1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When executing a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /** 92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 93 * 94 * @adev: amdgpu_device pointer 95 * @vm: amdgpu_vm pointer 96 * @pasid: the pasid the VM is using on this GPU 97 * 98 * Set the pasid this VM is using on this GPU, can also be used to remove the 99 * pasid by passing in zero. 100 * 101 */ 102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 103 u32 pasid) 104 { 105 int r; 106 107 if (vm->pasid == pasid) 108 return 0; 109 110 if (vm->pasid) { 111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 112 if (r < 0) 113 return r; 114 115 vm->pasid = 0; 116 } 117 118 if (pasid) { 119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 120 GFP_KERNEL)); 121 if (r < 0) 122 return r; 123 124 vm->pasid = pasid; 125 } 126 127 128 return 0; 129 } 130 131 /* 132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 133 * happens while holding this lock anywhere to prevent deadlocks when 134 * an MMU notifier runs in reclaim-FS context. 135 */ 136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 137 { 138 mutex_lock(&vm->eviction_lock); 139 vm->saved_flags = memalloc_noreclaim_save(); 140 } 141 142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 143 { 144 if (mutex_trylock(&vm->eviction_lock)) { 145 vm->saved_flags = memalloc_noreclaim_save(); 146 return 1; 147 } 148 return 0; 149 } 150 151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 152 { 153 memalloc_noreclaim_restore(vm->saved_flags); 154 mutex_unlock(&vm->eviction_lock); 155 } 156 157 /** 158 * amdgpu_vm_level_shift - return the addr shift for each level 159 * 160 * @adev: amdgpu_device pointer 161 * @level: VMPT level 162 * 163 * Returns: 164 * The number of bits the pfn needs to be right shifted for a level. 165 */ 166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 167 unsigned level) 168 { 169 switch (level) { 170 case AMDGPU_VM_PDB2: 171 case AMDGPU_VM_PDB1: 172 case AMDGPU_VM_PDB0: 173 return 9 * (AMDGPU_VM_PDB0 - level) + 174 adev->vm_manager.block_size; 175 case AMDGPU_VM_PTB: 176 return 0; 177 default: 178 return ~0; 179 } 180 } 181 182 /** 183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The number of entries in a page directory or page table. 190 */ 191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 192 unsigned level) 193 { 194 unsigned shift = amdgpu_vm_level_shift(adev, 195 adev->vm_manager.root_level); 196 197 if (level == adev->vm_manager.root_level) 198 /* For the root directory */ 199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 200 >> shift; 201 else if (level != AMDGPU_VM_PTB) 202 /* Everything in between */ 203 return 512; 204 else 205 /* For the page tables on the leaves */ 206 return AMDGPU_VM_PTE_COUNT(adev); 207 } 208 209 /** 210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 211 * 212 * @adev: amdgpu_device pointer 213 * 214 * Returns: 215 * The number of entries in the root page directory which needs the ATS setting. 216 */ 217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 218 { 219 unsigned shift; 220 221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 223 } 224 225 /** 226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 227 * 228 * @adev: amdgpu_device pointer 229 * @level: VMPT level 230 * 231 * Returns: 232 * The mask to extract the entry number of a PD/PT from an address. 233 */ 234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 235 unsigned int level) 236 { 237 if (level <= adev->vm_manager.root_level) 238 return 0xffffffff; 239 else if (level != AMDGPU_VM_PTB) 240 return 0x1ff; 241 else 242 return AMDGPU_VM_PTE_COUNT(adev) - 1; 243 } 244 245 /** 246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 247 * 248 * @adev: amdgpu_device pointer 249 * @level: VMPT level 250 * 251 * Returns: 252 * The size of the BO for a page directory or page table in bytes. 253 */ 254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 255 { 256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 257 } 258 259 /** 260 * amdgpu_vm_bo_evicted - vm_bo is evicted 261 * 262 * @vm_bo: vm_bo which is evicted 263 * 264 * State for PDs/PTs and per VM BOs which are not at the location they should 265 * be. 266 */ 267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 struct amdgpu_vm *vm = vm_bo->vm; 270 struct amdgpu_bo *bo = vm_bo->bo; 271 272 vm_bo->moved = true; 273 if (bo->tbo.type == ttm_bo_type_kernel) 274 list_move(&vm_bo->vm_status, &vm->evicted); 275 else 276 list_move_tail(&vm_bo->vm_status, &vm->evicted); 277 } 278 /** 279 * amdgpu_vm_bo_moved - vm_bo is moved 280 * 281 * @vm_bo: vm_bo which is moved 282 * 283 * State for per VM BOs which are moved, but that change is not yet reflected 284 * in the page tables. 285 */ 286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 289 } 290 291 /** 292 * amdgpu_vm_bo_idle - vm_bo is idle 293 * 294 * @vm_bo: vm_bo which is now idle 295 * 296 * State for PDs/PTs and per VM BOs which have gone through the state machine 297 * and are now idle. 298 */ 299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 300 { 301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 302 vm_bo->moved = false; 303 } 304 305 /** 306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 307 * 308 * @vm_bo: vm_bo which is now invalidated 309 * 310 * State for normal BOs which are invalidated and that change not yet reflected 311 * in the PTs. 312 */ 313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 314 { 315 spin_lock(&vm_bo->vm->invalidated_lock); 316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 317 spin_unlock(&vm_bo->vm->invalidated_lock); 318 } 319 320 /** 321 * amdgpu_vm_bo_relocated - vm_bo is reloacted 322 * 323 * @vm_bo: vm_bo which is relocated 324 * 325 * State for PDs/PTs which needs to update their parent PD. 326 * For the root PD, just move to idle state. 327 */ 328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 329 { 330 if (vm_bo->bo->parent) 331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 332 else 333 amdgpu_vm_bo_idle(vm_bo); 334 } 335 336 /** 337 * amdgpu_vm_bo_done - vm_bo is done 338 * 339 * @vm_bo: vm_bo which is now done 340 * 341 * State for normal BOs which are invalidated and that change has been updated 342 * in the PTs. 343 */ 344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 345 { 346 spin_lock(&vm_bo->vm->invalidated_lock); 347 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 348 spin_unlock(&vm_bo->vm->invalidated_lock); 349 } 350 351 /** 352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 353 * 354 * @base: base structure for tracking BO usage in a VM 355 * @vm: vm to which bo is to be added 356 * @bo: amdgpu buffer object 357 * 358 * Initialize a bo_va_base structure and add it to the appropriate lists 359 * 360 */ 361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 362 struct amdgpu_vm *vm, 363 struct amdgpu_bo *bo) 364 { 365 base->vm = vm; 366 base->bo = bo; 367 base->next = NULL; 368 INIT_LIST_HEAD(&base->vm_status); 369 370 if (!bo) 371 return; 372 base->next = bo->vm_bo; 373 bo->vm_bo = base; 374 375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 376 return; 377 378 vm->bulk_moveable = false; 379 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 380 amdgpu_vm_bo_relocated(base); 381 else 382 amdgpu_vm_bo_idle(base); 383 384 if (bo->preferred_domains & 385 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 386 return; 387 388 /* 389 * we checked all the prerequisites, but it looks like this per vm bo 390 * is currently evicted. add the bo to the evicted list to make sure it 391 * is validated on next vm use to avoid fault. 392 * */ 393 amdgpu_vm_bo_evicted(base); 394 } 395 396 /** 397 * amdgpu_vm_pt_parent - get the parent page directory 398 * 399 * @pt: child page table 400 * 401 * Helper to get the parent entry for the child page table. NULL if we are at 402 * the root page directory. 403 */ 404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 405 { 406 struct amdgpu_bo *parent = pt->bo->parent; 407 408 if (!parent) 409 return NULL; 410 411 return parent->vm_bo; 412 } 413 414 /* 415 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 416 */ 417 struct amdgpu_vm_pt_cursor { 418 uint64_t pfn; 419 struct amdgpu_vm_bo_base *parent; 420 struct amdgpu_vm_bo_base *entry; 421 unsigned level; 422 }; 423 424 /** 425 * amdgpu_vm_pt_start - start PD/PT walk 426 * 427 * @adev: amdgpu_device pointer 428 * @vm: amdgpu_vm structure 429 * @start: start address of the walk 430 * @cursor: state to initialize 431 * 432 * Initialize a amdgpu_vm_pt_cursor to start a walk. 433 */ 434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 435 struct amdgpu_vm *vm, uint64_t start, 436 struct amdgpu_vm_pt_cursor *cursor) 437 { 438 cursor->pfn = start; 439 cursor->parent = NULL; 440 cursor->entry = &vm->root; 441 cursor->level = adev->vm_manager.root_level; 442 } 443 444 /** 445 * amdgpu_vm_pt_descendant - go to child node 446 * 447 * @adev: amdgpu_device pointer 448 * @cursor: current state 449 * 450 * Walk to the child node of the current node. 451 * Returns: 452 * True if the walk was possible, false otherwise. 453 */ 454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 455 struct amdgpu_vm_pt_cursor *cursor) 456 { 457 unsigned mask, shift, idx; 458 459 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 460 !cursor->entry->bo) 461 return false; 462 463 mask = amdgpu_vm_entries_mask(adev, cursor->level); 464 shift = amdgpu_vm_level_shift(adev, cursor->level); 465 466 ++cursor->level; 467 idx = (cursor->pfn >> shift) & mask; 468 cursor->parent = cursor->entry; 469 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 470 return true; 471 } 472 473 /** 474 * amdgpu_vm_pt_sibling - go to sibling node 475 * 476 * @adev: amdgpu_device pointer 477 * @cursor: current state 478 * 479 * Walk to the sibling node of the current node. 480 * Returns: 481 * True if the walk was possible, false otherwise. 482 */ 483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 484 struct amdgpu_vm_pt_cursor *cursor) 485 { 486 unsigned shift, num_entries; 487 488 /* Root doesn't have a sibling */ 489 if (!cursor->parent) 490 return false; 491 492 /* Go to our parents and see if we got a sibling */ 493 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 494 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 495 496 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 497 return false; 498 499 cursor->pfn += 1ULL << shift; 500 cursor->pfn &= ~((1ULL << shift) - 1); 501 ++cursor->entry; 502 return true; 503 } 504 505 /** 506 * amdgpu_vm_pt_ancestor - go to parent node 507 * 508 * @cursor: current state 509 * 510 * Walk to the parent node of the current node. 511 * Returns: 512 * True if the walk was possible, false otherwise. 513 */ 514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 515 { 516 if (!cursor->parent) 517 return false; 518 519 --cursor->level; 520 cursor->entry = cursor->parent; 521 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 522 return true; 523 } 524 525 /** 526 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 527 * 528 * @adev: amdgpu_device pointer 529 * @cursor: current state 530 * 531 * Walk the PD/PT tree to the next node. 532 */ 533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 534 struct amdgpu_vm_pt_cursor *cursor) 535 { 536 /* First try a newborn child */ 537 if (amdgpu_vm_pt_descendant(adev, cursor)) 538 return; 539 540 /* If that didn't worked try to find a sibling */ 541 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 542 /* No sibling, go to our parents and grandparents */ 543 if (!amdgpu_vm_pt_ancestor(cursor)) { 544 cursor->pfn = ~0ll; 545 return; 546 } 547 } 548 } 549 550 /** 551 * amdgpu_vm_pt_first_dfs - start a deep first search 552 * 553 * @adev: amdgpu_device structure 554 * @vm: amdgpu_vm structure 555 * @start: optional cursor to start with 556 * @cursor: state to initialize 557 * 558 * Starts a deep first traversal of the PD/PT tree. 559 */ 560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 561 struct amdgpu_vm *vm, 562 struct amdgpu_vm_pt_cursor *start, 563 struct amdgpu_vm_pt_cursor *cursor) 564 { 565 if (start) 566 *cursor = *start; 567 else 568 amdgpu_vm_pt_start(adev, vm, 0, cursor); 569 while (amdgpu_vm_pt_descendant(adev, cursor)); 570 } 571 572 /** 573 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 574 * 575 * @start: starting point for the search 576 * @entry: current entry 577 * 578 * Returns: 579 * True when the search should continue, false otherwise. 580 */ 581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 582 struct amdgpu_vm_bo_base *entry) 583 { 584 return entry && (!start || entry != start->entry); 585 } 586 587 /** 588 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 589 * 590 * @adev: amdgpu_device structure 591 * @cursor: current state 592 * 593 * Move the cursor to the next node in a deep first search. 594 */ 595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 596 struct amdgpu_vm_pt_cursor *cursor) 597 { 598 if (!cursor->entry) 599 return; 600 601 if (!cursor->parent) 602 cursor->entry = NULL; 603 else if (amdgpu_vm_pt_sibling(adev, cursor)) 604 while (amdgpu_vm_pt_descendant(adev, cursor)); 605 else 606 amdgpu_vm_pt_ancestor(cursor); 607 } 608 609 /* 610 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 611 */ 612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 613 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 614 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 615 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 617 618 /** 619 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 620 * 621 * @vm: vm providing the BOs 622 * @validated: head of validation list 623 * @entry: entry to add 624 * 625 * Add the page directory to the list of BOs to 626 * validate for command submission. 627 */ 628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 629 struct list_head *validated, 630 struct amdgpu_bo_list_entry *entry) 631 { 632 entry->priority = 0; 633 entry->tv.bo = &vm->root.bo->tbo; 634 /* Two for VM updates, one for TTM and one for the CS job */ 635 entry->tv.num_shared = 4; 636 entry->user_pages = NULL; 637 list_add(&entry->tv.head, validated); 638 } 639 640 /** 641 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 642 * 643 * @bo: BO which was removed from the LRU 644 * 645 * Make sure the bulk_moveable flag is updated when a BO is removed from the 646 * LRU. 647 */ 648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 649 { 650 struct amdgpu_bo *abo; 651 struct amdgpu_vm_bo_base *bo_base; 652 653 if (!amdgpu_bo_is_amdgpu_bo(bo)) 654 return; 655 656 if (bo->pin_count) 657 return; 658 659 abo = ttm_to_amdgpu_bo(bo); 660 if (!abo->parent) 661 return; 662 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 663 struct amdgpu_vm *vm = bo_base->vm; 664 665 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv) 666 vm->bulk_moveable = false; 667 } 668 669 } 670 /** 671 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 672 * 673 * @adev: amdgpu device pointer 674 * @vm: vm providing the BOs 675 * 676 * Move all BOs to the end of LRU and remember their positions to put them 677 * together. 678 */ 679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 680 struct amdgpu_vm *vm) 681 { 682 struct amdgpu_vm_bo_base *bo_base; 683 684 if (vm->bulk_moveable) { 685 spin_lock(&adev->mman.bdev.lru_lock); 686 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 687 spin_unlock(&adev->mman.bdev.lru_lock); 688 return; 689 } 690 691 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 692 693 spin_lock(&adev->mman.bdev.lru_lock); 694 list_for_each_entry(bo_base, &vm->idle, vm_status) { 695 struct amdgpu_bo *bo = bo_base->bo; 696 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 697 698 if (!bo->parent) 699 continue; 700 701 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource, 702 &vm->lru_bulk_move); 703 if (shadow) 704 ttm_bo_move_to_lru_tail(&shadow->tbo, 705 shadow->tbo.resource, 706 &vm->lru_bulk_move); 707 } 708 spin_unlock(&adev->mman.bdev.lru_lock); 709 710 vm->bulk_moveable = true; 711 } 712 713 /** 714 * amdgpu_vm_validate_pt_bos - validate the page table BOs 715 * 716 * @adev: amdgpu device pointer 717 * @vm: vm providing the BOs 718 * @validate: callback to do the validation 719 * @param: parameter for the validation callback 720 * 721 * Validate the page table BOs on command submission if neccessary. 722 * 723 * Returns: 724 * Validation result. 725 */ 726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 727 int (*validate)(void *p, struct amdgpu_bo *bo), 728 void *param) 729 { 730 struct amdgpu_vm_bo_base *bo_base, *tmp; 731 int r; 732 733 vm->bulk_moveable &= list_empty(&vm->evicted); 734 735 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 736 struct amdgpu_bo *bo = bo_base->bo; 737 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 738 739 r = validate(param, bo); 740 if (r) 741 return r; 742 if (shadow) { 743 r = validate(param, shadow); 744 if (r) 745 return r; 746 } 747 748 if (bo->tbo.type != ttm_bo_type_kernel) { 749 amdgpu_vm_bo_moved(bo_base); 750 } else { 751 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 752 amdgpu_vm_bo_relocated(bo_base); 753 } 754 } 755 756 amdgpu_vm_eviction_lock(vm); 757 vm->evicting = false; 758 amdgpu_vm_eviction_unlock(vm); 759 760 return 0; 761 } 762 763 /** 764 * amdgpu_vm_ready - check VM is ready for updates 765 * 766 * @vm: VM to check 767 * 768 * Check if all VM PDs/PTs are ready for updates 769 * 770 * Returns: 771 * True if VM is not evicting. 772 */ 773 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 774 { 775 bool ret; 776 777 amdgpu_vm_eviction_lock(vm); 778 ret = !vm->evicting; 779 amdgpu_vm_eviction_unlock(vm); 780 781 return ret && list_empty(&vm->evicted); 782 } 783 784 /** 785 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 786 * 787 * @adev: amdgpu_device pointer 788 * @vm: VM to clear BO from 789 * @vmbo: BO to clear 790 * @immediate: use an immediate update 791 * 792 * Root PD needs to be reserved when calling this. 793 * 794 * Returns: 795 * 0 on success, errno otherwise. 796 */ 797 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 798 struct amdgpu_vm *vm, 799 struct amdgpu_bo_vm *vmbo, 800 bool immediate) 801 { 802 struct ttm_operation_ctx ctx = { true, false }; 803 unsigned level = adev->vm_manager.root_level; 804 struct amdgpu_vm_update_params params; 805 struct amdgpu_bo *ancestor = &vmbo->bo; 806 struct amdgpu_bo *bo = &vmbo->bo; 807 unsigned entries, ats_entries; 808 uint64_t addr; 809 int r, idx; 810 811 /* Figure out our place in the hierarchy */ 812 if (ancestor->parent) { 813 ++level; 814 while (ancestor->parent->parent) { 815 ++level; 816 ancestor = ancestor->parent; 817 } 818 } 819 820 entries = amdgpu_bo_size(bo) / 8; 821 if (!vm->pte_support_ats) { 822 ats_entries = 0; 823 824 } else if (!bo->parent) { 825 ats_entries = amdgpu_vm_num_ats_entries(adev); 826 ats_entries = min(ats_entries, entries); 827 entries -= ats_entries; 828 829 } else { 830 struct amdgpu_vm_bo_base *pt; 831 832 pt = ancestor->vm_bo; 833 ats_entries = amdgpu_vm_num_ats_entries(adev); 834 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 835 ats_entries = 0; 836 } else { 837 ats_entries = entries; 838 entries = 0; 839 } 840 } 841 842 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 843 if (r) 844 return r; 845 846 if (vmbo->shadow) { 847 struct amdgpu_bo *shadow = vmbo->shadow; 848 849 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 850 if (r) 851 return r; 852 } 853 854 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 855 return -ENODEV; 856 857 r = vm->update_funcs->map_table(vmbo); 858 if (r) 859 goto exit; 860 861 memset(¶ms, 0, sizeof(params)); 862 params.adev = adev; 863 params.vm = vm; 864 params.immediate = immediate; 865 866 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 867 if (r) 868 goto exit; 869 870 addr = 0; 871 if (ats_entries) { 872 uint64_t value = 0, flags; 873 874 flags = AMDGPU_PTE_DEFAULT_ATC; 875 if (level != AMDGPU_VM_PTB) { 876 /* Handle leaf PDEs as PTEs */ 877 flags |= AMDGPU_PDE_PTE; 878 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 879 } 880 881 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 882 value, flags); 883 if (r) 884 goto exit; 885 886 addr += ats_entries * 8; 887 } 888 889 if (entries) { 890 uint64_t value = 0, flags = 0; 891 892 if (adev->asic_type >= CHIP_VEGA10) { 893 if (level != AMDGPU_VM_PTB) { 894 /* Handle leaf PDEs as PTEs */ 895 flags |= AMDGPU_PDE_PTE; 896 amdgpu_gmc_get_vm_pde(adev, level, 897 &value, &flags); 898 } else { 899 /* Workaround for fault priority problem on GMC9 */ 900 flags = AMDGPU_PTE_EXECUTABLE; 901 } 902 } 903 904 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 905 value, flags); 906 if (r) 907 goto exit; 908 } 909 910 r = vm->update_funcs->commit(¶ms, NULL); 911 exit: 912 drm_dev_exit(idx); 913 return r; 914 } 915 916 /** 917 * amdgpu_vm_pt_create - create bo for PD/PT 918 * 919 * @adev: amdgpu_device pointer 920 * @vm: requesting vm 921 * @level: the page table level 922 * @immediate: use a immediate update 923 * @vmbo: pointer to the buffer object pointer 924 */ 925 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 926 struct amdgpu_vm *vm, 927 int level, bool immediate, 928 struct amdgpu_bo_vm **vmbo) 929 { 930 struct amdgpu_bo_param bp; 931 struct amdgpu_bo *bo; 932 struct dma_resv *resv; 933 unsigned int num_entries; 934 int r; 935 936 memset(&bp, 0, sizeof(bp)); 937 938 bp.size = amdgpu_vm_bo_size(adev, level); 939 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 940 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 941 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 942 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 943 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 944 945 if (level < AMDGPU_VM_PTB) 946 num_entries = amdgpu_vm_num_entries(adev, level); 947 else 948 num_entries = 0; 949 950 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 951 952 if (vm->use_cpu_for_update) 953 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 954 955 bp.type = ttm_bo_type_kernel; 956 bp.no_wait_gpu = immediate; 957 if (vm->root.bo) 958 bp.resv = vm->root.bo->tbo.base.resv; 959 960 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 961 if (r) 962 return r; 963 964 bo = &(*vmbo)->bo; 965 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 966 (*vmbo)->shadow = NULL; 967 return 0; 968 } 969 970 if (!bp.resv) 971 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 972 NULL)); 973 resv = bp.resv; 974 memset(&bp, 0, sizeof(bp)); 975 bp.size = amdgpu_vm_bo_size(adev, level); 976 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 977 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 978 bp.type = ttm_bo_type_kernel; 979 bp.resv = bo->tbo.base.resv; 980 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 981 982 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 983 984 if (!resv) 985 dma_resv_unlock(bo->tbo.base.resv); 986 987 if (r) { 988 amdgpu_bo_unref(&bo); 989 return r; 990 } 991 992 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 993 amdgpu_bo_add_to_shadow_list(*vmbo); 994 995 return 0; 996 } 997 998 /** 999 * amdgpu_vm_alloc_pts - Allocate a specific page table 1000 * 1001 * @adev: amdgpu_device pointer 1002 * @vm: VM to allocate page tables for 1003 * @cursor: Which page table to allocate 1004 * @immediate: use an immediate update 1005 * 1006 * Make sure a specific page table or directory is allocated. 1007 * 1008 * Returns: 1009 * 1 if page table needed to be allocated, 0 if page table was already 1010 * allocated, negative errno if an error occurred. 1011 */ 1012 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 1013 struct amdgpu_vm *vm, 1014 struct amdgpu_vm_pt_cursor *cursor, 1015 bool immediate) 1016 { 1017 struct amdgpu_vm_bo_base *entry = cursor->entry; 1018 struct amdgpu_bo *pt_bo; 1019 struct amdgpu_bo_vm *pt; 1020 int r; 1021 1022 if (entry->bo) 1023 return 0; 1024 1025 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 1026 if (r) 1027 return r; 1028 1029 /* Keep a reference to the root directory to avoid 1030 * freeing them up in the wrong order. 1031 */ 1032 pt_bo = &pt->bo; 1033 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 1034 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 1035 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 1036 if (r) 1037 goto error_free_pt; 1038 1039 return 0; 1040 1041 error_free_pt: 1042 amdgpu_bo_unref(&pt->shadow); 1043 amdgpu_bo_unref(&pt_bo); 1044 return r; 1045 } 1046 1047 /** 1048 * amdgpu_vm_free_table - fre one PD/PT 1049 * 1050 * @entry: PDE to free 1051 */ 1052 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 1053 { 1054 struct amdgpu_bo *shadow; 1055 1056 if (!entry->bo) 1057 return; 1058 shadow = amdgpu_bo_shadowed(entry->bo); 1059 entry->bo->vm_bo = NULL; 1060 list_del(&entry->vm_status); 1061 amdgpu_bo_unref(&shadow); 1062 amdgpu_bo_unref(&entry->bo); 1063 } 1064 1065 /** 1066 * amdgpu_vm_free_pts - free PD/PT levels 1067 * 1068 * @adev: amdgpu device structure 1069 * @vm: amdgpu vm structure 1070 * @start: optional cursor where to start freeing PDs/PTs 1071 * 1072 * Free the page directory or page table level and all sub levels. 1073 */ 1074 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1075 struct amdgpu_vm *vm, 1076 struct amdgpu_vm_pt_cursor *start) 1077 { 1078 struct amdgpu_vm_pt_cursor cursor; 1079 struct amdgpu_vm_bo_base *entry; 1080 1081 vm->bulk_moveable = false; 1082 1083 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1084 amdgpu_vm_free_table(entry); 1085 1086 if (start) 1087 amdgpu_vm_free_table(start->entry); 1088 } 1089 1090 /** 1091 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1092 * 1093 * @adev: amdgpu_device pointer 1094 */ 1095 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1096 { 1097 const struct amdgpu_ip_block *ip_block; 1098 bool has_compute_vm_bug; 1099 struct amdgpu_ring *ring; 1100 int i; 1101 1102 has_compute_vm_bug = false; 1103 1104 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1105 if (ip_block) { 1106 /* Compute has a VM bug for GFX version < 7. 1107 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1108 if (ip_block->version->major <= 7) 1109 has_compute_vm_bug = true; 1110 else if (ip_block->version->major == 8) 1111 if (adev->gfx.mec_fw_version < 673) 1112 has_compute_vm_bug = true; 1113 } 1114 1115 for (i = 0; i < adev->num_rings; i++) { 1116 ring = adev->rings[i]; 1117 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1118 /* only compute rings */ 1119 ring->has_compute_vm_bug = has_compute_vm_bug; 1120 else 1121 ring->has_compute_vm_bug = false; 1122 } 1123 } 1124 1125 /** 1126 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1127 * 1128 * @ring: ring on which the job will be submitted 1129 * @job: job to submit 1130 * 1131 * Returns: 1132 * True if sync is needed. 1133 */ 1134 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1135 struct amdgpu_job *job) 1136 { 1137 struct amdgpu_device *adev = ring->adev; 1138 unsigned vmhub = ring->funcs->vmhub; 1139 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1140 struct amdgpu_vmid *id; 1141 bool gds_switch_needed; 1142 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1143 1144 if (job->vmid == 0) 1145 return false; 1146 id = &id_mgr->ids[job->vmid]; 1147 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1148 id->gds_base != job->gds_base || 1149 id->gds_size != job->gds_size || 1150 id->gws_base != job->gws_base || 1151 id->gws_size != job->gws_size || 1152 id->oa_base != job->oa_base || 1153 id->oa_size != job->oa_size); 1154 1155 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1156 return true; 1157 1158 return vm_flush_needed || gds_switch_needed; 1159 } 1160 1161 /** 1162 * amdgpu_vm_flush - hardware flush the vm 1163 * 1164 * @ring: ring to use for flush 1165 * @job: related job 1166 * @need_pipe_sync: is pipe sync needed 1167 * 1168 * Emit a VM flush when it is necessary. 1169 * 1170 * Returns: 1171 * 0 on success, errno otherwise. 1172 */ 1173 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1174 bool need_pipe_sync) 1175 { 1176 struct amdgpu_device *adev = ring->adev; 1177 unsigned vmhub = ring->funcs->vmhub; 1178 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1179 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1180 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1181 id->gds_base != job->gds_base || 1182 id->gds_size != job->gds_size || 1183 id->gws_base != job->gws_base || 1184 id->gws_size != job->gws_size || 1185 id->oa_base != job->oa_base || 1186 id->oa_size != job->oa_size); 1187 bool vm_flush_needed = job->vm_needs_flush; 1188 struct dma_fence *fence = NULL; 1189 bool pasid_mapping_needed = false; 1190 unsigned patch_offset = 0; 1191 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1192 int r; 1193 1194 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1195 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1196 1197 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1198 gds_switch_needed = true; 1199 vm_flush_needed = true; 1200 pasid_mapping_needed = true; 1201 } 1202 1203 mutex_lock(&id_mgr->lock); 1204 if (id->pasid != job->pasid || !id->pasid_mapping || 1205 !dma_fence_is_signaled(id->pasid_mapping)) 1206 pasid_mapping_needed = true; 1207 mutex_unlock(&id_mgr->lock); 1208 1209 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1210 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1211 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1212 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1213 ring->funcs->emit_wreg; 1214 1215 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1216 return 0; 1217 1218 if (ring->funcs->init_cond_exec) 1219 patch_offset = amdgpu_ring_init_cond_exec(ring); 1220 1221 if (need_pipe_sync) 1222 amdgpu_ring_emit_pipeline_sync(ring); 1223 1224 if (vm_flush_needed) { 1225 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1226 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1227 } 1228 1229 if (pasid_mapping_needed) 1230 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1231 1232 if (vm_flush_needed || pasid_mapping_needed) { 1233 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1234 if (r) 1235 return r; 1236 } 1237 1238 if (vm_flush_needed) { 1239 mutex_lock(&id_mgr->lock); 1240 dma_fence_put(id->last_flush); 1241 id->last_flush = dma_fence_get(fence); 1242 id->current_gpu_reset_count = 1243 atomic_read(&adev->gpu_reset_counter); 1244 mutex_unlock(&id_mgr->lock); 1245 } 1246 1247 if (pasid_mapping_needed) { 1248 mutex_lock(&id_mgr->lock); 1249 id->pasid = job->pasid; 1250 dma_fence_put(id->pasid_mapping); 1251 id->pasid_mapping = dma_fence_get(fence); 1252 mutex_unlock(&id_mgr->lock); 1253 } 1254 dma_fence_put(fence); 1255 1256 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1257 id->gds_base = job->gds_base; 1258 id->gds_size = job->gds_size; 1259 id->gws_base = job->gws_base; 1260 id->gws_size = job->gws_size; 1261 id->oa_base = job->oa_base; 1262 id->oa_size = job->oa_size; 1263 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1264 job->gds_size, job->gws_base, 1265 job->gws_size, job->oa_base, 1266 job->oa_size); 1267 } 1268 1269 if (ring->funcs->patch_cond_exec) 1270 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1271 1272 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1273 if (ring->funcs->emit_switch_buffer) { 1274 amdgpu_ring_emit_switch_buffer(ring); 1275 amdgpu_ring_emit_switch_buffer(ring); 1276 } 1277 return 0; 1278 } 1279 1280 /** 1281 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1282 * 1283 * @vm: requested vm 1284 * @bo: requested buffer object 1285 * 1286 * Find @bo inside the requested vm. 1287 * Search inside the @bos vm list for the requested vm 1288 * Returns the found bo_va or NULL if none is found 1289 * 1290 * Object has to be reserved! 1291 * 1292 * Returns: 1293 * Found bo_va or NULL. 1294 */ 1295 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1296 struct amdgpu_bo *bo) 1297 { 1298 struct amdgpu_vm_bo_base *base; 1299 1300 for (base = bo->vm_bo; base; base = base->next) { 1301 if (base->vm != vm) 1302 continue; 1303 1304 return container_of(base, struct amdgpu_bo_va, base); 1305 } 1306 return NULL; 1307 } 1308 1309 /** 1310 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1311 * 1312 * @pages_addr: optional DMA address to use for lookup 1313 * @addr: the unmapped addr 1314 * 1315 * Look up the physical address of the page that the pte resolves 1316 * to. 1317 * 1318 * Returns: 1319 * The pointer for the page table entry. 1320 */ 1321 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1322 { 1323 uint64_t result; 1324 1325 /* page table offset */ 1326 result = pages_addr[addr >> PAGE_SHIFT]; 1327 1328 /* in case cpu page size != gpu page size*/ 1329 result |= addr & (~PAGE_MASK); 1330 1331 result &= 0xFFFFFFFFFFFFF000ULL; 1332 1333 return result; 1334 } 1335 1336 /** 1337 * amdgpu_vm_update_pde - update a single level in the hierarchy 1338 * 1339 * @params: parameters for the update 1340 * @vm: requested vm 1341 * @entry: entry to update 1342 * 1343 * Makes sure the requested entry in parent is up to date. 1344 */ 1345 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1346 struct amdgpu_vm *vm, 1347 struct amdgpu_vm_bo_base *entry) 1348 { 1349 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1350 struct amdgpu_bo *bo = parent->bo, *pbo; 1351 uint64_t pde, pt, flags; 1352 unsigned level; 1353 1354 for (level = 0, pbo = bo->parent; pbo; ++level) 1355 pbo = pbo->parent; 1356 1357 level += params->adev->vm_manager.root_level; 1358 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1359 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1360 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1361 1, 0, flags); 1362 } 1363 1364 /** 1365 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1366 * 1367 * @adev: amdgpu_device pointer 1368 * @vm: related vm 1369 * 1370 * Mark all PD level as invalid after an error. 1371 */ 1372 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1373 struct amdgpu_vm *vm) 1374 { 1375 struct amdgpu_vm_pt_cursor cursor; 1376 struct amdgpu_vm_bo_base *entry; 1377 1378 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1379 if (entry->bo && !entry->moved) 1380 amdgpu_vm_bo_relocated(entry); 1381 } 1382 1383 /** 1384 * amdgpu_vm_update_pdes - make sure that all directories are valid 1385 * 1386 * @adev: amdgpu_device pointer 1387 * @vm: requested vm 1388 * @immediate: submit immediately to the paging queue 1389 * 1390 * Makes sure all directories are up to date. 1391 * 1392 * Returns: 1393 * 0 for success, error for failure. 1394 */ 1395 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1396 struct amdgpu_vm *vm, bool immediate) 1397 { 1398 struct amdgpu_vm_update_params params; 1399 int r, idx; 1400 1401 if (list_empty(&vm->relocated)) 1402 return 0; 1403 1404 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1405 return -ENODEV; 1406 1407 memset(¶ms, 0, sizeof(params)); 1408 params.adev = adev; 1409 params.vm = vm; 1410 params.immediate = immediate; 1411 1412 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1413 if (r) 1414 goto exit; 1415 1416 while (!list_empty(&vm->relocated)) { 1417 struct amdgpu_vm_bo_base *entry; 1418 1419 entry = list_first_entry(&vm->relocated, 1420 struct amdgpu_vm_bo_base, 1421 vm_status); 1422 amdgpu_vm_bo_idle(entry); 1423 1424 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1425 if (r) 1426 goto error; 1427 } 1428 1429 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1430 if (r) 1431 goto error; 1432 drm_dev_exit(idx); 1433 return 0; 1434 1435 error: 1436 amdgpu_vm_invalidate_pds(adev, vm); 1437 exit: 1438 drm_dev_exit(idx); 1439 return r; 1440 } 1441 1442 /* 1443 * amdgpu_vm_update_flags - figure out flags for PTE updates 1444 * 1445 * Make sure to set the right flags for the PTEs at the desired level. 1446 */ 1447 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1448 struct amdgpu_bo_vm *pt, unsigned int level, 1449 uint64_t pe, uint64_t addr, 1450 unsigned int count, uint32_t incr, 1451 uint64_t flags) 1452 1453 { 1454 if (level != AMDGPU_VM_PTB) { 1455 flags |= AMDGPU_PDE_PTE; 1456 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1457 1458 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1459 !(flags & AMDGPU_PTE_VALID) && 1460 !(flags & AMDGPU_PTE_PRT)) { 1461 1462 /* Workaround for fault priority problem on GMC9 */ 1463 flags |= AMDGPU_PTE_EXECUTABLE; 1464 } 1465 1466 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1467 flags); 1468 } 1469 1470 /** 1471 * amdgpu_vm_fragment - get fragment for PTEs 1472 * 1473 * @params: see amdgpu_vm_update_params definition 1474 * @start: first PTE to handle 1475 * @end: last PTE to handle 1476 * @flags: hw mapping flags 1477 * @frag: resulting fragment size 1478 * @frag_end: end of this fragment 1479 * 1480 * Returns the first possible fragment for the start and end address. 1481 */ 1482 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1483 uint64_t start, uint64_t end, uint64_t flags, 1484 unsigned int *frag, uint64_t *frag_end) 1485 { 1486 /** 1487 * The MC L1 TLB supports variable sized pages, based on a fragment 1488 * field in the PTE. When this field is set to a non-zero value, page 1489 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1490 * flags are considered valid for all PTEs within the fragment range 1491 * and corresponding mappings are assumed to be physically contiguous. 1492 * 1493 * The L1 TLB can store a single PTE for the whole fragment, 1494 * significantly increasing the space available for translation 1495 * caching. This leads to large improvements in throughput when the 1496 * TLB is under pressure. 1497 * 1498 * The L2 TLB distributes small and large fragments into two 1499 * asymmetric partitions. The large fragment cache is significantly 1500 * larger. Thus, we try to use large fragments wherever possible. 1501 * Userspace can support this by aligning virtual base address and 1502 * allocation size to the fragment size. 1503 * 1504 * Starting with Vega10 the fragment size only controls the L1. The L2 1505 * is now directly feed with small/huge/giant pages from the walker. 1506 */ 1507 unsigned max_frag; 1508 1509 if (params->adev->asic_type < CHIP_VEGA10) 1510 max_frag = params->adev->vm_manager.fragment_size; 1511 else 1512 max_frag = 31; 1513 1514 /* system pages are non continuously */ 1515 if (params->pages_addr) { 1516 *frag = 0; 1517 *frag_end = end; 1518 return; 1519 } 1520 1521 /* This intentionally wraps around if no bit is set */ 1522 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1523 if (*frag >= max_frag) { 1524 *frag = max_frag; 1525 *frag_end = end & ~((1ULL << max_frag) - 1); 1526 } else { 1527 *frag_end = start + (1 << *frag); 1528 } 1529 } 1530 1531 /** 1532 * amdgpu_vm_update_ptes - make sure that page tables are valid 1533 * 1534 * @params: see amdgpu_vm_update_params definition 1535 * @start: start of GPU address range 1536 * @end: end of GPU address range 1537 * @dst: destination address to map to, the next dst inside the function 1538 * @flags: mapping flags 1539 * 1540 * Update the page tables in the range @start - @end. 1541 * 1542 * Returns: 1543 * 0 for success, -EINVAL for failure. 1544 */ 1545 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1546 uint64_t start, uint64_t end, 1547 uint64_t dst, uint64_t flags) 1548 { 1549 struct amdgpu_device *adev = params->adev; 1550 struct amdgpu_vm_pt_cursor cursor; 1551 uint64_t frag_start = start, frag_end; 1552 unsigned int frag; 1553 int r; 1554 1555 /* figure out the initial fragment */ 1556 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1557 1558 /* walk over the address space and update the PTs */ 1559 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1560 while (cursor.pfn < end) { 1561 unsigned shift, parent_shift, mask; 1562 uint64_t incr, entry_end, pe_start; 1563 struct amdgpu_bo *pt; 1564 1565 if (!params->unlocked) { 1566 /* make sure that the page tables covering the 1567 * address range are actually allocated 1568 */ 1569 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1570 &cursor, params->immediate); 1571 if (r) 1572 return r; 1573 } 1574 1575 shift = amdgpu_vm_level_shift(adev, cursor.level); 1576 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1577 if (params->unlocked) { 1578 /* Unlocked updates are only allowed on the leaves */ 1579 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1580 continue; 1581 } else if (adev->asic_type < CHIP_VEGA10 && 1582 (flags & AMDGPU_PTE_VALID)) { 1583 /* No huge page support before GMC v9 */ 1584 if (cursor.level != AMDGPU_VM_PTB) { 1585 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1586 return -ENOENT; 1587 continue; 1588 } 1589 } else if (frag < shift) { 1590 /* We can't use this level when the fragment size is 1591 * smaller than the address shift. Go to the next 1592 * child entry and try again. 1593 */ 1594 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1595 continue; 1596 } else if (frag >= parent_shift) { 1597 /* If the fragment size is even larger than the parent 1598 * shift we should go up one level and check it again. 1599 */ 1600 if (!amdgpu_vm_pt_ancestor(&cursor)) 1601 return -EINVAL; 1602 continue; 1603 } 1604 1605 pt = cursor.entry->bo; 1606 if (!pt) { 1607 /* We need all PDs and PTs for mapping something, */ 1608 if (flags & AMDGPU_PTE_VALID) 1609 return -ENOENT; 1610 1611 /* but unmapping something can happen at a higher 1612 * level. 1613 */ 1614 if (!amdgpu_vm_pt_ancestor(&cursor)) 1615 return -EINVAL; 1616 1617 pt = cursor.entry->bo; 1618 shift = parent_shift; 1619 frag_end = max(frag_end, ALIGN(frag_start + 1, 1620 1ULL << shift)); 1621 } 1622 1623 /* Looks good so far, calculate parameters for the update */ 1624 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1625 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1626 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1627 entry_end = ((uint64_t)mask + 1) << shift; 1628 entry_end += cursor.pfn & ~(entry_end - 1); 1629 entry_end = min(entry_end, end); 1630 1631 do { 1632 struct amdgpu_vm *vm = params->vm; 1633 uint64_t upd_end = min(entry_end, frag_end); 1634 unsigned nptes = (upd_end - frag_start) >> shift; 1635 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1636 1637 /* This can happen when we set higher level PDs to 1638 * silent to stop fault floods. 1639 */ 1640 nptes = max(nptes, 1u); 1641 1642 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1643 nptes, dst, incr, upd_flags, 1644 vm->task_info.pid, 1645 vm->immediate.fence_context); 1646 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1647 cursor.level, pe_start, dst, 1648 nptes, incr, upd_flags); 1649 1650 pe_start += nptes * 8; 1651 dst += nptes * incr; 1652 1653 frag_start = upd_end; 1654 if (frag_start >= frag_end) { 1655 /* figure out the next fragment */ 1656 amdgpu_vm_fragment(params, frag_start, end, 1657 flags, &frag, &frag_end); 1658 if (frag < shift) 1659 break; 1660 } 1661 } while (frag_start < entry_end); 1662 1663 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1664 /* Free all child entries. 1665 * Update the tables with the flags and addresses and free up subsequent 1666 * tables in the case of huge pages or freed up areas. 1667 * This is the maximum you can free, because all other page tables are not 1668 * completely covered by the range and so potentially still in use. 1669 */ 1670 while (cursor.pfn < frag_start) { 1671 /* Make sure previous mapping is freed */ 1672 if (cursor.entry->bo) { 1673 params->table_freed = true; 1674 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1675 } 1676 amdgpu_vm_pt_next(adev, &cursor); 1677 } 1678 1679 } else if (frag >= shift) { 1680 /* or just move on to the next on the same level. */ 1681 amdgpu_vm_pt_next(adev, &cursor); 1682 } 1683 } 1684 1685 return 0; 1686 } 1687 1688 /** 1689 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1690 * 1691 * @adev: amdgpu_device pointer of the VM 1692 * @bo_adev: amdgpu_device pointer of the mapped BO 1693 * @vm: requested vm 1694 * @immediate: immediate submission in a page fault 1695 * @unlocked: unlocked invalidation during MM callback 1696 * @resv: fences we need to sync to 1697 * @start: start of mapped range 1698 * @last: last mapped entry 1699 * @flags: flags for the entries 1700 * @offset: offset into nodes and pages_addr 1701 * @res: ttm_resource to map 1702 * @pages_addr: DMA addresses to use for mapping 1703 * @fence: optional resulting fence 1704 * @table_freed: return true if page table is freed 1705 * 1706 * Fill in the page table entries between @start and @last. 1707 * 1708 * Returns: 1709 * 0 for success, -EINVAL for failure. 1710 */ 1711 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1712 struct amdgpu_device *bo_adev, 1713 struct amdgpu_vm *vm, bool immediate, 1714 bool unlocked, struct dma_resv *resv, 1715 uint64_t start, uint64_t last, 1716 uint64_t flags, uint64_t offset, 1717 struct ttm_resource *res, 1718 dma_addr_t *pages_addr, 1719 struct dma_fence **fence, 1720 bool *table_freed) 1721 { 1722 struct amdgpu_vm_update_params params; 1723 struct amdgpu_res_cursor cursor; 1724 enum amdgpu_sync_mode sync_mode; 1725 int r, idx; 1726 1727 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1728 return -ENODEV; 1729 1730 memset(¶ms, 0, sizeof(params)); 1731 params.adev = adev; 1732 params.vm = vm; 1733 params.immediate = immediate; 1734 params.pages_addr = pages_addr; 1735 params.unlocked = unlocked; 1736 1737 /* Implicitly sync to command submissions in the same VM before 1738 * unmapping. Sync to moving fences before mapping. 1739 */ 1740 if (!(flags & AMDGPU_PTE_VALID)) 1741 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1742 else 1743 sync_mode = AMDGPU_SYNC_EXPLICIT; 1744 1745 amdgpu_vm_eviction_lock(vm); 1746 if (vm->evicting) { 1747 r = -EBUSY; 1748 goto error_unlock; 1749 } 1750 1751 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1752 struct dma_fence *tmp = dma_fence_get_stub(); 1753 1754 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1755 swap(vm->last_unlocked, tmp); 1756 dma_fence_put(tmp); 1757 } 1758 1759 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1760 if (r) 1761 goto error_unlock; 1762 1763 amdgpu_res_first(pages_addr ? NULL : res, offset, 1764 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1765 while (cursor.remaining) { 1766 uint64_t tmp, num_entries, addr; 1767 1768 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1769 if (pages_addr) { 1770 bool contiguous = true; 1771 1772 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1773 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1774 uint64_t count; 1775 1776 contiguous = pages_addr[pfn + 1] == 1777 pages_addr[pfn] + PAGE_SIZE; 1778 1779 tmp = num_entries / 1780 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1781 for (count = 2; count < tmp; ++count) { 1782 uint64_t idx = pfn + count; 1783 1784 if (contiguous != (pages_addr[idx] == 1785 pages_addr[idx - 1] + PAGE_SIZE)) 1786 break; 1787 } 1788 num_entries = count * 1789 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1790 } 1791 1792 if (!contiguous) { 1793 addr = cursor.start; 1794 params.pages_addr = pages_addr; 1795 } else { 1796 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1797 params.pages_addr = NULL; 1798 } 1799 1800 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1801 addr = bo_adev->vm_manager.vram_base_offset + 1802 cursor.start; 1803 } else { 1804 addr = 0; 1805 } 1806 1807 tmp = start + num_entries; 1808 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1809 if (r) 1810 goto error_unlock; 1811 1812 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1813 start = tmp; 1814 } 1815 1816 r = vm->update_funcs->commit(¶ms, fence); 1817 1818 if (table_freed) 1819 *table_freed = *table_freed || params.table_freed; 1820 1821 error_unlock: 1822 amdgpu_vm_eviction_unlock(vm); 1823 drm_dev_exit(idx); 1824 return r; 1825 } 1826 1827 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1828 uint64_t *gtt_mem, uint64_t *cpu_mem) 1829 { 1830 struct amdgpu_bo_va *bo_va, *tmp; 1831 1832 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1833 if (!bo_va->base.bo) 1834 continue; 1835 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1836 gtt_mem, cpu_mem); 1837 } 1838 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1839 if (!bo_va->base.bo) 1840 continue; 1841 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1842 gtt_mem, cpu_mem); 1843 } 1844 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1845 if (!bo_va->base.bo) 1846 continue; 1847 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1848 gtt_mem, cpu_mem); 1849 } 1850 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1851 if (!bo_va->base.bo) 1852 continue; 1853 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1854 gtt_mem, cpu_mem); 1855 } 1856 spin_lock(&vm->invalidated_lock); 1857 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1858 if (!bo_va->base.bo) 1859 continue; 1860 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1861 gtt_mem, cpu_mem); 1862 } 1863 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1864 if (!bo_va->base.bo) 1865 continue; 1866 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1867 gtt_mem, cpu_mem); 1868 } 1869 spin_unlock(&vm->invalidated_lock); 1870 } 1871 /** 1872 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1873 * 1874 * @adev: amdgpu_device pointer 1875 * @bo_va: requested BO and VM object 1876 * @clear: if true clear the entries 1877 * @table_freed: return true if page table is freed 1878 * 1879 * Fill in the page table entries for @bo_va. 1880 * 1881 * Returns: 1882 * 0 for success, -EINVAL for failure. 1883 */ 1884 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1885 bool clear, bool *table_freed) 1886 { 1887 struct amdgpu_bo *bo = bo_va->base.bo; 1888 struct amdgpu_vm *vm = bo_va->base.vm; 1889 struct amdgpu_bo_va_mapping *mapping; 1890 dma_addr_t *pages_addr = NULL; 1891 struct ttm_resource *mem; 1892 struct dma_fence **last_update; 1893 struct dma_resv *resv; 1894 uint64_t flags; 1895 struct amdgpu_device *bo_adev = adev; 1896 int r; 1897 1898 if (clear || !bo) { 1899 mem = NULL; 1900 resv = vm->root.bo->tbo.base.resv; 1901 } else { 1902 struct drm_gem_object *obj = &bo->tbo.base; 1903 1904 resv = bo->tbo.base.resv; 1905 if (obj->import_attach && bo_va->is_xgmi) { 1906 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1907 struct drm_gem_object *gobj = dma_buf->priv; 1908 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1909 1910 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1911 bo = gem_to_amdgpu_bo(gobj); 1912 } 1913 mem = bo->tbo.resource; 1914 if (mem->mem_type == TTM_PL_TT || 1915 mem->mem_type == AMDGPU_PL_PREEMPT) 1916 pages_addr = bo->tbo.ttm->dma_address; 1917 } 1918 1919 if (bo) { 1920 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1921 1922 if (amdgpu_bo_encrypted(bo)) 1923 flags |= AMDGPU_PTE_TMZ; 1924 1925 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1926 } else { 1927 flags = 0x0; 1928 } 1929 1930 if (clear || (bo && bo->tbo.base.resv == 1931 vm->root.bo->tbo.base.resv)) 1932 last_update = &vm->last_update; 1933 else 1934 last_update = &bo_va->last_pt_update; 1935 1936 if (!clear && bo_va->base.moved) { 1937 bo_va->base.moved = false; 1938 list_splice_init(&bo_va->valids, &bo_va->invalids); 1939 1940 } else if (bo_va->cleared != clear) { 1941 list_splice_init(&bo_va->valids, &bo_va->invalids); 1942 } 1943 1944 list_for_each_entry(mapping, &bo_va->invalids, list) { 1945 uint64_t update_flags = flags; 1946 1947 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1948 * but in case of something, we filter the flags in first place 1949 */ 1950 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1951 update_flags &= ~AMDGPU_PTE_READABLE; 1952 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1953 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1954 1955 /* Apply ASIC specific mapping flags */ 1956 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1957 1958 trace_amdgpu_vm_bo_update(mapping); 1959 1960 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1961 resv, mapping->start, 1962 mapping->last, update_flags, 1963 mapping->offset, mem, 1964 pages_addr, last_update, table_freed); 1965 if (r) 1966 return r; 1967 } 1968 1969 /* If the BO is not in its preferred location add it back to 1970 * the evicted list so that it gets validated again on the 1971 * next command submission. 1972 */ 1973 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1974 uint32_t mem_type = bo->tbo.resource->mem_type; 1975 1976 if (!(bo->preferred_domains & 1977 amdgpu_mem_type_to_domain(mem_type))) 1978 amdgpu_vm_bo_evicted(&bo_va->base); 1979 else 1980 amdgpu_vm_bo_idle(&bo_va->base); 1981 } else { 1982 amdgpu_vm_bo_done(&bo_va->base); 1983 } 1984 1985 list_splice_init(&bo_va->invalids, &bo_va->valids); 1986 bo_va->cleared = clear; 1987 1988 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1989 list_for_each_entry(mapping, &bo_va->valids, list) 1990 trace_amdgpu_vm_bo_mapping(mapping); 1991 } 1992 1993 return 0; 1994 } 1995 1996 /** 1997 * amdgpu_vm_update_prt_state - update the global PRT state 1998 * 1999 * @adev: amdgpu_device pointer 2000 */ 2001 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2002 { 2003 unsigned long flags; 2004 bool enable; 2005 2006 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2007 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2008 adev->gmc.gmc_funcs->set_prt(adev, enable); 2009 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2010 } 2011 2012 /** 2013 * amdgpu_vm_prt_get - add a PRT user 2014 * 2015 * @adev: amdgpu_device pointer 2016 */ 2017 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2018 { 2019 if (!adev->gmc.gmc_funcs->set_prt) 2020 return; 2021 2022 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2023 amdgpu_vm_update_prt_state(adev); 2024 } 2025 2026 /** 2027 * amdgpu_vm_prt_put - drop a PRT user 2028 * 2029 * @adev: amdgpu_device pointer 2030 */ 2031 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2032 { 2033 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2034 amdgpu_vm_update_prt_state(adev); 2035 } 2036 2037 /** 2038 * amdgpu_vm_prt_cb - callback for updating the PRT status 2039 * 2040 * @fence: fence for the callback 2041 * @_cb: the callback function 2042 */ 2043 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2044 { 2045 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2046 2047 amdgpu_vm_prt_put(cb->adev); 2048 kfree(cb); 2049 } 2050 2051 /** 2052 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2053 * 2054 * @adev: amdgpu_device pointer 2055 * @fence: fence for the callback 2056 */ 2057 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2058 struct dma_fence *fence) 2059 { 2060 struct amdgpu_prt_cb *cb; 2061 2062 if (!adev->gmc.gmc_funcs->set_prt) 2063 return; 2064 2065 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2066 if (!cb) { 2067 /* Last resort when we are OOM */ 2068 if (fence) 2069 dma_fence_wait(fence, false); 2070 2071 amdgpu_vm_prt_put(adev); 2072 } else { 2073 cb->adev = adev; 2074 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2075 amdgpu_vm_prt_cb)) 2076 amdgpu_vm_prt_cb(fence, &cb->cb); 2077 } 2078 } 2079 2080 /** 2081 * amdgpu_vm_free_mapping - free a mapping 2082 * 2083 * @adev: amdgpu_device pointer 2084 * @vm: requested vm 2085 * @mapping: mapping to be freed 2086 * @fence: fence of the unmap operation 2087 * 2088 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2089 */ 2090 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2091 struct amdgpu_vm *vm, 2092 struct amdgpu_bo_va_mapping *mapping, 2093 struct dma_fence *fence) 2094 { 2095 if (mapping->flags & AMDGPU_PTE_PRT) 2096 amdgpu_vm_add_prt_cb(adev, fence); 2097 kfree(mapping); 2098 } 2099 2100 /** 2101 * amdgpu_vm_prt_fini - finish all prt mappings 2102 * 2103 * @adev: amdgpu_device pointer 2104 * @vm: requested vm 2105 * 2106 * Register a cleanup callback to disable PRT support after VM dies. 2107 */ 2108 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2109 { 2110 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2111 struct dma_resv_iter cursor; 2112 struct dma_fence *fence; 2113 2114 dma_resv_for_each_fence(&cursor, resv, true, fence) { 2115 /* Add a callback for each fence in the reservation object */ 2116 amdgpu_vm_prt_get(adev); 2117 amdgpu_vm_add_prt_cb(adev, fence); 2118 } 2119 } 2120 2121 /** 2122 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2123 * 2124 * @adev: amdgpu_device pointer 2125 * @vm: requested vm 2126 * @fence: optional resulting fence (unchanged if no work needed to be done 2127 * or if an error occurred) 2128 * 2129 * Make sure all freed BOs are cleared in the PT. 2130 * PTs have to be reserved and mutex must be locked! 2131 * 2132 * Returns: 2133 * 0 for success. 2134 * 2135 */ 2136 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2137 struct amdgpu_vm *vm, 2138 struct dma_fence **fence) 2139 { 2140 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2141 struct amdgpu_bo_va_mapping *mapping; 2142 uint64_t init_pte_value = 0; 2143 struct dma_fence *f = NULL; 2144 int r; 2145 2146 while (!list_empty(&vm->freed)) { 2147 mapping = list_first_entry(&vm->freed, 2148 struct amdgpu_bo_va_mapping, list); 2149 list_del(&mapping->list); 2150 2151 if (vm->pte_support_ats && 2152 mapping->start < AMDGPU_GMC_HOLE_START) 2153 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2154 2155 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2156 resv, mapping->start, 2157 mapping->last, init_pte_value, 2158 0, NULL, NULL, &f, NULL); 2159 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2160 if (r) { 2161 dma_fence_put(f); 2162 return r; 2163 } 2164 } 2165 2166 if (fence && f) { 2167 dma_fence_put(*fence); 2168 *fence = f; 2169 } else { 2170 dma_fence_put(f); 2171 } 2172 2173 return 0; 2174 2175 } 2176 2177 /** 2178 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2179 * 2180 * @adev: amdgpu_device pointer 2181 * @vm: requested vm 2182 * 2183 * Make sure all BOs which are moved are updated in the PTs. 2184 * 2185 * Returns: 2186 * 0 for success. 2187 * 2188 * PTs have to be reserved! 2189 */ 2190 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2191 struct amdgpu_vm *vm) 2192 { 2193 struct amdgpu_bo_va *bo_va, *tmp; 2194 struct dma_resv *resv; 2195 bool clear; 2196 int r; 2197 2198 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2199 /* Per VM BOs never need to bo cleared in the page tables */ 2200 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2201 if (r) 2202 return r; 2203 } 2204 2205 spin_lock(&vm->invalidated_lock); 2206 while (!list_empty(&vm->invalidated)) { 2207 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2208 base.vm_status); 2209 resv = bo_va->base.bo->tbo.base.resv; 2210 spin_unlock(&vm->invalidated_lock); 2211 2212 /* Try to reserve the BO to avoid clearing its ptes */ 2213 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2214 clear = false; 2215 /* Somebody else is using the BO right now */ 2216 else 2217 clear = true; 2218 2219 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2220 if (r) 2221 return r; 2222 2223 if (!clear) 2224 dma_resv_unlock(resv); 2225 spin_lock(&vm->invalidated_lock); 2226 } 2227 spin_unlock(&vm->invalidated_lock); 2228 2229 return 0; 2230 } 2231 2232 /** 2233 * amdgpu_vm_bo_add - add a bo to a specific vm 2234 * 2235 * @adev: amdgpu_device pointer 2236 * @vm: requested vm 2237 * @bo: amdgpu buffer object 2238 * 2239 * Add @bo into the requested vm. 2240 * Add @bo to the list of bos associated with the vm 2241 * 2242 * Returns: 2243 * Newly added bo_va or NULL for failure 2244 * 2245 * Object has to be reserved! 2246 */ 2247 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2248 struct amdgpu_vm *vm, 2249 struct amdgpu_bo *bo) 2250 { 2251 struct amdgpu_bo_va *bo_va; 2252 2253 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2254 if (bo_va == NULL) { 2255 return NULL; 2256 } 2257 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2258 2259 bo_va->ref_count = 1; 2260 INIT_LIST_HEAD(&bo_va->valids); 2261 INIT_LIST_HEAD(&bo_va->invalids); 2262 2263 if (!bo) 2264 return bo_va; 2265 2266 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2267 bo_va->is_xgmi = true; 2268 /* Power up XGMI if it can be potentially used */ 2269 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2270 } 2271 2272 return bo_va; 2273 } 2274 2275 2276 /** 2277 * amdgpu_vm_bo_insert_map - insert a new mapping 2278 * 2279 * @adev: amdgpu_device pointer 2280 * @bo_va: bo_va to store the address 2281 * @mapping: the mapping to insert 2282 * 2283 * Insert a new mapping into all structures. 2284 */ 2285 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2286 struct amdgpu_bo_va *bo_va, 2287 struct amdgpu_bo_va_mapping *mapping) 2288 { 2289 struct amdgpu_vm *vm = bo_va->base.vm; 2290 struct amdgpu_bo *bo = bo_va->base.bo; 2291 2292 mapping->bo_va = bo_va; 2293 list_add(&mapping->list, &bo_va->invalids); 2294 amdgpu_vm_it_insert(mapping, &vm->va); 2295 2296 if (mapping->flags & AMDGPU_PTE_PRT) 2297 amdgpu_vm_prt_get(adev); 2298 2299 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2300 !bo_va->base.moved) { 2301 list_move(&bo_va->base.vm_status, &vm->moved); 2302 } 2303 trace_amdgpu_vm_bo_map(bo_va, mapping); 2304 } 2305 2306 /** 2307 * amdgpu_vm_bo_map - map bo inside a vm 2308 * 2309 * @adev: amdgpu_device pointer 2310 * @bo_va: bo_va to store the address 2311 * @saddr: where to map the BO 2312 * @offset: requested offset in the BO 2313 * @size: BO size in bytes 2314 * @flags: attributes of pages (read/write/valid/etc.) 2315 * 2316 * Add a mapping of the BO at the specefied addr into the VM. 2317 * 2318 * Returns: 2319 * 0 for success, error for failure. 2320 * 2321 * Object has to be reserved and unreserved outside! 2322 */ 2323 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2324 struct amdgpu_bo_va *bo_va, 2325 uint64_t saddr, uint64_t offset, 2326 uint64_t size, uint64_t flags) 2327 { 2328 struct amdgpu_bo_va_mapping *mapping, *tmp; 2329 struct amdgpu_bo *bo = bo_va->base.bo; 2330 struct amdgpu_vm *vm = bo_va->base.vm; 2331 uint64_t eaddr; 2332 2333 /* validate the parameters */ 2334 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2335 size == 0 || size & ~PAGE_MASK) 2336 return -EINVAL; 2337 2338 /* make sure object fit at this offset */ 2339 eaddr = saddr + size - 1; 2340 if (saddr >= eaddr || 2341 (bo && offset + size > amdgpu_bo_size(bo)) || 2342 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2343 return -EINVAL; 2344 2345 saddr /= AMDGPU_GPU_PAGE_SIZE; 2346 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2347 2348 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2349 if (tmp) { 2350 /* bo and tmp overlap, invalid addr */ 2351 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2352 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2353 tmp->start, tmp->last + 1); 2354 return -EINVAL; 2355 } 2356 2357 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2358 if (!mapping) 2359 return -ENOMEM; 2360 2361 mapping->start = saddr; 2362 mapping->last = eaddr; 2363 mapping->offset = offset; 2364 mapping->flags = flags; 2365 2366 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2367 2368 return 0; 2369 } 2370 2371 /** 2372 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2373 * 2374 * @adev: amdgpu_device pointer 2375 * @bo_va: bo_va to store the address 2376 * @saddr: where to map the BO 2377 * @offset: requested offset in the BO 2378 * @size: BO size in bytes 2379 * @flags: attributes of pages (read/write/valid/etc.) 2380 * 2381 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2382 * mappings as we do so. 2383 * 2384 * Returns: 2385 * 0 for success, error for failure. 2386 * 2387 * Object has to be reserved and unreserved outside! 2388 */ 2389 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2390 struct amdgpu_bo_va *bo_va, 2391 uint64_t saddr, uint64_t offset, 2392 uint64_t size, uint64_t flags) 2393 { 2394 struct amdgpu_bo_va_mapping *mapping; 2395 struct amdgpu_bo *bo = bo_va->base.bo; 2396 uint64_t eaddr; 2397 int r; 2398 2399 /* validate the parameters */ 2400 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2401 size == 0 || size & ~PAGE_MASK) 2402 return -EINVAL; 2403 2404 /* make sure object fit at this offset */ 2405 eaddr = saddr + size - 1; 2406 if (saddr >= eaddr || 2407 (bo && offset + size > amdgpu_bo_size(bo)) || 2408 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2409 return -EINVAL; 2410 2411 /* Allocate all the needed memory */ 2412 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2413 if (!mapping) 2414 return -ENOMEM; 2415 2416 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2417 if (r) { 2418 kfree(mapping); 2419 return r; 2420 } 2421 2422 saddr /= AMDGPU_GPU_PAGE_SIZE; 2423 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2424 2425 mapping->start = saddr; 2426 mapping->last = eaddr; 2427 mapping->offset = offset; 2428 mapping->flags = flags; 2429 2430 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2431 2432 return 0; 2433 } 2434 2435 /** 2436 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2437 * 2438 * @adev: amdgpu_device pointer 2439 * @bo_va: bo_va to remove the address from 2440 * @saddr: where to the BO is mapped 2441 * 2442 * Remove a mapping of the BO at the specefied addr from the VM. 2443 * 2444 * Returns: 2445 * 0 for success, error for failure. 2446 * 2447 * Object has to be reserved and unreserved outside! 2448 */ 2449 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2450 struct amdgpu_bo_va *bo_va, 2451 uint64_t saddr) 2452 { 2453 struct amdgpu_bo_va_mapping *mapping; 2454 struct amdgpu_vm *vm = bo_va->base.vm; 2455 bool valid = true; 2456 2457 saddr /= AMDGPU_GPU_PAGE_SIZE; 2458 2459 list_for_each_entry(mapping, &bo_va->valids, list) { 2460 if (mapping->start == saddr) 2461 break; 2462 } 2463 2464 if (&mapping->list == &bo_va->valids) { 2465 valid = false; 2466 2467 list_for_each_entry(mapping, &bo_va->invalids, list) { 2468 if (mapping->start == saddr) 2469 break; 2470 } 2471 2472 if (&mapping->list == &bo_va->invalids) 2473 return -ENOENT; 2474 } 2475 2476 list_del(&mapping->list); 2477 amdgpu_vm_it_remove(mapping, &vm->va); 2478 mapping->bo_va = NULL; 2479 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2480 2481 if (valid) 2482 list_add(&mapping->list, &vm->freed); 2483 else 2484 amdgpu_vm_free_mapping(adev, vm, mapping, 2485 bo_va->last_pt_update); 2486 2487 return 0; 2488 } 2489 2490 /** 2491 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2492 * 2493 * @adev: amdgpu_device pointer 2494 * @vm: VM structure to use 2495 * @saddr: start of the range 2496 * @size: size of the range 2497 * 2498 * Remove all mappings in a range, split them as appropriate. 2499 * 2500 * Returns: 2501 * 0 for success, error for failure. 2502 */ 2503 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2504 struct amdgpu_vm *vm, 2505 uint64_t saddr, uint64_t size) 2506 { 2507 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2508 LIST_HEAD(removed); 2509 uint64_t eaddr; 2510 2511 eaddr = saddr + size - 1; 2512 saddr /= AMDGPU_GPU_PAGE_SIZE; 2513 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2514 2515 /* Allocate all the needed memory */ 2516 before = kzalloc(sizeof(*before), GFP_KERNEL); 2517 if (!before) 2518 return -ENOMEM; 2519 INIT_LIST_HEAD(&before->list); 2520 2521 after = kzalloc(sizeof(*after), GFP_KERNEL); 2522 if (!after) { 2523 kfree(before); 2524 return -ENOMEM; 2525 } 2526 INIT_LIST_HEAD(&after->list); 2527 2528 /* Now gather all removed mappings */ 2529 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2530 while (tmp) { 2531 /* Remember mapping split at the start */ 2532 if (tmp->start < saddr) { 2533 before->start = tmp->start; 2534 before->last = saddr - 1; 2535 before->offset = tmp->offset; 2536 before->flags = tmp->flags; 2537 before->bo_va = tmp->bo_va; 2538 list_add(&before->list, &tmp->bo_va->invalids); 2539 } 2540 2541 /* Remember mapping split at the end */ 2542 if (tmp->last > eaddr) { 2543 after->start = eaddr + 1; 2544 after->last = tmp->last; 2545 after->offset = tmp->offset; 2546 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2547 after->flags = tmp->flags; 2548 after->bo_va = tmp->bo_va; 2549 list_add(&after->list, &tmp->bo_va->invalids); 2550 } 2551 2552 list_del(&tmp->list); 2553 list_add(&tmp->list, &removed); 2554 2555 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2556 } 2557 2558 /* And free them up */ 2559 list_for_each_entry_safe(tmp, next, &removed, list) { 2560 amdgpu_vm_it_remove(tmp, &vm->va); 2561 list_del(&tmp->list); 2562 2563 if (tmp->start < saddr) 2564 tmp->start = saddr; 2565 if (tmp->last > eaddr) 2566 tmp->last = eaddr; 2567 2568 tmp->bo_va = NULL; 2569 list_add(&tmp->list, &vm->freed); 2570 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2571 } 2572 2573 /* Insert partial mapping before the range */ 2574 if (!list_empty(&before->list)) { 2575 amdgpu_vm_it_insert(before, &vm->va); 2576 if (before->flags & AMDGPU_PTE_PRT) 2577 amdgpu_vm_prt_get(adev); 2578 } else { 2579 kfree(before); 2580 } 2581 2582 /* Insert partial mapping after the range */ 2583 if (!list_empty(&after->list)) { 2584 amdgpu_vm_it_insert(after, &vm->va); 2585 if (after->flags & AMDGPU_PTE_PRT) 2586 amdgpu_vm_prt_get(adev); 2587 } else { 2588 kfree(after); 2589 } 2590 2591 return 0; 2592 } 2593 2594 /** 2595 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2596 * 2597 * @vm: the requested VM 2598 * @addr: the address 2599 * 2600 * Find a mapping by it's address. 2601 * 2602 * Returns: 2603 * The amdgpu_bo_va_mapping matching for addr or NULL 2604 * 2605 */ 2606 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2607 uint64_t addr) 2608 { 2609 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2610 } 2611 2612 /** 2613 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2614 * 2615 * @vm: the requested vm 2616 * @ticket: CS ticket 2617 * 2618 * Trace all mappings of BOs reserved during a command submission. 2619 */ 2620 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2621 { 2622 struct amdgpu_bo_va_mapping *mapping; 2623 2624 if (!trace_amdgpu_vm_bo_cs_enabled()) 2625 return; 2626 2627 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2628 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2629 if (mapping->bo_va && mapping->bo_va->base.bo) { 2630 struct amdgpu_bo *bo; 2631 2632 bo = mapping->bo_va->base.bo; 2633 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2634 ticket) 2635 continue; 2636 } 2637 2638 trace_amdgpu_vm_bo_cs(mapping); 2639 } 2640 } 2641 2642 /** 2643 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2644 * 2645 * @adev: amdgpu_device pointer 2646 * @bo_va: requested bo_va 2647 * 2648 * Remove @bo_va->bo from the requested vm. 2649 * 2650 * Object have to be reserved! 2651 */ 2652 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2653 struct amdgpu_bo_va *bo_va) 2654 { 2655 struct amdgpu_bo_va_mapping *mapping, *next; 2656 struct amdgpu_bo *bo = bo_va->base.bo; 2657 struct amdgpu_vm *vm = bo_va->base.vm; 2658 struct amdgpu_vm_bo_base **base; 2659 2660 if (bo) { 2661 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2662 vm->bulk_moveable = false; 2663 2664 for (base = &bo_va->base.bo->vm_bo; *base; 2665 base = &(*base)->next) { 2666 if (*base != &bo_va->base) 2667 continue; 2668 2669 *base = bo_va->base.next; 2670 break; 2671 } 2672 } 2673 2674 spin_lock(&vm->invalidated_lock); 2675 list_del(&bo_va->base.vm_status); 2676 spin_unlock(&vm->invalidated_lock); 2677 2678 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2679 list_del(&mapping->list); 2680 amdgpu_vm_it_remove(mapping, &vm->va); 2681 mapping->bo_va = NULL; 2682 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2683 list_add(&mapping->list, &vm->freed); 2684 } 2685 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2686 list_del(&mapping->list); 2687 amdgpu_vm_it_remove(mapping, &vm->va); 2688 amdgpu_vm_free_mapping(adev, vm, mapping, 2689 bo_va->last_pt_update); 2690 } 2691 2692 dma_fence_put(bo_va->last_pt_update); 2693 2694 if (bo && bo_va->is_xgmi) 2695 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2696 2697 kfree(bo_va); 2698 } 2699 2700 /** 2701 * amdgpu_vm_evictable - check if we can evict a VM 2702 * 2703 * @bo: A page table of the VM. 2704 * 2705 * Check if it is possible to evict a VM. 2706 */ 2707 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2708 { 2709 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2710 2711 /* Page tables of a destroyed VM can go away immediately */ 2712 if (!bo_base || !bo_base->vm) 2713 return true; 2714 2715 /* Don't evict VM page tables while they are busy */ 2716 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2717 return false; 2718 2719 /* Try to block ongoing updates */ 2720 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2721 return false; 2722 2723 /* Don't evict VM page tables while they are updated */ 2724 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2725 amdgpu_vm_eviction_unlock(bo_base->vm); 2726 return false; 2727 } 2728 2729 bo_base->vm->evicting = true; 2730 amdgpu_vm_eviction_unlock(bo_base->vm); 2731 return true; 2732 } 2733 2734 /** 2735 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2736 * 2737 * @adev: amdgpu_device pointer 2738 * @bo: amdgpu buffer object 2739 * @evicted: is the BO evicted 2740 * 2741 * Mark @bo as invalid. 2742 */ 2743 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2744 struct amdgpu_bo *bo, bool evicted) 2745 { 2746 struct amdgpu_vm_bo_base *bo_base; 2747 2748 /* shadow bo doesn't have bo base, its validation needs its parent */ 2749 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2750 bo = bo->parent; 2751 2752 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2753 struct amdgpu_vm *vm = bo_base->vm; 2754 2755 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2756 amdgpu_vm_bo_evicted(bo_base); 2757 continue; 2758 } 2759 2760 if (bo_base->moved) 2761 continue; 2762 bo_base->moved = true; 2763 2764 if (bo->tbo.type == ttm_bo_type_kernel) 2765 amdgpu_vm_bo_relocated(bo_base); 2766 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2767 amdgpu_vm_bo_moved(bo_base); 2768 else 2769 amdgpu_vm_bo_invalidated(bo_base); 2770 } 2771 } 2772 2773 /** 2774 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2775 * 2776 * @vm_size: VM size 2777 * 2778 * Returns: 2779 * VM page table as power of two 2780 */ 2781 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2782 { 2783 /* Total bits covered by PD + PTs */ 2784 unsigned bits = ilog2(vm_size) + 18; 2785 2786 /* Make sure the PD is 4K in size up to 8GB address space. 2787 Above that split equal between PD and PTs */ 2788 if (vm_size <= 8) 2789 return (bits - 9); 2790 else 2791 return ((bits + 3) / 2); 2792 } 2793 2794 /** 2795 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2796 * 2797 * @adev: amdgpu_device pointer 2798 * @min_vm_size: the minimum vm size in GB if it's set auto 2799 * @fragment_size_default: Default PTE fragment size 2800 * @max_level: max VMPT level 2801 * @max_bits: max address space size in bits 2802 * 2803 */ 2804 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2805 uint32_t fragment_size_default, unsigned max_level, 2806 unsigned max_bits) 2807 { 2808 unsigned int max_size = 1 << (max_bits - 30); 2809 unsigned int vm_size; 2810 uint64_t tmp; 2811 2812 /* adjust vm size first */ 2813 if (amdgpu_vm_size != -1) { 2814 vm_size = amdgpu_vm_size; 2815 if (vm_size > max_size) { 2816 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2817 amdgpu_vm_size, max_size); 2818 vm_size = max_size; 2819 } 2820 } else { 2821 struct sysinfo si; 2822 unsigned int phys_ram_gb; 2823 2824 /* Optimal VM size depends on the amount of physical 2825 * RAM available. Underlying requirements and 2826 * assumptions: 2827 * 2828 * - Need to map system memory and VRAM from all GPUs 2829 * - VRAM from other GPUs not known here 2830 * - Assume VRAM <= system memory 2831 * - On GFX8 and older, VM space can be segmented for 2832 * different MTYPEs 2833 * - Need to allow room for fragmentation, guard pages etc. 2834 * 2835 * This adds up to a rough guess of system memory x3. 2836 * Round up to power of two to maximize the available 2837 * VM size with the given page table size. 2838 */ 2839 si_meminfo(&si); 2840 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2841 (1 << 30) - 1) >> 30; 2842 vm_size = roundup_pow_of_two( 2843 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2844 } 2845 2846 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2847 2848 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2849 if (amdgpu_vm_block_size != -1) 2850 tmp >>= amdgpu_vm_block_size - 9; 2851 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2852 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2853 switch (adev->vm_manager.num_level) { 2854 case 3: 2855 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2856 break; 2857 case 2: 2858 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2859 break; 2860 case 1: 2861 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2862 break; 2863 default: 2864 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2865 } 2866 /* block size depends on vm size and hw setup*/ 2867 if (amdgpu_vm_block_size != -1) 2868 adev->vm_manager.block_size = 2869 min((unsigned)amdgpu_vm_block_size, max_bits 2870 - AMDGPU_GPU_PAGE_SHIFT 2871 - 9 * adev->vm_manager.num_level); 2872 else if (adev->vm_manager.num_level > 1) 2873 adev->vm_manager.block_size = 9; 2874 else 2875 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2876 2877 if (amdgpu_vm_fragment_size == -1) 2878 adev->vm_manager.fragment_size = fragment_size_default; 2879 else 2880 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2881 2882 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2883 vm_size, adev->vm_manager.num_level + 1, 2884 adev->vm_manager.block_size, 2885 adev->vm_manager.fragment_size); 2886 } 2887 2888 /** 2889 * amdgpu_vm_wait_idle - wait for the VM to become idle 2890 * 2891 * @vm: VM object to wait for 2892 * @timeout: timeout to wait for VM to become idle 2893 */ 2894 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2895 { 2896 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2897 true, timeout); 2898 if (timeout <= 0) 2899 return timeout; 2900 2901 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2902 } 2903 2904 /** 2905 * amdgpu_vm_init - initialize a vm instance 2906 * 2907 * @adev: amdgpu_device pointer 2908 * @vm: requested vm 2909 * 2910 * Init @vm fields. 2911 * 2912 * Returns: 2913 * 0 for success, error for failure. 2914 */ 2915 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2916 { 2917 struct amdgpu_bo *root_bo; 2918 struct amdgpu_bo_vm *root; 2919 int r, i; 2920 2921 vm->va = RB_ROOT_CACHED; 2922 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2923 vm->reserved_vmid[i] = NULL; 2924 INIT_LIST_HEAD(&vm->evicted); 2925 INIT_LIST_HEAD(&vm->relocated); 2926 INIT_LIST_HEAD(&vm->moved); 2927 INIT_LIST_HEAD(&vm->idle); 2928 INIT_LIST_HEAD(&vm->invalidated); 2929 spin_lock_init(&vm->invalidated_lock); 2930 INIT_LIST_HEAD(&vm->freed); 2931 INIT_LIST_HEAD(&vm->done); 2932 2933 /* create scheduler entities for page table updates */ 2934 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2935 adev->vm_manager.vm_pte_scheds, 2936 adev->vm_manager.vm_pte_num_scheds, NULL); 2937 if (r) 2938 return r; 2939 2940 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2941 adev->vm_manager.vm_pte_scheds, 2942 adev->vm_manager.vm_pte_num_scheds, NULL); 2943 if (r) 2944 goto error_free_immediate; 2945 2946 vm->pte_support_ats = false; 2947 vm->is_compute_context = false; 2948 2949 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2950 AMDGPU_VM_USE_CPU_FOR_GFX); 2951 2952 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2953 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2954 WARN_ONCE((vm->use_cpu_for_update && 2955 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2956 "CPU update of VM recommended only for large BAR system\n"); 2957 2958 if (vm->use_cpu_for_update) 2959 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2960 else 2961 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2962 vm->last_update = NULL; 2963 vm->last_unlocked = dma_fence_get_stub(); 2964 2965 mutex_init(&vm->eviction_lock); 2966 vm->evicting = false; 2967 2968 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2969 false, &root); 2970 if (r) 2971 goto error_free_delayed; 2972 root_bo = &root->bo; 2973 r = amdgpu_bo_reserve(root_bo, true); 2974 if (r) 2975 goto error_free_root; 2976 2977 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2978 if (r) 2979 goto error_unreserve; 2980 2981 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2982 2983 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2984 if (r) 2985 goto error_unreserve; 2986 2987 amdgpu_bo_unreserve(vm->root.bo); 2988 2989 INIT_KFIFO(vm->faults); 2990 2991 return 0; 2992 2993 error_unreserve: 2994 amdgpu_bo_unreserve(vm->root.bo); 2995 2996 error_free_root: 2997 amdgpu_bo_unref(&root->shadow); 2998 amdgpu_bo_unref(&root_bo); 2999 vm->root.bo = NULL; 3000 3001 error_free_delayed: 3002 dma_fence_put(vm->last_unlocked); 3003 drm_sched_entity_destroy(&vm->delayed); 3004 3005 error_free_immediate: 3006 drm_sched_entity_destroy(&vm->immediate); 3007 3008 return r; 3009 } 3010 3011 /** 3012 * amdgpu_vm_check_clean_reserved - check if a VM is clean 3013 * 3014 * @adev: amdgpu_device pointer 3015 * @vm: the VM to check 3016 * 3017 * check all entries of the root PD, if any subsequent PDs are allocated, 3018 * it means there are page table creating and filling, and is no a clean 3019 * VM 3020 * 3021 * Returns: 3022 * 0 if this VM is clean 3023 */ 3024 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3025 struct amdgpu_vm *vm) 3026 { 3027 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3028 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3029 unsigned int i = 0; 3030 3031 for (i = 0; i < entries; i++) { 3032 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 3033 return -EINVAL; 3034 } 3035 3036 return 0; 3037 } 3038 3039 /** 3040 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3041 * 3042 * @adev: amdgpu_device pointer 3043 * @vm: requested vm 3044 * 3045 * This only works on GFX VMs that don't have any BOs added and no 3046 * page tables allocated yet. 3047 * 3048 * Changes the following VM parameters: 3049 * - use_cpu_for_update 3050 * - pte_supports_ats 3051 * 3052 * Reinitializes the page directory to reflect the changed ATS 3053 * setting. 3054 * 3055 * Returns: 3056 * 0 for success, -errno for errors. 3057 */ 3058 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3059 { 3060 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3061 int r; 3062 3063 r = amdgpu_bo_reserve(vm->root.bo, true); 3064 if (r) 3065 return r; 3066 3067 /* Sanity checks */ 3068 r = amdgpu_vm_check_clean_reserved(adev, vm); 3069 if (r) 3070 goto unreserve_bo; 3071 3072 /* Check if PD needs to be reinitialized and do it before 3073 * changing any other state, in case it fails. 3074 */ 3075 if (pte_support_ats != vm->pte_support_ats) { 3076 vm->pte_support_ats = pte_support_ats; 3077 r = amdgpu_vm_clear_bo(adev, vm, 3078 to_amdgpu_bo_vm(vm->root.bo), 3079 false); 3080 if (r) 3081 goto unreserve_bo; 3082 } 3083 3084 /* Update VM state */ 3085 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3086 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3087 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3088 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3089 WARN_ONCE((vm->use_cpu_for_update && 3090 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3091 "CPU update of VM recommended only for large BAR system\n"); 3092 3093 if (vm->use_cpu_for_update) { 3094 /* Sync with last SDMA update/clear before switching to CPU */ 3095 r = amdgpu_bo_sync_wait(vm->root.bo, 3096 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3097 if (r) 3098 goto unreserve_bo; 3099 3100 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3101 } else { 3102 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3103 } 3104 dma_fence_put(vm->last_update); 3105 vm->last_update = NULL; 3106 vm->is_compute_context = true; 3107 3108 /* Free the shadow bo for compute VM */ 3109 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3110 3111 goto unreserve_bo; 3112 3113 unreserve_bo: 3114 amdgpu_bo_unreserve(vm->root.bo); 3115 return r; 3116 } 3117 3118 /** 3119 * amdgpu_vm_release_compute - release a compute vm 3120 * @adev: amdgpu_device pointer 3121 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3122 * 3123 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3124 * pasid from vm. Compute should stop use of vm after this call. 3125 */ 3126 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3127 { 3128 amdgpu_vm_set_pasid(adev, vm, 0); 3129 vm->is_compute_context = false; 3130 } 3131 3132 /** 3133 * amdgpu_vm_fini - tear down a vm instance 3134 * 3135 * @adev: amdgpu_device pointer 3136 * @vm: requested vm 3137 * 3138 * Tear down @vm. 3139 * Unbind the VM and remove all bos from the vm bo list 3140 */ 3141 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3142 { 3143 struct amdgpu_bo_va_mapping *mapping, *tmp; 3144 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3145 struct amdgpu_bo *root; 3146 int i; 3147 3148 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3149 3150 root = amdgpu_bo_ref(vm->root.bo); 3151 amdgpu_bo_reserve(root, true); 3152 amdgpu_vm_set_pasid(adev, vm, 0); 3153 dma_fence_wait(vm->last_unlocked, false); 3154 dma_fence_put(vm->last_unlocked); 3155 3156 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3157 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3158 amdgpu_vm_prt_fini(adev, vm); 3159 prt_fini_needed = false; 3160 } 3161 3162 list_del(&mapping->list); 3163 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3164 } 3165 3166 amdgpu_vm_free_pts(adev, vm, NULL); 3167 amdgpu_bo_unreserve(root); 3168 amdgpu_bo_unref(&root); 3169 WARN_ON(vm->root.bo); 3170 3171 drm_sched_entity_destroy(&vm->immediate); 3172 drm_sched_entity_destroy(&vm->delayed); 3173 3174 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3175 dev_err(adev->dev, "still active bo inside vm\n"); 3176 } 3177 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3178 &vm->va.rb_root, rb) { 3179 /* Don't remove the mapping here, we don't want to trigger a 3180 * rebalance and the tree is about to be destroyed anyway. 3181 */ 3182 list_del(&mapping->list); 3183 kfree(mapping); 3184 } 3185 3186 dma_fence_put(vm->last_update); 3187 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3188 amdgpu_vmid_free_reserved(adev, vm, i); 3189 } 3190 3191 /** 3192 * amdgpu_vm_manager_init - init the VM manager 3193 * 3194 * @adev: amdgpu_device pointer 3195 * 3196 * Initialize the VM manager structures 3197 */ 3198 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3199 { 3200 unsigned i; 3201 3202 /* Concurrent flushes are only possible starting with Vega10 and 3203 * are broken on Navi10 and Navi14. 3204 */ 3205 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3206 adev->asic_type == CHIP_NAVI10 || 3207 adev->asic_type == CHIP_NAVI14); 3208 amdgpu_vmid_mgr_init(adev); 3209 3210 adev->vm_manager.fence_context = 3211 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3212 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3213 adev->vm_manager.seqno[i] = 0; 3214 3215 spin_lock_init(&adev->vm_manager.prt_lock); 3216 atomic_set(&adev->vm_manager.num_prt_users, 0); 3217 3218 /* If not overridden by the user, by default, only in large BAR systems 3219 * Compute VM tables will be updated by CPU 3220 */ 3221 #ifdef CONFIG_X86_64 3222 if (amdgpu_vm_update_mode == -1) { 3223 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3224 adev->vm_manager.vm_update_mode = 3225 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3226 else 3227 adev->vm_manager.vm_update_mode = 0; 3228 } else 3229 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3230 #else 3231 adev->vm_manager.vm_update_mode = 0; 3232 #endif 3233 3234 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3235 } 3236 3237 /** 3238 * amdgpu_vm_manager_fini - cleanup VM manager 3239 * 3240 * @adev: amdgpu_device pointer 3241 * 3242 * Cleanup the VM manager and free resources. 3243 */ 3244 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3245 { 3246 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3247 xa_destroy(&adev->vm_manager.pasids); 3248 3249 amdgpu_vmid_mgr_fini(adev); 3250 } 3251 3252 /** 3253 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3254 * 3255 * @dev: drm device pointer 3256 * @data: drm_amdgpu_vm 3257 * @filp: drm file pointer 3258 * 3259 * Returns: 3260 * 0 for success, -errno for errors. 3261 */ 3262 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3263 { 3264 union drm_amdgpu_vm *args = data; 3265 struct amdgpu_device *adev = drm_to_adev(dev); 3266 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3267 long timeout = msecs_to_jiffies(2000); 3268 int r; 3269 3270 switch (args->in.op) { 3271 case AMDGPU_VM_OP_RESERVE_VMID: 3272 /* We only have requirement to reserve vmid from gfxhub */ 3273 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3274 AMDGPU_GFXHUB_0); 3275 if (r) 3276 return r; 3277 break; 3278 case AMDGPU_VM_OP_UNRESERVE_VMID: 3279 if (amdgpu_sriov_runtime(adev)) 3280 timeout = 8 * timeout; 3281 3282 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3283 * not referenced anymore. 3284 */ 3285 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3286 if (r) 3287 return r; 3288 3289 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3290 if (r < 0) 3291 return r; 3292 3293 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3294 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3295 break; 3296 default: 3297 return -EINVAL; 3298 } 3299 3300 return 0; 3301 } 3302 3303 /** 3304 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3305 * 3306 * @adev: drm device pointer 3307 * @pasid: PASID identifier for VM 3308 * @task_info: task_info to fill. 3309 */ 3310 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3311 struct amdgpu_task_info *task_info) 3312 { 3313 struct amdgpu_vm *vm; 3314 unsigned long flags; 3315 3316 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3317 3318 vm = xa_load(&adev->vm_manager.pasids, pasid); 3319 if (vm) 3320 *task_info = vm->task_info; 3321 3322 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3323 } 3324 3325 /** 3326 * amdgpu_vm_set_task_info - Sets VMs task info. 3327 * 3328 * @vm: vm for which to set the info 3329 */ 3330 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3331 { 3332 if (vm->task_info.pid) 3333 return; 3334 3335 vm->task_info.pid = current->pid; 3336 get_task_comm(vm->task_info.task_name, current); 3337 3338 if (current->group_leader->mm != current->mm) 3339 return; 3340 3341 vm->task_info.tgid = current->group_leader->pid; 3342 get_task_comm(vm->task_info.process_name, current->group_leader); 3343 } 3344 3345 /** 3346 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3347 * @adev: amdgpu device pointer 3348 * @pasid: PASID of the VM 3349 * @addr: Address of the fault 3350 * @write_fault: true is write fault, false is read fault 3351 * 3352 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3353 * shouldn't be reported any more. 3354 */ 3355 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3356 uint64_t addr, bool write_fault) 3357 { 3358 bool is_compute_context = false; 3359 struct amdgpu_bo *root; 3360 unsigned long irqflags; 3361 uint64_t value, flags; 3362 struct amdgpu_vm *vm; 3363 int r; 3364 3365 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3366 vm = xa_load(&adev->vm_manager.pasids, pasid); 3367 if (vm) { 3368 root = amdgpu_bo_ref(vm->root.bo); 3369 is_compute_context = vm->is_compute_context; 3370 } else { 3371 root = NULL; 3372 } 3373 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3374 3375 if (!root) 3376 return false; 3377 3378 addr /= AMDGPU_GPU_PAGE_SIZE; 3379 3380 if (is_compute_context && 3381 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3382 amdgpu_bo_unref(&root); 3383 return true; 3384 } 3385 3386 r = amdgpu_bo_reserve(root, true); 3387 if (r) 3388 goto error_unref; 3389 3390 /* Double check that the VM still exists */ 3391 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3392 vm = xa_load(&adev->vm_manager.pasids, pasid); 3393 if (vm && vm->root.bo != root) 3394 vm = NULL; 3395 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3396 if (!vm) 3397 goto error_unlock; 3398 3399 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3400 AMDGPU_PTE_SYSTEM; 3401 3402 if (is_compute_context) { 3403 /* Intentionally setting invalid PTE flag 3404 * combination to force a no-retry-fault 3405 */ 3406 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3407 AMDGPU_PTE_TF; 3408 value = 0; 3409 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3410 /* Redirect the access to the dummy page */ 3411 value = adev->dummy_page_addr; 3412 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3413 AMDGPU_PTE_WRITEABLE; 3414 3415 } else { 3416 /* Let the hw retry silently on the PTE */ 3417 value = 0; 3418 } 3419 3420 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3421 if (r) { 3422 pr_debug("failed %d to reserve fence slot\n", r); 3423 goto error_unlock; 3424 } 3425 3426 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3427 addr, flags, value, NULL, NULL, NULL, 3428 NULL); 3429 if (r) 3430 goto error_unlock; 3431 3432 r = amdgpu_vm_update_pdes(adev, vm, true); 3433 3434 error_unlock: 3435 amdgpu_bo_unreserve(root); 3436 if (r < 0) 3437 DRM_ERROR("Can't handle page fault (%d)\n", r); 3438 3439 error_unref: 3440 amdgpu_bo_unref(&root); 3441 3442 return false; 3443 } 3444 3445 #if defined(CONFIG_DEBUG_FS) 3446 /** 3447 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3448 * 3449 * @vm: Requested VM for printing BO info 3450 * @m: debugfs file 3451 * 3452 * Print BO information in debugfs file for the VM 3453 */ 3454 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3455 { 3456 struct amdgpu_bo_va *bo_va, *tmp; 3457 u64 total_idle = 0; 3458 u64 total_evicted = 0; 3459 u64 total_relocated = 0; 3460 u64 total_moved = 0; 3461 u64 total_invalidated = 0; 3462 u64 total_done = 0; 3463 unsigned int total_idle_objs = 0; 3464 unsigned int total_evicted_objs = 0; 3465 unsigned int total_relocated_objs = 0; 3466 unsigned int total_moved_objs = 0; 3467 unsigned int total_invalidated_objs = 0; 3468 unsigned int total_done_objs = 0; 3469 unsigned int id = 0; 3470 3471 seq_puts(m, "\tIdle BOs:\n"); 3472 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3473 if (!bo_va->base.bo) 3474 continue; 3475 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3476 } 3477 total_idle_objs = id; 3478 id = 0; 3479 3480 seq_puts(m, "\tEvicted BOs:\n"); 3481 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3482 if (!bo_va->base.bo) 3483 continue; 3484 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3485 } 3486 total_evicted_objs = id; 3487 id = 0; 3488 3489 seq_puts(m, "\tRelocated BOs:\n"); 3490 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3491 if (!bo_va->base.bo) 3492 continue; 3493 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3494 } 3495 total_relocated_objs = id; 3496 id = 0; 3497 3498 seq_puts(m, "\tMoved BOs:\n"); 3499 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3500 if (!bo_va->base.bo) 3501 continue; 3502 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3503 } 3504 total_moved_objs = id; 3505 id = 0; 3506 3507 seq_puts(m, "\tInvalidated BOs:\n"); 3508 spin_lock(&vm->invalidated_lock); 3509 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3510 if (!bo_va->base.bo) 3511 continue; 3512 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3513 } 3514 total_invalidated_objs = id; 3515 id = 0; 3516 3517 seq_puts(m, "\tDone BOs:\n"); 3518 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3519 if (!bo_va->base.bo) 3520 continue; 3521 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3522 } 3523 spin_unlock(&vm->invalidated_lock); 3524 total_done_objs = id; 3525 3526 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3527 total_idle_objs); 3528 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3529 total_evicted_objs); 3530 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3531 total_relocated_objs); 3532 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3533 total_moved_objs); 3534 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3535 total_invalidated_objs); 3536 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3537 total_done_objs); 3538 } 3539 #endif 3540