1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/amdgpu_drm.h> 30 #include "amdgpu.h" 31 #include "amdgpu_trace.h" 32 33 /* 34 * GPUVM 35 * GPUVM is similar to the legacy gart on older asics, however 36 * rather than there being a single global gart table 37 * for the entire GPU, there are multiple VM page tables active 38 * at any given time. The VM page tables can contain a mix 39 * vram pages and system memory pages and system memory pages 40 * can be mapped as snooped (cached system pages) or unsnooped 41 * (uncached system pages). 42 * Each VM has an ID associated with it and there is a page table 43 * associated with each VMID. When execting a command buffer, 44 * the kernel tells the the ring what VMID to use for that command 45 * buffer. VMIDs are allocated dynamically as commands are submitted. 46 * The userspace drivers maintain their own address space and the kernel 47 * sets up their pages tables accordingly when they submit their 48 * command buffers and a VMID is assigned. 49 * Cayman/Trinity support up to 8 active VMs at any given time; 50 * SI supports 16. 51 */ 52 53 /** 54 * amdgpu_vm_num_pde - return the number of page directory entries 55 * 56 * @adev: amdgpu_device pointer 57 * 58 * Calculate the number of page directory entries (cayman+). 59 */ 60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev) 61 { 62 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size; 63 } 64 65 /** 66 * amdgpu_vm_directory_size - returns the size of the page directory in bytes 67 * 68 * @adev: amdgpu_device pointer 69 * 70 * Calculate the size of the page directory in bytes (cayman+). 71 */ 72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev) 73 { 74 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8); 75 } 76 77 /** 78 * amdgpu_vm_get_bos - add the vm BOs to a validation list 79 * 80 * @vm: vm providing the BOs 81 * @head: head of validation list 82 * 83 * Add the page directory to the list of BOs to 84 * validate for command submission (cayman+). 85 */ 86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev, 87 struct amdgpu_vm *vm, 88 struct list_head *head) 89 { 90 struct amdgpu_bo_list_entry *list; 91 unsigned i, idx; 92 93 mutex_lock(&vm->mutex); 94 list = drm_malloc_ab(vm->max_pde_used + 2, 95 sizeof(struct amdgpu_bo_list_entry)); 96 if (!list) { 97 mutex_unlock(&vm->mutex); 98 return NULL; 99 } 100 101 /* add the vm page table to the list */ 102 list[0].robj = vm->page_directory; 103 list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM; 104 list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM; 105 list[0].priority = 0; 106 list[0].tv.bo = &vm->page_directory->tbo; 107 list[0].tv.shared = true; 108 list_add(&list[0].tv.head, head); 109 110 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { 111 if (!vm->page_tables[i].bo) 112 continue; 113 114 list[idx].robj = vm->page_tables[i].bo; 115 list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM; 116 list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM; 117 list[idx].priority = 0; 118 list[idx].tv.bo = &list[idx].robj->tbo; 119 list[idx].tv.shared = true; 120 list_add(&list[idx++].tv.head, head); 121 } 122 mutex_unlock(&vm->mutex); 123 124 return list; 125 } 126 127 /** 128 * amdgpu_vm_grab_id - allocate the next free VMID 129 * 130 * @vm: vm to allocate id for 131 * @ring: ring we want to submit job to 132 * @sync: sync object where we add dependencies 133 * 134 * Allocate an id for the vm, adding fences to the sync obj as necessary. 135 * 136 * Global mutex must be locked! 137 */ 138 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 139 struct amdgpu_sync *sync) 140 { 141 struct amdgpu_fence *best[AMDGPU_MAX_RINGS] = {}; 142 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx]; 143 struct amdgpu_device *adev = ring->adev; 144 145 unsigned choices[2] = {}; 146 unsigned i; 147 148 /* check if the id is still valid */ 149 if (vm_id->id && vm_id->last_id_use && 150 vm_id->last_id_use == adev->vm_manager.active[vm_id->id]) 151 return 0; 152 153 /* we definately need to flush */ 154 vm_id->pd_gpu_addr = ~0ll; 155 156 /* skip over VMID 0, since it is the system VM */ 157 for (i = 1; i < adev->vm_manager.nvm; ++i) { 158 struct amdgpu_fence *fence = adev->vm_manager.active[i]; 159 160 if (fence == NULL) { 161 /* found a free one */ 162 vm_id->id = i; 163 trace_amdgpu_vm_grab_id(i, ring->idx); 164 return 0; 165 } 166 167 if (amdgpu_fence_is_earlier(fence, best[fence->ring->idx])) { 168 best[fence->ring->idx] = fence; 169 choices[fence->ring == ring ? 0 : 1] = i; 170 } 171 } 172 173 for (i = 0; i < 2; ++i) { 174 if (choices[i]) { 175 struct amdgpu_fence *fence; 176 177 fence = adev->vm_manager.active[choices[i]]; 178 vm_id->id = choices[i]; 179 180 trace_amdgpu_vm_grab_id(choices[i], ring->idx); 181 return amdgpu_sync_fence(ring->adev, sync, &fence->base); 182 } 183 } 184 185 /* should never happen */ 186 BUG(); 187 return -EINVAL; 188 } 189 190 /** 191 * amdgpu_vm_flush - hardware flush the vm 192 * 193 * @ring: ring to use for flush 194 * @vm: vm we want to flush 195 * @updates: last vm update that we waited for 196 * 197 * Flush the vm (cayman+). 198 * 199 * Global and local mutex must be locked! 200 */ 201 void amdgpu_vm_flush(struct amdgpu_ring *ring, 202 struct amdgpu_vm *vm, 203 struct fence *updates) 204 { 205 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory); 206 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx]; 207 struct fence *flushed_updates = vm_id->flushed_updates; 208 bool is_earlier = false; 209 210 if (flushed_updates && updates) { 211 BUG_ON(flushed_updates->context != updates->context); 212 is_earlier = (updates->seqno - flushed_updates->seqno <= 213 INT_MAX) ? true : false; 214 } 215 216 if (pd_addr != vm_id->pd_gpu_addr || !flushed_updates || 217 is_earlier) { 218 219 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id); 220 if (is_earlier) { 221 vm_id->flushed_updates = fence_get(updates); 222 fence_put(flushed_updates); 223 } 224 if (!flushed_updates) 225 vm_id->flushed_updates = fence_get(updates); 226 vm_id->pd_gpu_addr = pd_addr; 227 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr); 228 } 229 } 230 231 /** 232 * amdgpu_vm_fence - remember fence for vm 233 * 234 * @adev: amdgpu_device pointer 235 * @vm: vm we want to fence 236 * @fence: fence to remember 237 * 238 * Fence the vm (cayman+). 239 * Set the fence used to protect page table and id. 240 * 241 * Global and local mutex must be locked! 242 */ 243 void amdgpu_vm_fence(struct amdgpu_device *adev, 244 struct amdgpu_vm *vm, 245 struct amdgpu_fence *fence) 246 { 247 unsigned ridx = fence->ring->idx; 248 unsigned vm_id = vm->ids[ridx].id; 249 250 amdgpu_fence_unref(&adev->vm_manager.active[vm_id]); 251 adev->vm_manager.active[vm_id] = amdgpu_fence_ref(fence); 252 253 amdgpu_fence_unref(&vm->ids[ridx].last_id_use); 254 vm->ids[ridx].last_id_use = amdgpu_fence_ref(fence); 255 } 256 257 /** 258 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 259 * 260 * @vm: requested vm 261 * @bo: requested buffer object 262 * 263 * Find @bo inside the requested vm (cayman+). 264 * Search inside the @bos vm list for the requested vm 265 * Returns the found bo_va or NULL if none is found 266 * 267 * Object has to be reserved! 268 */ 269 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 270 struct amdgpu_bo *bo) 271 { 272 struct amdgpu_bo_va *bo_va; 273 274 list_for_each_entry(bo_va, &bo->va, bo_list) { 275 if (bo_va->vm == vm) { 276 return bo_va; 277 } 278 } 279 return NULL; 280 } 281 282 /** 283 * amdgpu_vm_update_pages - helper to call the right asic function 284 * 285 * @adev: amdgpu_device pointer 286 * @ib: indirect buffer to fill with commands 287 * @pe: addr of the page entry 288 * @addr: dst addr to write into pe 289 * @count: number of page entries to update 290 * @incr: increase next addr by incr bytes 291 * @flags: hw access flags 292 * @gtt_flags: GTT hw access flags 293 * 294 * Traces the parameters and calls the right asic functions 295 * to setup the page table using the DMA. 296 */ 297 static void amdgpu_vm_update_pages(struct amdgpu_device *adev, 298 struct amdgpu_ib *ib, 299 uint64_t pe, uint64_t addr, 300 unsigned count, uint32_t incr, 301 uint32_t flags, uint32_t gtt_flags) 302 { 303 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags); 304 305 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) { 306 uint64_t src = adev->gart.table_addr + (addr >> 12) * 8; 307 amdgpu_vm_copy_pte(adev, ib, pe, src, count); 308 309 } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) { 310 amdgpu_vm_write_pte(adev, ib, pe, addr, 311 count, incr, flags); 312 313 } else { 314 amdgpu_vm_set_pte_pde(adev, ib, pe, addr, 315 count, incr, flags); 316 } 317 } 318 319 int amdgpu_vm_free_job(struct amdgpu_job *job) 320 { 321 int i; 322 for (i = 0; i < job->num_ibs; i++) 323 amdgpu_ib_free(job->adev, &job->ibs[i]); 324 kfree(job->ibs); 325 return 0; 326 } 327 328 /** 329 * amdgpu_vm_clear_bo - initially clear the page dir/table 330 * 331 * @adev: amdgpu_device pointer 332 * @bo: bo to clear 333 */ 334 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 335 struct amdgpu_bo *bo) 336 { 337 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring; 338 struct fence *fence = NULL; 339 struct amdgpu_ib *ib; 340 unsigned entries; 341 uint64_t addr; 342 int r; 343 344 r = amdgpu_bo_reserve(bo, false); 345 if (r) 346 return r; 347 348 r = reservation_object_reserve_shared(bo->tbo.resv); 349 if (r) 350 return r; 351 352 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 353 if (r) 354 goto error_unreserve; 355 356 addr = amdgpu_bo_gpu_offset(bo); 357 entries = amdgpu_bo_size(bo) / 8; 358 359 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL); 360 if (!ib) 361 goto error_unreserve; 362 363 r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib); 364 if (r) 365 goto error_free; 366 367 ib->length_dw = 0; 368 369 amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0); 370 amdgpu_vm_pad_ib(adev, ib); 371 WARN_ON(ib->length_dw > 64); 372 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1, 373 &amdgpu_vm_free_job, 374 AMDGPU_FENCE_OWNER_VM, 375 &fence); 376 if (!r) 377 amdgpu_bo_fence(bo, fence, true); 378 fence_put(fence); 379 if (amdgpu_enable_scheduler) { 380 amdgpu_bo_unreserve(bo); 381 return 0; 382 } 383 error_free: 384 amdgpu_ib_free(adev, ib); 385 kfree(ib); 386 387 error_unreserve: 388 amdgpu_bo_unreserve(bo); 389 return r; 390 } 391 392 /** 393 * amdgpu_vm_map_gart - get the physical address of a gart page 394 * 395 * @adev: amdgpu_device pointer 396 * @addr: the unmapped addr 397 * 398 * Look up the physical address of the page that the pte resolves 399 * to (cayman+). 400 * Returns the physical address of the page. 401 */ 402 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr) 403 { 404 uint64_t result; 405 406 /* page table offset */ 407 result = adev->gart.pages_addr[addr >> PAGE_SHIFT]; 408 409 /* in case cpu page size != gpu page size*/ 410 result |= addr & (~PAGE_MASK); 411 412 return result; 413 } 414 415 /** 416 * amdgpu_vm_update_pdes - make sure that page directory is valid 417 * 418 * @adev: amdgpu_device pointer 419 * @vm: requested vm 420 * @start: start of GPU address range 421 * @end: end of GPU address range 422 * 423 * Allocates new page tables if necessary 424 * and updates the page directory (cayman+). 425 * Returns 0 for success, error for failure. 426 * 427 * Global and local mutex must be locked! 428 */ 429 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev, 430 struct amdgpu_vm *vm) 431 { 432 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring; 433 struct amdgpu_bo *pd = vm->page_directory; 434 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd); 435 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8; 436 uint64_t last_pde = ~0, last_pt = ~0; 437 unsigned count = 0, pt_idx, ndw; 438 struct amdgpu_ib *ib; 439 struct fence *fence = NULL; 440 441 int r; 442 443 /* padding, etc. */ 444 ndw = 64; 445 446 /* assume the worst case */ 447 ndw += vm->max_pde_used * 6; 448 449 /* update too big for an IB */ 450 if (ndw > 0xfffff) 451 return -ENOMEM; 452 453 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL); 454 if (!ib) 455 return -ENOMEM; 456 457 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib); 458 if (r) { 459 kfree(ib); 460 return r; 461 } 462 ib->length_dw = 0; 463 464 /* walk over the address space and update the page directory */ 465 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 466 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo; 467 uint64_t pde, pt; 468 469 if (bo == NULL) 470 continue; 471 472 pt = amdgpu_bo_gpu_offset(bo); 473 if (vm->page_tables[pt_idx].addr == pt) 474 continue; 475 vm->page_tables[pt_idx].addr = pt; 476 477 pde = pd_addr + pt_idx * 8; 478 if (((last_pde + 8 * count) != pde) || 479 ((last_pt + incr * count) != pt)) { 480 481 if (count) { 482 amdgpu_vm_update_pages(adev, ib, last_pde, 483 last_pt, count, incr, 484 AMDGPU_PTE_VALID, 0); 485 } 486 487 count = 1; 488 last_pde = pde; 489 last_pt = pt; 490 } else { 491 ++count; 492 } 493 } 494 495 if (count) 496 amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count, 497 incr, AMDGPU_PTE_VALID, 0); 498 499 if (ib->length_dw != 0) { 500 amdgpu_vm_pad_ib(adev, ib); 501 amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM); 502 WARN_ON(ib->length_dw > ndw); 503 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1, 504 &amdgpu_vm_free_job, 505 AMDGPU_FENCE_OWNER_VM, 506 &fence); 507 if (r) 508 goto error_free; 509 510 amdgpu_bo_fence(pd, fence, true); 511 fence_put(vm->page_directory_fence); 512 vm->page_directory_fence = fence_get(fence); 513 fence_put(fence); 514 } 515 516 if (!amdgpu_enable_scheduler || ib->length_dw == 0) { 517 amdgpu_ib_free(adev, ib); 518 kfree(ib); 519 } 520 521 return 0; 522 523 error_free: 524 amdgpu_ib_free(adev, ib); 525 kfree(ib); 526 return r; 527 } 528 529 /** 530 * amdgpu_vm_frag_ptes - add fragment information to PTEs 531 * 532 * @adev: amdgpu_device pointer 533 * @ib: IB for the update 534 * @pe_start: first PTE to handle 535 * @pe_end: last PTE to handle 536 * @addr: addr those PTEs should point to 537 * @flags: hw mapping flags 538 * @gtt_flags: GTT hw mapping flags 539 * 540 * Global and local mutex must be locked! 541 */ 542 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev, 543 struct amdgpu_ib *ib, 544 uint64_t pe_start, uint64_t pe_end, 545 uint64_t addr, uint32_t flags, 546 uint32_t gtt_flags) 547 { 548 /** 549 * The MC L1 TLB supports variable sized pages, based on a fragment 550 * field in the PTE. When this field is set to a non-zero value, page 551 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 552 * flags are considered valid for all PTEs within the fragment range 553 * and corresponding mappings are assumed to be physically contiguous. 554 * 555 * The L1 TLB can store a single PTE for the whole fragment, 556 * significantly increasing the space available for translation 557 * caching. This leads to large improvements in throughput when the 558 * TLB is under pressure. 559 * 560 * The L2 TLB distributes small and large fragments into two 561 * asymmetric partitions. The large fragment cache is significantly 562 * larger. Thus, we try to use large fragments wherever possible. 563 * Userspace can support this by aligning virtual base address and 564 * allocation size to the fragment size. 565 */ 566 567 /* SI and newer are optimized for 64KB */ 568 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB; 569 uint64_t frag_align = 0x80; 570 571 uint64_t frag_start = ALIGN(pe_start, frag_align); 572 uint64_t frag_end = pe_end & ~(frag_align - 1); 573 574 unsigned count; 575 576 /* system pages are non continuously */ 577 if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) || 578 (frag_start >= frag_end)) { 579 580 count = (pe_end - pe_start) / 8; 581 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count, 582 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags); 583 return; 584 } 585 586 /* handle the 4K area at the beginning */ 587 if (pe_start != frag_start) { 588 count = (frag_start - pe_start) / 8; 589 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count, 590 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags); 591 addr += AMDGPU_GPU_PAGE_SIZE * count; 592 } 593 594 /* handle the area in the middle */ 595 count = (frag_end - frag_start) / 8; 596 amdgpu_vm_update_pages(adev, ib, frag_start, addr, count, 597 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags, 598 gtt_flags); 599 600 /* handle the 4K area at the end */ 601 if (frag_end != pe_end) { 602 addr += AMDGPU_GPU_PAGE_SIZE * count; 603 count = (pe_end - frag_end) / 8; 604 amdgpu_vm_update_pages(adev, ib, frag_end, addr, count, 605 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags); 606 } 607 } 608 609 /** 610 * amdgpu_vm_update_ptes - make sure that page tables are valid 611 * 612 * @adev: amdgpu_device pointer 613 * @vm: requested vm 614 * @start: start of GPU address range 615 * @end: end of GPU address range 616 * @dst: destination address to map to 617 * @flags: mapping flags 618 * 619 * Update the page tables in the range @start - @end (cayman+). 620 * 621 * Global and local mutex must be locked! 622 */ 623 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev, 624 struct amdgpu_vm *vm, 625 struct amdgpu_ib *ib, 626 uint64_t start, uint64_t end, 627 uint64_t dst, uint32_t flags, 628 uint32_t gtt_flags) 629 { 630 uint64_t mask = AMDGPU_VM_PTE_COUNT - 1; 631 uint64_t last_pte = ~0, last_dst = ~0; 632 void *owner = AMDGPU_FENCE_OWNER_VM; 633 unsigned count = 0; 634 uint64_t addr; 635 636 /* sync to everything on unmapping */ 637 if (!(flags & AMDGPU_PTE_VALID)) 638 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 639 640 /* walk over the address space and update the page tables */ 641 for (addr = start; addr < end; ) { 642 uint64_t pt_idx = addr >> amdgpu_vm_block_size; 643 struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo; 644 unsigned nptes; 645 uint64_t pte; 646 int r; 647 648 amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner); 649 r = reservation_object_reserve_shared(pt->tbo.resv); 650 if (r) 651 return r; 652 653 if ((addr & ~mask) == (end & ~mask)) 654 nptes = end - addr; 655 else 656 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 657 658 pte = amdgpu_bo_gpu_offset(pt); 659 pte += (addr & mask) * 8; 660 661 if ((last_pte + 8 * count) != pte) { 662 663 if (count) { 664 amdgpu_vm_frag_ptes(adev, ib, last_pte, 665 last_pte + 8 * count, 666 last_dst, flags, 667 gtt_flags); 668 } 669 670 count = nptes; 671 last_pte = pte; 672 last_dst = dst; 673 } else { 674 count += nptes; 675 } 676 677 addr += nptes; 678 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 679 } 680 681 if (count) { 682 amdgpu_vm_frag_ptes(adev, ib, last_pte, 683 last_pte + 8 * count, 684 last_dst, flags, gtt_flags); 685 } 686 687 return 0; 688 } 689 690 /** 691 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 692 * 693 * @adev: amdgpu_device pointer 694 * @vm: requested vm 695 * @mapping: mapped range and flags to use for the update 696 * @addr: addr to set the area to 697 * @gtt_flags: flags as they are used for GTT 698 * @fence: optional resulting fence 699 * 700 * Fill in the page table entries for @mapping. 701 * Returns 0 for success, -EINVAL for failure. 702 * 703 * Object have to be reserved and mutex must be locked! 704 */ 705 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 706 struct amdgpu_vm *vm, 707 struct amdgpu_bo_va_mapping *mapping, 708 uint64_t addr, uint32_t gtt_flags, 709 struct fence **fence) 710 { 711 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring; 712 unsigned nptes, ncmds, ndw; 713 uint32_t flags = gtt_flags; 714 struct amdgpu_ib *ib; 715 struct fence *f = NULL; 716 int r; 717 718 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 719 * but in case of something, we filter the flags in first place 720 */ 721 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 722 flags &= ~AMDGPU_PTE_READABLE; 723 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 724 flags &= ~AMDGPU_PTE_WRITEABLE; 725 726 trace_amdgpu_vm_bo_update(mapping); 727 728 nptes = mapping->it.last - mapping->it.start + 1; 729 730 /* 731 * reserve space for one command every (1 << BLOCK_SIZE) 732 * entries or 2k dwords (whatever is smaller) 733 */ 734 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1; 735 736 /* padding, etc. */ 737 ndw = 64; 738 739 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) { 740 /* only copy commands needed */ 741 ndw += ncmds * 7; 742 743 } else if (flags & AMDGPU_PTE_SYSTEM) { 744 /* header for write data commands */ 745 ndw += ncmds * 4; 746 747 /* body of write data command */ 748 ndw += nptes * 2; 749 750 } else { 751 /* set page commands needed */ 752 ndw += ncmds * 10; 753 754 /* two extra commands for begin/end of fragment */ 755 ndw += 2 * 10; 756 } 757 758 /* update too big for an IB */ 759 if (ndw > 0xfffff) 760 return -ENOMEM; 761 762 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL); 763 if (!ib) 764 return -ENOMEM; 765 766 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib); 767 if (r) { 768 kfree(ib); 769 return r; 770 } 771 772 ib->length_dw = 0; 773 774 r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start, 775 mapping->it.last + 1, addr + mapping->offset, 776 flags, gtt_flags); 777 778 if (r) { 779 amdgpu_ib_free(adev, ib); 780 kfree(ib); 781 return r; 782 } 783 784 amdgpu_vm_pad_ib(adev, ib); 785 WARN_ON(ib->length_dw > ndw); 786 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1, 787 &amdgpu_vm_free_job, 788 AMDGPU_FENCE_OWNER_VM, 789 &f); 790 if (r) 791 goto error_free; 792 793 amdgpu_bo_fence(vm->page_directory, f, true); 794 if (fence) { 795 fence_put(*fence); 796 *fence = fence_get(f); 797 } 798 fence_put(f); 799 if (!amdgpu_enable_scheduler) { 800 amdgpu_ib_free(adev, ib); 801 kfree(ib); 802 } 803 return 0; 804 805 error_free: 806 amdgpu_ib_free(adev, ib); 807 kfree(ib); 808 return r; 809 } 810 811 /** 812 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 813 * 814 * @adev: amdgpu_device pointer 815 * @bo_va: requested BO and VM object 816 * @mem: ttm mem 817 * 818 * Fill in the page table entries for @bo_va. 819 * Returns 0 for success, -EINVAL for failure. 820 * 821 * Object have to be reserved and mutex must be locked! 822 */ 823 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 824 struct amdgpu_bo_va *bo_va, 825 struct ttm_mem_reg *mem) 826 { 827 struct amdgpu_vm *vm = bo_va->vm; 828 struct amdgpu_bo_va_mapping *mapping; 829 uint32_t flags; 830 uint64_t addr; 831 int r; 832 833 if (mem) { 834 addr = (u64)mem->start << PAGE_SHIFT; 835 if (mem->mem_type != TTM_PL_TT) 836 addr += adev->vm_manager.vram_base_offset; 837 } else { 838 addr = 0; 839 } 840 841 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 842 843 spin_lock(&vm->status_lock); 844 if (!list_empty(&bo_va->vm_status)) 845 list_splice_init(&bo_va->valids, &bo_va->invalids); 846 spin_unlock(&vm->status_lock); 847 848 list_for_each_entry(mapping, &bo_va->invalids, list) { 849 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr, 850 flags, &bo_va->last_pt_update); 851 if (r) 852 return r; 853 } 854 855 spin_lock(&vm->status_lock); 856 list_splice_init(&bo_va->invalids, &bo_va->valids); 857 list_del_init(&bo_va->vm_status); 858 if (!mem) 859 list_add(&bo_va->vm_status, &vm->cleared); 860 spin_unlock(&vm->status_lock); 861 862 return 0; 863 } 864 865 /** 866 * amdgpu_vm_clear_freed - clear freed BOs in the PT 867 * 868 * @adev: amdgpu_device pointer 869 * @vm: requested vm 870 * 871 * Make sure all freed BOs are cleared in the PT. 872 * Returns 0 for success. 873 * 874 * PTs have to be reserved and mutex must be locked! 875 */ 876 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 877 struct amdgpu_vm *vm) 878 { 879 struct amdgpu_bo_va_mapping *mapping; 880 int r; 881 882 while (!list_empty(&vm->freed)) { 883 mapping = list_first_entry(&vm->freed, 884 struct amdgpu_bo_va_mapping, list); 885 list_del(&mapping->list); 886 887 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL); 888 kfree(mapping); 889 if (r) 890 return r; 891 892 } 893 return 0; 894 895 } 896 897 /** 898 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 899 * 900 * @adev: amdgpu_device pointer 901 * @vm: requested vm 902 * 903 * Make sure all invalidated BOs are cleared in the PT. 904 * Returns 0 for success. 905 * 906 * PTs have to be reserved and mutex must be locked! 907 */ 908 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 909 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 910 { 911 struct amdgpu_bo_va *bo_va = NULL; 912 int r = 0; 913 914 spin_lock(&vm->status_lock); 915 while (!list_empty(&vm->invalidated)) { 916 bo_va = list_first_entry(&vm->invalidated, 917 struct amdgpu_bo_va, vm_status); 918 spin_unlock(&vm->status_lock); 919 920 r = amdgpu_vm_bo_update(adev, bo_va, NULL); 921 if (r) 922 return r; 923 924 spin_lock(&vm->status_lock); 925 } 926 spin_unlock(&vm->status_lock); 927 928 if (bo_va) 929 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 930 931 return r; 932 } 933 934 /** 935 * amdgpu_vm_bo_add - add a bo to a specific vm 936 * 937 * @adev: amdgpu_device pointer 938 * @vm: requested vm 939 * @bo: amdgpu buffer object 940 * 941 * Add @bo into the requested vm (cayman+). 942 * Add @bo to the list of bos associated with the vm 943 * Returns newly added bo_va or NULL for failure 944 * 945 * Object has to be reserved! 946 */ 947 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 948 struct amdgpu_vm *vm, 949 struct amdgpu_bo *bo) 950 { 951 struct amdgpu_bo_va *bo_va; 952 953 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 954 if (bo_va == NULL) { 955 return NULL; 956 } 957 bo_va->vm = vm; 958 bo_va->bo = bo; 959 bo_va->ref_count = 1; 960 INIT_LIST_HEAD(&bo_va->bo_list); 961 INIT_LIST_HEAD(&bo_va->valids); 962 INIT_LIST_HEAD(&bo_va->invalids); 963 INIT_LIST_HEAD(&bo_va->vm_status); 964 965 mutex_lock(&vm->mutex); 966 list_add_tail(&bo_va->bo_list, &bo->va); 967 mutex_unlock(&vm->mutex); 968 969 return bo_va; 970 } 971 972 /** 973 * amdgpu_vm_bo_map - map bo inside a vm 974 * 975 * @adev: amdgpu_device pointer 976 * @bo_va: bo_va to store the address 977 * @saddr: where to map the BO 978 * @offset: requested offset in the BO 979 * @flags: attributes of pages (read/write/valid/etc.) 980 * 981 * Add a mapping of the BO at the specefied addr into the VM. 982 * Returns 0 for success, error for failure. 983 * 984 * Object has to be reserved and gets unreserved by this function! 985 */ 986 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 987 struct amdgpu_bo_va *bo_va, 988 uint64_t saddr, uint64_t offset, 989 uint64_t size, uint32_t flags) 990 { 991 struct amdgpu_bo_va_mapping *mapping; 992 struct amdgpu_vm *vm = bo_va->vm; 993 struct interval_tree_node *it; 994 unsigned last_pfn, pt_idx; 995 uint64_t eaddr; 996 int r; 997 998 /* validate the parameters */ 999 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1000 size == 0 || size & AMDGPU_GPU_PAGE_MASK) { 1001 amdgpu_bo_unreserve(bo_va->bo); 1002 return -EINVAL; 1003 } 1004 1005 /* make sure object fit at this offset */ 1006 eaddr = saddr + size; 1007 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) { 1008 amdgpu_bo_unreserve(bo_va->bo); 1009 return -EINVAL; 1010 } 1011 1012 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 1013 if (last_pfn > adev->vm_manager.max_pfn) { 1014 dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n", 1015 last_pfn, adev->vm_manager.max_pfn); 1016 amdgpu_bo_unreserve(bo_va->bo); 1017 return -EINVAL; 1018 } 1019 1020 mutex_lock(&vm->mutex); 1021 1022 saddr /= AMDGPU_GPU_PAGE_SIZE; 1023 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1024 1025 it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1); 1026 if (it) { 1027 struct amdgpu_bo_va_mapping *tmp; 1028 tmp = container_of(it, struct amdgpu_bo_va_mapping, it); 1029 /* bo and tmp overlap, invalid addr */ 1030 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1031 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr, 1032 tmp->it.start, tmp->it.last + 1); 1033 amdgpu_bo_unreserve(bo_va->bo); 1034 r = -EINVAL; 1035 goto error_unlock; 1036 } 1037 1038 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1039 if (!mapping) { 1040 amdgpu_bo_unreserve(bo_va->bo); 1041 r = -ENOMEM; 1042 goto error_unlock; 1043 } 1044 1045 INIT_LIST_HEAD(&mapping->list); 1046 mapping->it.start = saddr; 1047 mapping->it.last = eaddr - 1; 1048 mapping->offset = offset; 1049 mapping->flags = flags; 1050 1051 list_add(&mapping->list, &bo_va->invalids); 1052 interval_tree_insert(&mapping->it, &vm->va); 1053 trace_amdgpu_vm_bo_map(bo_va, mapping); 1054 1055 /* Make sure the page tables are allocated */ 1056 saddr >>= amdgpu_vm_block_size; 1057 eaddr >>= amdgpu_vm_block_size; 1058 1059 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev)); 1060 1061 if (eaddr > vm->max_pde_used) 1062 vm->max_pde_used = eaddr; 1063 1064 amdgpu_bo_unreserve(bo_va->bo); 1065 1066 /* walk over the address space and allocate the page tables */ 1067 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) { 1068 struct reservation_object *resv = vm->page_directory->tbo.resv; 1069 struct amdgpu_bo *pt; 1070 1071 if (vm->page_tables[pt_idx].bo) 1072 continue; 1073 1074 /* drop mutex to allocate and clear page table */ 1075 mutex_unlock(&vm->mutex); 1076 1077 ww_mutex_lock(&resv->lock, NULL); 1078 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8, 1079 AMDGPU_GPU_PAGE_SIZE, true, 1080 AMDGPU_GEM_DOMAIN_VRAM, 1081 AMDGPU_GEM_CREATE_NO_CPU_ACCESS, 1082 NULL, resv, &pt); 1083 ww_mutex_unlock(&resv->lock); 1084 if (r) 1085 goto error_free; 1086 1087 r = amdgpu_vm_clear_bo(adev, pt); 1088 if (r) { 1089 amdgpu_bo_unref(&pt); 1090 goto error_free; 1091 } 1092 1093 /* aquire mutex again */ 1094 mutex_lock(&vm->mutex); 1095 if (vm->page_tables[pt_idx].bo) { 1096 /* someone else allocated the pt in the meantime */ 1097 mutex_unlock(&vm->mutex); 1098 amdgpu_bo_unref(&pt); 1099 mutex_lock(&vm->mutex); 1100 continue; 1101 } 1102 1103 vm->page_tables[pt_idx].addr = 0; 1104 vm->page_tables[pt_idx].bo = pt; 1105 } 1106 1107 mutex_unlock(&vm->mutex); 1108 return 0; 1109 1110 error_free: 1111 mutex_lock(&vm->mutex); 1112 list_del(&mapping->list); 1113 interval_tree_remove(&mapping->it, &vm->va); 1114 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1115 kfree(mapping); 1116 1117 error_unlock: 1118 mutex_unlock(&vm->mutex); 1119 return r; 1120 } 1121 1122 /** 1123 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1124 * 1125 * @adev: amdgpu_device pointer 1126 * @bo_va: bo_va to remove the address from 1127 * @saddr: where to the BO is mapped 1128 * 1129 * Remove a mapping of the BO at the specefied addr from the VM. 1130 * Returns 0 for success, error for failure. 1131 * 1132 * Object has to be reserved and gets unreserved by this function! 1133 */ 1134 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1135 struct amdgpu_bo_va *bo_va, 1136 uint64_t saddr) 1137 { 1138 struct amdgpu_bo_va_mapping *mapping; 1139 struct amdgpu_vm *vm = bo_va->vm; 1140 bool valid = true; 1141 1142 saddr /= AMDGPU_GPU_PAGE_SIZE; 1143 1144 list_for_each_entry(mapping, &bo_va->valids, list) { 1145 if (mapping->it.start == saddr) 1146 break; 1147 } 1148 1149 if (&mapping->list == &bo_va->valids) { 1150 valid = false; 1151 1152 list_for_each_entry(mapping, &bo_va->invalids, list) { 1153 if (mapping->it.start == saddr) 1154 break; 1155 } 1156 1157 if (&mapping->list == &bo_va->invalids) { 1158 amdgpu_bo_unreserve(bo_va->bo); 1159 return -ENOENT; 1160 } 1161 } 1162 1163 mutex_lock(&vm->mutex); 1164 list_del(&mapping->list); 1165 interval_tree_remove(&mapping->it, &vm->va); 1166 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1167 1168 if (valid) 1169 list_add(&mapping->list, &vm->freed); 1170 else 1171 kfree(mapping); 1172 mutex_unlock(&vm->mutex); 1173 amdgpu_bo_unreserve(bo_va->bo); 1174 1175 return 0; 1176 } 1177 1178 /** 1179 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 1180 * 1181 * @adev: amdgpu_device pointer 1182 * @bo_va: requested bo_va 1183 * 1184 * Remove @bo_va->bo from the requested vm (cayman+). 1185 * 1186 * Object have to be reserved! 1187 */ 1188 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 1189 struct amdgpu_bo_va *bo_va) 1190 { 1191 struct amdgpu_bo_va_mapping *mapping, *next; 1192 struct amdgpu_vm *vm = bo_va->vm; 1193 1194 list_del(&bo_va->bo_list); 1195 1196 mutex_lock(&vm->mutex); 1197 1198 spin_lock(&vm->status_lock); 1199 list_del(&bo_va->vm_status); 1200 spin_unlock(&vm->status_lock); 1201 1202 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 1203 list_del(&mapping->list); 1204 interval_tree_remove(&mapping->it, &vm->va); 1205 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1206 list_add(&mapping->list, &vm->freed); 1207 } 1208 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 1209 list_del(&mapping->list); 1210 interval_tree_remove(&mapping->it, &vm->va); 1211 kfree(mapping); 1212 } 1213 1214 fence_put(bo_va->last_pt_update); 1215 kfree(bo_va); 1216 1217 mutex_unlock(&vm->mutex); 1218 } 1219 1220 /** 1221 * amdgpu_vm_bo_invalidate - mark the bo as invalid 1222 * 1223 * @adev: amdgpu_device pointer 1224 * @vm: requested vm 1225 * @bo: amdgpu buffer object 1226 * 1227 * Mark @bo as invalid (cayman+). 1228 */ 1229 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 1230 struct amdgpu_bo *bo) 1231 { 1232 struct amdgpu_bo_va *bo_va; 1233 1234 list_for_each_entry(bo_va, &bo->va, bo_list) { 1235 spin_lock(&bo_va->vm->status_lock); 1236 if (list_empty(&bo_va->vm_status)) 1237 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1238 spin_unlock(&bo_va->vm->status_lock); 1239 } 1240 } 1241 1242 /** 1243 * amdgpu_vm_init - initialize a vm instance 1244 * 1245 * @adev: amdgpu_device pointer 1246 * @vm: requested vm 1247 * 1248 * Init @vm fields (cayman+). 1249 */ 1250 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1251 { 1252 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 1253 AMDGPU_VM_PTE_COUNT * 8); 1254 unsigned pd_size, pd_entries, pts_size; 1255 int i, r; 1256 1257 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { 1258 vm->ids[i].id = 0; 1259 vm->ids[i].flushed_updates = NULL; 1260 vm->ids[i].last_id_use = NULL; 1261 } 1262 mutex_init(&vm->mutex); 1263 vm->va = RB_ROOT; 1264 spin_lock_init(&vm->status_lock); 1265 INIT_LIST_HEAD(&vm->invalidated); 1266 INIT_LIST_HEAD(&vm->cleared); 1267 INIT_LIST_HEAD(&vm->freed); 1268 1269 pd_size = amdgpu_vm_directory_size(adev); 1270 pd_entries = amdgpu_vm_num_pdes(adev); 1271 1272 /* allocate page table array */ 1273 pts_size = pd_entries * sizeof(struct amdgpu_vm_pt); 1274 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 1275 if (vm->page_tables == NULL) { 1276 DRM_ERROR("Cannot allocate memory for page table array\n"); 1277 return -ENOMEM; 1278 } 1279 1280 vm->page_directory_fence = NULL; 1281 1282 r = amdgpu_bo_create(adev, pd_size, align, true, 1283 AMDGPU_GEM_DOMAIN_VRAM, 1284 AMDGPU_GEM_CREATE_NO_CPU_ACCESS, 1285 NULL, NULL, &vm->page_directory); 1286 if (r) 1287 return r; 1288 1289 r = amdgpu_vm_clear_bo(adev, vm->page_directory); 1290 if (r) { 1291 amdgpu_bo_unref(&vm->page_directory); 1292 vm->page_directory = NULL; 1293 return r; 1294 } 1295 1296 return 0; 1297 } 1298 1299 /** 1300 * amdgpu_vm_fini - tear down a vm instance 1301 * 1302 * @adev: amdgpu_device pointer 1303 * @vm: requested vm 1304 * 1305 * Tear down @vm (cayman+). 1306 * Unbind the VM and remove all bos from the vm bo list 1307 */ 1308 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1309 { 1310 struct amdgpu_bo_va_mapping *mapping, *tmp; 1311 int i; 1312 1313 if (!RB_EMPTY_ROOT(&vm->va)) { 1314 dev_err(adev->dev, "still active bo inside vm\n"); 1315 } 1316 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) { 1317 list_del(&mapping->list); 1318 interval_tree_remove(&mapping->it, &vm->va); 1319 kfree(mapping); 1320 } 1321 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 1322 list_del(&mapping->list); 1323 kfree(mapping); 1324 } 1325 1326 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) 1327 amdgpu_bo_unref(&vm->page_tables[i].bo); 1328 kfree(vm->page_tables); 1329 1330 amdgpu_bo_unref(&vm->page_directory); 1331 fence_put(vm->page_directory_fence); 1332 1333 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { 1334 fence_put(vm->ids[i].flushed_updates); 1335 amdgpu_fence_unref(&vm->ids[i].last_id_use); 1336 } 1337 1338 mutex_destroy(&vm->mutex); 1339 } 1340