hardware flush the vm 581 * 582 * @ring: ring to use for flush 583 * @vm_id: vmid number to use 584 * @pd_addr: address of the page directory 585 * 586 * Emit a VM flush when it is necessary. 587 */ 588 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job) 589 { 590 struct amdgpu_device *adev = ring->adev; 591 unsigned vmhub = ring->funcs->vmhub; 592 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 593 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id]; 594 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 595 id->gds_base != job->gds_base || 596 id->gds_size != job->gds_size || 597 id->gws_base != job->gws_base || 598 id->gws_size != job->gws_size || 599 id->oa_base != job->oa_base || 600 id->oa_size != job->oa_size); 601 bool vm_flush_needed = job->vm_needs_flush || 602 amdgpu_vm_ring_has_compute_vm_bug(ring); 603 unsigned patch_offset = 0; 604 int r; 605 606 if (amdgpu_vm_had_gpu_reset(adev, id)) { 607 gds_switch_needed = true; 608 vm_flush_needed = true; 609 } 610 611 if (!vm_flush_needed && !gds_switch_needed) 612 return 0; 613 614 if (ring->funcs->init_cond_exec) 615 patch_offset = amdgpu_ring_init_cond_exec(ring); 616 617 if (ring->funcs->emit_pipeline_sync && !job->need_pipeline_sync) 618 amdgpu_ring_emit_pipeline_sync(ring); 619 620 if (ring->funcs->emit_vm_flush && vm_flush_needed) { 621 u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr); 622 struct dma_fence *fence; 623 624 trace_amdgpu_vm_flush(ring, job->vm_id, pd_addr); 625 amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr); 626 627 r = amdgpu_fence_emit(ring, &fence); 628 if (r) 629 return r; 630 631 mutex_lock(&id_mgr->lock); 632 dma_fence_put(id->last_flush); 633 id->last_flush = fence; 634 mutex_unlock(&id_mgr->lock); 635 } 636 637 if (gds_switch_needed) { 638 id->gds_base = job->gds_base; 639 id->gds_size = job->gds_size; 640 id->gws_base = job->gws_base; 641 id->gws_size = job->gws_size; 642 id->oa_base = job->oa_base; 643 id->oa_size = job->oa_size; 644 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base, 645 job->gds_size, job->gws_base, 646 job->gws_size, job->oa_base, 647 job->oa_size); 648 } 649 650 if (ring->funcs->patch_cond_exec) 651 amdgpu_ring_patch_cond_exec(ring, patch_offset); 652 653 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 654 if (ring->funcs->emit_switch_buffer) { 655 amdgpu_ring_emit_switch_buffer(ring); 656 amdgpu_ring_emit_switch_buffer(ring); 657 } 658 return 0; 659 } 660 661 /** 662 * amdgpu_vm_reset_id - reset VMID to zero 663 * 664 * @adev: amdgpu device structure 665 * @vm_id: vmid number to use 666 * 667 * Reset saved GDW, GWS and OA to force switch on next flush. 668 */ 669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub, 670 unsigned vmid) 671 { 672 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 673 struct amdgpu_vm_id *id = &id_mgr->ids[vmid]; 674 675 id->gds_base = 0; 676 id->gds_size = 0; 677 id->gws_base = 0; 678 id->gws_size = 0; 679 id->oa_base = 0; 680 id->oa_size = 0; 681 } 682 683 /** 684 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 685 * 686 * @vm: requested vm 687 * @bo: requested buffer object 688 * 689 * Find @bo inside the requested vm. 690 * Search inside the @bos vm list for the requested vm 691 * Returns the found bo_va or NULL if none is found 692 * 693 * Object has to be reserved! 694 */ 695 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 696 struct amdgpu_bo *bo) 697 { 698 struct amdgpu_bo_va *bo_va; 699 700 list_for_each_entry(bo_va, &bo->va, bo_list) { 701 if (bo_va->vm == vm) { 702 return bo_va; 703 } 704 } 705 return NULL; 706 } 707 708 /** 709 * amdgpu_vm_do_set_ptes - helper to call the right asic function 710 * 711 * @params: see amdgpu_pte_update_params definition 712 * @pe: addr of the page entry 713 * @addr: dst addr to write into pe 714 * @count: number of page entries to update 715 * @incr: increase next addr by incr bytes 716 * @flags: hw access flags 717 * 718 * Traces the parameters and calls the right asic functions 719 * to setup the page table using the DMA. 720 */ 721 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 722 uint64_t pe, uint64_t addr, 723 unsigned count, uint32_t incr, 724 uint64_t flags) 725 { 726 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 727 728 if (count < 3) { 729 amdgpu_vm_write_pte(params->adev, params->ib, pe, 730 addr | flags, count, incr); 731 732 } else { 733 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 734 count, incr, flags); 735 } 736 } 737 738 /** 739 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 740 * 741 * @params: see amdgpu_pte_update_params definition 742 * @pe: addr of the page entry 743 * @addr: dst addr to write into pe 744 * @count: number of page entries to update 745 * @incr: increase next addr by incr bytes 746 * @flags: hw access flags 747 * 748 * Traces the parameters and calls the DMA function to copy the PTEs. 749 */ 750 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 751 uint64_t pe, uint64_t addr, 752 unsigned count, uint32_t incr, 753 uint64_t flags) 754 { 755 uint64_t src = (params->src + (addr >> 12) * 8); 756 757 758 trace_amdgpu_vm_copy_ptes(pe, src, count); 759 760 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 761 } 762 763 /** 764 * amdgpu_vm_map_gart - Resolve gart mapping of addr 765 * 766 * @pages_addr: optional DMA address to use for lookup 767 * @addr: the unmapped addr 768 * 769 * Look up the physical address of the page that the pte resolves 770 * to and return the pointer for the page table entry. 771 */ 772 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 773 { 774 uint64_t result; 775 776 /* page table offset */ 777 result = pages_addr[addr >> PAGE_SHIFT]; 778 779 /* in case cpu page size != gpu page size*/ 780 result |= addr & (~PAGE_MASK); 781 782 result &= 0xFFFFFFFFFFFFF000ULL; 783 784 return result; 785 } 786 787 /* 788 * amdgpu_vm_update_level - update a single level in the hierarchy 789 * 790 * @adev: amdgpu_device pointer 791 * @vm: requested vm 792 * @parent: parent directory 793 * 794 * Makes sure all entries in @parent are up to date. 795 * Returns 0 for success, error for failure. 796 */ 797 static int amdgpu_vm_update_level(struct amdgpu_device *adev, 798 struct amdgpu_vm *vm, 799 struct amdgpu_vm_pt *parent, 800 unsigned level) 801 { 802 struct amdgpu_bo *shadow; 803 struct amdgpu_ring *ring; 804 uint64_t pd_addr, shadow_addr; 805 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1); 806 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 807 unsigned count = 0, pt_idx, ndw; 808 struct amdgpu_job *job; 809 struct amdgpu_pte_update_params params; 810 struct dma_fence *fence = NULL; 811 812 int r; 813 814 if (!parent->entries) 815 return 0; 816 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 817 818 /* padding, etc. */ 819 ndw = 64; 820 821 /* assume the worst case */ 822 ndw += parent->last_entry_used * 6; 823 824 pd_addr = amdgpu_bo_gpu_offset(parent->bo); 825 826 shadow = parent->bo->shadow; 827 if (shadow) { 828 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 829 if (r) 830 return r; 831 shadow_addr = amdgpu_bo_gpu_offset(shadow); 832 ndw *= 2; 833 } else { 834 shadow_addr = 0; 835 } 836 837 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 838 if (r) 839 return r; 840 841 memset(¶ms, 0, sizeof(params)); 842 params.adev = adev; 843 params.ib = &job->ibs[0]; 844 845 /* walk over the address space and update the directory */ 846 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 847 struct amdgpu_bo *bo = parent->entries[pt_idx].bo; 848 uint64_t pde, pt; 849 850 if (bo == NULL) 851 continue; 852 853 if (bo->shadow) { 854 struct amdgpu_bo *pt_shadow = bo->shadow; 855 856 r = amdgpu_ttm_bind(&pt_shadow->tbo, 857 &pt_shadow->tbo.mem); 858 if (r) 859 return r; 860 } 861 862 pt = amdgpu_bo_gpu_offset(bo); 863 if (parent->entries[pt_idx].addr == pt) 864 continue; 865 866 parent->entries[pt_idx].addr = pt; 867 868 pde = pd_addr + pt_idx * 8; 869 if (((last_pde + 8 * count) != pde) || 870 ((last_pt + incr * count) != pt) || 871 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 872 873 if (count) { 874 uint64_t pt_addr = 875 amdgpu_vm_adjust_mc_addr(adev, last_pt); 876 877 if (shadow) 878 amdgpu_vm_do_set_ptes(¶ms, 879 last_shadow, 880 pt_addr, count, 881 incr, 882 AMDGPU_PTE_VALID); 883 884 amdgpu_vm_do_set_ptes(¶ms, last_pde, 885 pt_addr, count, incr, 886 AMDGPU_PTE_VALID); 887 } 888 889 count = 1; 890 last_pde = pde; 891 last_shadow = shadow_addr + pt_idx * 8; 892 last_pt = pt; 893 } else { 894 ++count; 895 } 896 } 897 898 if (count) { 899 uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt); 900 901 if (vm->root.bo->shadow) 902 amdgpu_vm_do_set_ptes(¶ms, last_shadow, pt_addr, 903 count, incr, AMDGPU_PTE_VALID); 904 905 amdgpu_vm_do_set_ptes(¶ms, last_pde, pt_addr, 906 count, incr, AMDGPU_PTE_VALID); 907 } 908 909 if (params.ib->length_dw == 0) { 910 amdgpu_job_free(job); 911 } else { 912 amdgpu_ring_pad_ib(ring, params.ib); 913 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv, 914 AMDGPU_FENCE_OWNER_VM); 915 if (shadow) 916 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv, 917 AMDGPU_FENCE_OWNER_VM); 918 919 WARN_ON(params.ib->length_dw > ndw); 920 r = amdgpu_job_submit(job, ring, &vm->entity, 921 AMDGPU_FENCE_OWNER_VM, &fence); 922 if (r) 923 goto error_free; 924 925 amdgpu_bo_fence(parent->bo, fence, true); 926 dma_fence_put(vm->last_dir_update); 927 vm->last_dir_update = dma_fence_get(fence); 928 dma_fence_put(fence); 929 } 930 /* 931 * Recurse into the subdirectories. This recursion is harmless because 932 * we only have a maximum of 5 layers. 933 */ 934 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 935 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 936 937 if (!entry->bo) 938 continue; 939 940 r = amdgpu_vm_update_level(adev, vm, entry, level + 1); 941 if (r) 942 return r; 943 } 944 945 return 0; 946 947 error_free: 948 amdgpu_job_free(job); 949 return r; 950 } 951 952 /* 953 * amdgpu_vm_update_directories - make sure that all directories are valid 954 * 955 * @adev: amdgpu_device pointer 956 * @vm: requested vm 957 * 958 * Makes sure all directories are up to date. 959 * Returns 0 for success, error for failure. 960 */ 961 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 962 struct amdgpu_vm *vm) 963 { 964 return amdgpu_vm_update_level(adev, vm, &vm->root, 0); 965 } 966 967 /** 968 * amdgpu_vm_find_pt - find the page table for an address 969 * 970 * @p: see amdgpu_pte_update_params definition 971 * @addr: virtual address in question 972 * 973 * Find the page table BO for a virtual address, return NULL when none found. 974 */ 975 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p, 976 uint64_t addr) 977 { 978 struct amdgpu_vm_pt *entry = &p->vm->root; 979 unsigned idx, level = p->adev->vm_manager.num_level; 980 981 while (entry->entries) { 982 idx = addr >> (p->adev->vm_manager.block_size * level--); 983 idx %= amdgpu_bo_size(entry->bo) / 8; 984 entry = &entry->entries[idx]; 985 } 986 987 if (level) 988 return NULL; 989 990 return entry->bo; 991 } 992 993 /** 994 * amdgpu_vm_update_ptes - make sure that page tables are valid 995 * 996 * @params: see amdgpu_pte_update_params definition 997 * @vm: requested vm 998 * @start: start of GPU address range 999 * @end: end of GPU address range 1000 * @dst: destination address to map to, the next dst inside the function 1001 * @flags: mapping flags 1002 * 1003 * Update the page tables in the range @start - @end. 1004 */ 1005 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1006 uint64_t start, uint64_t end, 1007 uint64_t dst, uint64_t flags) 1008 { 1009 struct amdgpu_device *adev = params->adev; 1010 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1011 1012 uint64_t cur_pe_start, cur_nptes, cur_dst; 1013 uint64_t addr; /* next GPU address to be updated */ 1014 struct amdgpu_bo *pt; 1015 unsigned nptes; /* next number of ptes to be updated */ 1016 uint64_t next_pe_start; 1017 1018 /* initialize the variables */ 1019 addr = start; 1020 pt = amdgpu_vm_get_pt(params, addr); 1021 if (!pt) { 1022 pr_err("PT not found, aborting update_ptes\n"); 1023 return; 1024 } 1025 1026 if (params->shadow) { 1027 if (!pt->shadow) 1028 return; 1029 pt = pt->shadow; 1030 } 1031 if ((addr & ~mask) == (end & ~mask)) 1032 nptes = end - addr; 1033 else 1034 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1035 1036 cur_pe_start = amdgpu_bo_gpu_offset(pt); 1037 cur_pe_start += (addr & mask) * 8; 1038 cur_nptes = nptes; 1039 cur_dst = dst; 1040 1041 /* for next ptb*/ 1042 addr += nptes; 1043 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1044 1045 /* walk over the address space and update the page tables */ 1046 while (addr < end) { 1047 pt = amdgpu_vm_get_pt(params, addr); 1048 if (!pt) { 1049 pr_err("PT not found, aborting update_ptes\n"); 1050 return; 1051 } 1052 1053 if (params->shadow) { 1054 if (!pt->shadow) 1055 return; 1056 pt = pt->shadow; 1057 } 1058 1059 if ((addr & ~mask) == (end & ~mask)) 1060 nptes = end - addr; 1061 else 1062 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1063 1064 next_pe_start = amdgpu_bo_gpu_offset(pt); 1065 next_pe_start += (addr & mask) * 8; 1066 1067 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start && 1068 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) { 1069 /* The next ptb is consecutive to current ptb. 1070 * Don't call the update function now. 1071 * Will update two ptbs together in future. 1072 */ 1073 cur_nptes += nptes; 1074 } else { 1075 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1076 AMDGPU_GPU_PAGE_SIZE, flags); 1077 1078 cur_pe_start = next_pe_start; 1079 cur_nptes = nptes; 1080 cur_dst = dst; 1081 } 1082 1083 /* for next ptb*/ 1084 addr += nptes; 1085 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1086 } 1087 1088 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1089 AMDGPU_GPU_PAGE_SIZE, flags); 1090 } 1091 1092 /* 1093 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1094 * 1095 * @params: see amdgpu_pte_update_params definition 1096 * @vm: requested vm 1097 * @start: first PTE to handle 1098 * @end: last PTE to handle 1099 * @dst: addr those PTEs should point to 1100 * @flags: hw mapping flags 1101 */ 1102 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1103 uint64_t start, uint64_t end, 1104 uint64_t dst, uint64_t flags) 1105 { 1106 /** 1107 * The MC L1 TLB supports variable sized pages, based on a fragment 1108 * field in the PTE. When this field is set to a non-zero value, page 1109 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1110 * flags are considered valid for all PTEs within the fragment range 1111 * and corresponding mappings are assumed to be physically contiguous. 1112 * 1113 * The L1 TLB can store a single PTE for the whole fragment, 1114 * significantly increasing the space available for translation 1115 * caching. This leads to large improvements in throughput when the 1116 * TLB is under pressure. 1117 * 1118 * The L2 TLB distributes small and large fragments into two 1119 * asymmetric partitions. The large fragment cache is significantly 1120 * larger. Thus, we try to use large fragments wherever possible. 1121 * Userspace can support this by aligning virtual base address and 1122 * allocation size to the fragment size. 1123 */ 1124 1125 /* SI and newer are optimized for 64KB */ 1126 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG); 1127 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG; 1128 1129 uint64_t frag_start = ALIGN(start, frag_align); 1130 uint64_t frag_end = end & ~(frag_align - 1); 1131 1132 /* system pages are non continuously */ 1133 if (params->src || !(flags & AMDGPU_PTE_VALID) || 1134 (frag_start >= frag_end)) { 1135 1136 amdgpu_vm_update_ptes(params, start, end, dst, flags); 1137 return; 1138 } 1139 1140 /* handle the 4K area at the beginning */ 1141 if (start != frag_start) { 1142 amdgpu_vm_update_ptes(params, start, frag_start, 1143 dst, flags); 1144 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 1145 } 1146 1147 /* handle the area in the middle */ 1148 amdgpu_vm_update_ptes(params, frag_start, frag_end, dst, 1149 flags | frag_flags); 1150 1151 /* handle the 4K area at the end */ 1152 if (frag_end != end) { 1153 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 1154 amdgpu_vm_update_ptes(params, frag_end, end, dst, flags); 1155 } 1156 } 1157 1158 /** 1159 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1160 * 1161 * @adev: amdgpu_device pointer 1162 * @exclusive: fence we need to sync to 1163 * @src: address where to copy page table entries from 1164 * @pages_addr: DMA addresses to use for mapping 1165 * @vm: requested vm 1166 * @start: start of mapped range 1167 * @last: last mapped entry 1168 * @flags: flags for the entries 1169 * @addr: addr to set the area to 1170 * @fence: optional resulting fence 1171 * 1172 * Fill in the page table entries between @start and @last. 1173 * Returns 0 for success, -EINVAL for failure. 1174 */ 1175 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1176 struct dma_fence *exclusive, 1177 uint64_t src, 1178 dma_addr_t *pages_addr, 1179 struct amdgpu_vm *vm, 1180 uint64_t start, uint64_t last, 1181 uint64_t flags, uint64_t addr, 1182 struct dma_fence **fence) 1183 { 1184 struct amdgpu_ring *ring; 1185 void *owner = AMDGPU_FENCE_OWNER_VM; 1186 unsigned nptes, ncmds, ndw; 1187 struct amdgpu_job *job; 1188 struct amdgpu_pte_update_params params; 1189 struct dma_fence *f = NULL; 1190 int r; 1191 1192 memset(¶ms, 0, sizeof(params)); 1193 params.adev = adev; 1194 params.vm = vm; 1195 params.src = src; 1196 1197 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1198 1199 /* sync to everything on unmapping */ 1200 if (!(flags & AMDGPU_PTE_VALID)) 1201 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1202 1203 nptes = last - start + 1; 1204 1205 /* 1206 * reserve space for one command every (1 << BLOCK_SIZE) 1207 * entries or 2k dwords (whatever is smaller) 1208 */ 1209 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1; 1210 1211 /* padding, etc. */ 1212 ndw = 64; 1213 1214 if (src) { 1215 /* only copy commands needed */ 1216 ndw += ncmds * 7; 1217 1218 params.func = amdgpu_vm_do_copy_ptes; 1219 1220 } else if (pages_addr) { 1221 /* copy commands needed */ 1222 ndw += ncmds * 7; 1223 1224 /* and also PTEs */ 1225 ndw += nptes * 2; 1226 1227 params.func = amdgpu_vm_do_copy_ptes; 1228 1229 } else { 1230 /* set page commands needed */ 1231 ndw += ncmds * 10; 1232 1233 /* two extra commands for begin/end of fragment */ 1234 ndw += 2 * 10; 1235 1236 params.func = amdgpu_vm_do_set_ptes; 1237 } 1238 1239 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1240 if (r) 1241 return r; 1242 1243 params.ib = &job->ibs[0]; 1244 1245 if (!src && pages_addr) { 1246 uint64_t *pte; 1247 unsigned i; 1248 1249 /* Put the PTEs at the end of the IB. */ 1250 i = ndw - nptes * 2; 1251 pte= (uint64_t *)&(job->ibs->ptr[i]); 1252 params.src = job->ibs->gpu_addr + i * 4; 1253 1254 for (i = 0; i < nptes; ++i) { 1255 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1256 AMDGPU_GPU_PAGE_SIZE); 1257 pte[i] |= flags; 1258 } 1259 addr = 0; 1260 } 1261 1262 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1263 if (r) 1264 goto error_free; 1265 1266 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv, 1267 owner); 1268 if (r) 1269 goto error_free; 1270 1271 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv); 1272 if (r) 1273 goto error_free; 1274 1275 params.shadow = true; 1276 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1277 params.shadow = false; 1278 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1279 1280 amdgpu_ring_pad_ib(ring, params.ib); 1281 WARN_ON(params.ib->length_dw > ndw); 1282 r = amdgpu_job_submit(job, ring, &vm->entity, 1283 AMDGPU_FENCE_OWNER_VM, &f); 1284 if (r) 1285 goto error_free; 1286 1287 amdgpu_bo_fence(vm->root.bo, f, true); 1288 dma_fence_put(*fence); 1289 *fence = f; 1290 return 0; 1291 1292 error_free: 1293 amdgpu_job_free(job); 1294 return r; 1295 } 1296 1297 /** 1298 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1299 * 1300 * @adev: amdgpu_device pointer 1301 * @exclusive: fence we need to sync to 1302 * @gtt_flags: flags as they are used for GTT 1303 * @pages_addr: DMA addresses to use for mapping 1304 * @vm: requested vm 1305 * @mapping: mapped range and flags to use for the update 1306 * @flags: HW flags for the mapping 1307 * @nodes: array of drm_mm_nodes with the MC addresses 1308 * @fence: optional resulting fence 1309 * 1310 * Split the mapping into smaller chunks so that each update fits 1311 * into a SDMA IB. 1312 * Returns 0 for success, -EINVAL for failure. 1313 */ 1314 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1315 struct dma_fence *exclusive, 1316 uint64_t gtt_flags, 1317 dma_addr_t *pages_addr, 1318 struct amdgpu_vm *vm, 1319 struct amdgpu_bo_va_mapping *mapping, 1320 uint64_t flags, 1321 struct drm_mm_node *nodes, 1322 struct dma_fence **fence) 1323 { 1324 uint64_t pfn, src = 0, start = mapping->start; 1325 int r; 1326 1327 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1328 * but in case of something, we filter the flags in first place 1329 */ 1330 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1331 flags &= ~AMDGPU_PTE_READABLE; 1332 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1333 flags &= ~AMDGPU_PTE_WRITEABLE; 1334 1335 flags &= ~AMDGPU_PTE_EXECUTABLE; 1336 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1337 1338 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1339 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1340 1341 if ((mapping->flags & AMDGPU_PTE_PRT) && 1342 (adev->asic_type >= CHIP_VEGA10)) { 1343 flags |= AMDGPU_PTE_PRT; 1344 flags &= ~AMDGPU_PTE_VALID; 1345 } 1346 1347 trace_amdgpu_vm_bo_update(mapping); 1348 1349 pfn = mapping->offset >> PAGE_SHIFT; 1350 if (nodes) { 1351 while (pfn >= nodes->size) { 1352 pfn -= nodes->size; 1353 ++nodes; 1354 } 1355 } 1356 1357 do { 1358 uint64_t max_entries; 1359 uint64_t addr, last; 1360 1361 if (nodes) { 1362 addr = nodes->start << PAGE_SHIFT; 1363 max_entries = (nodes->size - pfn) * 1364 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1365 } else { 1366 addr = 0; 1367 max_entries = S64_MAX; 1368 } 1369 1370 if (pages_addr) { 1371 if (flags == gtt_flags) 1372 src = adev->gart.table_addr + 1373 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8; 1374 else 1375 max_entries = min(max_entries, 16ull * 1024ull); 1376 addr = 0; 1377 } else if (flags & AMDGPU_PTE_VALID) { 1378 addr += adev->vm_manager.vram_base_offset; 1379 } 1380 addr += pfn << PAGE_SHIFT; 1381 1382 last = min((uint64_t)mapping->last, start + max_entries - 1); 1383 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1384 src, pages_addr, vm, 1385 start, last, flags, addr, 1386 fence); 1387 if (r) 1388 return r; 1389 1390 pfn += last - start + 1; 1391 if (nodes && nodes->size == pfn) { 1392 pfn = 0; 1393 ++nodes; 1394 } 1395 start = last + 1; 1396 1397 } while (unlikely(start != mapping->last + 1)); 1398 1399 return 0; 1400 } 1401 1402 /** 1403 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1404 * 1405 * @adev: amdgpu_device pointer 1406 * @bo_va: requested BO and VM object 1407 * @clear: if true clear the entries 1408 * 1409 * Fill in the page table entries for @bo_va. 1410 * Returns 0 for success, -EINVAL for failure. 1411 */ 1412 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1413 struct amdgpu_bo_va *bo_va, 1414 bool clear) 1415 { 1416 struct amdgpu_vm *vm = bo_va->vm; 1417 struct amdgpu_bo_va_mapping *mapping; 1418 dma_addr_t *pages_addr = NULL; 1419 uint64_t gtt_flags, flags; 1420 struct ttm_mem_reg *mem; 1421 struct drm_mm_node *nodes; 1422 struct dma_fence *exclusive; 1423 int r; 1424 1425 if (clear || !bo_va->bo) { 1426 mem = NULL; 1427 nodes = NULL; 1428 exclusive = NULL; 1429 } else { 1430 struct ttm_dma_tt *ttm; 1431 1432 mem = &bo_va->bo->tbo.mem; 1433 nodes = mem->mm_node; 1434 if (mem->mem_type == TTM_PL_TT) { 1435 ttm = container_of(bo_va->bo->tbo.ttm, struct 1436 ttm_dma_tt, ttm); 1437 pages_addr = ttm->dma_address; 1438 } 1439 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv); 1440 } 1441 1442 if (bo_va->bo) { 1443 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 1444 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) && 1445 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ? 1446 flags : 0; 1447 } else { 1448 flags = 0x0; 1449 gtt_flags = ~0x0; 1450 } 1451 1452 spin_lock(&vm->status_lock); 1453 if (!list_empty(&bo_va->vm_status)) 1454 list_splice_init(&bo_va->valids, &bo_va->invalids); 1455 spin_unlock(&vm->status_lock); 1456 1457 list_for_each_entry(mapping, &bo_va->invalids, list) { 1458 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1459 gtt_flags, pages_addr, vm, 1460 mapping, flags, nodes, 1461 &bo_va->last_pt_update); 1462 if (r) 1463 return r; 1464 } 1465 1466 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1467 list_for_each_entry(mapping, &bo_va->valids, list) 1468 trace_amdgpu_vm_bo_mapping(mapping); 1469 1470 list_for_each_entry(mapping, &bo_va->invalids, list) 1471 trace_amdgpu_vm_bo_mapping(mapping); 1472 } 1473 1474 spin_lock(&vm->status_lock); 1475 list_splice_init(&bo_va->invalids, &bo_va->valids); 1476 list_del_init(&bo_va->vm_status); 1477 if (clear) 1478 list_add(&bo_va->vm_status, &vm->cleared); 1479 spin_unlock(&vm->status_lock); 1480 1481 return 0; 1482 } 1483 1484 /** 1485 * amdgpu_vm_update_prt_state - update the global PRT state 1486 */ 1487 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1488 { 1489 unsigned long flags; 1490 bool enable; 1491 1492 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1493 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1494 adev->gart.gart_funcs->set_prt(adev, enable); 1495 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1496 } 1497 1498 /** 1499 * amdgpu_vm_prt_get - add a PRT user 1500 */ 1501 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1502 { 1503 if (!adev->gart.gart_funcs->set_prt) 1504 return; 1505 1506 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1507 amdgpu_vm_update_prt_state(adev); 1508 } 1509 1510 /** 1511 * amdgpu_vm_prt_put - drop a PRT user 1512 */ 1513 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1514 { 1515 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1516 amdgpu_vm_update_prt_state(adev); 1517 } 1518 1519 /** 1520 * amdgpu_vm_prt_cb - callback for updating the PRT status 1521 */ 1522 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1523 { 1524 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1525 1526 amdgpu_vm_prt_put(cb->adev); 1527 kfree(cb); 1528 } 1529 1530 /** 1531 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1532 */ 1533 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1534 struct dma_fence *fence) 1535 { 1536 struct amdgpu_prt_cb *cb; 1537 1538 if (!adev->gart.gart_funcs->set_prt) 1539 return; 1540 1541 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1542 if (!cb) { 1543 /* Last resort when we are OOM */ 1544 if (fence) 1545 dma_fence_wait(fence, false); 1546 1547 amdgpu_vm_prt_put(adev); 1548 } else { 1549 cb->adev = adev; 1550 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1551 amdgpu_vm_prt_cb)) 1552 amdgpu_vm_prt_cb(fence, &cb->cb); 1553 } 1554 } 1555 1556 /** 1557 * amdgpu_vm_free_mapping - free a mapping 1558 * 1559 * @adev: amdgpu_device pointer 1560 * @vm: requested vm 1561 * @mapping: mapping to be freed 1562 * @fence: fence of the unmap operation 1563 * 1564 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1565 */ 1566 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1567 struct amdgpu_vm *vm, 1568 struct amdgpu_bo_va_mapping *mapping, 1569 struct dma_fence *fence) 1570 { 1571 if (mapping->flags & AMDGPU_PTE_PRT) 1572 amdgpu_vm_add_prt_cb(adev, fence); 1573 kfree(mapping); 1574 } 1575 1576 /** 1577 * amdgpu_vm_prt_fini - finish all prt mappings 1578 * 1579 * @adev: amdgpu_device pointer 1580 * @vm: requested vm 1581 * 1582 * Register a cleanup callback to disable PRT support after VM dies. 1583 */ 1584 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1585 { 1586 struct reservation_object *resv = vm->root.bo->tbo.resv; 1587 struct dma_fence *excl, **shared; 1588 unsigned i, shared_count; 1589 int r; 1590 1591 r = reservation_object_get_fences_rcu(resv, &excl, 1592 &shared_count, &shared); 1593 if (r) { 1594 /* Not enough memory to grab the fence list, as last resort 1595 * block for all the fences to complete. 1596 */ 1597 reservation_object_wait_timeout_rcu(resv, true, false, 1598 MAX_SCHEDULE_TIMEOUT); 1599 return; 1600 } 1601 1602 /* Add a callback for each fence in the reservation object */ 1603 amdgpu_vm_prt_get(adev); 1604 amdgpu_vm_add_prt_cb(adev, excl); 1605 1606 for (i = 0; i < shared_count; ++i) { 1607 amdgpu_vm_prt_get(adev); 1608 amdgpu_vm_add_prt_cb(adev, shared[i]); 1609 } 1610 1611 kfree(shared); 1612 } 1613 1614 /** 1615 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1616 * 1617 * @adev: amdgpu_device pointer 1618 * @vm: requested vm 1619 * @fence: optional resulting fence (unchanged if no work needed to be done 1620 * or if an error occurred) 1621 * 1622 * Make sure all freed BOs are cleared in the PT. 1623 * Returns 0 for success. 1624 * 1625 * PTs have to be reserved and mutex must be locked! 1626 */ 1627 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1628 struct amdgpu_vm *vm, 1629 struct dma_fence **fence) 1630 { 1631 struct amdgpu_bo_va_mapping *mapping; 1632 struct dma_fence *f = NULL; 1633 int r; 1634 1635 while (!list_empty(&vm->freed)) { 1636 mapping = list_first_entry(&vm->freed, 1637 struct amdgpu_bo_va_mapping, list); 1638 list_del(&mapping->list); 1639 1640 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm, 1641 mapping->start, mapping->last, 1642 0, 0, &f); 1643 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1644 if (r) { 1645 dma_fence_put(f); 1646 return r; 1647 } 1648 } 1649 1650 if (fence && f) { 1651 dma_fence_put(*fence); 1652 *fence = f; 1653 } else { 1654 dma_fence_put(f); 1655 } 1656 1657 return 0; 1658 1659 } 1660 1661 /** 1662 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1663 * 1664 * @adev: amdgpu_device pointer 1665 * @vm: requested vm 1666 * 1667 * Make sure all invalidated BOs are cleared in the PT. 1668 * Returns 0 for success. 1669 * 1670 * PTs have to be reserved and mutex must be locked! 1671 */ 1672 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1673 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1674 { 1675 struct amdgpu_bo_va *bo_va = NULL; 1676 int r = 0; 1677 1678 spin_lock(&vm->status_lock); 1679 while (!list_empty(&vm->invalidated)) { 1680 bo_va = list_first_entry(&vm->invalidated, 1681 struct amdgpu_bo_va, vm_status); 1682 spin_unlock(&vm->status_lock); 1683 1684 r = amdgpu_vm_bo_update(adev, bo_va, true); 1685 if (r) 1686 return r; 1687 1688 spin_lock(&vm->status_lock); 1689 } 1690 spin_unlock(&vm->status_lock); 1691 1692 if (bo_va) 1693 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1694 1695 return r; 1696 } 1697 1698 /** 1699 * amdgpu_vm_bo_add - add a bo to a specific vm 1700 * 1701 * @adev: amdgpu_device pointer 1702 * @vm: requested vm 1703 * @bo: amdgpu buffer object 1704 * 1705 * Add @bo into the requested vm. 1706 * Add @bo to the list of bos associated with the vm 1707 * Returns newly added bo_va or NULL for failure 1708 * 1709 * Object has to be reserved! 1710 */ 1711 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1712 struct amdgpu_vm *vm, 1713 struct amdgpu_bo *bo) 1714 { 1715 struct amdgpu_bo_va *bo_va; 1716 1717 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1718 if (bo_va == NULL) { 1719 return NULL; 1720 } 1721 bo_va->vm = vm; 1722 bo_va->bo = bo; 1723 bo_va->ref_count = 1; 1724 INIT_LIST_HEAD(&bo_va->bo_list); 1725 INIT_LIST_HEAD(&bo_va->valids); 1726 INIT_LIST_HEAD(&bo_va->invalids); 1727 INIT_LIST_HEAD(&bo_va->vm_status); 1728 1729 if (bo) 1730 list_add_tail(&bo_va->bo_list, &bo->va); 1731 1732 return bo_va; 1733 } 1734 1735 /** 1736 * amdgpu_vm_bo_map - map bo inside a vm 1737 * 1738 * @adev: amdgpu_device pointer 1739 * @bo_va: bo_va to store the address 1740 * @saddr: where to map the BO 1741 * @offset: requested offset in the BO 1742 * @flags: attributes of pages (read/write/valid/etc.) 1743 * 1744 * Add a mapping of the BO at the specefied addr into the VM. 1745 * Returns 0 for success, error for failure. 1746 * 1747 * Object has to be reserved and unreserved outside! 1748 */ 1749 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1750 struct amdgpu_bo_va *bo_va, 1751 uint64_t saddr, uint64_t offset, 1752 uint64_t size, uint64_t flags) 1753 { 1754 struct amdgpu_bo_va_mapping *mapping, *tmp; 1755 struct amdgpu_vm *vm = bo_va->vm; 1756 uint64_t eaddr; 1757 1758 /* validate the parameters */ 1759 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1760 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1761 return -EINVAL; 1762 1763 /* make sure object fit at this offset */ 1764 eaddr = saddr + size - 1; 1765 if (saddr >= eaddr || 1766 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1767 return -EINVAL; 1768 1769 saddr /= AMDGPU_GPU_PAGE_SIZE; 1770 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1771 1772 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1773 if (tmp) { 1774 /* bo and tmp overlap, invalid addr */ 1775 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1776 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr, 1777 tmp->start, tmp->last + 1); 1778 return -EINVAL; 1779 } 1780 1781 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1782 if (!mapping) 1783 return -ENOMEM; 1784 1785 INIT_LIST_HEAD(&mapping->list); 1786 mapping->start = saddr; 1787 mapping->last = eaddr; 1788 mapping->offset = offset; 1789 mapping->flags = flags; 1790 1791 list_add(&mapping->list, &bo_va->invalids); 1792 amdgpu_vm_it_insert(mapping, &vm->va); 1793 1794 if (flags & AMDGPU_PTE_PRT) 1795 amdgpu_vm_prt_get(adev); 1796 1797 return 0; 1798 } 1799 1800 /** 1801 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1802 * 1803 * @adev: amdgpu_device pointer 1804 * @bo_va: bo_va to store the address 1805 * @saddr: where to map the BO 1806 * @offset: requested offset in the BO 1807 * @flags: attributes of pages (read/write/valid/etc.) 1808 * 1809 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1810 * mappings as we do so. 1811 * Returns 0 for success, error for failure. 1812 * 1813 * Object has to be reserved and unreserved outside! 1814 */ 1815 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1816 struct amdgpu_bo_va *bo_va, 1817 uint64_t saddr, uint64_t offset, 1818 uint64_t size, uint64_t flags) 1819 { 1820 struct amdgpu_bo_va_mapping *mapping; 1821 struct amdgpu_vm *vm = bo_va->vm; 1822 uint64_t eaddr; 1823 int r; 1824 1825 /* validate the parameters */ 1826 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1827 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1828 return -EINVAL; 1829 1830 /* make sure object fit at this offset */ 1831 eaddr = saddr + size - 1; 1832 if (saddr >= eaddr || 1833 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1834 return -EINVAL; 1835 1836 /* Allocate all the needed memory */ 1837 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1838 if (!mapping) 1839 return -ENOMEM; 1840 1841 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size); 1842 if (r) { 1843 kfree(mapping); 1844 return r; 1845 } 1846 1847 saddr /= AMDGPU_GPU_PAGE_SIZE; 1848 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1849 1850 mapping->start = saddr; 1851 mapping->last = eaddr; 1852 mapping->offset = offset; 1853 mapping->flags = flags; 1854 1855 list_add(&mapping->list, &bo_va->invalids); 1856 amdgpu_vm_it_insert(mapping, &vm->va); 1857 1858 if (flags & AMDGPU_PTE_PRT) 1859 amdgpu_vm_prt_get(adev); 1860 1861 return 0; 1862 } 1863 1864 /** 1865 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1866 * 1867 * @adev: amdgpu_device pointer 1868 * @bo_va: bo_va to remove the address from 1869 * @saddr: where to the BO is mapped 1870 * 1871 * Remove a mapping of the BO at the specefied addr from the VM. 1872 * Returns 0 for success, error for failure. 1873 * 1874 * Object has to be reserved and unreserved outside! 1875 */ 1876 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1877 struct amdgpu_bo_va *bo_va, 1878 uint64_t saddr) 1879 { 1880 struct amdgpu_bo_va_mapping *mapping; 1881 struct amdgpu_vm *vm = bo_va->vm; 1882 bool valid = true; 1883 1884 saddr /= AMDGPU_GPU_PAGE_SIZE; 1885 1886 list_for_each_entry(mapping, &bo_va->valids, list) { 1887 if (mapping->start == saddr) 1888 break; 1889 } 1890 1891 if (&mapping->list == &bo_va->valids) { 1892 valid = false; 1893 1894 list_for_each_entry(mapping, &bo_va->invalids, list) { 1895 if (mapping->start == saddr) 1896 break; 1897 } 1898 1899 if (&mapping->list == &bo_va->invalids) 1900 return -ENOENT; 1901 } 1902 1903 list_del(&mapping->list); 1904 amdgpu_vm_it_remove(mapping, &vm->va); 1905 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1906 1907 if (valid) 1908 list_add(&mapping->list, &vm->freed); 1909 else 1910 amdgpu_vm_free_mapping(adev, vm, mapping, 1911 bo_va->last_pt_update); 1912 1913 return 0; 1914 } 1915 1916 /** 1917 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1918 * 1919 * @adev: amdgpu_device pointer 1920 * @vm: VM structure to use 1921 * @saddr: start of the range 1922 * @size: size of the range 1923 * 1924 * Remove all mappings in a range, split them as appropriate. 1925 * Returns 0 for success, error for failure. 1926 */ 1927 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1928 struct amdgpu_vm *vm, 1929 uint64_t saddr, uint64_t size) 1930 { 1931 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1932 LIST_HEAD(removed); 1933 uint64_t eaddr; 1934 1935 eaddr = saddr + size - 1; 1936 saddr /= AMDGPU_GPU_PAGE_SIZE; 1937 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1938 1939 /* Allocate all the needed memory */ 1940 before = kzalloc(sizeof(*before), GFP_KERNEL); 1941 if (!before) 1942 return -ENOMEM; 1943 INIT_LIST_HEAD(&before->list); 1944 1945 after = kzalloc(sizeof(*after), GFP_KERNEL); 1946 if (!after) { 1947 kfree(before); 1948 return -ENOMEM; 1949 } 1950 INIT_LIST_HEAD(&after->list); 1951 1952 /* Now gather all removed mappings */ 1953 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1954 while (tmp) { 1955 /* Remember mapping split at the start */ 1956 if (tmp->start < saddr) { 1957 before->start = tmp->start; 1958 before->last = saddr - 1; 1959 before->offset = tmp->offset; 1960 before->flags = tmp->flags; 1961 list_add(&before->list, &tmp->list); 1962 } 1963 1964 /* Remember mapping split at the end */ 1965 if (tmp->last > eaddr) { 1966 after->start = eaddr + 1; 1967 after->last = tmp->last; 1968 after->offset = tmp->offset; 1969 after->offset += after->start - tmp->start; 1970 after->flags = tmp->flags; 1971 list_add(&after->list, &tmp->list); 1972 } 1973 1974 list_del(&tmp->list); 1975 list_add(&tmp->list, &removed); 1976 1977 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1978 } 1979 1980 /* And free them up */ 1981 list_for_each_entry_safe(tmp, next, &removed, list) { 1982 amdgpu_vm_it_remove(tmp, &vm->va); 1983 list_del(&tmp->list); 1984 1985 if (tmp->start < saddr) 1986 tmp->start = saddr; 1987 if (tmp->last > eaddr) 1988 tmp->last = eaddr; 1989 1990 list_add(&tmp->list, &vm->freed); 1991 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1992 } 1993 1994 /* Insert partial mapping before the range */ 1995 if (!list_empty(&before->list)) { 1996 amdgpu_vm_it_insert(before, &vm->va); 1997 if (before->flags & AMDGPU_PTE_PRT) 1998 amdgpu_vm_prt_get(adev); 1999 } else { 2000 kfree(before); 2001 } 2002 2003 /* Insert partial mapping after the range */ 2004 if (!list_empty(&after->list)) { 2005 amdgpu_vm_it_insert(after, &vm->va); 2006 if (after->flags & AMDGPU_PTE_PRT) 2007 amdgpu_vm_prt_get(adev); 2008 } else { 2009 kfree(after); 2010 } 2011 2012 return 0; 2013 } 2014 2015 /** 2016 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2017 * 2018 * @adev: amdgpu_device pointer 2019 * @bo_va: requested bo_va 2020 * 2021 * Remove @bo_va->bo from the requested vm. 2022 * 2023 * Object have to be reserved! 2024 */ 2025 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2026 struct amdgpu_bo_va *bo_va) 2027 { 2028 struct amdgpu_bo_va_mapping *mapping, *next; 2029 struct amdgpu_vm *vm = bo_va->vm; 2030 2031 list_del(&bo_va->bo_list); 2032 2033 spin_lock(&vm->status_lock); 2034 list_del(&bo_va->vm_status); 2035 spin_unlock(&vm->status_lock); 2036 2037 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2038 list_del(&mapping->list); 2039 amdgpu_vm_it_remove(mapping, &vm->va); 2040 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2041 list_add(&mapping->list, &vm->freed); 2042 } 2043 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2044 list_del(&mapping->list); 2045 amdgpu_vm_it_remove(mapping, &vm->va); 2046 amdgpu_vm_free_mapping(adev, vm, mapping, 2047 bo_va->last_pt_update); 2048 } 2049 2050 dma_fence_put(bo_va->last_pt_update); 2051 kfree(bo_va); 2052 } 2053 2054 /** 2055 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2056 * 2057 * @adev: amdgpu_device pointer 2058 * @vm: requested vm 2059 * @bo: amdgpu buffer object 2060 * 2061 * Mark @bo as invalid. 2062 */ 2063 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2064 struct amdgpu_bo *bo) 2065 { 2066 struct amdgpu_bo_va *bo_va; 2067 2068 list_for_each_entry(bo_va, &bo->va, bo_list) { 2069 spin_lock(&bo_va->vm->status_lock); 2070 if (list_empty(&bo_va->vm_status)) 2071 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 2072 spin_unlock(&bo_va->vm->status_lock); 2073 } 2074 } 2075 2076 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2077 { 2078 /* Total bits covered by PD + PTs */ 2079 unsigned bits = ilog2(vm_size) + 18; 2080 2081 /* Make sure the PD is 4K in size up to 8GB address space. 2082 Above that split equal between PD and PTs */ 2083 if (vm_size <= 8) 2084 return (bits - 9); 2085 else 2086 return ((bits + 3) / 2); 2087 } 2088 2089 /** 2090 * amdgpu_vm_adjust_size - adjust vm size and block size 2091 * 2092 * @adev: amdgpu_device pointer 2093 * @vm_size: the default vm size if it's set auto 2094 */ 2095 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size) 2096 { 2097 /* adjust vm size firstly */ 2098 if (amdgpu_vm_size == -1) 2099 adev->vm_manager.vm_size = vm_size; 2100 else 2101 adev->vm_manager.vm_size = amdgpu_vm_size; 2102 2103 /* block size depends on vm size */ 2104 if (amdgpu_vm_block_size == -1) 2105 adev->vm_manager.block_size = 2106 amdgpu_vm_get_block_size(adev->vm_manager.vm_size); 2107 else 2108 adev->vm_manager.block_size = amdgpu_vm_block_size; 2109 2110 DRM_INFO("vm size is %llu GB, block size is %u-bit\n", 2111 adev->vm_manager.vm_size, adev->vm_manager.block_size); 2112 } 2113 2114 /** 2115 * amdgpu_vm_init - initialize a vm instance 2116 * 2117 * @adev: amdgpu_device pointer 2118 * @vm: requested vm 2119 * 2120 * Init @vm fields. 2121 */ 2122 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2123 { 2124 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2125 AMDGPU_VM_PTE_COUNT(adev) * 8); 2126 unsigned ring_instance; 2127 struct amdgpu_ring *ring; 2128 struct amd_sched_rq *rq; 2129 int r; 2130 2131 vm->va = RB_ROOT; 2132 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 2133 spin_lock_init(&vm->status_lock); 2134 INIT_LIST_HEAD(&vm->invalidated); 2135 INIT_LIST_HEAD(&vm->cleared); 2136 INIT_LIST_HEAD(&vm->freed); 2137 2138 /* create scheduler entity for page table updates */ 2139 2140 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2141 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2142 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2143 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 2144 r = amd_sched_entity_init(&ring->sched, &vm->entity, 2145 rq, amdgpu_sched_jobs); 2146 if (r) 2147 return r; 2148 2149 vm->last_dir_update = NULL; 2150 2151 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, 2152 AMDGPU_GEM_DOMAIN_VRAM, 2153 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2154 AMDGPU_GEM_CREATE_SHADOW | 2155 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2156 AMDGPU_GEM_CREATE_VRAM_CLEARED, 2157 NULL, NULL, &vm->root.bo); 2158 if (r) 2159 goto error_free_sched_entity; 2160 2161 r = amdgpu_bo_reserve(vm->root.bo, false); 2162 if (r) 2163 goto error_free_root; 2164 2165 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 2166 amdgpu_bo_unreserve(vm->root.bo); 2167 2168 return 0; 2169 2170 error_free_root: 2171 amdgpu_bo_unref(&vm->root.bo->shadow); 2172 amdgpu_bo_unref(&vm->root.bo); 2173 vm->root.bo = NULL; 2174 2175 error_free_sched_entity: 2176 amd_sched_entity_fini(&ring->sched, &vm->entity); 2177 2178 return r; 2179 } 2180 2181 /** 2182 * amdgpu_vm_free_levels - free PD/PT levels 2183 * 2184 * @level: PD/PT starting level to free 2185 * 2186 * Free the page directory or page table level and all sub levels. 2187 */ 2188 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) 2189 { 2190 unsigned i; 2191 2192 if (level->bo) { 2193 amdgpu_bo_unref(&level->bo->shadow); 2194 amdgpu_bo_unref(&level->bo); 2195 } 2196 2197 if (level->entries) 2198 for (i = 0; i <= level->last_entry_used; i++) 2199 amdgpu_vm_free_levels(&level->entries[i]); 2200 2201 drm_free_large(level->entries); 2202 } 2203 2204 /** 2205 * amdgpu_vm_fini - tear down a vm instance 2206 * 2207 * @adev: amdgpu_device pointer 2208 * @vm: requested vm 2209 * 2210 * Tear down @vm. 2211 * Unbind the VM and remove all bos from the vm bo list 2212 */ 2213 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2214 { 2215 struct amdgpu_bo_va_mapping *mapping, *tmp; 2216 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; 2217 2218 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 2219 2220 if (!RB_EMPTY_ROOT(&vm->va)) { 2221 dev_err(adev->dev, "still active bo inside vm\n"); 2222 } 2223 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) { 2224 list_del(&mapping->list); 2225 amdgpu_vm_it_remove(mapping, &vm->va); 2226 kfree(mapping); 2227 } 2228 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2229 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2230 amdgpu_vm_prt_fini(adev, vm); 2231 prt_fini_needed = false; 2232 } 2233 2234 list_del(&mapping->list); 2235 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2236 } 2237 2238 amdgpu_vm_free_levels(&vm->root); 2239 dma_fence_put(vm->last_dir_update); 2240 } 2241 2242 /** 2243 * amdgpu_vm_manager_init - init the VM manager 2244 * 2245 * @adev: amdgpu_device pointer 2246 * 2247 * Initialize the VM manager structures 2248 */ 2249 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2250 { 2251 unsigned i, j; 2252 2253 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2254 struct amdgpu_vm_id_manager *id_mgr = 2255 &adev->vm_manager.id_mgr[i]; 2256 2257 mutex_init(&id_mgr->lock); 2258 INIT_LIST_HEAD(&id_mgr->ids_lru); 2259 2260 /* skip over VMID 0, since it is the system VM */ 2261 for (j = 1; j < id_mgr->num_ids; ++j) { 2262 amdgpu_vm_reset_id(adev, i, j); 2263 amdgpu_sync_create(&id_mgr->ids[i].active); 2264 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru); 2265 } 2266 } 2267 2268 adev->vm_manager.fence_context = 2269 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2270 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2271 adev->vm_manager.seqno[i] = 0; 2272 2273 2274 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2275 atomic64_set(&adev->vm_manager.client_counter, 0); 2276 spin_lock_init(&adev->vm_manager.prt_lock); 2277 atomic_set(&adev->vm_manager.num_prt_users, 0); 2278 } 2279 2280 /** 2281 * amdgpu_vm_manager_fini - cleanup VM manager 2282 * 2283 * @adev: amdgpu_device pointer 2284 * 2285 * Cleanup the VM manager and free resources. 2286 */ 2287 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2288 { 2289 unsigned i, j; 2290 2291 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2292 struct amdgpu_vm_id_manager *id_mgr = 2293 &adev->vm_manager.id_mgr[i]; 2294 2295 mutex_destroy(&id_mgr->lock); 2296 for (j = 0; j < AMDGPU_NUM_VM; ++j) { 2297 struct amdgpu_vm_id *id = &id_mgr->ids[j]; 2298 2299 amdgpu_sync_free(&id->active); 2300 dma_fence_put(id->flushed_updates); 2301 dma_fence_put(id->last_flush); 2302 } 2303 } 2304 } 2305