1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When executing a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /**
92  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93  *
94  * @adev: amdgpu_device pointer
95  * @vm: amdgpu_vm pointer
96  * @pasid: the pasid the VM is using on this GPU
97  *
98  * Set the pasid this VM is using on this GPU, can also be used to remove the
99  * pasid by passing in zero.
100  *
101  */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 			u32 pasid)
104 {
105 	int r;
106 
107 	if (vm->pasid == pasid)
108 		return 0;
109 
110 	if (vm->pasid) {
111 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 		if (r < 0)
113 			return r;
114 
115 		vm->pasid = 0;
116 	}
117 
118 	if (pasid) {
119 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 					GFP_KERNEL));
121 		if (r < 0)
122 			return r;
123 
124 		vm->pasid = pasid;
125 	}
126 
127 
128 	return 0;
129 }
130 
131 /*
132  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133  * happens while holding this lock anywhere to prevent deadlocks when
134  * an MMU notifier runs in reclaim-FS context.
135  */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138 	mutex_lock(&vm->eviction_lock);
139 	vm->saved_flags = memalloc_noreclaim_save();
140 }
141 
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144 	if (mutex_trylock(&vm->eviction_lock)) {
145 		vm->saved_flags = memalloc_noreclaim_save();
146 		return 1;
147 	}
148 	return 0;
149 }
150 
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153 	memalloc_noreclaim_restore(vm->saved_flags);
154 	mutex_unlock(&vm->eviction_lock);
155 }
156 
157 /**
158  * amdgpu_vm_level_shift - return the addr shift for each level
159  *
160  * @adev: amdgpu_device pointer
161  * @level: VMPT level
162  *
163  * Returns:
164  * The number of bits the pfn needs to be right shifted for a level.
165  */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 				      unsigned level)
168 {
169 	switch (level) {
170 	case AMDGPU_VM_PDB2:
171 	case AMDGPU_VM_PDB1:
172 	case AMDGPU_VM_PDB0:
173 		return 9 * (AMDGPU_VM_PDB0 - level) +
174 			adev->vm_manager.block_size;
175 	case AMDGPU_VM_PTB:
176 		return 0;
177 	default:
178 		return ~0;
179 	}
180 }
181 
182 /**
183  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The number of entries in a page directory or page table.
190  */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 				      unsigned level)
193 {
194 	unsigned shift = amdgpu_vm_level_shift(adev,
195 					       adev->vm_manager.root_level);
196 
197 	if (level == adev->vm_manager.root_level)
198 		/* For the root directory */
199 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 			>> shift;
201 	else if (level != AMDGPU_VM_PTB)
202 		/* Everything in between */
203 		return 512;
204 	else
205 		/* For the page tables on the leaves */
206 		return AMDGPU_VM_PTE_COUNT(adev);
207 }
208 
209 /**
210  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211  *
212  * @adev: amdgpu_device pointer
213  *
214  * Returns:
215  * The number of entries in the root page directory which needs the ATS setting.
216  */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219 	unsigned shift;
220 
221 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224 
225 /**
226  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227  *
228  * @adev: amdgpu_device pointer
229  * @level: VMPT level
230  *
231  * Returns:
232  * The mask to extract the entry number of a PD/PT from an address.
233  */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 				       unsigned int level)
236 {
237 	if (level <= adev->vm_manager.root_level)
238 		return 0xffffffff;
239 	else if (level != AMDGPU_VM_PTB)
240 		return 0x1ff;
241 	else
242 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244 
245 /**
246  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247  *
248  * @adev: amdgpu_device pointer
249  * @level: VMPT level
250  *
251  * Returns:
252  * The size of the BO for a page directory or page table in bytes.
253  */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258 
259 /**
260  * amdgpu_vm_bo_evicted - vm_bo is evicted
261  *
262  * @vm_bo: vm_bo which is evicted
263  *
264  * State for PDs/PTs and per VM BOs which are not at the location they should
265  * be.
266  */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	struct amdgpu_vm *vm = vm_bo->vm;
270 	struct amdgpu_bo *bo = vm_bo->bo;
271 
272 	vm_bo->moved = true;
273 	if (bo->tbo.type == ttm_bo_type_kernel)
274 		list_move(&vm_bo->vm_status, &vm->evicted);
275 	else
276 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279  * amdgpu_vm_bo_moved - vm_bo is moved
280  *
281  * @vm_bo: vm_bo which is moved
282  *
283  * State for per VM BOs which are moved, but that change is not yet reflected
284  * in the page tables.
285  */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290 
291 /**
292  * amdgpu_vm_bo_idle - vm_bo is idle
293  *
294  * @vm_bo: vm_bo which is now idle
295  *
296  * State for PDs/PTs and per VM BOs which have gone through the state machine
297  * and are now idle.
298  */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 	vm_bo->moved = false;
303 }
304 
305 /**
306  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307  *
308  * @vm_bo: vm_bo which is now invalidated
309  *
310  * State for normal BOs which are invalidated and that change not yet reflected
311  * in the PTs.
312  */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315 	spin_lock(&vm_bo->vm->invalidated_lock);
316 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 	spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319 
320 /**
321  * amdgpu_vm_bo_relocated - vm_bo is reloacted
322  *
323  * @vm_bo: vm_bo which is relocated
324  *
325  * State for PDs/PTs which needs to update their parent PD.
326  * For the root PD, just move to idle state.
327  */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330 	if (vm_bo->bo->parent)
331 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 	else
333 		amdgpu_vm_bo_idle(vm_bo);
334 }
335 
336 /**
337  * amdgpu_vm_bo_done - vm_bo is done
338  *
339  * @vm_bo: vm_bo which is now done
340  *
341  * State for normal BOs which are invalidated and that change has been updated
342  * in the PTs.
343  */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346 	spin_lock(&vm_bo->vm->invalidated_lock);
347 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 	spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350 
351 /**
352  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353  *
354  * @base: base structure for tracking BO usage in a VM
355  * @vm: vm to which bo is to be added
356  * @bo: amdgpu buffer object
357  *
358  * Initialize a bo_va_base structure and add it to the appropriate lists
359  *
360  */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 				   struct amdgpu_vm *vm,
363 				   struct amdgpu_bo *bo)
364 {
365 	base->vm = vm;
366 	base->bo = bo;
367 	base->next = NULL;
368 	INIT_LIST_HEAD(&base->vm_status);
369 
370 	if (!bo)
371 		return;
372 	base->next = bo->vm_bo;
373 	bo->vm_bo = base;
374 
375 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 		return;
377 
378 	vm->bulk_moveable = false;
379 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380 		amdgpu_vm_bo_relocated(base);
381 	else
382 		amdgpu_vm_bo_idle(base);
383 
384 	if (bo->preferred_domains &
385 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386 		return;
387 
388 	/*
389 	 * we checked all the prerequisites, but it looks like this per vm bo
390 	 * is currently evicted. add the bo to the evicted list to make sure it
391 	 * is validated on next vm use to avoid fault.
392 	 * */
393 	amdgpu_vm_bo_evicted(base);
394 }
395 
396 /**
397  * amdgpu_vm_pt_parent - get the parent page directory
398  *
399  * @pt: child page table
400  *
401  * Helper to get the parent entry for the child page table. NULL if we are at
402  * the root page directory.
403  */
404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405 {
406 	struct amdgpu_bo *parent = pt->bo->parent;
407 
408 	if (!parent)
409 		return NULL;
410 
411 	return parent->vm_bo;
412 }
413 
414 /*
415  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416  */
417 struct amdgpu_vm_pt_cursor {
418 	uint64_t pfn;
419 	struct amdgpu_vm_bo_base *parent;
420 	struct amdgpu_vm_bo_base *entry;
421 	unsigned level;
422 };
423 
424 /**
425  * amdgpu_vm_pt_start - start PD/PT walk
426  *
427  * @adev: amdgpu_device pointer
428  * @vm: amdgpu_vm structure
429  * @start: start address of the walk
430  * @cursor: state to initialize
431  *
432  * Initialize a amdgpu_vm_pt_cursor to start a walk.
433  */
434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435 			       struct amdgpu_vm *vm, uint64_t start,
436 			       struct amdgpu_vm_pt_cursor *cursor)
437 {
438 	cursor->pfn = start;
439 	cursor->parent = NULL;
440 	cursor->entry = &vm->root;
441 	cursor->level = adev->vm_manager.root_level;
442 }
443 
444 /**
445  * amdgpu_vm_pt_descendant - go to child node
446  *
447  * @adev: amdgpu_device pointer
448  * @cursor: current state
449  *
450  * Walk to the child node of the current node.
451  * Returns:
452  * True if the walk was possible, false otherwise.
453  */
454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455 				    struct amdgpu_vm_pt_cursor *cursor)
456 {
457 	unsigned mask, shift, idx;
458 
459 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460 	    !cursor->entry->bo)
461 		return false;
462 
463 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
464 	shift = amdgpu_vm_level_shift(adev, cursor->level);
465 
466 	++cursor->level;
467 	idx = (cursor->pfn >> shift) & mask;
468 	cursor->parent = cursor->entry;
469 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470 	return true;
471 }
472 
473 /**
474  * amdgpu_vm_pt_sibling - go to sibling node
475  *
476  * @adev: amdgpu_device pointer
477  * @cursor: current state
478  *
479  * Walk to the sibling node of the current node.
480  * Returns:
481  * True if the walk was possible, false otherwise.
482  */
483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484 				 struct amdgpu_vm_pt_cursor *cursor)
485 {
486 	unsigned shift, num_entries;
487 
488 	/* Root doesn't have a sibling */
489 	if (!cursor->parent)
490 		return false;
491 
492 	/* Go to our parents and see if we got a sibling */
493 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495 
496 	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497 		return false;
498 
499 	cursor->pfn += 1ULL << shift;
500 	cursor->pfn &= ~((1ULL << shift) - 1);
501 	++cursor->entry;
502 	return true;
503 }
504 
505 /**
506  * amdgpu_vm_pt_ancestor - go to parent node
507  *
508  * @cursor: current state
509  *
510  * Walk to the parent node of the current node.
511  * Returns:
512  * True if the walk was possible, false otherwise.
513  */
514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515 {
516 	if (!cursor->parent)
517 		return false;
518 
519 	--cursor->level;
520 	cursor->entry = cursor->parent;
521 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522 	return true;
523 }
524 
525 /**
526  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527  *
528  * @adev: amdgpu_device pointer
529  * @cursor: current state
530  *
531  * Walk the PD/PT tree to the next node.
532  */
533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534 			      struct amdgpu_vm_pt_cursor *cursor)
535 {
536 	/* First try a newborn child */
537 	if (amdgpu_vm_pt_descendant(adev, cursor))
538 		return;
539 
540 	/* If that didn't worked try to find a sibling */
541 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542 		/* No sibling, go to our parents and grandparents */
543 		if (!amdgpu_vm_pt_ancestor(cursor)) {
544 			cursor->pfn = ~0ll;
545 			return;
546 		}
547 	}
548 }
549 
550 /**
551  * amdgpu_vm_pt_first_dfs - start a deep first search
552  *
553  * @adev: amdgpu_device structure
554  * @vm: amdgpu_vm structure
555  * @start: optional cursor to start with
556  * @cursor: state to initialize
557  *
558  * Starts a deep first traversal of the PD/PT tree.
559  */
560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561 				   struct amdgpu_vm *vm,
562 				   struct amdgpu_vm_pt_cursor *start,
563 				   struct amdgpu_vm_pt_cursor *cursor)
564 {
565 	if (start)
566 		*cursor = *start;
567 	else
568 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
569 	while (amdgpu_vm_pt_descendant(adev, cursor));
570 }
571 
572 /**
573  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574  *
575  * @start: starting point for the search
576  * @entry: current entry
577  *
578  * Returns:
579  * True when the search should continue, false otherwise.
580  */
581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582 				      struct amdgpu_vm_bo_base *entry)
583 {
584 	return entry && (!start || entry != start->entry);
585 }
586 
587 /**
588  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589  *
590  * @adev: amdgpu_device structure
591  * @cursor: current state
592  *
593  * Move the cursor to the next node in a deep first search.
594  */
595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596 				  struct amdgpu_vm_pt_cursor *cursor)
597 {
598 	if (!cursor->entry)
599 		return;
600 
601 	if (!cursor->parent)
602 		cursor->entry = NULL;
603 	else if (amdgpu_vm_pt_sibling(adev, cursor))
604 		while (amdgpu_vm_pt_descendant(adev, cursor));
605 	else
606 		amdgpu_vm_pt_ancestor(cursor);
607 }
608 
609 /*
610  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611  */
612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
613 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
614 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
616 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617 
618 /**
619  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620  *
621  * @vm: vm providing the BOs
622  * @validated: head of validation list
623  * @entry: entry to add
624  *
625  * Add the page directory to the list of BOs to
626  * validate for command submission.
627  */
628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629 			 struct list_head *validated,
630 			 struct amdgpu_bo_list_entry *entry)
631 {
632 	entry->priority = 0;
633 	entry->tv.bo = &vm->root.bo->tbo;
634 	/* Two for VM updates, one for TTM and one for the CS job */
635 	entry->tv.num_shared = 4;
636 	entry->user_pages = NULL;
637 	list_add(&entry->tv.head, validated);
638 }
639 
640 /**
641  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
642  *
643  * @bo: BO which was removed from the LRU
644  *
645  * Make sure the bulk_moveable flag is updated when a BO is removed from the
646  * LRU.
647  */
648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
649 {
650 	struct amdgpu_bo *abo;
651 	struct amdgpu_vm_bo_base *bo_base;
652 
653 	if (!amdgpu_bo_is_amdgpu_bo(bo))
654 		return;
655 
656 	if (bo->pin_count)
657 		return;
658 
659 	abo = ttm_to_amdgpu_bo(bo);
660 	if (!abo->parent)
661 		return;
662 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
663 		struct amdgpu_vm *vm = bo_base->vm;
664 
665 		if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
666 			vm->bulk_moveable = false;
667 	}
668 
669 }
670 /**
671  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
672  *
673  * @adev: amdgpu device pointer
674  * @vm: vm providing the BOs
675  *
676  * Move all BOs to the end of LRU and remember their positions to put them
677  * together.
678  */
679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
680 				struct amdgpu_vm *vm)
681 {
682 	struct amdgpu_vm_bo_base *bo_base;
683 
684 	if (vm->bulk_moveable) {
685 		spin_lock(&adev->mman.bdev.lru_lock);
686 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
687 		spin_unlock(&adev->mman.bdev.lru_lock);
688 		return;
689 	}
690 
691 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
692 
693 	spin_lock(&adev->mman.bdev.lru_lock);
694 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
695 		struct amdgpu_bo *bo = bo_base->bo;
696 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697 
698 		if (!bo->parent)
699 			continue;
700 
701 		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
702 					&vm->lru_bulk_move);
703 		if (shadow)
704 			ttm_bo_move_to_lru_tail(&shadow->tbo,
705 						shadow->tbo.resource,
706 						&vm->lru_bulk_move);
707 	}
708 	spin_unlock(&adev->mman.bdev.lru_lock);
709 
710 	vm->bulk_moveable = true;
711 }
712 
713 /**
714  * amdgpu_vm_validate_pt_bos - validate the page table BOs
715  *
716  * @adev: amdgpu device pointer
717  * @vm: vm providing the BOs
718  * @validate: callback to do the validation
719  * @param: parameter for the validation callback
720  *
721  * Validate the page table BOs on command submission if neccessary.
722  *
723  * Returns:
724  * Validation result.
725  */
726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
727 			      int (*validate)(void *p, struct amdgpu_bo *bo),
728 			      void *param)
729 {
730 	struct amdgpu_vm_bo_base *bo_base, *tmp;
731 	int r;
732 
733 	vm->bulk_moveable &= list_empty(&vm->evicted);
734 
735 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
736 		struct amdgpu_bo *bo = bo_base->bo;
737 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
738 
739 		r = validate(param, bo);
740 		if (r)
741 			return r;
742 		if (shadow) {
743 			r = validate(param, shadow);
744 			if (r)
745 				return r;
746 		}
747 
748 		if (bo->tbo.type != ttm_bo_type_kernel) {
749 			amdgpu_vm_bo_moved(bo_base);
750 		} else {
751 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
752 			amdgpu_vm_bo_relocated(bo_base);
753 		}
754 	}
755 
756 	amdgpu_vm_eviction_lock(vm);
757 	vm->evicting = false;
758 	amdgpu_vm_eviction_unlock(vm);
759 
760 	return 0;
761 }
762 
763 /**
764  * amdgpu_vm_ready - check VM is ready for updates
765  *
766  * @vm: VM to check
767  *
768  * Check if all VM PDs/PTs are ready for updates
769  *
770  * Returns:
771  * True if VM is not evicting.
772  */
773 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
774 {
775 	bool ret;
776 
777 	amdgpu_vm_eviction_lock(vm);
778 	ret = !vm->evicting;
779 	amdgpu_vm_eviction_unlock(vm);
780 
781 	return ret && list_empty(&vm->evicted);
782 }
783 
784 /**
785  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
786  *
787  * @adev: amdgpu_device pointer
788  * @vm: VM to clear BO from
789  * @vmbo: BO to clear
790  * @immediate: use an immediate update
791  *
792  * Root PD needs to be reserved when calling this.
793  *
794  * Returns:
795  * 0 on success, errno otherwise.
796  */
797 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
798 			      struct amdgpu_vm *vm,
799 			      struct amdgpu_bo_vm *vmbo,
800 			      bool immediate)
801 {
802 	struct ttm_operation_ctx ctx = { true, false };
803 	unsigned level = adev->vm_manager.root_level;
804 	struct amdgpu_vm_update_params params;
805 	struct amdgpu_bo *ancestor = &vmbo->bo;
806 	struct amdgpu_bo *bo = &vmbo->bo;
807 	unsigned entries, ats_entries;
808 	uint64_t addr;
809 	int r, idx;
810 
811 	/* Figure out our place in the hierarchy */
812 	if (ancestor->parent) {
813 		++level;
814 		while (ancestor->parent->parent) {
815 			++level;
816 			ancestor = ancestor->parent;
817 		}
818 	}
819 
820 	entries = amdgpu_bo_size(bo) / 8;
821 	if (!vm->pte_support_ats) {
822 		ats_entries = 0;
823 
824 	} else if (!bo->parent) {
825 		ats_entries = amdgpu_vm_num_ats_entries(adev);
826 		ats_entries = min(ats_entries, entries);
827 		entries -= ats_entries;
828 
829 	} else {
830 		struct amdgpu_vm_bo_base *pt;
831 
832 		pt = ancestor->vm_bo;
833 		ats_entries = amdgpu_vm_num_ats_entries(adev);
834 		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
835 			ats_entries = 0;
836 		} else {
837 			ats_entries = entries;
838 			entries = 0;
839 		}
840 	}
841 
842 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
843 	if (r)
844 		return r;
845 
846 	if (vmbo->shadow) {
847 		struct amdgpu_bo *shadow = vmbo->shadow;
848 
849 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
850 		if (r)
851 			return r;
852 	}
853 
854 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
855 		return -ENODEV;
856 
857 	r = vm->update_funcs->map_table(vmbo);
858 	if (r)
859 		goto exit;
860 
861 	memset(&params, 0, sizeof(params));
862 	params.adev = adev;
863 	params.vm = vm;
864 	params.immediate = immediate;
865 
866 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
867 	if (r)
868 		goto exit;
869 
870 	addr = 0;
871 	if (ats_entries) {
872 		uint64_t value = 0, flags;
873 
874 		flags = AMDGPU_PTE_DEFAULT_ATC;
875 		if (level != AMDGPU_VM_PTB) {
876 			/* Handle leaf PDEs as PTEs */
877 			flags |= AMDGPU_PDE_PTE;
878 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
879 		}
880 
881 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
882 					     value, flags);
883 		if (r)
884 			goto exit;
885 
886 		addr += ats_entries * 8;
887 	}
888 
889 	if (entries) {
890 		uint64_t value = 0, flags = 0;
891 
892 		if (adev->asic_type >= CHIP_VEGA10) {
893 			if (level != AMDGPU_VM_PTB) {
894 				/* Handle leaf PDEs as PTEs */
895 				flags |= AMDGPU_PDE_PTE;
896 				amdgpu_gmc_get_vm_pde(adev, level,
897 						      &value, &flags);
898 			} else {
899 				/* Workaround for fault priority problem on GMC9 */
900 				flags = AMDGPU_PTE_EXECUTABLE;
901 			}
902 		}
903 
904 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
905 					     value, flags);
906 		if (r)
907 			goto exit;
908 	}
909 
910 	r = vm->update_funcs->commit(&params, NULL);
911 exit:
912 	drm_dev_exit(idx);
913 	return r;
914 }
915 
916 /**
917  * amdgpu_vm_pt_create - create bo for PD/PT
918  *
919  * @adev: amdgpu_device pointer
920  * @vm: requesting vm
921  * @level: the page table level
922  * @immediate: use a immediate update
923  * @vmbo: pointer to the buffer object pointer
924  */
925 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
926 			       struct amdgpu_vm *vm,
927 			       int level, bool immediate,
928 			       struct amdgpu_bo_vm **vmbo)
929 {
930 	struct amdgpu_bo_param bp;
931 	struct amdgpu_bo *bo;
932 	struct dma_resv *resv;
933 	unsigned int num_entries;
934 	int r;
935 
936 	memset(&bp, 0, sizeof(bp));
937 
938 	bp.size = amdgpu_vm_bo_size(adev, level);
939 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
940 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
941 	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
942 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
943 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
944 
945 	if (level < AMDGPU_VM_PTB)
946 		num_entries = amdgpu_vm_num_entries(adev, level);
947 	else
948 		num_entries = 0;
949 
950 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
951 
952 	if (vm->use_cpu_for_update)
953 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
954 
955 	bp.type = ttm_bo_type_kernel;
956 	bp.no_wait_gpu = immediate;
957 	if (vm->root.bo)
958 		bp.resv = vm->root.bo->tbo.base.resv;
959 
960 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
961 	if (r)
962 		return r;
963 
964 	bo = &(*vmbo)->bo;
965 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
966 		(*vmbo)->shadow = NULL;
967 		return 0;
968 	}
969 
970 	if (!bp.resv)
971 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
972 				      NULL));
973 	resv = bp.resv;
974 	memset(&bp, 0, sizeof(bp));
975 	bp.size = amdgpu_vm_bo_size(adev, level);
976 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
977 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
978 	bp.type = ttm_bo_type_kernel;
979 	bp.resv = bo->tbo.base.resv;
980 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
981 
982 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
983 
984 	if (!resv)
985 		dma_resv_unlock(bo->tbo.base.resv);
986 
987 	if (r) {
988 		amdgpu_bo_unref(&bo);
989 		return r;
990 	}
991 
992 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
993 	amdgpu_bo_add_to_shadow_list(*vmbo);
994 
995 	return 0;
996 }
997 
998 /**
999  * amdgpu_vm_alloc_pts - Allocate a specific page table
1000  *
1001  * @adev: amdgpu_device pointer
1002  * @vm: VM to allocate page tables for
1003  * @cursor: Which page table to allocate
1004  * @immediate: use an immediate update
1005  *
1006  * Make sure a specific page table or directory is allocated.
1007  *
1008  * Returns:
1009  * 1 if page table needed to be allocated, 0 if page table was already
1010  * allocated, negative errno if an error occurred.
1011  */
1012 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1013 			       struct amdgpu_vm *vm,
1014 			       struct amdgpu_vm_pt_cursor *cursor,
1015 			       bool immediate)
1016 {
1017 	struct amdgpu_vm_bo_base *entry = cursor->entry;
1018 	struct amdgpu_bo *pt_bo;
1019 	struct amdgpu_bo_vm *pt;
1020 	int r;
1021 
1022 	if (entry->bo)
1023 		return 0;
1024 
1025 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1026 	if (r)
1027 		return r;
1028 
1029 	/* Keep a reference to the root directory to avoid
1030 	 * freeing them up in the wrong order.
1031 	 */
1032 	pt_bo = &pt->bo;
1033 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1034 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1035 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1036 	if (r)
1037 		goto error_free_pt;
1038 
1039 	return 0;
1040 
1041 error_free_pt:
1042 	amdgpu_bo_unref(&pt->shadow);
1043 	amdgpu_bo_unref(&pt_bo);
1044 	return r;
1045 }
1046 
1047 /**
1048  * amdgpu_vm_free_table - fre one PD/PT
1049  *
1050  * @entry: PDE to free
1051  */
1052 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1053 {
1054 	struct amdgpu_bo *shadow;
1055 
1056 	if (!entry->bo)
1057 		return;
1058 	shadow = amdgpu_bo_shadowed(entry->bo);
1059 	entry->bo->vm_bo = NULL;
1060 	list_del(&entry->vm_status);
1061 	amdgpu_bo_unref(&shadow);
1062 	amdgpu_bo_unref(&entry->bo);
1063 }
1064 
1065 /**
1066  * amdgpu_vm_free_pts - free PD/PT levels
1067  *
1068  * @adev: amdgpu device structure
1069  * @vm: amdgpu vm structure
1070  * @start: optional cursor where to start freeing PDs/PTs
1071  *
1072  * Free the page directory or page table level and all sub levels.
1073  */
1074 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1075 			       struct amdgpu_vm *vm,
1076 			       struct amdgpu_vm_pt_cursor *start)
1077 {
1078 	struct amdgpu_vm_pt_cursor cursor;
1079 	struct amdgpu_vm_bo_base *entry;
1080 
1081 	vm->bulk_moveable = false;
1082 
1083 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1084 		amdgpu_vm_free_table(entry);
1085 
1086 	if (start)
1087 		amdgpu_vm_free_table(start->entry);
1088 }
1089 
1090 /**
1091  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1092  *
1093  * @adev: amdgpu_device pointer
1094  */
1095 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1096 {
1097 	const struct amdgpu_ip_block *ip_block;
1098 	bool has_compute_vm_bug;
1099 	struct amdgpu_ring *ring;
1100 	int i;
1101 
1102 	has_compute_vm_bug = false;
1103 
1104 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1105 	if (ip_block) {
1106 		/* Compute has a VM bug for GFX version < 7.
1107 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1108 		if (ip_block->version->major <= 7)
1109 			has_compute_vm_bug = true;
1110 		else if (ip_block->version->major == 8)
1111 			if (adev->gfx.mec_fw_version < 673)
1112 				has_compute_vm_bug = true;
1113 	}
1114 
1115 	for (i = 0; i < adev->num_rings; i++) {
1116 		ring = adev->rings[i];
1117 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1118 			/* only compute rings */
1119 			ring->has_compute_vm_bug = has_compute_vm_bug;
1120 		else
1121 			ring->has_compute_vm_bug = false;
1122 	}
1123 }
1124 
1125 /**
1126  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1127  *
1128  * @ring: ring on which the job will be submitted
1129  * @job: job to submit
1130  *
1131  * Returns:
1132  * True if sync is needed.
1133  */
1134 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1135 				  struct amdgpu_job *job)
1136 {
1137 	struct amdgpu_device *adev = ring->adev;
1138 	unsigned vmhub = ring->funcs->vmhub;
1139 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1140 	struct amdgpu_vmid *id;
1141 	bool gds_switch_needed;
1142 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1143 
1144 	if (job->vmid == 0)
1145 		return false;
1146 	id = &id_mgr->ids[job->vmid];
1147 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1148 		id->gds_base != job->gds_base ||
1149 		id->gds_size != job->gds_size ||
1150 		id->gws_base != job->gws_base ||
1151 		id->gws_size != job->gws_size ||
1152 		id->oa_base != job->oa_base ||
1153 		id->oa_size != job->oa_size);
1154 
1155 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1156 		return true;
1157 
1158 	return vm_flush_needed || gds_switch_needed;
1159 }
1160 
1161 /**
1162  * amdgpu_vm_flush - hardware flush the vm
1163  *
1164  * @ring: ring to use for flush
1165  * @job:  related job
1166  * @need_pipe_sync: is pipe sync needed
1167  *
1168  * Emit a VM flush when it is necessary.
1169  *
1170  * Returns:
1171  * 0 on success, errno otherwise.
1172  */
1173 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1174 		    bool need_pipe_sync)
1175 {
1176 	struct amdgpu_device *adev = ring->adev;
1177 	unsigned vmhub = ring->funcs->vmhub;
1178 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1179 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1180 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1181 		id->gds_base != job->gds_base ||
1182 		id->gds_size != job->gds_size ||
1183 		id->gws_base != job->gws_base ||
1184 		id->gws_size != job->gws_size ||
1185 		id->oa_base != job->oa_base ||
1186 		id->oa_size != job->oa_size);
1187 	bool vm_flush_needed = job->vm_needs_flush;
1188 	struct dma_fence *fence = NULL;
1189 	bool pasid_mapping_needed = false;
1190 	unsigned patch_offset = 0;
1191 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1192 	int r;
1193 
1194 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1195 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1196 
1197 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1198 		gds_switch_needed = true;
1199 		vm_flush_needed = true;
1200 		pasid_mapping_needed = true;
1201 	}
1202 
1203 	mutex_lock(&id_mgr->lock);
1204 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1205 	    !dma_fence_is_signaled(id->pasid_mapping))
1206 		pasid_mapping_needed = true;
1207 	mutex_unlock(&id_mgr->lock);
1208 
1209 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1210 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1211 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1212 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1213 		ring->funcs->emit_wreg;
1214 
1215 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1216 		return 0;
1217 
1218 	if (ring->funcs->init_cond_exec)
1219 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1220 
1221 	if (need_pipe_sync)
1222 		amdgpu_ring_emit_pipeline_sync(ring);
1223 
1224 	if (vm_flush_needed) {
1225 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1226 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1227 	}
1228 
1229 	if (pasid_mapping_needed)
1230 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1231 
1232 	if (vm_flush_needed || pasid_mapping_needed) {
1233 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1234 		if (r)
1235 			return r;
1236 	}
1237 
1238 	if (vm_flush_needed) {
1239 		mutex_lock(&id_mgr->lock);
1240 		dma_fence_put(id->last_flush);
1241 		id->last_flush = dma_fence_get(fence);
1242 		id->current_gpu_reset_count =
1243 			atomic_read(&adev->gpu_reset_counter);
1244 		mutex_unlock(&id_mgr->lock);
1245 	}
1246 
1247 	if (pasid_mapping_needed) {
1248 		mutex_lock(&id_mgr->lock);
1249 		id->pasid = job->pasid;
1250 		dma_fence_put(id->pasid_mapping);
1251 		id->pasid_mapping = dma_fence_get(fence);
1252 		mutex_unlock(&id_mgr->lock);
1253 	}
1254 	dma_fence_put(fence);
1255 
1256 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1257 		id->gds_base = job->gds_base;
1258 		id->gds_size = job->gds_size;
1259 		id->gws_base = job->gws_base;
1260 		id->gws_size = job->gws_size;
1261 		id->oa_base = job->oa_base;
1262 		id->oa_size = job->oa_size;
1263 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1264 					    job->gds_size, job->gws_base,
1265 					    job->gws_size, job->oa_base,
1266 					    job->oa_size);
1267 	}
1268 
1269 	if (ring->funcs->patch_cond_exec)
1270 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1271 
1272 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1273 	if (ring->funcs->emit_switch_buffer) {
1274 		amdgpu_ring_emit_switch_buffer(ring);
1275 		amdgpu_ring_emit_switch_buffer(ring);
1276 	}
1277 	return 0;
1278 }
1279 
1280 /**
1281  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1282  *
1283  * @vm: requested vm
1284  * @bo: requested buffer object
1285  *
1286  * Find @bo inside the requested vm.
1287  * Search inside the @bos vm list for the requested vm
1288  * Returns the found bo_va or NULL if none is found
1289  *
1290  * Object has to be reserved!
1291  *
1292  * Returns:
1293  * Found bo_va or NULL.
1294  */
1295 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1296 				       struct amdgpu_bo *bo)
1297 {
1298 	struct amdgpu_vm_bo_base *base;
1299 
1300 	for (base = bo->vm_bo; base; base = base->next) {
1301 		if (base->vm != vm)
1302 			continue;
1303 
1304 		return container_of(base, struct amdgpu_bo_va, base);
1305 	}
1306 	return NULL;
1307 }
1308 
1309 /**
1310  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1311  *
1312  * @pages_addr: optional DMA address to use for lookup
1313  * @addr: the unmapped addr
1314  *
1315  * Look up the physical address of the page that the pte resolves
1316  * to.
1317  *
1318  * Returns:
1319  * The pointer for the page table entry.
1320  */
1321 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1322 {
1323 	uint64_t result;
1324 
1325 	/* page table offset */
1326 	result = pages_addr[addr >> PAGE_SHIFT];
1327 
1328 	/* in case cpu page size != gpu page size*/
1329 	result |= addr & (~PAGE_MASK);
1330 
1331 	result &= 0xFFFFFFFFFFFFF000ULL;
1332 
1333 	return result;
1334 }
1335 
1336 /**
1337  * amdgpu_vm_update_pde - update a single level in the hierarchy
1338  *
1339  * @params: parameters for the update
1340  * @vm: requested vm
1341  * @entry: entry to update
1342  *
1343  * Makes sure the requested entry in parent is up to date.
1344  */
1345 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1346 				struct amdgpu_vm *vm,
1347 				struct amdgpu_vm_bo_base *entry)
1348 {
1349 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1350 	struct amdgpu_bo *bo = parent->bo, *pbo;
1351 	uint64_t pde, pt, flags;
1352 	unsigned level;
1353 
1354 	for (level = 0, pbo = bo->parent; pbo; ++level)
1355 		pbo = pbo->parent;
1356 
1357 	level += params->adev->vm_manager.root_level;
1358 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1359 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1360 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1361 					1, 0, flags);
1362 }
1363 
1364 /**
1365  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1366  *
1367  * @adev: amdgpu_device pointer
1368  * @vm: related vm
1369  *
1370  * Mark all PD level as invalid after an error.
1371  */
1372 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1373 				     struct amdgpu_vm *vm)
1374 {
1375 	struct amdgpu_vm_pt_cursor cursor;
1376 	struct amdgpu_vm_bo_base *entry;
1377 
1378 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1379 		if (entry->bo && !entry->moved)
1380 			amdgpu_vm_bo_relocated(entry);
1381 }
1382 
1383 /**
1384  * amdgpu_vm_update_pdes - make sure that all directories are valid
1385  *
1386  * @adev: amdgpu_device pointer
1387  * @vm: requested vm
1388  * @immediate: submit immediately to the paging queue
1389  *
1390  * Makes sure all directories are up to date.
1391  *
1392  * Returns:
1393  * 0 for success, error for failure.
1394  */
1395 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1396 			  struct amdgpu_vm *vm, bool immediate)
1397 {
1398 	struct amdgpu_vm_update_params params;
1399 	int r, idx;
1400 
1401 	if (list_empty(&vm->relocated))
1402 		return 0;
1403 
1404 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1405 		return -ENODEV;
1406 
1407 	memset(&params, 0, sizeof(params));
1408 	params.adev = adev;
1409 	params.vm = vm;
1410 	params.immediate = immediate;
1411 
1412 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1413 	if (r)
1414 		goto exit;
1415 
1416 	while (!list_empty(&vm->relocated)) {
1417 		struct amdgpu_vm_bo_base *entry;
1418 
1419 		entry = list_first_entry(&vm->relocated,
1420 					 struct amdgpu_vm_bo_base,
1421 					 vm_status);
1422 		amdgpu_vm_bo_idle(entry);
1423 
1424 		r = amdgpu_vm_update_pde(&params, vm, entry);
1425 		if (r)
1426 			goto error;
1427 	}
1428 
1429 	r = vm->update_funcs->commit(&params, &vm->last_update);
1430 	if (r)
1431 		goto error;
1432 	drm_dev_exit(idx);
1433 	return 0;
1434 
1435 error:
1436 	amdgpu_vm_invalidate_pds(adev, vm);
1437 exit:
1438 	drm_dev_exit(idx);
1439 	return r;
1440 }
1441 
1442 /*
1443  * amdgpu_vm_update_flags - figure out flags for PTE updates
1444  *
1445  * Make sure to set the right flags for the PTEs at the desired level.
1446  */
1447 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1448 				   struct amdgpu_bo_vm *pt, unsigned int level,
1449 				   uint64_t pe, uint64_t addr,
1450 				   unsigned int count, uint32_t incr,
1451 				   uint64_t flags)
1452 
1453 {
1454 	if (level != AMDGPU_VM_PTB) {
1455 		flags |= AMDGPU_PDE_PTE;
1456 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1457 
1458 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1459 		   !(flags & AMDGPU_PTE_VALID) &&
1460 		   !(flags & AMDGPU_PTE_PRT)) {
1461 
1462 		/* Workaround for fault priority problem on GMC9 */
1463 		flags |= AMDGPU_PTE_EXECUTABLE;
1464 	}
1465 
1466 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1467 					 flags);
1468 }
1469 
1470 /**
1471  * amdgpu_vm_fragment - get fragment for PTEs
1472  *
1473  * @params: see amdgpu_vm_update_params definition
1474  * @start: first PTE to handle
1475  * @end: last PTE to handle
1476  * @flags: hw mapping flags
1477  * @frag: resulting fragment size
1478  * @frag_end: end of this fragment
1479  *
1480  * Returns the first possible fragment for the start and end address.
1481  */
1482 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1483 			       uint64_t start, uint64_t end, uint64_t flags,
1484 			       unsigned int *frag, uint64_t *frag_end)
1485 {
1486 	/**
1487 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1488 	 * field in the PTE. When this field is set to a non-zero value, page
1489 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1490 	 * flags are considered valid for all PTEs within the fragment range
1491 	 * and corresponding mappings are assumed to be physically contiguous.
1492 	 *
1493 	 * The L1 TLB can store a single PTE for the whole fragment,
1494 	 * significantly increasing the space available for translation
1495 	 * caching. This leads to large improvements in throughput when the
1496 	 * TLB is under pressure.
1497 	 *
1498 	 * The L2 TLB distributes small and large fragments into two
1499 	 * asymmetric partitions. The large fragment cache is significantly
1500 	 * larger. Thus, we try to use large fragments wherever possible.
1501 	 * Userspace can support this by aligning virtual base address and
1502 	 * allocation size to the fragment size.
1503 	 *
1504 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1505 	 * is now directly feed with small/huge/giant pages from the walker.
1506 	 */
1507 	unsigned max_frag;
1508 
1509 	if (params->adev->asic_type < CHIP_VEGA10)
1510 		max_frag = params->adev->vm_manager.fragment_size;
1511 	else
1512 		max_frag = 31;
1513 
1514 	/* system pages are non continuously */
1515 	if (params->pages_addr) {
1516 		*frag = 0;
1517 		*frag_end = end;
1518 		return;
1519 	}
1520 
1521 	/* This intentionally wraps around if no bit is set */
1522 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1523 	if (*frag >= max_frag) {
1524 		*frag = max_frag;
1525 		*frag_end = end & ~((1ULL << max_frag) - 1);
1526 	} else {
1527 		*frag_end = start + (1 << *frag);
1528 	}
1529 }
1530 
1531 /**
1532  * amdgpu_vm_update_ptes - make sure that page tables are valid
1533  *
1534  * @params: see amdgpu_vm_update_params definition
1535  * @start: start of GPU address range
1536  * @end: end of GPU address range
1537  * @dst: destination address to map to, the next dst inside the function
1538  * @flags: mapping flags
1539  *
1540  * Update the page tables in the range @start - @end.
1541  *
1542  * Returns:
1543  * 0 for success, -EINVAL for failure.
1544  */
1545 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1546 				 uint64_t start, uint64_t end,
1547 				 uint64_t dst, uint64_t flags)
1548 {
1549 	struct amdgpu_device *adev = params->adev;
1550 	struct amdgpu_vm_pt_cursor cursor;
1551 	uint64_t frag_start = start, frag_end;
1552 	unsigned int frag;
1553 	int r;
1554 
1555 	/* figure out the initial fragment */
1556 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1557 
1558 	/* walk over the address space and update the PTs */
1559 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1560 	while (cursor.pfn < end) {
1561 		unsigned shift, parent_shift, mask;
1562 		uint64_t incr, entry_end, pe_start;
1563 		struct amdgpu_bo *pt;
1564 
1565 		if (!params->unlocked) {
1566 			/* make sure that the page tables covering the
1567 			 * address range are actually allocated
1568 			 */
1569 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1570 						&cursor, params->immediate);
1571 			if (r)
1572 				return r;
1573 		}
1574 
1575 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1576 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1577 		if (params->unlocked) {
1578 			/* Unlocked updates are only allowed on the leaves */
1579 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1580 				continue;
1581 		} else if (adev->asic_type < CHIP_VEGA10 &&
1582 			   (flags & AMDGPU_PTE_VALID)) {
1583 			/* No huge page support before GMC v9 */
1584 			if (cursor.level != AMDGPU_VM_PTB) {
1585 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1586 					return -ENOENT;
1587 				continue;
1588 			}
1589 		} else if (frag < shift) {
1590 			/* We can't use this level when the fragment size is
1591 			 * smaller than the address shift. Go to the next
1592 			 * child entry and try again.
1593 			 */
1594 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1595 				continue;
1596 		} else if (frag >= parent_shift) {
1597 			/* If the fragment size is even larger than the parent
1598 			 * shift we should go up one level and check it again.
1599 			 */
1600 			if (!amdgpu_vm_pt_ancestor(&cursor))
1601 				return -EINVAL;
1602 			continue;
1603 		}
1604 
1605 		pt = cursor.entry->bo;
1606 		if (!pt) {
1607 			/* We need all PDs and PTs for mapping something, */
1608 			if (flags & AMDGPU_PTE_VALID)
1609 				return -ENOENT;
1610 
1611 			/* but unmapping something can happen at a higher
1612 			 * level.
1613 			 */
1614 			if (!amdgpu_vm_pt_ancestor(&cursor))
1615 				return -EINVAL;
1616 
1617 			pt = cursor.entry->bo;
1618 			shift = parent_shift;
1619 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1620 				   1ULL << shift));
1621 		}
1622 
1623 		/* Looks good so far, calculate parameters for the update */
1624 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1625 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1626 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1627 		entry_end = ((uint64_t)mask + 1) << shift;
1628 		entry_end += cursor.pfn & ~(entry_end - 1);
1629 		entry_end = min(entry_end, end);
1630 
1631 		do {
1632 			struct amdgpu_vm *vm = params->vm;
1633 			uint64_t upd_end = min(entry_end, frag_end);
1634 			unsigned nptes = (upd_end - frag_start) >> shift;
1635 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1636 
1637 			/* This can happen when we set higher level PDs to
1638 			 * silent to stop fault floods.
1639 			 */
1640 			nptes = max(nptes, 1u);
1641 
1642 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1643 						    nptes, dst, incr, upd_flags,
1644 						    vm->task_info.pid,
1645 						    vm->immediate.fence_context);
1646 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1647 					       cursor.level, pe_start, dst,
1648 					       nptes, incr, upd_flags);
1649 
1650 			pe_start += nptes * 8;
1651 			dst += nptes * incr;
1652 
1653 			frag_start = upd_end;
1654 			if (frag_start >= frag_end) {
1655 				/* figure out the next fragment */
1656 				amdgpu_vm_fragment(params, frag_start, end,
1657 						   flags, &frag, &frag_end);
1658 				if (frag < shift)
1659 					break;
1660 			}
1661 		} while (frag_start < entry_end);
1662 
1663 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1664 			/* Free all child entries.
1665 			 * Update the tables with the flags and addresses and free up subsequent
1666 			 * tables in the case of huge pages or freed up areas.
1667 			 * This is the maximum you can free, because all other page tables are not
1668 			 * completely covered by the range and so potentially still in use.
1669 			 */
1670 			while (cursor.pfn < frag_start) {
1671 				/* Make sure previous mapping is freed */
1672 				if (cursor.entry->bo) {
1673 					params->table_freed = true;
1674 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1675 				}
1676 				amdgpu_vm_pt_next(adev, &cursor);
1677 			}
1678 
1679 		} else if (frag >= shift) {
1680 			/* or just move on to the next on the same level. */
1681 			amdgpu_vm_pt_next(adev, &cursor);
1682 		}
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1690  *
1691  * @adev: amdgpu_device pointer of the VM
1692  * @bo_adev: amdgpu_device pointer of the mapped BO
1693  * @vm: requested vm
1694  * @immediate: immediate submission in a page fault
1695  * @unlocked: unlocked invalidation during MM callback
1696  * @resv: fences we need to sync to
1697  * @start: start of mapped range
1698  * @last: last mapped entry
1699  * @flags: flags for the entries
1700  * @offset: offset into nodes and pages_addr
1701  * @res: ttm_resource to map
1702  * @pages_addr: DMA addresses to use for mapping
1703  * @fence: optional resulting fence
1704  * @table_freed: return true if page table is freed
1705  *
1706  * Fill in the page table entries between @start and @last.
1707  *
1708  * Returns:
1709  * 0 for success, -EINVAL for failure.
1710  */
1711 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1712 				struct amdgpu_device *bo_adev,
1713 				struct amdgpu_vm *vm, bool immediate,
1714 				bool unlocked, struct dma_resv *resv,
1715 				uint64_t start, uint64_t last,
1716 				uint64_t flags, uint64_t offset,
1717 				struct ttm_resource *res,
1718 				dma_addr_t *pages_addr,
1719 				struct dma_fence **fence,
1720 				bool *table_freed)
1721 {
1722 	struct amdgpu_vm_update_params params;
1723 	struct amdgpu_res_cursor cursor;
1724 	enum amdgpu_sync_mode sync_mode;
1725 	int r, idx;
1726 
1727 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1728 		return -ENODEV;
1729 
1730 	memset(&params, 0, sizeof(params));
1731 	params.adev = adev;
1732 	params.vm = vm;
1733 	params.immediate = immediate;
1734 	params.pages_addr = pages_addr;
1735 	params.unlocked = unlocked;
1736 
1737 	/* Implicitly sync to command submissions in the same VM before
1738 	 * unmapping. Sync to moving fences before mapping.
1739 	 */
1740 	if (!(flags & AMDGPU_PTE_VALID))
1741 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1742 	else
1743 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1744 
1745 	amdgpu_vm_eviction_lock(vm);
1746 	if (vm->evicting) {
1747 		r = -EBUSY;
1748 		goto error_unlock;
1749 	}
1750 
1751 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1752 		struct dma_fence *tmp = dma_fence_get_stub();
1753 
1754 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1755 		swap(vm->last_unlocked, tmp);
1756 		dma_fence_put(tmp);
1757 	}
1758 
1759 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1760 	if (r)
1761 		goto error_unlock;
1762 
1763 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1764 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1765 	while (cursor.remaining) {
1766 		uint64_t tmp, num_entries, addr;
1767 
1768 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1769 		if (pages_addr) {
1770 			bool contiguous = true;
1771 
1772 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1773 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1774 				uint64_t count;
1775 
1776 				contiguous = pages_addr[pfn + 1] ==
1777 					pages_addr[pfn] + PAGE_SIZE;
1778 
1779 				tmp = num_entries /
1780 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1781 				for (count = 2; count < tmp; ++count) {
1782 					uint64_t idx = pfn + count;
1783 
1784 					if (contiguous != (pages_addr[idx] ==
1785 					    pages_addr[idx - 1] + PAGE_SIZE))
1786 						break;
1787 				}
1788 				num_entries = count *
1789 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1790 			}
1791 
1792 			if (!contiguous) {
1793 				addr = cursor.start;
1794 				params.pages_addr = pages_addr;
1795 			} else {
1796 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1797 				params.pages_addr = NULL;
1798 			}
1799 
1800 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1801 			addr = bo_adev->vm_manager.vram_base_offset +
1802 				cursor.start;
1803 		} else {
1804 			addr = 0;
1805 		}
1806 
1807 		tmp = start + num_entries;
1808 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1809 		if (r)
1810 			goto error_unlock;
1811 
1812 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1813 		start = tmp;
1814 	}
1815 
1816 	r = vm->update_funcs->commit(&params, fence);
1817 
1818 	if (table_freed)
1819 		*table_freed = *table_freed || params.table_freed;
1820 
1821 error_unlock:
1822 	amdgpu_vm_eviction_unlock(vm);
1823 	drm_dev_exit(idx);
1824 	return r;
1825 }
1826 
1827 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1828 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1829 {
1830 	struct amdgpu_bo_va *bo_va, *tmp;
1831 
1832 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1833 		if (!bo_va->base.bo)
1834 			continue;
1835 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1836 				gtt_mem, cpu_mem);
1837 	}
1838 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1839 		if (!bo_va->base.bo)
1840 			continue;
1841 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1842 				gtt_mem, cpu_mem);
1843 	}
1844 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1845 		if (!bo_va->base.bo)
1846 			continue;
1847 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1848 				gtt_mem, cpu_mem);
1849 	}
1850 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1851 		if (!bo_va->base.bo)
1852 			continue;
1853 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1854 				gtt_mem, cpu_mem);
1855 	}
1856 	spin_lock(&vm->invalidated_lock);
1857 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1858 		if (!bo_va->base.bo)
1859 			continue;
1860 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1861 				gtt_mem, cpu_mem);
1862 	}
1863 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1864 		if (!bo_va->base.bo)
1865 			continue;
1866 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1867 				gtt_mem, cpu_mem);
1868 	}
1869 	spin_unlock(&vm->invalidated_lock);
1870 }
1871 /**
1872  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1873  *
1874  * @adev: amdgpu_device pointer
1875  * @bo_va: requested BO and VM object
1876  * @clear: if true clear the entries
1877  * @table_freed: return true if page table is freed
1878  *
1879  * Fill in the page table entries for @bo_va.
1880  *
1881  * Returns:
1882  * 0 for success, -EINVAL for failure.
1883  */
1884 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1885 			bool clear, bool *table_freed)
1886 {
1887 	struct amdgpu_bo *bo = bo_va->base.bo;
1888 	struct amdgpu_vm *vm = bo_va->base.vm;
1889 	struct amdgpu_bo_va_mapping *mapping;
1890 	dma_addr_t *pages_addr = NULL;
1891 	struct ttm_resource *mem;
1892 	struct dma_fence **last_update;
1893 	struct dma_resv *resv;
1894 	uint64_t flags;
1895 	struct amdgpu_device *bo_adev = adev;
1896 	int r;
1897 
1898 	if (clear || !bo) {
1899 		mem = NULL;
1900 		resv = vm->root.bo->tbo.base.resv;
1901 	} else {
1902 		struct drm_gem_object *obj = &bo->tbo.base;
1903 
1904 		resv = bo->tbo.base.resv;
1905 		if (obj->import_attach && bo_va->is_xgmi) {
1906 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1907 			struct drm_gem_object *gobj = dma_buf->priv;
1908 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1909 
1910 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1911 				bo = gem_to_amdgpu_bo(gobj);
1912 		}
1913 		mem = bo->tbo.resource;
1914 		if (mem->mem_type == TTM_PL_TT ||
1915 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1916 			pages_addr = bo->tbo.ttm->dma_address;
1917 	}
1918 
1919 	if (bo) {
1920 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1921 
1922 		if (amdgpu_bo_encrypted(bo))
1923 			flags |= AMDGPU_PTE_TMZ;
1924 
1925 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1926 	} else {
1927 		flags = 0x0;
1928 	}
1929 
1930 	if (clear || (bo && bo->tbo.base.resv ==
1931 		      vm->root.bo->tbo.base.resv))
1932 		last_update = &vm->last_update;
1933 	else
1934 		last_update = &bo_va->last_pt_update;
1935 
1936 	if (!clear && bo_va->base.moved) {
1937 		bo_va->base.moved = false;
1938 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1939 
1940 	} else if (bo_va->cleared != clear) {
1941 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1942 	}
1943 
1944 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1945 		uint64_t update_flags = flags;
1946 
1947 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1948 		 * but in case of something, we filter the flags in first place
1949 		 */
1950 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1951 			update_flags &= ~AMDGPU_PTE_READABLE;
1952 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1953 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1954 
1955 		/* Apply ASIC specific mapping flags */
1956 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1957 
1958 		trace_amdgpu_vm_bo_update(mapping);
1959 
1960 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1961 						resv, mapping->start,
1962 						mapping->last, update_flags,
1963 						mapping->offset, mem,
1964 						pages_addr, last_update, table_freed);
1965 		if (r)
1966 			return r;
1967 	}
1968 
1969 	/* If the BO is not in its preferred location add it back to
1970 	 * the evicted list so that it gets validated again on the
1971 	 * next command submission.
1972 	 */
1973 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1974 		uint32_t mem_type = bo->tbo.resource->mem_type;
1975 
1976 		if (!(bo->preferred_domains &
1977 		      amdgpu_mem_type_to_domain(mem_type)))
1978 			amdgpu_vm_bo_evicted(&bo_va->base);
1979 		else
1980 			amdgpu_vm_bo_idle(&bo_va->base);
1981 	} else {
1982 		amdgpu_vm_bo_done(&bo_va->base);
1983 	}
1984 
1985 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1986 	bo_va->cleared = clear;
1987 
1988 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1989 		list_for_each_entry(mapping, &bo_va->valids, list)
1990 			trace_amdgpu_vm_bo_mapping(mapping);
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 /**
1997  * amdgpu_vm_update_prt_state - update the global PRT state
1998  *
1999  * @adev: amdgpu_device pointer
2000  */
2001 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
2002 {
2003 	unsigned long flags;
2004 	bool enable;
2005 
2006 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2007 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2008 	adev->gmc.gmc_funcs->set_prt(adev, enable);
2009 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2010 }
2011 
2012 /**
2013  * amdgpu_vm_prt_get - add a PRT user
2014  *
2015  * @adev: amdgpu_device pointer
2016  */
2017 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2018 {
2019 	if (!adev->gmc.gmc_funcs->set_prt)
2020 		return;
2021 
2022 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2023 		amdgpu_vm_update_prt_state(adev);
2024 }
2025 
2026 /**
2027  * amdgpu_vm_prt_put - drop a PRT user
2028  *
2029  * @adev: amdgpu_device pointer
2030  */
2031 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2032 {
2033 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2034 		amdgpu_vm_update_prt_state(adev);
2035 }
2036 
2037 /**
2038  * amdgpu_vm_prt_cb - callback for updating the PRT status
2039  *
2040  * @fence: fence for the callback
2041  * @_cb: the callback function
2042  */
2043 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2044 {
2045 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2046 
2047 	amdgpu_vm_prt_put(cb->adev);
2048 	kfree(cb);
2049 }
2050 
2051 /**
2052  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2053  *
2054  * @adev: amdgpu_device pointer
2055  * @fence: fence for the callback
2056  */
2057 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2058 				 struct dma_fence *fence)
2059 {
2060 	struct amdgpu_prt_cb *cb;
2061 
2062 	if (!adev->gmc.gmc_funcs->set_prt)
2063 		return;
2064 
2065 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2066 	if (!cb) {
2067 		/* Last resort when we are OOM */
2068 		if (fence)
2069 			dma_fence_wait(fence, false);
2070 
2071 		amdgpu_vm_prt_put(adev);
2072 	} else {
2073 		cb->adev = adev;
2074 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2075 						     amdgpu_vm_prt_cb))
2076 			amdgpu_vm_prt_cb(fence, &cb->cb);
2077 	}
2078 }
2079 
2080 /**
2081  * amdgpu_vm_free_mapping - free a mapping
2082  *
2083  * @adev: amdgpu_device pointer
2084  * @vm: requested vm
2085  * @mapping: mapping to be freed
2086  * @fence: fence of the unmap operation
2087  *
2088  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2089  */
2090 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2091 				   struct amdgpu_vm *vm,
2092 				   struct amdgpu_bo_va_mapping *mapping,
2093 				   struct dma_fence *fence)
2094 {
2095 	if (mapping->flags & AMDGPU_PTE_PRT)
2096 		amdgpu_vm_add_prt_cb(adev, fence);
2097 	kfree(mapping);
2098 }
2099 
2100 /**
2101  * amdgpu_vm_prt_fini - finish all prt mappings
2102  *
2103  * @adev: amdgpu_device pointer
2104  * @vm: requested vm
2105  *
2106  * Register a cleanup callback to disable PRT support after VM dies.
2107  */
2108 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2109 {
2110 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2111 	struct dma_resv_iter cursor;
2112 	struct dma_fence *fence;
2113 
2114 	dma_resv_for_each_fence(&cursor, resv, true, fence) {
2115 		/* Add a callback for each fence in the reservation object */
2116 		amdgpu_vm_prt_get(adev);
2117 		amdgpu_vm_add_prt_cb(adev, fence);
2118 	}
2119 }
2120 
2121 /**
2122  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2123  *
2124  * @adev: amdgpu_device pointer
2125  * @vm: requested vm
2126  * @fence: optional resulting fence (unchanged if no work needed to be done
2127  * or if an error occurred)
2128  *
2129  * Make sure all freed BOs are cleared in the PT.
2130  * PTs have to be reserved and mutex must be locked!
2131  *
2132  * Returns:
2133  * 0 for success.
2134  *
2135  */
2136 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2137 			  struct amdgpu_vm *vm,
2138 			  struct dma_fence **fence)
2139 {
2140 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2141 	struct amdgpu_bo_va_mapping *mapping;
2142 	uint64_t init_pte_value = 0;
2143 	struct dma_fence *f = NULL;
2144 	int r;
2145 
2146 	while (!list_empty(&vm->freed)) {
2147 		mapping = list_first_entry(&vm->freed,
2148 			struct amdgpu_bo_va_mapping, list);
2149 		list_del(&mapping->list);
2150 
2151 		if (vm->pte_support_ats &&
2152 		    mapping->start < AMDGPU_GMC_HOLE_START)
2153 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2154 
2155 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2156 						resv, mapping->start,
2157 						mapping->last, init_pte_value,
2158 						0, NULL, NULL, &f, NULL);
2159 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2160 		if (r) {
2161 			dma_fence_put(f);
2162 			return r;
2163 		}
2164 	}
2165 
2166 	if (fence && f) {
2167 		dma_fence_put(*fence);
2168 		*fence = f;
2169 	} else {
2170 		dma_fence_put(f);
2171 	}
2172 
2173 	return 0;
2174 
2175 }
2176 
2177 /**
2178  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2179  *
2180  * @adev: amdgpu_device pointer
2181  * @vm: requested vm
2182  *
2183  * Make sure all BOs which are moved are updated in the PTs.
2184  *
2185  * Returns:
2186  * 0 for success.
2187  *
2188  * PTs have to be reserved!
2189  */
2190 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2191 			   struct amdgpu_vm *vm)
2192 {
2193 	struct amdgpu_bo_va *bo_va, *tmp;
2194 	struct dma_resv *resv;
2195 	bool clear;
2196 	int r;
2197 
2198 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2199 		/* Per VM BOs never need to bo cleared in the page tables */
2200 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2201 		if (r)
2202 			return r;
2203 	}
2204 
2205 	spin_lock(&vm->invalidated_lock);
2206 	while (!list_empty(&vm->invalidated)) {
2207 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2208 					 base.vm_status);
2209 		resv = bo_va->base.bo->tbo.base.resv;
2210 		spin_unlock(&vm->invalidated_lock);
2211 
2212 		/* Try to reserve the BO to avoid clearing its ptes */
2213 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2214 			clear = false;
2215 		/* Somebody else is using the BO right now */
2216 		else
2217 			clear = true;
2218 
2219 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2220 		if (r)
2221 			return r;
2222 
2223 		if (!clear)
2224 			dma_resv_unlock(resv);
2225 		spin_lock(&vm->invalidated_lock);
2226 	}
2227 	spin_unlock(&vm->invalidated_lock);
2228 
2229 	return 0;
2230 }
2231 
2232 /**
2233  * amdgpu_vm_bo_add - add a bo to a specific vm
2234  *
2235  * @adev: amdgpu_device pointer
2236  * @vm: requested vm
2237  * @bo: amdgpu buffer object
2238  *
2239  * Add @bo into the requested vm.
2240  * Add @bo to the list of bos associated with the vm
2241  *
2242  * Returns:
2243  * Newly added bo_va or NULL for failure
2244  *
2245  * Object has to be reserved!
2246  */
2247 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2248 				      struct amdgpu_vm *vm,
2249 				      struct amdgpu_bo *bo)
2250 {
2251 	struct amdgpu_bo_va *bo_va;
2252 
2253 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2254 	if (bo_va == NULL) {
2255 		return NULL;
2256 	}
2257 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2258 
2259 	bo_va->ref_count = 1;
2260 	INIT_LIST_HEAD(&bo_va->valids);
2261 	INIT_LIST_HEAD(&bo_va->invalids);
2262 
2263 	if (!bo)
2264 		return bo_va;
2265 
2266 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2267 		bo_va->is_xgmi = true;
2268 		/* Power up XGMI if it can be potentially used */
2269 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2270 	}
2271 
2272 	return bo_va;
2273 }
2274 
2275 
2276 /**
2277  * amdgpu_vm_bo_insert_map - insert a new mapping
2278  *
2279  * @adev: amdgpu_device pointer
2280  * @bo_va: bo_va to store the address
2281  * @mapping: the mapping to insert
2282  *
2283  * Insert a new mapping into all structures.
2284  */
2285 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2286 				    struct amdgpu_bo_va *bo_va,
2287 				    struct amdgpu_bo_va_mapping *mapping)
2288 {
2289 	struct amdgpu_vm *vm = bo_va->base.vm;
2290 	struct amdgpu_bo *bo = bo_va->base.bo;
2291 
2292 	mapping->bo_va = bo_va;
2293 	list_add(&mapping->list, &bo_va->invalids);
2294 	amdgpu_vm_it_insert(mapping, &vm->va);
2295 
2296 	if (mapping->flags & AMDGPU_PTE_PRT)
2297 		amdgpu_vm_prt_get(adev);
2298 
2299 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2300 	    !bo_va->base.moved) {
2301 		list_move(&bo_va->base.vm_status, &vm->moved);
2302 	}
2303 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2304 }
2305 
2306 /**
2307  * amdgpu_vm_bo_map - map bo inside a vm
2308  *
2309  * @adev: amdgpu_device pointer
2310  * @bo_va: bo_va to store the address
2311  * @saddr: where to map the BO
2312  * @offset: requested offset in the BO
2313  * @size: BO size in bytes
2314  * @flags: attributes of pages (read/write/valid/etc.)
2315  *
2316  * Add a mapping of the BO at the specefied addr into the VM.
2317  *
2318  * Returns:
2319  * 0 for success, error for failure.
2320  *
2321  * Object has to be reserved and unreserved outside!
2322  */
2323 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2324 		     struct amdgpu_bo_va *bo_va,
2325 		     uint64_t saddr, uint64_t offset,
2326 		     uint64_t size, uint64_t flags)
2327 {
2328 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2329 	struct amdgpu_bo *bo = bo_va->base.bo;
2330 	struct amdgpu_vm *vm = bo_va->base.vm;
2331 	uint64_t eaddr;
2332 
2333 	/* validate the parameters */
2334 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2335 	    size == 0 || size & ~PAGE_MASK)
2336 		return -EINVAL;
2337 
2338 	/* make sure object fit at this offset */
2339 	eaddr = saddr + size - 1;
2340 	if (saddr >= eaddr ||
2341 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2342 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2343 		return -EINVAL;
2344 
2345 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2346 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2347 
2348 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2349 	if (tmp) {
2350 		/* bo and tmp overlap, invalid addr */
2351 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2352 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2353 			tmp->start, tmp->last + 1);
2354 		return -EINVAL;
2355 	}
2356 
2357 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2358 	if (!mapping)
2359 		return -ENOMEM;
2360 
2361 	mapping->start = saddr;
2362 	mapping->last = eaddr;
2363 	mapping->offset = offset;
2364 	mapping->flags = flags;
2365 
2366 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2367 
2368 	return 0;
2369 }
2370 
2371 /**
2372  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2373  *
2374  * @adev: amdgpu_device pointer
2375  * @bo_va: bo_va to store the address
2376  * @saddr: where to map the BO
2377  * @offset: requested offset in the BO
2378  * @size: BO size in bytes
2379  * @flags: attributes of pages (read/write/valid/etc.)
2380  *
2381  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2382  * mappings as we do so.
2383  *
2384  * Returns:
2385  * 0 for success, error for failure.
2386  *
2387  * Object has to be reserved and unreserved outside!
2388  */
2389 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2390 			     struct amdgpu_bo_va *bo_va,
2391 			     uint64_t saddr, uint64_t offset,
2392 			     uint64_t size, uint64_t flags)
2393 {
2394 	struct amdgpu_bo_va_mapping *mapping;
2395 	struct amdgpu_bo *bo = bo_va->base.bo;
2396 	uint64_t eaddr;
2397 	int r;
2398 
2399 	/* validate the parameters */
2400 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2401 	    size == 0 || size & ~PAGE_MASK)
2402 		return -EINVAL;
2403 
2404 	/* make sure object fit at this offset */
2405 	eaddr = saddr + size - 1;
2406 	if (saddr >= eaddr ||
2407 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2408 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2409 		return -EINVAL;
2410 
2411 	/* Allocate all the needed memory */
2412 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2413 	if (!mapping)
2414 		return -ENOMEM;
2415 
2416 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2417 	if (r) {
2418 		kfree(mapping);
2419 		return r;
2420 	}
2421 
2422 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2423 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2424 
2425 	mapping->start = saddr;
2426 	mapping->last = eaddr;
2427 	mapping->offset = offset;
2428 	mapping->flags = flags;
2429 
2430 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2431 
2432 	return 0;
2433 }
2434 
2435 /**
2436  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2437  *
2438  * @adev: amdgpu_device pointer
2439  * @bo_va: bo_va to remove the address from
2440  * @saddr: where to the BO is mapped
2441  *
2442  * Remove a mapping of the BO at the specefied addr from the VM.
2443  *
2444  * Returns:
2445  * 0 for success, error for failure.
2446  *
2447  * Object has to be reserved and unreserved outside!
2448  */
2449 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2450 		       struct amdgpu_bo_va *bo_va,
2451 		       uint64_t saddr)
2452 {
2453 	struct amdgpu_bo_va_mapping *mapping;
2454 	struct amdgpu_vm *vm = bo_va->base.vm;
2455 	bool valid = true;
2456 
2457 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2458 
2459 	list_for_each_entry(mapping, &bo_va->valids, list) {
2460 		if (mapping->start == saddr)
2461 			break;
2462 	}
2463 
2464 	if (&mapping->list == &bo_va->valids) {
2465 		valid = false;
2466 
2467 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2468 			if (mapping->start == saddr)
2469 				break;
2470 		}
2471 
2472 		if (&mapping->list == &bo_va->invalids)
2473 			return -ENOENT;
2474 	}
2475 
2476 	list_del(&mapping->list);
2477 	amdgpu_vm_it_remove(mapping, &vm->va);
2478 	mapping->bo_va = NULL;
2479 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2480 
2481 	if (valid)
2482 		list_add(&mapping->list, &vm->freed);
2483 	else
2484 		amdgpu_vm_free_mapping(adev, vm, mapping,
2485 				       bo_va->last_pt_update);
2486 
2487 	return 0;
2488 }
2489 
2490 /**
2491  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2492  *
2493  * @adev: amdgpu_device pointer
2494  * @vm: VM structure to use
2495  * @saddr: start of the range
2496  * @size: size of the range
2497  *
2498  * Remove all mappings in a range, split them as appropriate.
2499  *
2500  * Returns:
2501  * 0 for success, error for failure.
2502  */
2503 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2504 				struct amdgpu_vm *vm,
2505 				uint64_t saddr, uint64_t size)
2506 {
2507 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2508 	LIST_HEAD(removed);
2509 	uint64_t eaddr;
2510 
2511 	eaddr = saddr + size - 1;
2512 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2513 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2514 
2515 	/* Allocate all the needed memory */
2516 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2517 	if (!before)
2518 		return -ENOMEM;
2519 	INIT_LIST_HEAD(&before->list);
2520 
2521 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2522 	if (!after) {
2523 		kfree(before);
2524 		return -ENOMEM;
2525 	}
2526 	INIT_LIST_HEAD(&after->list);
2527 
2528 	/* Now gather all removed mappings */
2529 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2530 	while (tmp) {
2531 		/* Remember mapping split at the start */
2532 		if (tmp->start < saddr) {
2533 			before->start = tmp->start;
2534 			before->last = saddr - 1;
2535 			before->offset = tmp->offset;
2536 			before->flags = tmp->flags;
2537 			before->bo_va = tmp->bo_va;
2538 			list_add(&before->list, &tmp->bo_va->invalids);
2539 		}
2540 
2541 		/* Remember mapping split at the end */
2542 		if (tmp->last > eaddr) {
2543 			after->start = eaddr + 1;
2544 			after->last = tmp->last;
2545 			after->offset = tmp->offset;
2546 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2547 			after->flags = tmp->flags;
2548 			after->bo_va = tmp->bo_va;
2549 			list_add(&after->list, &tmp->bo_va->invalids);
2550 		}
2551 
2552 		list_del(&tmp->list);
2553 		list_add(&tmp->list, &removed);
2554 
2555 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2556 	}
2557 
2558 	/* And free them up */
2559 	list_for_each_entry_safe(tmp, next, &removed, list) {
2560 		amdgpu_vm_it_remove(tmp, &vm->va);
2561 		list_del(&tmp->list);
2562 
2563 		if (tmp->start < saddr)
2564 		    tmp->start = saddr;
2565 		if (tmp->last > eaddr)
2566 		    tmp->last = eaddr;
2567 
2568 		tmp->bo_va = NULL;
2569 		list_add(&tmp->list, &vm->freed);
2570 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2571 	}
2572 
2573 	/* Insert partial mapping before the range */
2574 	if (!list_empty(&before->list)) {
2575 		amdgpu_vm_it_insert(before, &vm->va);
2576 		if (before->flags & AMDGPU_PTE_PRT)
2577 			amdgpu_vm_prt_get(adev);
2578 	} else {
2579 		kfree(before);
2580 	}
2581 
2582 	/* Insert partial mapping after the range */
2583 	if (!list_empty(&after->list)) {
2584 		amdgpu_vm_it_insert(after, &vm->va);
2585 		if (after->flags & AMDGPU_PTE_PRT)
2586 			amdgpu_vm_prt_get(adev);
2587 	} else {
2588 		kfree(after);
2589 	}
2590 
2591 	return 0;
2592 }
2593 
2594 /**
2595  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2596  *
2597  * @vm: the requested VM
2598  * @addr: the address
2599  *
2600  * Find a mapping by it's address.
2601  *
2602  * Returns:
2603  * The amdgpu_bo_va_mapping matching for addr or NULL
2604  *
2605  */
2606 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2607 							 uint64_t addr)
2608 {
2609 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2610 }
2611 
2612 /**
2613  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2614  *
2615  * @vm: the requested vm
2616  * @ticket: CS ticket
2617  *
2618  * Trace all mappings of BOs reserved during a command submission.
2619  */
2620 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2621 {
2622 	struct amdgpu_bo_va_mapping *mapping;
2623 
2624 	if (!trace_amdgpu_vm_bo_cs_enabled())
2625 		return;
2626 
2627 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2628 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2629 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2630 			struct amdgpu_bo *bo;
2631 
2632 			bo = mapping->bo_va->base.bo;
2633 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2634 			    ticket)
2635 				continue;
2636 		}
2637 
2638 		trace_amdgpu_vm_bo_cs(mapping);
2639 	}
2640 }
2641 
2642 /**
2643  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2644  *
2645  * @adev: amdgpu_device pointer
2646  * @bo_va: requested bo_va
2647  *
2648  * Remove @bo_va->bo from the requested vm.
2649  *
2650  * Object have to be reserved!
2651  */
2652 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2653 		      struct amdgpu_bo_va *bo_va)
2654 {
2655 	struct amdgpu_bo_va_mapping *mapping, *next;
2656 	struct amdgpu_bo *bo = bo_va->base.bo;
2657 	struct amdgpu_vm *vm = bo_va->base.vm;
2658 	struct amdgpu_vm_bo_base **base;
2659 
2660 	if (bo) {
2661 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2662 			vm->bulk_moveable = false;
2663 
2664 		for (base = &bo_va->base.bo->vm_bo; *base;
2665 		     base = &(*base)->next) {
2666 			if (*base != &bo_va->base)
2667 				continue;
2668 
2669 			*base = bo_va->base.next;
2670 			break;
2671 		}
2672 	}
2673 
2674 	spin_lock(&vm->invalidated_lock);
2675 	list_del(&bo_va->base.vm_status);
2676 	spin_unlock(&vm->invalidated_lock);
2677 
2678 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2679 		list_del(&mapping->list);
2680 		amdgpu_vm_it_remove(mapping, &vm->va);
2681 		mapping->bo_va = NULL;
2682 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2683 		list_add(&mapping->list, &vm->freed);
2684 	}
2685 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2686 		list_del(&mapping->list);
2687 		amdgpu_vm_it_remove(mapping, &vm->va);
2688 		amdgpu_vm_free_mapping(adev, vm, mapping,
2689 				       bo_va->last_pt_update);
2690 	}
2691 
2692 	dma_fence_put(bo_va->last_pt_update);
2693 
2694 	if (bo && bo_va->is_xgmi)
2695 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2696 
2697 	kfree(bo_va);
2698 }
2699 
2700 /**
2701  * amdgpu_vm_evictable - check if we can evict a VM
2702  *
2703  * @bo: A page table of the VM.
2704  *
2705  * Check if it is possible to evict a VM.
2706  */
2707 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2708 {
2709 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2710 
2711 	/* Page tables of a destroyed VM can go away immediately */
2712 	if (!bo_base || !bo_base->vm)
2713 		return true;
2714 
2715 	/* Don't evict VM page tables while they are busy */
2716 	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2717 		return false;
2718 
2719 	/* Try to block ongoing updates */
2720 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2721 		return false;
2722 
2723 	/* Don't evict VM page tables while they are updated */
2724 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2725 		amdgpu_vm_eviction_unlock(bo_base->vm);
2726 		return false;
2727 	}
2728 
2729 	bo_base->vm->evicting = true;
2730 	amdgpu_vm_eviction_unlock(bo_base->vm);
2731 	return true;
2732 }
2733 
2734 /**
2735  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2736  *
2737  * @adev: amdgpu_device pointer
2738  * @bo: amdgpu buffer object
2739  * @evicted: is the BO evicted
2740  *
2741  * Mark @bo as invalid.
2742  */
2743 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2744 			     struct amdgpu_bo *bo, bool evicted)
2745 {
2746 	struct amdgpu_vm_bo_base *bo_base;
2747 
2748 	/* shadow bo doesn't have bo base, its validation needs its parent */
2749 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2750 		bo = bo->parent;
2751 
2752 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2753 		struct amdgpu_vm *vm = bo_base->vm;
2754 
2755 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2756 			amdgpu_vm_bo_evicted(bo_base);
2757 			continue;
2758 		}
2759 
2760 		if (bo_base->moved)
2761 			continue;
2762 		bo_base->moved = true;
2763 
2764 		if (bo->tbo.type == ttm_bo_type_kernel)
2765 			amdgpu_vm_bo_relocated(bo_base);
2766 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2767 			amdgpu_vm_bo_moved(bo_base);
2768 		else
2769 			amdgpu_vm_bo_invalidated(bo_base);
2770 	}
2771 }
2772 
2773 /**
2774  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2775  *
2776  * @vm_size: VM size
2777  *
2778  * Returns:
2779  * VM page table as power of two
2780  */
2781 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2782 {
2783 	/* Total bits covered by PD + PTs */
2784 	unsigned bits = ilog2(vm_size) + 18;
2785 
2786 	/* Make sure the PD is 4K in size up to 8GB address space.
2787 	   Above that split equal between PD and PTs */
2788 	if (vm_size <= 8)
2789 		return (bits - 9);
2790 	else
2791 		return ((bits + 3) / 2);
2792 }
2793 
2794 /**
2795  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2796  *
2797  * @adev: amdgpu_device pointer
2798  * @min_vm_size: the minimum vm size in GB if it's set auto
2799  * @fragment_size_default: Default PTE fragment size
2800  * @max_level: max VMPT level
2801  * @max_bits: max address space size in bits
2802  *
2803  */
2804 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2805 			   uint32_t fragment_size_default, unsigned max_level,
2806 			   unsigned max_bits)
2807 {
2808 	unsigned int max_size = 1 << (max_bits - 30);
2809 	unsigned int vm_size;
2810 	uint64_t tmp;
2811 
2812 	/* adjust vm size first */
2813 	if (amdgpu_vm_size != -1) {
2814 		vm_size = amdgpu_vm_size;
2815 		if (vm_size > max_size) {
2816 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2817 				 amdgpu_vm_size, max_size);
2818 			vm_size = max_size;
2819 		}
2820 	} else {
2821 		struct sysinfo si;
2822 		unsigned int phys_ram_gb;
2823 
2824 		/* Optimal VM size depends on the amount of physical
2825 		 * RAM available. Underlying requirements and
2826 		 * assumptions:
2827 		 *
2828 		 *  - Need to map system memory and VRAM from all GPUs
2829 		 *     - VRAM from other GPUs not known here
2830 		 *     - Assume VRAM <= system memory
2831 		 *  - On GFX8 and older, VM space can be segmented for
2832 		 *    different MTYPEs
2833 		 *  - Need to allow room for fragmentation, guard pages etc.
2834 		 *
2835 		 * This adds up to a rough guess of system memory x3.
2836 		 * Round up to power of two to maximize the available
2837 		 * VM size with the given page table size.
2838 		 */
2839 		si_meminfo(&si);
2840 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2841 			       (1 << 30) - 1) >> 30;
2842 		vm_size = roundup_pow_of_two(
2843 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2844 	}
2845 
2846 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2847 
2848 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2849 	if (amdgpu_vm_block_size != -1)
2850 		tmp >>= amdgpu_vm_block_size - 9;
2851 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2852 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2853 	switch (adev->vm_manager.num_level) {
2854 	case 3:
2855 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2856 		break;
2857 	case 2:
2858 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2859 		break;
2860 	case 1:
2861 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2862 		break;
2863 	default:
2864 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2865 	}
2866 	/* block size depends on vm size and hw setup*/
2867 	if (amdgpu_vm_block_size != -1)
2868 		adev->vm_manager.block_size =
2869 			min((unsigned)amdgpu_vm_block_size, max_bits
2870 			    - AMDGPU_GPU_PAGE_SHIFT
2871 			    - 9 * adev->vm_manager.num_level);
2872 	else if (adev->vm_manager.num_level > 1)
2873 		adev->vm_manager.block_size = 9;
2874 	else
2875 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2876 
2877 	if (amdgpu_vm_fragment_size == -1)
2878 		adev->vm_manager.fragment_size = fragment_size_default;
2879 	else
2880 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2881 
2882 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2883 		 vm_size, adev->vm_manager.num_level + 1,
2884 		 adev->vm_manager.block_size,
2885 		 adev->vm_manager.fragment_size);
2886 }
2887 
2888 /**
2889  * amdgpu_vm_wait_idle - wait for the VM to become idle
2890  *
2891  * @vm: VM object to wait for
2892  * @timeout: timeout to wait for VM to become idle
2893  */
2894 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2895 {
2896 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2897 					true, timeout);
2898 	if (timeout <= 0)
2899 		return timeout;
2900 
2901 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2902 }
2903 
2904 /**
2905  * amdgpu_vm_init - initialize a vm instance
2906  *
2907  * @adev: amdgpu_device pointer
2908  * @vm: requested vm
2909  *
2910  * Init @vm fields.
2911  *
2912  * Returns:
2913  * 0 for success, error for failure.
2914  */
2915 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2916 {
2917 	struct amdgpu_bo *root_bo;
2918 	struct amdgpu_bo_vm *root;
2919 	int r, i;
2920 
2921 	vm->va = RB_ROOT_CACHED;
2922 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2923 		vm->reserved_vmid[i] = NULL;
2924 	INIT_LIST_HEAD(&vm->evicted);
2925 	INIT_LIST_HEAD(&vm->relocated);
2926 	INIT_LIST_HEAD(&vm->moved);
2927 	INIT_LIST_HEAD(&vm->idle);
2928 	INIT_LIST_HEAD(&vm->invalidated);
2929 	spin_lock_init(&vm->invalidated_lock);
2930 	INIT_LIST_HEAD(&vm->freed);
2931 	INIT_LIST_HEAD(&vm->done);
2932 
2933 	/* create scheduler entities for page table updates */
2934 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2935 				  adev->vm_manager.vm_pte_scheds,
2936 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2937 	if (r)
2938 		return r;
2939 
2940 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2941 				  adev->vm_manager.vm_pte_scheds,
2942 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2943 	if (r)
2944 		goto error_free_immediate;
2945 
2946 	vm->pte_support_ats = false;
2947 	vm->is_compute_context = false;
2948 
2949 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2950 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2951 
2952 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2953 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2954 	WARN_ONCE((vm->use_cpu_for_update &&
2955 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2956 		  "CPU update of VM recommended only for large BAR system\n");
2957 
2958 	if (vm->use_cpu_for_update)
2959 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2960 	else
2961 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2962 	vm->last_update = NULL;
2963 	vm->last_unlocked = dma_fence_get_stub();
2964 
2965 	mutex_init(&vm->eviction_lock);
2966 	vm->evicting = false;
2967 
2968 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2969 				false, &root);
2970 	if (r)
2971 		goto error_free_delayed;
2972 	root_bo = &root->bo;
2973 	r = amdgpu_bo_reserve(root_bo, true);
2974 	if (r)
2975 		goto error_free_root;
2976 
2977 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2978 	if (r)
2979 		goto error_unreserve;
2980 
2981 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2982 
2983 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2984 	if (r)
2985 		goto error_unreserve;
2986 
2987 	amdgpu_bo_unreserve(vm->root.bo);
2988 
2989 	INIT_KFIFO(vm->faults);
2990 
2991 	return 0;
2992 
2993 error_unreserve:
2994 	amdgpu_bo_unreserve(vm->root.bo);
2995 
2996 error_free_root:
2997 	amdgpu_bo_unref(&root->shadow);
2998 	amdgpu_bo_unref(&root_bo);
2999 	vm->root.bo = NULL;
3000 
3001 error_free_delayed:
3002 	dma_fence_put(vm->last_unlocked);
3003 	drm_sched_entity_destroy(&vm->delayed);
3004 
3005 error_free_immediate:
3006 	drm_sched_entity_destroy(&vm->immediate);
3007 
3008 	return r;
3009 }
3010 
3011 /**
3012  * amdgpu_vm_check_clean_reserved - check if a VM is clean
3013  *
3014  * @adev: amdgpu_device pointer
3015  * @vm: the VM to check
3016  *
3017  * check all entries of the root PD, if any subsequent PDs are allocated,
3018  * it means there are page table creating and filling, and is no a clean
3019  * VM
3020  *
3021  * Returns:
3022  *	0 if this VM is clean
3023  */
3024 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3025 					  struct amdgpu_vm *vm)
3026 {
3027 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3028 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3029 	unsigned int i = 0;
3030 
3031 	for (i = 0; i < entries; i++) {
3032 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3033 			return -EINVAL;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 /**
3040  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3041  *
3042  * @adev: amdgpu_device pointer
3043  * @vm: requested vm
3044  *
3045  * This only works on GFX VMs that don't have any BOs added and no
3046  * page tables allocated yet.
3047  *
3048  * Changes the following VM parameters:
3049  * - use_cpu_for_update
3050  * - pte_supports_ats
3051  *
3052  * Reinitializes the page directory to reflect the changed ATS
3053  * setting.
3054  *
3055  * Returns:
3056  * 0 for success, -errno for errors.
3057  */
3058 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3059 {
3060 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3061 	int r;
3062 
3063 	r = amdgpu_bo_reserve(vm->root.bo, true);
3064 	if (r)
3065 		return r;
3066 
3067 	/* Sanity checks */
3068 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3069 	if (r)
3070 		goto unreserve_bo;
3071 
3072 	/* Check if PD needs to be reinitialized and do it before
3073 	 * changing any other state, in case it fails.
3074 	 */
3075 	if (pte_support_ats != vm->pte_support_ats) {
3076 		vm->pte_support_ats = pte_support_ats;
3077 		r = amdgpu_vm_clear_bo(adev, vm,
3078 				       to_amdgpu_bo_vm(vm->root.bo),
3079 				       false);
3080 		if (r)
3081 			goto unreserve_bo;
3082 	}
3083 
3084 	/* Update VM state */
3085 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3086 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3087 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3088 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3089 	WARN_ONCE((vm->use_cpu_for_update &&
3090 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3091 		  "CPU update of VM recommended only for large BAR system\n");
3092 
3093 	if (vm->use_cpu_for_update) {
3094 		/* Sync with last SDMA update/clear before switching to CPU */
3095 		r = amdgpu_bo_sync_wait(vm->root.bo,
3096 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3097 		if (r)
3098 			goto unreserve_bo;
3099 
3100 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3101 	} else {
3102 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3103 	}
3104 	dma_fence_put(vm->last_update);
3105 	vm->last_update = NULL;
3106 	vm->is_compute_context = true;
3107 
3108 	/* Free the shadow bo for compute VM */
3109 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3110 
3111 	goto unreserve_bo;
3112 
3113 unreserve_bo:
3114 	amdgpu_bo_unreserve(vm->root.bo);
3115 	return r;
3116 }
3117 
3118 /**
3119  * amdgpu_vm_release_compute - release a compute vm
3120  * @adev: amdgpu_device pointer
3121  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3122  *
3123  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3124  * pasid from vm. Compute should stop use of vm after this call.
3125  */
3126 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3127 {
3128 	amdgpu_vm_set_pasid(adev, vm, 0);
3129 	vm->is_compute_context = false;
3130 }
3131 
3132 /**
3133  * amdgpu_vm_fini - tear down a vm instance
3134  *
3135  * @adev: amdgpu_device pointer
3136  * @vm: requested vm
3137  *
3138  * Tear down @vm.
3139  * Unbind the VM and remove all bos from the vm bo list
3140  */
3141 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3142 {
3143 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3144 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3145 	struct amdgpu_bo *root;
3146 	int i;
3147 
3148 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3149 
3150 	root = amdgpu_bo_ref(vm->root.bo);
3151 	amdgpu_bo_reserve(root, true);
3152 	amdgpu_vm_set_pasid(adev, vm, 0);
3153 	dma_fence_wait(vm->last_unlocked, false);
3154 	dma_fence_put(vm->last_unlocked);
3155 
3156 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3157 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3158 			amdgpu_vm_prt_fini(adev, vm);
3159 			prt_fini_needed = false;
3160 		}
3161 
3162 		list_del(&mapping->list);
3163 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3164 	}
3165 
3166 	amdgpu_vm_free_pts(adev, vm, NULL);
3167 	amdgpu_bo_unreserve(root);
3168 	amdgpu_bo_unref(&root);
3169 	WARN_ON(vm->root.bo);
3170 
3171 	drm_sched_entity_destroy(&vm->immediate);
3172 	drm_sched_entity_destroy(&vm->delayed);
3173 
3174 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3175 		dev_err(adev->dev, "still active bo inside vm\n");
3176 	}
3177 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3178 					     &vm->va.rb_root, rb) {
3179 		/* Don't remove the mapping here, we don't want to trigger a
3180 		 * rebalance and the tree is about to be destroyed anyway.
3181 		 */
3182 		list_del(&mapping->list);
3183 		kfree(mapping);
3184 	}
3185 
3186 	dma_fence_put(vm->last_update);
3187 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3188 		amdgpu_vmid_free_reserved(adev, vm, i);
3189 }
3190 
3191 /**
3192  * amdgpu_vm_manager_init - init the VM manager
3193  *
3194  * @adev: amdgpu_device pointer
3195  *
3196  * Initialize the VM manager structures
3197  */
3198 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3199 {
3200 	unsigned i;
3201 
3202 	/* Concurrent flushes are only possible starting with Vega10 and
3203 	 * are broken on Navi10 and Navi14.
3204 	 */
3205 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3206 					      adev->asic_type == CHIP_NAVI10 ||
3207 					      adev->asic_type == CHIP_NAVI14);
3208 	amdgpu_vmid_mgr_init(adev);
3209 
3210 	adev->vm_manager.fence_context =
3211 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3212 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3213 		adev->vm_manager.seqno[i] = 0;
3214 
3215 	spin_lock_init(&adev->vm_manager.prt_lock);
3216 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3217 
3218 	/* If not overridden by the user, by default, only in large BAR systems
3219 	 * Compute VM tables will be updated by CPU
3220 	 */
3221 #ifdef CONFIG_X86_64
3222 	if (amdgpu_vm_update_mode == -1) {
3223 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3224 			adev->vm_manager.vm_update_mode =
3225 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3226 		else
3227 			adev->vm_manager.vm_update_mode = 0;
3228 	} else
3229 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3230 #else
3231 	adev->vm_manager.vm_update_mode = 0;
3232 #endif
3233 
3234 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3235 }
3236 
3237 /**
3238  * amdgpu_vm_manager_fini - cleanup VM manager
3239  *
3240  * @adev: amdgpu_device pointer
3241  *
3242  * Cleanup the VM manager and free resources.
3243  */
3244 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3245 {
3246 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3247 	xa_destroy(&adev->vm_manager.pasids);
3248 
3249 	amdgpu_vmid_mgr_fini(adev);
3250 }
3251 
3252 /**
3253  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3254  *
3255  * @dev: drm device pointer
3256  * @data: drm_amdgpu_vm
3257  * @filp: drm file pointer
3258  *
3259  * Returns:
3260  * 0 for success, -errno for errors.
3261  */
3262 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3263 {
3264 	union drm_amdgpu_vm *args = data;
3265 	struct amdgpu_device *adev = drm_to_adev(dev);
3266 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3267 	long timeout = msecs_to_jiffies(2000);
3268 	int r;
3269 
3270 	switch (args->in.op) {
3271 	case AMDGPU_VM_OP_RESERVE_VMID:
3272 		/* We only have requirement to reserve vmid from gfxhub */
3273 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3274 					       AMDGPU_GFXHUB_0);
3275 		if (r)
3276 			return r;
3277 		break;
3278 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3279 		if (amdgpu_sriov_runtime(adev))
3280 			timeout = 8 * timeout;
3281 
3282 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3283 		 * not referenced anymore.
3284 		 */
3285 		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3286 		if (r)
3287 			return r;
3288 
3289 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3290 		if (r < 0)
3291 			return r;
3292 
3293 		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3294 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3295 		break;
3296 	default:
3297 		return -EINVAL;
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 /**
3304  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3305  *
3306  * @adev: drm device pointer
3307  * @pasid: PASID identifier for VM
3308  * @task_info: task_info to fill.
3309  */
3310 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3311 			 struct amdgpu_task_info *task_info)
3312 {
3313 	struct amdgpu_vm *vm;
3314 	unsigned long flags;
3315 
3316 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3317 
3318 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3319 	if (vm)
3320 		*task_info = vm->task_info;
3321 
3322 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3323 }
3324 
3325 /**
3326  * amdgpu_vm_set_task_info - Sets VMs task info.
3327  *
3328  * @vm: vm for which to set the info
3329  */
3330 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3331 {
3332 	if (vm->task_info.pid)
3333 		return;
3334 
3335 	vm->task_info.pid = current->pid;
3336 	get_task_comm(vm->task_info.task_name, current);
3337 
3338 	if (current->group_leader->mm != current->mm)
3339 		return;
3340 
3341 	vm->task_info.tgid = current->group_leader->pid;
3342 	get_task_comm(vm->task_info.process_name, current->group_leader);
3343 }
3344 
3345 /**
3346  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3347  * @adev: amdgpu device pointer
3348  * @pasid: PASID of the VM
3349  * @addr: Address of the fault
3350  * @write_fault: true is write fault, false is read fault
3351  *
3352  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3353  * shouldn't be reported any more.
3354  */
3355 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3356 			    uint64_t addr, bool write_fault)
3357 {
3358 	bool is_compute_context = false;
3359 	struct amdgpu_bo *root;
3360 	unsigned long irqflags;
3361 	uint64_t value, flags;
3362 	struct amdgpu_vm *vm;
3363 	int r;
3364 
3365 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3366 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3367 	if (vm) {
3368 		root = amdgpu_bo_ref(vm->root.bo);
3369 		is_compute_context = vm->is_compute_context;
3370 	} else {
3371 		root = NULL;
3372 	}
3373 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3374 
3375 	if (!root)
3376 		return false;
3377 
3378 	addr /= AMDGPU_GPU_PAGE_SIZE;
3379 
3380 	if (is_compute_context &&
3381 	    !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3382 		amdgpu_bo_unref(&root);
3383 		return true;
3384 	}
3385 
3386 	r = amdgpu_bo_reserve(root, true);
3387 	if (r)
3388 		goto error_unref;
3389 
3390 	/* Double check that the VM still exists */
3391 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3392 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3393 	if (vm && vm->root.bo != root)
3394 		vm = NULL;
3395 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3396 	if (!vm)
3397 		goto error_unlock;
3398 
3399 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3400 		AMDGPU_PTE_SYSTEM;
3401 
3402 	if (is_compute_context) {
3403 		/* Intentionally setting invalid PTE flag
3404 		 * combination to force a no-retry-fault
3405 		 */
3406 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3407 			AMDGPU_PTE_TF;
3408 		value = 0;
3409 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3410 		/* Redirect the access to the dummy page */
3411 		value = adev->dummy_page_addr;
3412 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3413 			AMDGPU_PTE_WRITEABLE;
3414 
3415 	} else {
3416 		/* Let the hw retry silently on the PTE */
3417 		value = 0;
3418 	}
3419 
3420 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3421 	if (r) {
3422 		pr_debug("failed %d to reserve fence slot\n", r);
3423 		goto error_unlock;
3424 	}
3425 
3426 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3427 					addr, flags, value, NULL, NULL, NULL,
3428 					NULL);
3429 	if (r)
3430 		goto error_unlock;
3431 
3432 	r = amdgpu_vm_update_pdes(adev, vm, true);
3433 
3434 error_unlock:
3435 	amdgpu_bo_unreserve(root);
3436 	if (r < 0)
3437 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3438 
3439 error_unref:
3440 	amdgpu_bo_unref(&root);
3441 
3442 	return false;
3443 }
3444 
3445 #if defined(CONFIG_DEBUG_FS)
3446 /**
3447  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3448  *
3449  * @vm: Requested VM for printing BO info
3450  * @m: debugfs file
3451  *
3452  * Print BO information in debugfs file for the VM
3453  */
3454 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3455 {
3456 	struct amdgpu_bo_va *bo_va, *tmp;
3457 	u64 total_idle = 0;
3458 	u64 total_evicted = 0;
3459 	u64 total_relocated = 0;
3460 	u64 total_moved = 0;
3461 	u64 total_invalidated = 0;
3462 	u64 total_done = 0;
3463 	unsigned int total_idle_objs = 0;
3464 	unsigned int total_evicted_objs = 0;
3465 	unsigned int total_relocated_objs = 0;
3466 	unsigned int total_moved_objs = 0;
3467 	unsigned int total_invalidated_objs = 0;
3468 	unsigned int total_done_objs = 0;
3469 	unsigned int id = 0;
3470 
3471 	seq_puts(m, "\tIdle BOs:\n");
3472 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3473 		if (!bo_va->base.bo)
3474 			continue;
3475 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3476 	}
3477 	total_idle_objs = id;
3478 	id = 0;
3479 
3480 	seq_puts(m, "\tEvicted BOs:\n");
3481 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3482 		if (!bo_va->base.bo)
3483 			continue;
3484 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3485 	}
3486 	total_evicted_objs = id;
3487 	id = 0;
3488 
3489 	seq_puts(m, "\tRelocated BOs:\n");
3490 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3491 		if (!bo_va->base.bo)
3492 			continue;
3493 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3494 	}
3495 	total_relocated_objs = id;
3496 	id = 0;
3497 
3498 	seq_puts(m, "\tMoved BOs:\n");
3499 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3500 		if (!bo_va->base.bo)
3501 			continue;
3502 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3503 	}
3504 	total_moved_objs = id;
3505 	id = 0;
3506 
3507 	seq_puts(m, "\tInvalidated BOs:\n");
3508 	spin_lock(&vm->invalidated_lock);
3509 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3510 		if (!bo_va->base.bo)
3511 			continue;
3512 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3513 	}
3514 	total_invalidated_objs = id;
3515 	id = 0;
3516 
3517 	seq_puts(m, "\tDone BOs:\n");
3518 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3519 		if (!bo_va->base.bo)
3520 			continue;
3521 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3522 	}
3523 	spin_unlock(&vm->invalidated_lock);
3524 	total_done_objs = id;
3525 
3526 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3527 		   total_idle_objs);
3528 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3529 		   total_evicted_objs);
3530 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3531 		   total_relocated_objs);
3532 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3533 		   total_moved_objs);
3534 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3535 		   total_invalidated_objs);
3536 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3537 		   total_done_objs);
3538 }
3539 #endif
3540