1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40 
41 /**
42  * DOC: GPUVM
43  *
44  * GPUVM is similar to the legacy gart on older asics, however
45  * rather than there being a single global gart table
46  * for the entire GPU, there are multiple VM page tables active
47  * at any given time.  The VM page tables can contain a mix
48  * vram pages and system memory pages and system memory pages
49  * can be mapped as snooped (cached system pages) or unsnooped
50  * (uncached system pages).
51  * Each VM has an ID associated with it and there is a page table
52  * associated with each VMID.  When execting a command buffer,
53  * the kernel tells the the ring what VMID to use for that command
54  * buffer.  VMIDs are allocated dynamically as commands are submitted.
55  * The userspace drivers maintain their own address space and the kernel
56  * sets up their pages tables accordingly when they submit their
57  * command buffers and a VMID is assigned.
58  * Cayman/Trinity support up to 8 active VMs at any given time;
59  * SI supports 16.
60  */
61 
62 #define START(node) ((node)->start)
63 #define LAST(node) ((node)->last)
64 
65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66 		     START, LAST, static, amdgpu_vm_it)
67 
68 #undef START
69 #undef LAST
70 
71 /**
72  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73  */
74 struct amdgpu_prt_cb {
75 
76 	/**
77 	 * @adev: amdgpu device
78 	 */
79 	struct amdgpu_device *adev;
80 
81 	/**
82 	 * @cb: callback
83 	 */
84 	struct dma_fence_cb cb;
85 };
86 
87 /*
88  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89  * happens while holding this lock anywhere to prevent deadlocks when
90  * an MMU notifier runs in reclaim-FS context.
91  */
92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93 {
94 	mutex_lock(&vm->eviction_lock);
95 	vm->saved_flags = memalloc_noreclaim_save();
96 }
97 
98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99 {
100 	if (mutex_trylock(&vm->eviction_lock)) {
101 		vm->saved_flags = memalloc_noreclaim_save();
102 		return 1;
103 	}
104 	return 0;
105 }
106 
107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108 {
109 	memalloc_noreclaim_restore(vm->saved_flags);
110 	mutex_unlock(&vm->eviction_lock);
111 }
112 
113 /**
114  * amdgpu_vm_level_shift - return the addr shift for each level
115  *
116  * @adev: amdgpu_device pointer
117  * @level: VMPT level
118  *
119  * Returns:
120  * The number of bits the pfn needs to be right shifted for a level.
121  */
122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123 				      unsigned level)
124 {
125 	switch (level) {
126 	case AMDGPU_VM_PDB2:
127 	case AMDGPU_VM_PDB1:
128 	case AMDGPU_VM_PDB0:
129 		return 9 * (AMDGPU_VM_PDB0 - level) +
130 			adev->vm_manager.block_size;
131 	case AMDGPU_VM_PTB:
132 		return 0;
133 	default:
134 		return ~0;
135 	}
136 }
137 
138 /**
139  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140  *
141  * @adev: amdgpu_device pointer
142  * @level: VMPT level
143  *
144  * Returns:
145  * The number of entries in a page directory or page table.
146  */
147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148 				      unsigned level)
149 {
150 	unsigned shift = amdgpu_vm_level_shift(adev,
151 					       adev->vm_manager.root_level);
152 
153 	if (level == adev->vm_manager.root_level)
154 		/* For the root directory */
155 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156 			>> shift;
157 	else if (level != AMDGPU_VM_PTB)
158 		/* Everything in between */
159 		return 512;
160 	else
161 		/* For the page tables on the leaves */
162 		return AMDGPU_VM_PTE_COUNT(adev);
163 }
164 
165 /**
166  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167  *
168  * @adev: amdgpu_device pointer
169  *
170  * Returns:
171  * The number of entries in the root page directory which needs the ATS setting.
172  */
173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174 {
175 	unsigned shift;
176 
177 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179 }
180 
181 /**
182  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183  *
184  * @adev: amdgpu_device pointer
185  * @level: VMPT level
186  *
187  * Returns:
188  * The mask to extract the entry number of a PD/PT from an address.
189  */
190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191 				       unsigned int level)
192 {
193 	if (level <= adev->vm_manager.root_level)
194 		return 0xffffffff;
195 	else if (level != AMDGPU_VM_PTB)
196 		return 0x1ff;
197 	else
198 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
199 }
200 
201 /**
202  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203  *
204  * @adev: amdgpu_device pointer
205  * @level: VMPT level
206  *
207  * Returns:
208  * The size of the BO for a page directory or page table in bytes.
209  */
210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211 {
212 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213 }
214 
215 /**
216  * amdgpu_vm_bo_evicted - vm_bo is evicted
217  *
218  * @vm_bo: vm_bo which is evicted
219  *
220  * State for PDs/PTs and per VM BOs which are not at the location they should
221  * be.
222  */
223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224 {
225 	struct amdgpu_vm *vm = vm_bo->vm;
226 	struct amdgpu_bo *bo = vm_bo->bo;
227 
228 	vm_bo->moved = true;
229 	if (bo->tbo.type == ttm_bo_type_kernel)
230 		list_move(&vm_bo->vm_status, &vm->evicted);
231 	else
232 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
233 }
234 /**
235  * amdgpu_vm_bo_moved - vm_bo is moved
236  *
237  * @vm_bo: vm_bo which is moved
238  *
239  * State for per VM BOs which are moved, but that change is not yet reflected
240  * in the page tables.
241  */
242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243 {
244 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245 }
246 
247 /**
248  * amdgpu_vm_bo_idle - vm_bo is idle
249  *
250  * @vm_bo: vm_bo which is now idle
251  *
252  * State for PDs/PTs and per VM BOs which have gone through the state machine
253  * and are now idle.
254  */
255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256 {
257 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258 	vm_bo->moved = false;
259 }
260 
261 /**
262  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263  *
264  * @vm_bo: vm_bo which is now invalidated
265  *
266  * State for normal BOs which are invalidated and that change not yet reflected
267  * in the PTs.
268  */
269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270 {
271 	spin_lock(&vm_bo->vm->invalidated_lock);
272 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273 	spin_unlock(&vm_bo->vm->invalidated_lock);
274 }
275 
276 /**
277  * amdgpu_vm_bo_relocated - vm_bo is reloacted
278  *
279  * @vm_bo: vm_bo which is relocated
280  *
281  * State for PDs/PTs which needs to update their parent PD.
282  * For the root PD, just move to idle state.
283  */
284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285 {
286 	if (vm_bo->bo->parent)
287 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288 	else
289 		amdgpu_vm_bo_idle(vm_bo);
290 }
291 
292 /**
293  * amdgpu_vm_bo_done - vm_bo is done
294  *
295  * @vm_bo: vm_bo which is now done
296  *
297  * State for normal BOs which are invalidated and that change has been updated
298  * in the PTs.
299  */
300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301 {
302 	spin_lock(&vm_bo->vm->invalidated_lock);
303 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
304 	spin_unlock(&vm_bo->vm->invalidated_lock);
305 }
306 
307 /**
308  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309  *
310  * @base: base structure for tracking BO usage in a VM
311  * @vm: vm to which bo is to be added
312  * @bo: amdgpu buffer object
313  *
314  * Initialize a bo_va_base structure and add it to the appropriate lists
315  *
316  */
317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318 				   struct amdgpu_vm *vm,
319 				   struct amdgpu_bo *bo)
320 {
321 	base->vm = vm;
322 	base->bo = bo;
323 	base->next = NULL;
324 	INIT_LIST_HEAD(&base->vm_status);
325 
326 	if (!bo)
327 		return;
328 	base->next = bo->vm_bo;
329 	bo->vm_bo = base;
330 
331 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332 		return;
333 
334 	vm->bulk_moveable = false;
335 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336 		amdgpu_vm_bo_relocated(base);
337 	else
338 		amdgpu_vm_bo_idle(base);
339 
340 	if (bo->preferred_domains &
341 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342 		return;
343 
344 	/*
345 	 * we checked all the prerequisites, but it looks like this per vm bo
346 	 * is currently evicted. add the bo to the evicted list to make sure it
347 	 * is validated on next vm use to avoid fault.
348 	 * */
349 	amdgpu_vm_bo_evicted(base);
350 }
351 
352 /**
353  * amdgpu_vm_pt_parent - get the parent page directory
354  *
355  * @pt: child page table
356  *
357  * Helper to get the parent entry for the child page table. NULL if we are at
358  * the root page directory.
359  */
360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361 {
362 	struct amdgpu_bo *parent = pt->base.bo->parent;
363 
364 	if (!parent)
365 		return NULL;
366 
367 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368 }
369 
370 /*
371  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372  */
373 struct amdgpu_vm_pt_cursor {
374 	uint64_t pfn;
375 	struct amdgpu_vm_pt *parent;
376 	struct amdgpu_vm_pt *entry;
377 	unsigned level;
378 };
379 
380 /**
381  * amdgpu_vm_pt_start - start PD/PT walk
382  *
383  * @adev: amdgpu_device pointer
384  * @vm: amdgpu_vm structure
385  * @start: start address of the walk
386  * @cursor: state to initialize
387  *
388  * Initialize a amdgpu_vm_pt_cursor to start a walk.
389  */
390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391 			       struct amdgpu_vm *vm, uint64_t start,
392 			       struct amdgpu_vm_pt_cursor *cursor)
393 {
394 	cursor->pfn = start;
395 	cursor->parent = NULL;
396 	cursor->entry = &vm->root;
397 	cursor->level = adev->vm_manager.root_level;
398 }
399 
400 /**
401  * amdgpu_vm_pt_descendant - go to child node
402  *
403  * @adev: amdgpu_device pointer
404  * @cursor: current state
405  *
406  * Walk to the child node of the current node.
407  * Returns:
408  * True if the walk was possible, false otherwise.
409  */
410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411 				    struct amdgpu_vm_pt_cursor *cursor)
412 {
413 	unsigned mask, shift, idx;
414 
415 	if (!cursor->entry->entries)
416 		return false;
417 
418 	BUG_ON(!cursor->entry->base.bo);
419 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
420 	shift = amdgpu_vm_level_shift(adev, cursor->level);
421 
422 	++cursor->level;
423 	idx = (cursor->pfn >> shift) & mask;
424 	cursor->parent = cursor->entry;
425 	cursor->entry = &cursor->entry->entries[idx];
426 	return true;
427 }
428 
429 /**
430  * amdgpu_vm_pt_sibling - go to sibling node
431  *
432  * @adev: amdgpu_device pointer
433  * @cursor: current state
434  *
435  * Walk to the sibling node of the current node.
436  * Returns:
437  * True if the walk was possible, false otherwise.
438  */
439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440 				 struct amdgpu_vm_pt_cursor *cursor)
441 {
442 	unsigned shift, num_entries;
443 
444 	/* Root doesn't have a sibling */
445 	if (!cursor->parent)
446 		return false;
447 
448 	/* Go to our parents and see if we got a sibling */
449 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451 
452 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453 		return false;
454 
455 	cursor->pfn += 1ULL << shift;
456 	cursor->pfn &= ~((1ULL << shift) - 1);
457 	++cursor->entry;
458 	return true;
459 }
460 
461 /**
462  * amdgpu_vm_pt_ancestor - go to parent node
463  *
464  * @cursor: current state
465  *
466  * Walk to the parent node of the current node.
467  * Returns:
468  * True if the walk was possible, false otherwise.
469  */
470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471 {
472 	if (!cursor->parent)
473 		return false;
474 
475 	--cursor->level;
476 	cursor->entry = cursor->parent;
477 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478 	return true;
479 }
480 
481 /**
482  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483  *
484  * @adev: amdgpu_device pointer
485  * @cursor: current state
486  *
487  * Walk the PD/PT tree to the next node.
488  */
489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490 			      struct amdgpu_vm_pt_cursor *cursor)
491 {
492 	/* First try a newborn child */
493 	if (amdgpu_vm_pt_descendant(adev, cursor))
494 		return;
495 
496 	/* If that didn't worked try to find a sibling */
497 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498 		/* No sibling, go to our parents and grandparents */
499 		if (!amdgpu_vm_pt_ancestor(cursor)) {
500 			cursor->pfn = ~0ll;
501 			return;
502 		}
503 	}
504 }
505 
506 /**
507  * amdgpu_vm_pt_first_dfs - start a deep first search
508  *
509  * @adev: amdgpu_device structure
510  * @vm: amdgpu_vm structure
511  * @start: optional cursor to start with
512  * @cursor: state to initialize
513  *
514  * Starts a deep first traversal of the PD/PT tree.
515  */
516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517 				   struct amdgpu_vm *vm,
518 				   struct amdgpu_vm_pt_cursor *start,
519 				   struct amdgpu_vm_pt_cursor *cursor)
520 {
521 	if (start)
522 		*cursor = *start;
523 	else
524 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
525 	while (amdgpu_vm_pt_descendant(adev, cursor));
526 }
527 
528 /**
529  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530  *
531  * @start: starting point for the search
532  * @entry: current entry
533  *
534  * Returns:
535  * True when the search should continue, false otherwise.
536  */
537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538 				      struct amdgpu_vm_pt *entry)
539 {
540 	return entry && (!start || entry != start->entry);
541 }
542 
543 /**
544  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545  *
546  * @adev: amdgpu_device structure
547  * @cursor: current state
548  *
549  * Move the cursor to the next node in a deep first search.
550  */
551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552 				  struct amdgpu_vm_pt_cursor *cursor)
553 {
554 	if (!cursor->entry)
555 		return;
556 
557 	if (!cursor->parent)
558 		cursor->entry = NULL;
559 	else if (amdgpu_vm_pt_sibling(adev, cursor))
560 		while (amdgpu_vm_pt_descendant(adev, cursor));
561 	else
562 		amdgpu_vm_pt_ancestor(cursor);
563 }
564 
565 /*
566  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567  */
568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
569 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
570 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
572 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573 
574 /**
575  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576  *
577  * @vm: vm providing the BOs
578  * @validated: head of validation list
579  * @entry: entry to add
580  *
581  * Add the page directory to the list of BOs to
582  * validate for command submission.
583  */
584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585 			 struct list_head *validated,
586 			 struct amdgpu_bo_list_entry *entry)
587 {
588 	entry->priority = 0;
589 	entry->tv.bo = &vm->root.base.bo->tbo;
590 	/* Two for VM updates, one for TTM and one for the CS job */
591 	entry->tv.num_shared = 4;
592 	entry->user_pages = NULL;
593 	list_add(&entry->tv.head, validated);
594 }
595 
596 /**
597  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598  *
599  * @bo: BO which was removed from the LRU
600  *
601  * Make sure the bulk_moveable flag is updated when a BO is removed from the
602  * LRU.
603  */
604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605 {
606 	struct amdgpu_bo *abo;
607 	struct amdgpu_vm_bo_base *bo_base;
608 
609 	if (!amdgpu_bo_is_amdgpu_bo(bo))
610 		return;
611 
612 	if (bo->pin_count)
613 		return;
614 
615 	abo = ttm_to_amdgpu_bo(bo);
616 	if (!abo->parent)
617 		return;
618 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619 		struct amdgpu_vm *vm = bo_base->vm;
620 
621 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622 			vm->bulk_moveable = false;
623 	}
624 
625 }
626 /**
627  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628  *
629  * @adev: amdgpu device pointer
630  * @vm: vm providing the BOs
631  *
632  * Move all BOs to the end of LRU and remember their positions to put them
633  * together.
634  */
635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636 				struct amdgpu_vm *vm)
637 {
638 	struct amdgpu_vm_bo_base *bo_base;
639 
640 	if (vm->bulk_moveable) {
641 		spin_lock(&adev->mman.bdev.lru_lock);
642 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643 		spin_unlock(&adev->mman.bdev.lru_lock);
644 		return;
645 	}
646 
647 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648 
649 	spin_lock(&adev->mman.bdev.lru_lock);
650 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
651 		struct amdgpu_bo *bo = bo_base->bo;
652 
653 		if (!bo->parent)
654 			continue;
655 
656 		ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem,
657 					&vm->lru_bulk_move);
658 		if (bo->shadow)
659 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
660 						&bo->shadow->tbo.mem,
661 						&vm->lru_bulk_move);
662 	}
663 	spin_unlock(&adev->mman.bdev.lru_lock);
664 
665 	vm->bulk_moveable = true;
666 }
667 
668 /**
669  * amdgpu_vm_validate_pt_bos - validate the page table BOs
670  *
671  * @adev: amdgpu device pointer
672  * @vm: vm providing the BOs
673  * @validate: callback to do the validation
674  * @param: parameter for the validation callback
675  *
676  * Validate the page table BOs on command submission if neccessary.
677  *
678  * Returns:
679  * Validation result.
680  */
681 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
682 			      int (*validate)(void *p, struct amdgpu_bo *bo),
683 			      void *param)
684 {
685 	struct amdgpu_vm_bo_base *bo_base, *tmp;
686 	int r;
687 
688 	vm->bulk_moveable &= list_empty(&vm->evicted);
689 
690 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
691 		struct amdgpu_bo *bo = bo_base->bo;
692 
693 		r = validate(param, bo);
694 		if (r)
695 			return r;
696 
697 		if (bo->tbo.type != ttm_bo_type_kernel) {
698 			amdgpu_vm_bo_moved(bo_base);
699 		} else {
700 			vm->update_funcs->map_table(bo);
701 			amdgpu_vm_bo_relocated(bo_base);
702 		}
703 	}
704 
705 	amdgpu_vm_eviction_lock(vm);
706 	vm->evicting = false;
707 	amdgpu_vm_eviction_unlock(vm);
708 
709 	return 0;
710 }
711 
712 /**
713  * amdgpu_vm_ready - check VM is ready for updates
714  *
715  * @vm: VM to check
716  *
717  * Check if all VM PDs/PTs are ready for updates
718  *
719  * Returns:
720  * True if eviction list is empty.
721  */
722 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
723 {
724 	return list_empty(&vm->evicted);
725 }
726 
727 /**
728  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
729  *
730  * @adev: amdgpu_device pointer
731  * @vm: VM to clear BO from
732  * @bo: BO to clear
733  * @immediate: use an immediate update
734  *
735  * Root PD needs to be reserved when calling this.
736  *
737  * Returns:
738  * 0 on success, errno otherwise.
739  */
740 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
741 			      struct amdgpu_vm *vm,
742 			      struct amdgpu_bo *bo,
743 			      bool immediate)
744 {
745 	struct ttm_operation_ctx ctx = { true, false };
746 	unsigned level = adev->vm_manager.root_level;
747 	struct amdgpu_vm_update_params params;
748 	struct amdgpu_bo *ancestor = bo;
749 	unsigned entries, ats_entries;
750 	uint64_t addr;
751 	int r;
752 
753 	/* Figure out our place in the hierarchy */
754 	if (ancestor->parent) {
755 		++level;
756 		while (ancestor->parent->parent) {
757 			++level;
758 			ancestor = ancestor->parent;
759 		}
760 	}
761 
762 	entries = amdgpu_bo_size(bo) / 8;
763 	if (!vm->pte_support_ats) {
764 		ats_entries = 0;
765 
766 	} else if (!bo->parent) {
767 		ats_entries = amdgpu_vm_num_ats_entries(adev);
768 		ats_entries = min(ats_entries, entries);
769 		entries -= ats_entries;
770 
771 	} else {
772 		struct amdgpu_vm_pt *pt;
773 
774 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
775 		ats_entries = amdgpu_vm_num_ats_entries(adev);
776 		if ((pt - vm->root.entries) >= ats_entries) {
777 			ats_entries = 0;
778 		} else {
779 			ats_entries = entries;
780 			entries = 0;
781 		}
782 	}
783 
784 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
785 	if (r)
786 		return r;
787 
788 	if (bo->shadow) {
789 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
790 				    &ctx);
791 		if (r)
792 			return r;
793 	}
794 
795 	r = vm->update_funcs->map_table(bo);
796 	if (r)
797 		return r;
798 
799 	memset(&params, 0, sizeof(params));
800 	params.adev = adev;
801 	params.vm = vm;
802 	params.immediate = immediate;
803 
804 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
805 	if (r)
806 		return r;
807 
808 	addr = 0;
809 	if (ats_entries) {
810 		uint64_t value = 0, flags;
811 
812 		flags = AMDGPU_PTE_DEFAULT_ATC;
813 		if (level != AMDGPU_VM_PTB) {
814 			/* Handle leaf PDEs as PTEs */
815 			flags |= AMDGPU_PDE_PTE;
816 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
817 		}
818 
819 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
820 					     value, flags);
821 		if (r)
822 			return r;
823 
824 		addr += ats_entries * 8;
825 	}
826 
827 	if (entries) {
828 		uint64_t value = 0, flags = 0;
829 
830 		if (adev->asic_type >= CHIP_VEGA10) {
831 			if (level != AMDGPU_VM_PTB) {
832 				/* Handle leaf PDEs as PTEs */
833 				flags |= AMDGPU_PDE_PTE;
834 				amdgpu_gmc_get_vm_pde(adev, level,
835 						      &value, &flags);
836 			} else {
837 				/* Workaround for fault priority problem on GMC9 */
838 				flags = AMDGPU_PTE_EXECUTABLE;
839 			}
840 		}
841 
842 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
843 					     value, flags);
844 		if (r)
845 			return r;
846 	}
847 
848 	return vm->update_funcs->commit(&params, NULL);
849 }
850 
851 /**
852  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
853  *
854  * @adev: amdgpu_device pointer
855  * @vm: requesting vm
856  * @level: the page table level
857  * @immediate: use a immediate update
858  * @bp: resulting BO allocation parameters
859  */
860 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
861 			       int level, bool immediate,
862 			       struct amdgpu_bo_param *bp)
863 {
864 	memset(bp, 0, sizeof(*bp));
865 
866 	bp->size = amdgpu_vm_bo_size(adev, level);
867 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
868 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
869 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
870 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
871 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
872 	bp->bo_ptr_size = sizeof(struct amdgpu_bo);
873 	if (vm->use_cpu_for_update)
874 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
875 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
876 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
877 	bp->type = ttm_bo_type_kernel;
878 	bp->no_wait_gpu = immediate;
879 	if (vm->root.base.bo)
880 		bp->resv = vm->root.base.bo->tbo.base.resv;
881 }
882 
883 /**
884  * amdgpu_vm_alloc_pts - Allocate a specific page table
885  *
886  * @adev: amdgpu_device pointer
887  * @vm: VM to allocate page tables for
888  * @cursor: Which page table to allocate
889  * @immediate: use an immediate update
890  *
891  * Make sure a specific page table or directory is allocated.
892  *
893  * Returns:
894  * 1 if page table needed to be allocated, 0 if page table was already
895  * allocated, negative errno if an error occurred.
896  */
897 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
898 			       struct amdgpu_vm *vm,
899 			       struct amdgpu_vm_pt_cursor *cursor,
900 			       bool immediate)
901 {
902 	struct amdgpu_vm_pt *entry = cursor->entry;
903 	struct amdgpu_bo_param bp;
904 	struct amdgpu_bo *pt;
905 	int r;
906 
907 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
908 		unsigned num_entries;
909 
910 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
911 		entry->entries = kvmalloc_array(num_entries,
912 						sizeof(*entry->entries),
913 						GFP_KERNEL | __GFP_ZERO);
914 		if (!entry->entries)
915 			return -ENOMEM;
916 	}
917 
918 	if (entry->base.bo)
919 		return 0;
920 
921 	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
922 
923 	r = amdgpu_bo_create(adev, &bp, &pt);
924 	if (r)
925 		return r;
926 
927 	/* Keep a reference to the root directory to avoid
928 	 * freeing them up in the wrong order.
929 	 */
930 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
931 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
932 
933 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
934 	if (r)
935 		goto error_free_pt;
936 
937 	return 0;
938 
939 error_free_pt:
940 	amdgpu_bo_unref(&pt->shadow);
941 	amdgpu_bo_unref(&pt);
942 	return r;
943 }
944 
945 /**
946  * amdgpu_vm_free_table - fre one PD/PT
947  *
948  * @entry: PDE to free
949  */
950 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
951 {
952 	if (entry->base.bo) {
953 		entry->base.bo->vm_bo = NULL;
954 		list_del(&entry->base.vm_status);
955 		amdgpu_bo_unref(&entry->base.bo->shadow);
956 		amdgpu_bo_unref(&entry->base.bo);
957 	}
958 	kvfree(entry->entries);
959 	entry->entries = NULL;
960 }
961 
962 /**
963  * amdgpu_vm_free_pts - free PD/PT levels
964  *
965  * @adev: amdgpu device structure
966  * @vm: amdgpu vm structure
967  * @start: optional cursor where to start freeing PDs/PTs
968  *
969  * Free the page directory or page table level and all sub levels.
970  */
971 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
972 			       struct amdgpu_vm *vm,
973 			       struct amdgpu_vm_pt_cursor *start)
974 {
975 	struct amdgpu_vm_pt_cursor cursor;
976 	struct amdgpu_vm_pt *entry;
977 
978 	vm->bulk_moveable = false;
979 
980 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
981 		amdgpu_vm_free_table(entry);
982 
983 	if (start)
984 		amdgpu_vm_free_table(start->entry);
985 }
986 
987 /**
988  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
989  *
990  * @adev: amdgpu_device pointer
991  */
992 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
993 {
994 	const struct amdgpu_ip_block *ip_block;
995 	bool has_compute_vm_bug;
996 	struct amdgpu_ring *ring;
997 	int i;
998 
999 	has_compute_vm_bug = false;
1000 
1001 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1002 	if (ip_block) {
1003 		/* Compute has a VM bug for GFX version < 7.
1004 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1005 		if (ip_block->version->major <= 7)
1006 			has_compute_vm_bug = true;
1007 		else if (ip_block->version->major == 8)
1008 			if (adev->gfx.mec_fw_version < 673)
1009 				has_compute_vm_bug = true;
1010 	}
1011 
1012 	for (i = 0; i < adev->num_rings; i++) {
1013 		ring = adev->rings[i];
1014 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1015 			/* only compute rings */
1016 			ring->has_compute_vm_bug = has_compute_vm_bug;
1017 		else
1018 			ring->has_compute_vm_bug = false;
1019 	}
1020 }
1021 
1022 /**
1023  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1024  *
1025  * @ring: ring on which the job will be submitted
1026  * @job: job to submit
1027  *
1028  * Returns:
1029  * True if sync is needed.
1030  */
1031 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1032 				  struct amdgpu_job *job)
1033 {
1034 	struct amdgpu_device *adev = ring->adev;
1035 	unsigned vmhub = ring->funcs->vmhub;
1036 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1037 	struct amdgpu_vmid *id;
1038 	bool gds_switch_needed;
1039 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1040 
1041 	if (job->vmid == 0)
1042 		return false;
1043 	id = &id_mgr->ids[job->vmid];
1044 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1045 		id->gds_base != job->gds_base ||
1046 		id->gds_size != job->gds_size ||
1047 		id->gws_base != job->gws_base ||
1048 		id->gws_size != job->gws_size ||
1049 		id->oa_base != job->oa_base ||
1050 		id->oa_size != job->oa_size);
1051 
1052 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1053 		return true;
1054 
1055 	return vm_flush_needed || gds_switch_needed;
1056 }
1057 
1058 /**
1059  * amdgpu_vm_flush - hardware flush the vm
1060  *
1061  * @ring: ring to use for flush
1062  * @job:  related job
1063  * @need_pipe_sync: is pipe sync needed
1064  *
1065  * Emit a VM flush when it is necessary.
1066  *
1067  * Returns:
1068  * 0 on success, errno otherwise.
1069  */
1070 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1071 		    bool need_pipe_sync)
1072 {
1073 	struct amdgpu_device *adev = ring->adev;
1074 	unsigned vmhub = ring->funcs->vmhub;
1075 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1076 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1077 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1078 		id->gds_base != job->gds_base ||
1079 		id->gds_size != job->gds_size ||
1080 		id->gws_base != job->gws_base ||
1081 		id->gws_size != job->gws_size ||
1082 		id->oa_base != job->oa_base ||
1083 		id->oa_size != job->oa_size);
1084 	bool vm_flush_needed = job->vm_needs_flush;
1085 	struct dma_fence *fence = NULL;
1086 	bool pasid_mapping_needed = false;
1087 	unsigned patch_offset = 0;
1088 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1089 	int r;
1090 
1091 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1092 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1093 
1094 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1095 		gds_switch_needed = true;
1096 		vm_flush_needed = true;
1097 		pasid_mapping_needed = true;
1098 	}
1099 
1100 	mutex_lock(&id_mgr->lock);
1101 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1102 	    !dma_fence_is_signaled(id->pasid_mapping))
1103 		pasid_mapping_needed = true;
1104 	mutex_unlock(&id_mgr->lock);
1105 
1106 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1107 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1108 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1109 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1110 		ring->funcs->emit_wreg;
1111 
1112 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1113 		return 0;
1114 
1115 	if (ring->funcs->init_cond_exec)
1116 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1117 
1118 	if (need_pipe_sync)
1119 		amdgpu_ring_emit_pipeline_sync(ring);
1120 
1121 	if (vm_flush_needed) {
1122 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1123 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1124 	}
1125 
1126 	if (pasid_mapping_needed)
1127 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1128 
1129 	if (vm_flush_needed || pasid_mapping_needed) {
1130 		r = amdgpu_fence_emit(ring, &fence, 0);
1131 		if (r)
1132 			return r;
1133 	}
1134 
1135 	if (vm_flush_needed) {
1136 		mutex_lock(&id_mgr->lock);
1137 		dma_fence_put(id->last_flush);
1138 		id->last_flush = dma_fence_get(fence);
1139 		id->current_gpu_reset_count =
1140 			atomic_read(&adev->gpu_reset_counter);
1141 		mutex_unlock(&id_mgr->lock);
1142 	}
1143 
1144 	if (pasid_mapping_needed) {
1145 		mutex_lock(&id_mgr->lock);
1146 		id->pasid = job->pasid;
1147 		dma_fence_put(id->pasid_mapping);
1148 		id->pasid_mapping = dma_fence_get(fence);
1149 		mutex_unlock(&id_mgr->lock);
1150 	}
1151 	dma_fence_put(fence);
1152 
1153 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1154 		id->gds_base = job->gds_base;
1155 		id->gds_size = job->gds_size;
1156 		id->gws_base = job->gws_base;
1157 		id->gws_size = job->gws_size;
1158 		id->oa_base = job->oa_base;
1159 		id->oa_size = job->oa_size;
1160 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1161 					    job->gds_size, job->gws_base,
1162 					    job->gws_size, job->oa_base,
1163 					    job->oa_size);
1164 	}
1165 
1166 	if (ring->funcs->patch_cond_exec)
1167 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1168 
1169 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1170 	if (ring->funcs->emit_switch_buffer) {
1171 		amdgpu_ring_emit_switch_buffer(ring);
1172 		amdgpu_ring_emit_switch_buffer(ring);
1173 	}
1174 	return 0;
1175 }
1176 
1177 /**
1178  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1179  *
1180  * @vm: requested vm
1181  * @bo: requested buffer object
1182  *
1183  * Find @bo inside the requested vm.
1184  * Search inside the @bos vm list for the requested vm
1185  * Returns the found bo_va or NULL if none is found
1186  *
1187  * Object has to be reserved!
1188  *
1189  * Returns:
1190  * Found bo_va or NULL.
1191  */
1192 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1193 				       struct amdgpu_bo *bo)
1194 {
1195 	struct amdgpu_vm_bo_base *base;
1196 
1197 	for (base = bo->vm_bo; base; base = base->next) {
1198 		if (base->vm != vm)
1199 			continue;
1200 
1201 		return container_of(base, struct amdgpu_bo_va, base);
1202 	}
1203 	return NULL;
1204 }
1205 
1206 /**
1207  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1208  *
1209  * @pages_addr: optional DMA address to use for lookup
1210  * @addr: the unmapped addr
1211  *
1212  * Look up the physical address of the page that the pte resolves
1213  * to.
1214  *
1215  * Returns:
1216  * The pointer for the page table entry.
1217  */
1218 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1219 {
1220 	uint64_t result;
1221 
1222 	/* page table offset */
1223 	result = pages_addr[addr >> PAGE_SHIFT];
1224 
1225 	/* in case cpu page size != gpu page size*/
1226 	result |= addr & (~PAGE_MASK);
1227 
1228 	result &= 0xFFFFFFFFFFFFF000ULL;
1229 
1230 	return result;
1231 }
1232 
1233 /**
1234  * amdgpu_vm_update_pde - update a single level in the hierarchy
1235  *
1236  * @params: parameters for the update
1237  * @vm: requested vm
1238  * @entry: entry to update
1239  *
1240  * Makes sure the requested entry in parent is up to date.
1241  */
1242 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1243 				struct amdgpu_vm *vm,
1244 				struct amdgpu_vm_pt *entry)
1245 {
1246 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1247 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1248 	uint64_t pde, pt, flags;
1249 	unsigned level;
1250 
1251 	for (level = 0, pbo = bo->parent; pbo; ++level)
1252 		pbo = pbo->parent;
1253 
1254 	level += params->adev->vm_manager.root_level;
1255 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1256 	pde = (entry - parent->entries) * 8;
1257 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1258 }
1259 
1260 /**
1261  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1262  *
1263  * @adev: amdgpu_device pointer
1264  * @vm: related vm
1265  *
1266  * Mark all PD level as invalid after an error.
1267  */
1268 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1269 				     struct amdgpu_vm *vm)
1270 {
1271 	struct amdgpu_vm_pt_cursor cursor;
1272 	struct amdgpu_vm_pt *entry;
1273 
1274 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1275 		if (entry->base.bo && !entry->base.moved)
1276 			amdgpu_vm_bo_relocated(&entry->base);
1277 }
1278 
1279 /**
1280  * amdgpu_vm_update_pdes - make sure that all directories are valid
1281  *
1282  * @adev: amdgpu_device pointer
1283  * @vm: requested vm
1284  * @immediate: submit immediately to the paging queue
1285  *
1286  * Makes sure all directories are up to date.
1287  *
1288  * Returns:
1289  * 0 for success, error for failure.
1290  */
1291 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1292 			  struct amdgpu_vm *vm, bool immediate)
1293 {
1294 	struct amdgpu_vm_update_params params;
1295 	int r;
1296 
1297 	if (list_empty(&vm->relocated))
1298 		return 0;
1299 
1300 	memset(&params, 0, sizeof(params));
1301 	params.adev = adev;
1302 	params.vm = vm;
1303 	params.immediate = immediate;
1304 
1305 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1306 	if (r)
1307 		return r;
1308 
1309 	while (!list_empty(&vm->relocated)) {
1310 		struct amdgpu_vm_pt *entry;
1311 
1312 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1313 					 base.vm_status);
1314 		amdgpu_vm_bo_idle(&entry->base);
1315 
1316 		r = amdgpu_vm_update_pde(&params, vm, entry);
1317 		if (r)
1318 			goto error;
1319 	}
1320 
1321 	r = vm->update_funcs->commit(&params, &vm->last_update);
1322 	if (r)
1323 		goto error;
1324 	return 0;
1325 
1326 error:
1327 	amdgpu_vm_invalidate_pds(adev, vm);
1328 	return r;
1329 }
1330 
1331 /*
1332  * amdgpu_vm_update_flags - figure out flags for PTE updates
1333  *
1334  * Make sure to set the right flags for the PTEs at the desired level.
1335  */
1336 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1337 				   struct amdgpu_bo *bo, unsigned level,
1338 				   uint64_t pe, uint64_t addr,
1339 				   unsigned count, uint32_t incr,
1340 				   uint64_t flags)
1341 
1342 {
1343 	if (level != AMDGPU_VM_PTB) {
1344 		flags |= AMDGPU_PDE_PTE;
1345 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1346 
1347 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1348 		   !(flags & AMDGPU_PTE_VALID) &&
1349 		   !(flags & AMDGPU_PTE_PRT)) {
1350 
1351 		/* Workaround for fault priority problem on GMC9 */
1352 		flags |= AMDGPU_PTE_EXECUTABLE;
1353 	}
1354 
1355 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1356 					 flags);
1357 }
1358 
1359 /**
1360  * amdgpu_vm_fragment - get fragment for PTEs
1361  *
1362  * @params: see amdgpu_vm_update_params definition
1363  * @start: first PTE to handle
1364  * @end: last PTE to handle
1365  * @flags: hw mapping flags
1366  * @frag: resulting fragment size
1367  * @frag_end: end of this fragment
1368  *
1369  * Returns the first possible fragment for the start and end address.
1370  */
1371 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1372 			       uint64_t start, uint64_t end, uint64_t flags,
1373 			       unsigned int *frag, uint64_t *frag_end)
1374 {
1375 	/**
1376 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1377 	 * field in the PTE. When this field is set to a non-zero value, page
1378 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1379 	 * flags are considered valid for all PTEs within the fragment range
1380 	 * and corresponding mappings are assumed to be physically contiguous.
1381 	 *
1382 	 * The L1 TLB can store a single PTE for the whole fragment,
1383 	 * significantly increasing the space available for translation
1384 	 * caching. This leads to large improvements in throughput when the
1385 	 * TLB is under pressure.
1386 	 *
1387 	 * The L2 TLB distributes small and large fragments into two
1388 	 * asymmetric partitions. The large fragment cache is significantly
1389 	 * larger. Thus, we try to use large fragments wherever possible.
1390 	 * Userspace can support this by aligning virtual base address and
1391 	 * allocation size to the fragment size.
1392 	 *
1393 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1394 	 * is now directly feed with small/huge/giant pages from the walker.
1395 	 */
1396 	unsigned max_frag;
1397 
1398 	if (params->adev->asic_type < CHIP_VEGA10)
1399 		max_frag = params->adev->vm_manager.fragment_size;
1400 	else
1401 		max_frag = 31;
1402 
1403 	/* system pages are non continuously */
1404 	if (params->pages_addr) {
1405 		*frag = 0;
1406 		*frag_end = end;
1407 		return;
1408 	}
1409 
1410 	/* This intentionally wraps around if no bit is set */
1411 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1412 	if (*frag >= max_frag) {
1413 		*frag = max_frag;
1414 		*frag_end = end & ~((1ULL << max_frag) - 1);
1415 	} else {
1416 		*frag_end = start + (1 << *frag);
1417 	}
1418 }
1419 
1420 /**
1421  * amdgpu_vm_update_ptes - make sure that page tables are valid
1422  *
1423  * @params: see amdgpu_vm_update_params definition
1424  * @start: start of GPU address range
1425  * @end: end of GPU address range
1426  * @dst: destination address to map to, the next dst inside the function
1427  * @flags: mapping flags
1428  *
1429  * Update the page tables in the range @start - @end.
1430  *
1431  * Returns:
1432  * 0 for success, -EINVAL for failure.
1433  */
1434 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1435 				 uint64_t start, uint64_t end,
1436 				 uint64_t dst, uint64_t flags)
1437 {
1438 	struct amdgpu_device *adev = params->adev;
1439 	struct amdgpu_vm_pt_cursor cursor;
1440 	uint64_t frag_start = start, frag_end;
1441 	unsigned int frag;
1442 	int r;
1443 
1444 	/* figure out the initial fragment */
1445 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1446 
1447 	/* walk over the address space and update the PTs */
1448 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1449 	while (cursor.pfn < end) {
1450 		unsigned shift, parent_shift, mask;
1451 		uint64_t incr, entry_end, pe_start;
1452 		struct amdgpu_bo *pt;
1453 
1454 		if (!params->unlocked) {
1455 			/* make sure that the page tables covering the
1456 			 * address range are actually allocated
1457 			 */
1458 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1459 						&cursor, params->immediate);
1460 			if (r)
1461 				return r;
1462 		}
1463 
1464 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1465 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1466 		if (params->unlocked) {
1467 			/* Unlocked updates are only allowed on the leaves */
1468 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1469 				continue;
1470 		} else if (adev->asic_type < CHIP_VEGA10 &&
1471 			   (flags & AMDGPU_PTE_VALID)) {
1472 			/* No huge page support before GMC v9 */
1473 			if (cursor.level != AMDGPU_VM_PTB) {
1474 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1475 					return -ENOENT;
1476 				continue;
1477 			}
1478 		} else if (frag < shift) {
1479 			/* We can't use this level when the fragment size is
1480 			 * smaller than the address shift. Go to the next
1481 			 * child entry and try again.
1482 			 */
1483 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1484 				continue;
1485 		} else if (frag >= parent_shift) {
1486 			/* If the fragment size is even larger than the parent
1487 			 * shift we should go up one level and check it again.
1488 			 */
1489 			if (!amdgpu_vm_pt_ancestor(&cursor))
1490 				return -EINVAL;
1491 			continue;
1492 		}
1493 
1494 		pt = cursor.entry->base.bo;
1495 		if (!pt) {
1496 			/* We need all PDs and PTs for mapping something, */
1497 			if (flags & AMDGPU_PTE_VALID)
1498 				return -ENOENT;
1499 
1500 			/* but unmapping something can happen at a higher
1501 			 * level.
1502 			 */
1503 			if (!amdgpu_vm_pt_ancestor(&cursor))
1504 				return -EINVAL;
1505 
1506 			pt = cursor.entry->base.bo;
1507 			shift = parent_shift;
1508 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1509 				   1ULL << shift));
1510 		}
1511 
1512 		/* Looks good so far, calculate parameters for the update */
1513 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1514 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1515 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1516 		entry_end = ((uint64_t)mask + 1) << shift;
1517 		entry_end += cursor.pfn & ~(entry_end - 1);
1518 		entry_end = min(entry_end, end);
1519 
1520 		do {
1521 			struct amdgpu_vm *vm = params->vm;
1522 			uint64_t upd_end = min(entry_end, frag_end);
1523 			unsigned nptes = (upd_end - frag_start) >> shift;
1524 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1525 
1526 			/* This can happen when we set higher level PDs to
1527 			 * silent to stop fault floods.
1528 			 */
1529 			nptes = max(nptes, 1u);
1530 
1531 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1532 						    nptes, dst, incr, upd_flags,
1533 						    vm->task_info.pid,
1534 						    vm->immediate.fence_context);
1535 			amdgpu_vm_update_flags(params, pt, cursor.level,
1536 					       pe_start, dst, nptes, incr,
1537 					       upd_flags);
1538 
1539 			pe_start += nptes * 8;
1540 			dst += nptes * incr;
1541 
1542 			frag_start = upd_end;
1543 			if (frag_start >= frag_end) {
1544 				/* figure out the next fragment */
1545 				amdgpu_vm_fragment(params, frag_start, end,
1546 						   flags, &frag, &frag_end);
1547 				if (frag < shift)
1548 					break;
1549 			}
1550 		} while (frag_start < entry_end);
1551 
1552 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1553 			/* Free all child entries.
1554 			 * Update the tables with the flags and addresses and free up subsequent
1555 			 * tables in the case of huge pages or freed up areas.
1556 			 * This is the maximum you can free, because all other page tables are not
1557 			 * completely covered by the range and so potentially still in use.
1558 			 */
1559 			while (cursor.pfn < frag_start) {
1560 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1561 				amdgpu_vm_pt_next(adev, &cursor);
1562 			}
1563 
1564 		} else if (frag >= shift) {
1565 			/* or just move on to the next on the same level. */
1566 			amdgpu_vm_pt_next(adev, &cursor);
1567 		}
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /**
1574  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1575  *
1576  * @adev: amdgpu_device pointer of the VM
1577  * @bo_adev: amdgpu_device pointer of the mapped BO
1578  * @vm: requested vm
1579  * @immediate: immediate submission in a page fault
1580  * @unlocked: unlocked invalidation during MM callback
1581  * @resv: fences we need to sync to
1582  * @start: start of mapped range
1583  * @last: last mapped entry
1584  * @flags: flags for the entries
1585  * @offset: offset into nodes and pages_addr
1586  * @nodes: array of drm_mm_nodes with the MC addresses
1587  * @pages_addr: DMA addresses to use for mapping
1588  * @fence: optional resulting fence
1589  *
1590  * Fill in the page table entries between @start and @last.
1591  *
1592  * Returns:
1593  * 0 for success, -EINVAL for failure.
1594  */
1595 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1596 				       struct amdgpu_device *bo_adev,
1597 				       struct amdgpu_vm *vm, bool immediate,
1598 				       bool unlocked, struct dma_resv *resv,
1599 				       uint64_t start, uint64_t last,
1600 				       uint64_t flags, uint64_t offset,
1601 				       struct drm_mm_node *nodes,
1602 				       dma_addr_t *pages_addr,
1603 				       struct dma_fence **fence)
1604 {
1605 	struct amdgpu_vm_update_params params;
1606 	enum amdgpu_sync_mode sync_mode;
1607 	uint64_t pfn;
1608 	int r;
1609 
1610 	memset(&params, 0, sizeof(params));
1611 	params.adev = adev;
1612 	params.vm = vm;
1613 	params.immediate = immediate;
1614 	params.pages_addr = pages_addr;
1615 	params.unlocked = unlocked;
1616 
1617 	/* Implicitly sync to command submissions in the same VM before
1618 	 * unmapping. Sync to moving fences before mapping.
1619 	 */
1620 	if (!(flags & AMDGPU_PTE_VALID))
1621 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1622 	else
1623 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1624 
1625 	pfn = offset >> PAGE_SHIFT;
1626 	if (nodes) {
1627 		while (pfn >= nodes->size) {
1628 			pfn -= nodes->size;
1629 			++nodes;
1630 		}
1631 	}
1632 
1633 	amdgpu_vm_eviction_lock(vm);
1634 	if (vm->evicting) {
1635 		r = -EBUSY;
1636 		goto error_unlock;
1637 	}
1638 
1639 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1640 		struct dma_fence *tmp = dma_fence_get_stub();
1641 
1642 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1643 		swap(vm->last_unlocked, tmp);
1644 		dma_fence_put(tmp);
1645 	}
1646 
1647 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1648 	if (r)
1649 		goto error_unlock;
1650 
1651 	do {
1652 		uint64_t tmp, num_entries, addr;
1653 
1654 
1655 		num_entries = last - start + 1;
1656 		if (nodes) {
1657 			addr = nodes->start << PAGE_SHIFT;
1658 			num_entries = min((nodes->size - pfn) *
1659 				AMDGPU_GPU_PAGES_IN_CPU_PAGE, num_entries);
1660 		} else {
1661 			addr = 0;
1662 		}
1663 
1664 		if (pages_addr) {
1665 			bool contiguous = true;
1666 
1667 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1668 				uint64_t count;
1669 
1670 				contiguous = pages_addr[pfn + 1] ==
1671 					pages_addr[pfn] + PAGE_SIZE;
1672 
1673 				tmp = num_entries /
1674 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1675 				for (count = 2; count < tmp; ++count) {
1676 					uint64_t idx = pfn + count;
1677 
1678 					if (contiguous != (pages_addr[idx] ==
1679 					    pages_addr[idx - 1] + PAGE_SIZE))
1680 						break;
1681 				}
1682 				num_entries = count *
1683 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1684 			}
1685 
1686 			if (!contiguous) {
1687 				addr = pfn << PAGE_SHIFT;
1688 				params.pages_addr = pages_addr;
1689 			} else {
1690 				addr = pages_addr[pfn];
1691 				params.pages_addr = NULL;
1692 			}
1693 
1694 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1695 			addr += bo_adev->vm_manager.vram_base_offset;
1696 			addr += pfn << PAGE_SHIFT;
1697 		}
1698 
1699 		tmp = start + num_entries;
1700 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1701 		if (r)
1702 			goto error_unlock;
1703 
1704 		pfn += num_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1705 		if (nodes && nodes->size == pfn) {
1706 			pfn = 0;
1707 			++nodes;
1708 		}
1709 		start = tmp;
1710 
1711 	} while (unlikely(start != last + 1));
1712 
1713 	r = vm->update_funcs->commit(&params, fence);
1714 
1715 error_unlock:
1716 	amdgpu_vm_eviction_unlock(vm);
1717 	return r;
1718 }
1719 
1720 /**
1721  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1722  *
1723  * @adev: amdgpu_device pointer
1724  * @bo_va: requested BO and VM object
1725  * @clear: if true clear the entries
1726  *
1727  * Fill in the page table entries for @bo_va.
1728  *
1729  * Returns:
1730  * 0 for success, -EINVAL for failure.
1731  */
1732 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1733 			bool clear)
1734 {
1735 	struct amdgpu_bo *bo = bo_va->base.bo;
1736 	struct amdgpu_vm *vm = bo_va->base.vm;
1737 	struct amdgpu_bo_va_mapping *mapping;
1738 	dma_addr_t *pages_addr = NULL;
1739 	struct ttm_resource *mem;
1740 	struct drm_mm_node *nodes;
1741 	struct dma_fence **last_update;
1742 	struct dma_resv *resv;
1743 	uint64_t flags;
1744 	struct amdgpu_device *bo_adev = adev;
1745 	int r;
1746 
1747 	if (clear || !bo) {
1748 		mem = NULL;
1749 		nodes = NULL;
1750 		resv = vm->root.base.bo->tbo.base.resv;
1751 	} else {
1752 		struct drm_gem_object *obj = &bo->tbo.base;
1753 
1754 		resv = bo->tbo.base.resv;
1755 		if (obj->import_attach && bo_va->is_xgmi) {
1756 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1757 			struct drm_gem_object *gobj = dma_buf->priv;
1758 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1759 
1760 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1761 				bo = gem_to_amdgpu_bo(gobj);
1762 		}
1763 		mem = &bo->tbo.mem;
1764 		nodes = mem->mm_node;
1765 		if (mem->mem_type == TTM_PL_TT)
1766 			pages_addr = bo->tbo.ttm->dma_address;
1767 	}
1768 
1769 	if (bo) {
1770 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1771 
1772 		if (amdgpu_bo_encrypted(bo))
1773 			flags |= AMDGPU_PTE_TMZ;
1774 
1775 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1776 	} else {
1777 		flags = 0x0;
1778 	}
1779 
1780 	if (clear || (bo && bo->tbo.base.resv ==
1781 		      vm->root.base.bo->tbo.base.resv))
1782 		last_update = &vm->last_update;
1783 	else
1784 		last_update = &bo_va->last_pt_update;
1785 
1786 	if (!clear && bo_va->base.moved) {
1787 		bo_va->base.moved = false;
1788 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1789 
1790 	} else if (bo_va->cleared != clear) {
1791 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1792 	}
1793 
1794 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1795 		uint64_t update_flags = flags;
1796 
1797 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1798 		 * but in case of something, we filter the flags in first place
1799 		 */
1800 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1801 			update_flags &= ~AMDGPU_PTE_READABLE;
1802 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1803 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1804 
1805 		/* Apply ASIC specific mapping flags */
1806 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1807 
1808 		trace_amdgpu_vm_bo_update(mapping);
1809 
1810 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1811 						resv, mapping->start,
1812 						mapping->last, update_flags,
1813 						mapping->offset, nodes,
1814 						pages_addr, last_update);
1815 		if (r)
1816 			return r;
1817 	}
1818 
1819 	/* If the BO is not in its preferred location add it back to
1820 	 * the evicted list so that it gets validated again on the
1821 	 * next command submission.
1822 	 */
1823 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1824 		uint32_t mem_type = bo->tbo.mem.mem_type;
1825 
1826 		if (!(bo->preferred_domains &
1827 		      amdgpu_mem_type_to_domain(mem_type)))
1828 			amdgpu_vm_bo_evicted(&bo_va->base);
1829 		else
1830 			amdgpu_vm_bo_idle(&bo_va->base);
1831 	} else {
1832 		amdgpu_vm_bo_done(&bo_va->base);
1833 	}
1834 
1835 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1836 	bo_va->cleared = clear;
1837 
1838 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1839 		list_for_each_entry(mapping, &bo_va->valids, list)
1840 			trace_amdgpu_vm_bo_mapping(mapping);
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * amdgpu_vm_update_prt_state - update the global PRT state
1848  *
1849  * @adev: amdgpu_device pointer
1850  */
1851 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1852 {
1853 	unsigned long flags;
1854 	bool enable;
1855 
1856 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1857 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1858 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1859 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1860 }
1861 
1862 /**
1863  * amdgpu_vm_prt_get - add a PRT user
1864  *
1865  * @adev: amdgpu_device pointer
1866  */
1867 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1868 {
1869 	if (!adev->gmc.gmc_funcs->set_prt)
1870 		return;
1871 
1872 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1873 		amdgpu_vm_update_prt_state(adev);
1874 }
1875 
1876 /**
1877  * amdgpu_vm_prt_put - drop a PRT user
1878  *
1879  * @adev: amdgpu_device pointer
1880  */
1881 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1882 {
1883 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1884 		amdgpu_vm_update_prt_state(adev);
1885 }
1886 
1887 /**
1888  * amdgpu_vm_prt_cb - callback for updating the PRT status
1889  *
1890  * @fence: fence for the callback
1891  * @_cb: the callback function
1892  */
1893 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1894 {
1895 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1896 
1897 	amdgpu_vm_prt_put(cb->adev);
1898 	kfree(cb);
1899 }
1900 
1901 /**
1902  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1903  *
1904  * @adev: amdgpu_device pointer
1905  * @fence: fence for the callback
1906  */
1907 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1908 				 struct dma_fence *fence)
1909 {
1910 	struct amdgpu_prt_cb *cb;
1911 
1912 	if (!adev->gmc.gmc_funcs->set_prt)
1913 		return;
1914 
1915 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1916 	if (!cb) {
1917 		/* Last resort when we are OOM */
1918 		if (fence)
1919 			dma_fence_wait(fence, false);
1920 
1921 		amdgpu_vm_prt_put(adev);
1922 	} else {
1923 		cb->adev = adev;
1924 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1925 						     amdgpu_vm_prt_cb))
1926 			amdgpu_vm_prt_cb(fence, &cb->cb);
1927 	}
1928 }
1929 
1930 /**
1931  * amdgpu_vm_free_mapping - free a mapping
1932  *
1933  * @adev: amdgpu_device pointer
1934  * @vm: requested vm
1935  * @mapping: mapping to be freed
1936  * @fence: fence of the unmap operation
1937  *
1938  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1939  */
1940 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1941 				   struct amdgpu_vm *vm,
1942 				   struct amdgpu_bo_va_mapping *mapping,
1943 				   struct dma_fence *fence)
1944 {
1945 	if (mapping->flags & AMDGPU_PTE_PRT)
1946 		amdgpu_vm_add_prt_cb(adev, fence);
1947 	kfree(mapping);
1948 }
1949 
1950 /**
1951  * amdgpu_vm_prt_fini - finish all prt mappings
1952  *
1953  * @adev: amdgpu_device pointer
1954  * @vm: requested vm
1955  *
1956  * Register a cleanup callback to disable PRT support after VM dies.
1957  */
1958 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1959 {
1960 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1961 	struct dma_fence *excl, **shared;
1962 	unsigned i, shared_count;
1963 	int r;
1964 
1965 	r = dma_resv_get_fences_rcu(resv, &excl,
1966 					      &shared_count, &shared);
1967 	if (r) {
1968 		/* Not enough memory to grab the fence list, as last resort
1969 		 * block for all the fences to complete.
1970 		 */
1971 		dma_resv_wait_timeout_rcu(resv, true, false,
1972 						    MAX_SCHEDULE_TIMEOUT);
1973 		return;
1974 	}
1975 
1976 	/* Add a callback for each fence in the reservation object */
1977 	amdgpu_vm_prt_get(adev);
1978 	amdgpu_vm_add_prt_cb(adev, excl);
1979 
1980 	for (i = 0; i < shared_count; ++i) {
1981 		amdgpu_vm_prt_get(adev);
1982 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1983 	}
1984 
1985 	kfree(shared);
1986 }
1987 
1988 /**
1989  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1990  *
1991  * @adev: amdgpu_device pointer
1992  * @vm: requested vm
1993  * @fence: optional resulting fence (unchanged if no work needed to be done
1994  * or if an error occurred)
1995  *
1996  * Make sure all freed BOs are cleared in the PT.
1997  * PTs have to be reserved and mutex must be locked!
1998  *
1999  * Returns:
2000  * 0 for success.
2001  *
2002  */
2003 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2004 			  struct amdgpu_vm *vm,
2005 			  struct dma_fence **fence)
2006 {
2007 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2008 	struct amdgpu_bo_va_mapping *mapping;
2009 	uint64_t init_pte_value = 0;
2010 	struct dma_fence *f = NULL;
2011 	int r;
2012 
2013 	while (!list_empty(&vm->freed)) {
2014 		mapping = list_first_entry(&vm->freed,
2015 			struct amdgpu_bo_va_mapping, list);
2016 		list_del(&mapping->list);
2017 
2018 		if (vm->pte_support_ats &&
2019 		    mapping->start < AMDGPU_GMC_HOLE_START)
2020 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2021 
2022 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2023 						resv, mapping->start,
2024 						mapping->last, init_pte_value,
2025 						0, NULL, NULL, &f);
2026 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2027 		if (r) {
2028 			dma_fence_put(f);
2029 			return r;
2030 		}
2031 	}
2032 
2033 	if (fence && f) {
2034 		dma_fence_put(*fence);
2035 		*fence = f;
2036 	} else {
2037 		dma_fence_put(f);
2038 	}
2039 
2040 	return 0;
2041 
2042 }
2043 
2044 /**
2045  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2046  *
2047  * @adev: amdgpu_device pointer
2048  * @vm: requested vm
2049  *
2050  * Make sure all BOs which are moved are updated in the PTs.
2051  *
2052  * Returns:
2053  * 0 for success.
2054  *
2055  * PTs have to be reserved!
2056  */
2057 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2058 			   struct amdgpu_vm *vm)
2059 {
2060 	struct amdgpu_bo_va *bo_va, *tmp;
2061 	struct dma_resv *resv;
2062 	bool clear;
2063 	int r;
2064 
2065 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2066 		/* Per VM BOs never need to bo cleared in the page tables */
2067 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2068 		if (r)
2069 			return r;
2070 	}
2071 
2072 	spin_lock(&vm->invalidated_lock);
2073 	while (!list_empty(&vm->invalidated)) {
2074 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2075 					 base.vm_status);
2076 		resv = bo_va->base.bo->tbo.base.resv;
2077 		spin_unlock(&vm->invalidated_lock);
2078 
2079 		/* Try to reserve the BO to avoid clearing its ptes */
2080 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2081 			clear = false;
2082 		/* Somebody else is using the BO right now */
2083 		else
2084 			clear = true;
2085 
2086 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2087 		if (r)
2088 			return r;
2089 
2090 		if (!clear)
2091 			dma_resv_unlock(resv);
2092 		spin_lock(&vm->invalidated_lock);
2093 	}
2094 	spin_unlock(&vm->invalidated_lock);
2095 
2096 	return 0;
2097 }
2098 
2099 /**
2100  * amdgpu_vm_bo_add - add a bo to a specific vm
2101  *
2102  * @adev: amdgpu_device pointer
2103  * @vm: requested vm
2104  * @bo: amdgpu buffer object
2105  *
2106  * Add @bo into the requested vm.
2107  * Add @bo to the list of bos associated with the vm
2108  *
2109  * Returns:
2110  * Newly added bo_va or NULL for failure
2111  *
2112  * Object has to be reserved!
2113  */
2114 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2115 				      struct amdgpu_vm *vm,
2116 				      struct amdgpu_bo *bo)
2117 {
2118 	struct amdgpu_bo_va *bo_va;
2119 
2120 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2121 	if (bo_va == NULL) {
2122 		return NULL;
2123 	}
2124 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2125 
2126 	bo_va->ref_count = 1;
2127 	INIT_LIST_HEAD(&bo_va->valids);
2128 	INIT_LIST_HEAD(&bo_va->invalids);
2129 
2130 	if (!bo)
2131 		return bo_va;
2132 
2133 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2134 		bo_va->is_xgmi = true;
2135 		/* Power up XGMI if it can be potentially used */
2136 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2137 	}
2138 
2139 	return bo_va;
2140 }
2141 
2142 
2143 /**
2144  * amdgpu_vm_bo_insert_map - insert a new mapping
2145  *
2146  * @adev: amdgpu_device pointer
2147  * @bo_va: bo_va to store the address
2148  * @mapping: the mapping to insert
2149  *
2150  * Insert a new mapping into all structures.
2151  */
2152 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2153 				    struct amdgpu_bo_va *bo_va,
2154 				    struct amdgpu_bo_va_mapping *mapping)
2155 {
2156 	struct amdgpu_vm *vm = bo_va->base.vm;
2157 	struct amdgpu_bo *bo = bo_va->base.bo;
2158 
2159 	mapping->bo_va = bo_va;
2160 	list_add(&mapping->list, &bo_va->invalids);
2161 	amdgpu_vm_it_insert(mapping, &vm->va);
2162 
2163 	if (mapping->flags & AMDGPU_PTE_PRT)
2164 		amdgpu_vm_prt_get(adev);
2165 
2166 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2167 	    !bo_va->base.moved) {
2168 		list_move(&bo_va->base.vm_status, &vm->moved);
2169 	}
2170 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2171 }
2172 
2173 /**
2174  * amdgpu_vm_bo_map - map bo inside a vm
2175  *
2176  * @adev: amdgpu_device pointer
2177  * @bo_va: bo_va to store the address
2178  * @saddr: where to map the BO
2179  * @offset: requested offset in the BO
2180  * @size: BO size in bytes
2181  * @flags: attributes of pages (read/write/valid/etc.)
2182  *
2183  * Add a mapping of the BO at the specefied addr into the VM.
2184  *
2185  * Returns:
2186  * 0 for success, error for failure.
2187  *
2188  * Object has to be reserved and unreserved outside!
2189  */
2190 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2191 		     struct amdgpu_bo_va *bo_va,
2192 		     uint64_t saddr, uint64_t offset,
2193 		     uint64_t size, uint64_t flags)
2194 {
2195 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2196 	struct amdgpu_bo *bo = bo_va->base.bo;
2197 	struct amdgpu_vm *vm = bo_va->base.vm;
2198 	uint64_t eaddr;
2199 
2200 	/* validate the parameters */
2201 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2202 	    size == 0 || size & ~PAGE_MASK)
2203 		return -EINVAL;
2204 
2205 	/* make sure object fit at this offset */
2206 	eaddr = saddr + size - 1;
2207 	if (saddr >= eaddr ||
2208 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2209 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2210 		return -EINVAL;
2211 
2212 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2213 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2214 
2215 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2216 	if (tmp) {
2217 		/* bo and tmp overlap, invalid addr */
2218 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2219 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2220 			tmp->start, tmp->last + 1);
2221 		return -EINVAL;
2222 	}
2223 
2224 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2225 	if (!mapping)
2226 		return -ENOMEM;
2227 
2228 	mapping->start = saddr;
2229 	mapping->last = eaddr;
2230 	mapping->offset = offset;
2231 	mapping->flags = flags;
2232 
2233 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2234 
2235 	return 0;
2236 }
2237 
2238 /**
2239  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2240  *
2241  * @adev: amdgpu_device pointer
2242  * @bo_va: bo_va to store the address
2243  * @saddr: where to map the BO
2244  * @offset: requested offset in the BO
2245  * @size: BO size in bytes
2246  * @flags: attributes of pages (read/write/valid/etc.)
2247  *
2248  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2249  * mappings as we do so.
2250  *
2251  * Returns:
2252  * 0 for success, error for failure.
2253  *
2254  * Object has to be reserved and unreserved outside!
2255  */
2256 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2257 			     struct amdgpu_bo_va *bo_va,
2258 			     uint64_t saddr, uint64_t offset,
2259 			     uint64_t size, uint64_t flags)
2260 {
2261 	struct amdgpu_bo_va_mapping *mapping;
2262 	struct amdgpu_bo *bo = bo_va->base.bo;
2263 	uint64_t eaddr;
2264 	int r;
2265 
2266 	/* validate the parameters */
2267 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2268 	    size == 0 || size & ~PAGE_MASK)
2269 		return -EINVAL;
2270 
2271 	/* make sure object fit at this offset */
2272 	eaddr = saddr + size - 1;
2273 	if (saddr >= eaddr ||
2274 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2275 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2276 		return -EINVAL;
2277 
2278 	/* Allocate all the needed memory */
2279 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2280 	if (!mapping)
2281 		return -ENOMEM;
2282 
2283 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2284 	if (r) {
2285 		kfree(mapping);
2286 		return r;
2287 	}
2288 
2289 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2290 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2291 
2292 	mapping->start = saddr;
2293 	mapping->last = eaddr;
2294 	mapping->offset = offset;
2295 	mapping->flags = flags;
2296 
2297 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2298 
2299 	return 0;
2300 }
2301 
2302 /**
2303  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2304  *
2305  * @adev: amdgpu_device pointer
2306  * @bo_va: bo_va to remove the address from
2307  * @saddr: where to the BO is mapped
2308  *
2309  * Remove a mapping of the BO at the specefied addr from the VM.
2310  *
2311  * Returns:
2312  * 0 for success, error for failure.
2313  *
2314  * Object has to be reserved and unreserved outside!
2315  */
2316 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2317 		       struct amdgpu_bo_va *bo_va,
2318 		       uint64_t saddr)
2319 {
2320 	struct amdgpu_bo_va_mapping *mapping;
2321 	struct amdgpu_vm *vm = bo_va->base.vm;
2322 	bool valid = true;
2323 
2324 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2325 
2326 	list_for_each_entry(mapping, &bo_va->valids, list) {
2327 		if (mapping->start == saddr)
2328 			break;
2329 	}
2330 
2331 	if (&mapping->list == &bo_va->valids) {
2332 		valid = false;
2333 
2334 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2335 			if (mapping->start == saddr)
2336 				break;
2337 		}
2338 
2339 		if (&mapping->list == &bo_va->invalids)
2340 			return -ENOENT;
2341 	}
2342 
2343 	list_del(&mapping->list);
2344 	amdgpu_vm_it_remove(mapping, &vm->va);
2345 	mapping->bo_va = NULL;
2346 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2347 
2348 	if (valid)
2349 		list_add(&mapping->list, &vm->freed);
2350 	else
2351 		amdgpu_vm_free_mapping(adev, vm, mapping,
2352 				       bo_va->last_pt_update);
2353 
2354 	return 0;
2355 }
2356 
2357 /**
2358  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2359  *
2360  * @adev: amdgpu_device pointer
2361  * @vm: VM structure to use
2362  * @saddr: start of the range
2363  * @size: size of the range
2364  *
2365  * Remove all mappings in a range, split them as appropriate.
2366  *
2367  * Returns:
2368  * 0 for success, error for failure.
2369  */
2370 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2371 				struct amdgpu_vm *vm,
2372 				uint64_t saddr, uint64_t size)
2373 {
2374 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2375 	LIST_HEAD(removed);
2376 	uint64_t eaddr;
2377 
2378 	eaddr = saddr + size - 1;
2379 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2380 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2381 
2382 	/* Allocate all the needed memory */
2383 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2384 	if (!before)
2385 		return -ENOMEM;
2386 	INIT_LIST_HEAD(&before->list);
2387 
2388 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2389 	if (!after) {
2390 		kfree(before);
2391 		return -ENOMEM;
2392 	}
2393 	INIT_LIST_HEAD(&after->list);
2394 
2395 	/* Now gather all removed mappings */
2396 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2397 	while (tmp) {
2398 		/* Remember mapping split at the start */
2399 		if (tmp->start < saddr) {
2400 			before->start = tmp->start;
2401 			before->last = saddr - 1;
2402 			before->offset = tmp->offset;
2403 			before->flags = tmp->flags;
2404 			before->bo_va = tmp->bo_va;
2405 			list_add(&before->list, &tmp->bo_va->invalids);
2406 		}
2407 
2408 		/* Remember mapping split at the end */
2409 		if (tmp->last > eaddr) {
2410 			after->start = eaddr + 1;
2411 			after->last = tmp->last;
2412 			after->offset = tmp->offset;
2413 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2414 			after->flags = tmp->flags;
2415 			after->bo_va = tmp->bo_va;
2416 			list_add(&after->list, &tmp->bo_va->invalids);
2417 		}
2418 
2419 		list_del(&tmp->list);
2420 		list_add(&tmp->list, &removed);
2421 
2422 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2423 	}
2424 
2425 	/* And free them up */
2426 	list_for_each_entry_safe(tmp, next, &removed, list) {
2427 		amdgpu_vm_it_remove(tmp, &vm->va);
2428 		list_del(&tmp->list);
2429 
2430 		if (tmp->start < saddr)
2431 		    tmp->start = saddr;
2432 		if (tmp->last > eaddr)
2433 		    tmp->last = eaddr;
2434 
2435 		tmp->bo_va = NULL;
2436 		list_add(&tmp->list, &vm->freed);
2437 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2438 	}
2439 
2440 	/* Insert partial mapping before the range */
2441 	if (!list_empty(&before->list)) {
2442 		amdgpu_vm_it_insert(before, &vm->va);
2443 		if (before->flags & AMDGPU_PTE_PRT)
2444 			amdgpu_vm_prt_get(adev);
2445 	} else {
2446 		kfree(before);
2447 	}
2448 
2449 	/* Insert partial mapping after the range */
2450 	if (!list_empty(&after->list)) {
2451 		amdgpu_vm_it_insert(after, &vm->va);
2452 		if (after->flags & AMDGPU_PTE_PRT)
2453 			amdgpu_vm_prt_get(adev);
2454 	} else {
2455 		kfree(after);
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 /**
2462  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2463  *
2464  * @vm: the requested VM
2465  * @addr: the address
2466  *
2467  * Find a mapping by it's address.
2468  *
2469  * Returns:
2470  * The amdgpu_bo_va_mapping matching for addr or NULL
2471  *
2472  */
2473 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2474 							 uint64_t addr)
2475 {
2476 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2477 }
2478 
2479 /**
2480  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2481  *
2482  * @vm: the requested vm
2483  * @ticket: CS ticket
2484  *
2485  * Trace all mappings of BOs reserved during a command submission.
2486  */
2487 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2488 {
2489 	struct amdgpu_bo_va_mapping *mapping;
2490 
2491 	if (!trace_amdgpu_vm_bo_cs_enabled())
2492 		return;
2493 
2494 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2495 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2496 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2497 			struct amdgpu_bo *bo;
2498 
2499 			bo = mapping->bo_va->base.bo;
2500 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2501 			    ticket)
2502 				continue;
2503 		}
2504 
2505 		trace_amdgpu_vm_bo_cs(mapping);
2506 	}
2507 }
2508 
2509 /**
2510  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2511  *
2512  * @adev: amdgpu_device pointer
2513  * @bo_va: requested bo_va
2514  *
2515  * Remove @bo_va->bo from the requested vm.
2516  *
2517  * Object have to be reserved!
2518  */
2519 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2520 		      struct amdgpu_bo_va *bo_va)
2521 {
2522 	struct amdgpu_bo_va_mapping *mapping, *next;
2523 	struct amdgpu_bo *bo = bo_va->base.bo;
2524 	struct amdgpu_vm *vm = bo_va->base.vm;
2525 	struct amdgpu_vm_bo_base **base;
2526 
2527 	if (bo) {
2528 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2529 			vm->bulk_moveable = false;
2530 
2531 		for (base = &bo_va->base.bo->vm_bo; *base;
2532 		     base = &(*base)->next) {
2533 			if (*base != &bo_va->base)
2534 				continue;
2535 
2536 			*base = bo_va->base.next;
2537 			break;
2538 		}
2539 	}
2540 
2541 	spin_lock(&vm->invalidated_lock);
2542 	list_del(&bo_va->base.vm_status);
2543 	spin_unlock(&vm->invalidated_lock);
2544 
2545 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2546 		list_del(&mapping->list);
2547 		amdgpu_vm_it_remove(mapping, &vm->va);
2548 		mapping->bo_va = NULL;
2549 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2550 		list_add(&mapping->list, &vm->freed);
2551 	}
2552 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2553 		list_del(&mapping->list);
2554 		amdgpu_vm_it_remove(mapping, &vm->va);
2555 		amdgpu_vm_free_mapping(adev, vm, mapping,
2556 				       bo_va->last_pt_update);
2557 	}
2558 
2559 	dma_fence_put(bo_va->last_pt_update);
2560 
2561 	if (bo && bo_va->is_xgmi)
2562 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2563 
2564 	kfree(bo_va);
2565 }
2566 
2567 /**
2568  * amdgpu_vm_evictable - check if we can evict a VM
2569  *
2570  * @bo: A page table of the VM.
2571  *
2572  * Check if it is possible to evict a VM.
2573  */
2574 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2575 {
2576 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2577 
2578 	/* Page tables of a destroyed VM can go away immediately */
2579 	if (!bo_base || !bo_base->vm)
2580 		return true;
2581 
2582 	/* Don't evict VM page tables while they are busy */
2583 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2584 		return false;
2585 
2586 	/* Try to block ongoing updates */
2587 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2588 		return false;
2589 
2590 	/* Don't evict VM page tables while they are updated */
2591 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2592 		amdgpu_vm_eviction_unlock(bo_base->vm);
2593 		return false;
2594 	}
2595 
2596 	bo_base->vm->evicting = true;
2597 	amdgpu_vm_eviction_unlock(bo_base->vm);
2598 	return true;
2599 }
2600 
2601 /**
2602  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2603  *
2604  * @adev: amdgpu_device pointer
2605  * @bo: amdgpu buffer object
2606  * @evicted: is the BO evicted
2607  *
2608  * Mark @bo as invalid.
2609  */
2610 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2611 			     struct amdgpu_bo *bo, bool evicted)
2612 {
2613 	struct amdgpu_vm_bo_base *bo_base;
2614 
2615 	/* shadow bo doesn't have bo base, its validation needs its parent */
2616 	if (bo->parent && bo->parent->shadow == bo)
2617 		bo = bo->parent;
2618 
2619 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2620 		struct amdgpu_vm *vm = bo_base->vm;
2621 
2622 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2623 			amdgpu_vm_bo_evicted(bo_base);
2624 			continue;
2625 		}
2626 
2627 		if (bo_base->moved)
2628 			continue;
2629 		bo_base->moved = true;
2630 
2631 		if (bo->tbo.type == ttm_bo_type_kernel)
2632 			amdgpu_vm_bo_relocated(bo_base);
2633 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2634 			amdgpu_vm_bo_moved(bo_base);
2635 		else
2636 			amdgpu_vm_bo_invalidated(bo_base);
2637 	}
2638 }
2639 
2640 /**
2641  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2642  *
2643  * @vm_size: VM size
2644  *
2645  * Returns:
2646  * VM page table as power of two
2647  */
2648 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2649 {
2650 	/* Total bits covered by PD + PTs */
2651 	unsigned bits = ilog2(vm_size) + 18;
2652 
2653 	/* Make sure the PD is 4K in size up to 8GB address space.
2654 	   Above that split equal between PD and PTs */
2655 	if (vm_size <= 8)
2656 		return (bits - 9);
2657 	else
2658 		return ((bits + 3) / 2);
2659 }
2660 
2661 /**
2662  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2663  *
2664  * @adev: amdgpu_device pointer
2665  * @min_vm_size: the minimum vm size in GB if it's set auto
2666  * @fragment_size_default: Default PTE fragment size
2667  * @max_level: max VMPT level
2668  * @max_bits: max address space size in bits
2669  *
2670  */
2671 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2672 			   uint32_t fragment_size_default, unsigned max_level,
2673 			   unsigned max_bits)
2674 {
2675 	unsigned int max_size = 1 << (max_bits - 30);
2676 	unsigned int vm_size;
2677 	uint64_t tmp;
2678 
2679 	/* adjust vm size first */
2680 	if (amdgpu_vm_size != -1) {
2681 		vm_size = amdgpu_vm_size;
2682 		if (vm_size > max_size) {
2683 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2684 				 amdgpu_vm_size, max_size);
2685 			vm_size = max_size;
2686 		}
2687 	} else {
2688 		struct sysinfo si;
2689 		unsigned int phys_ram_gb;
2690 
2691 		/* Optimal VM size depends on the amount of physical
2692 		 * RAM available. Underlying requirements and
2693 		 * assumptions:
2694 		 *
2695 		 *  - Need to map system memory and VRAM from all GPUs
2696 		 *     - VRAM from other GPUs not known here
2697 		 *     - Assume VRAM <= system memory
2698 		 *  - On GFX8 and older, VM space can be segmented for
2699 		 *    different MTYPEs
2700 		 *  - Need to allow room for fragmentation, guard pages etc.
2701 		 *
2702 		 * This adds up to a rough guess of system memory x3.
2703 		 * Round up to power of two to maximize the available
2704 		 * VM size with the given page table size.
2705 		 */
2706 		si_meminfo(&si);
2707 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2708 			       (1 << 30) - 1) >> 30;
2709 		vm_size = roundup_pow_of_two(
2710 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2711 	}
2712 
2713 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2714 
2715 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2716 	if (amdgpu_vm_block_size != -1)
2717 		tmp >>= amdgpu_vm_block_size - 9;
2718 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2719 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2720 	switch (adev->vm_manager.num_level) {
2721 	case 3:
2722 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2723 		break;
2724 	case 2:
2725 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2726 		break;
2727 	case 1:
2728 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2729 		break;
2730 	default:
2731 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2732 	}
2733 	/* block size depends on vm size and hw setup*/
2734 	if (amdgpu_vm_block_size != -1)
2735 		adev->vm_manager.block_size =
2736 			min((unsigned)amdgpu_vm_block_size, max_bits
2737 			    - AMDGPU_GPU_PAGE_SHIFT
2738 			    - 9 * adev->vm_manager.num_level);
2739 	else if (adev->vm_manager.num_level > 1)
2740 		adev->vm_manager.block_size = 9;
2741 	else
2742 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2743 
2744 	if (amdgpu_vm_fragment_size == -1)
2745 		adev->vm_manager.fragment_size = fragment_size_default;
2746 	else
2747 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2748 
2749 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2750 		 vm_size, adev->vm_manager.num_level + 1,
2751 		 adev->vm_manager.block_size,
2752 		 adev->vm_manager.fragment_size);
2753 }
2754 
2755 /**
2756  * amdgpu_vm_wait_idle - wait for the VM to become idle
2757  *
2758  * @vm: VM object to wait for
2759  * @timeout: timeout to wait for VM to become idle
2760  */
2761 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2762 {
2763 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2764 					    true, true, timeout);
2765 	if (timeout <= 0)
2766 		return timeout;
2767 
2768 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2769 }
2770 
2771 /**
2772  * amdgpu_vm_init - initialize a vm instance
2773  *
2774  * @adev: amdgpu_device pointer
2775  * @vm: requested vm
2776  * @vm_context: Indicates if it GFX or Compute context
2777  * @pasid: Process address space identifier
2778  *
2779  * Init @vm fields.
2780  *
2781  * Returns:
2782  * 0 for success, error for failure.
2783  */
2784 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2785 		   int vm_context, u32 pasid)
2786 {
2787 	struct amdgpu_bo_param bp;
2788 	struct amdgpu_bo *root;
2789 	int r, i;
2790 
2791 	vm->va = RB_ROOT_CACHED;
2792 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2793 		vm->reserved_vmid[i] = NULL;
2794 	INIT_LIST_HEAD(&vm->evicted);
2795 	INIT_LIST_HEAD(&vm->relocated);
2796 	INIT_LIST_HEAD(&vm->moved);
2797 	INIT_LIST_HEAD(&vm->idle);
2798 	INIT_LIST_HEAD(&vm->invalidated);
2799 	spin_lock_init(&vm->invalidated_lock);
2800 	INIT_LIST_HEAD(&vm->freed);
2801 	INIT_LIST_HEAD(&vm->done);
2802 
2803 	/* create scheduler entities for page table updates */
2804 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2805 				  adev->vm_manager.vm_pte_scheds,
2806 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2807 	if (r)
2808 		return r;
2809 
2810 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2811 				  adev->vm_manager.vm_pte_scheds,
2812 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2813 	if (r)
2814 		goto error_free_immediate;
2815 
2816 	vm->pte_support_ats = false;
2817 	vm->is_compute_context = false;
2818 
2819 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2820 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2821 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2822 
2823 		if (adev->asic_type == CHIP_RAVEN)
2824 			vm->pte_support_ats = true;
2825 	} else {
2826 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2827 						AMDGPU_VM_USE_CPU_FOR_GFX);
2828 	}
2829 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2830 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2831 	WARN_ONCE((vm->use_cpu_for_update &&
2832 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2833 		  "CPU update of VM recommended only for large BAR system\n");
2834 
2835 	if (vm->use_cpu_for_update)
2836 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2837 	else
2838 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2839 	vm->last_update = NULL;
2840 	vm->last_unlocked = dma_fence_get_stub();
2841 
2842 	mutex_init(&vm->eviction_lock);
2843 	vm->evicting = false;
2844 
2845 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2846 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2847 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2848 	r = amdgpu_bo_create(adev, &bp, &root);
2849 	if (r)
2850 		goto error_free_delayed;
2851 
2852 	r = amdgpu_bo_reserve(root, true);
2853 	if (r)
2854 		goto error_free_root;
2855 
2856 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2857 	if (r)
2858 		goto error_unreserve;
2859 
2860 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2861 
2862 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2863 	if (r)
2864 		goto error_unreserve;
2865 
2866 	amdgpu_bo_unreserve(vm->root.base.bo);
2867 
2868 	if (pasid) {
2869 		unsigned long flags;
2870 
2871 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2872 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2873 			      GFP_ATOMIC);
2874 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2875 		if (r < 0)
2876 			goto error_free_root;
2877 
2878 		vm->pasid = pasid;
2879 	}
2880 
2881 	INIT_KFIFO(vm->faults);
2882 
2883 	return 0;
2884 
2885 error_unreserve:
2886 	amdgpu_bo_unreserve(vm->root.base.bo);
2887 
2888 error_free_root:
2889 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2890 	amdgpu_bo_unref(&vm->root.base.bo);
2891 	vm->root.base.bo = NULL;
2892 
2893 error_free_delayed:
2894 	dma_fence_put(vm->last_unlocked);
2895 	drm_sched_entity_destroy(&vm->delayed);
2896 
2897 error_free_immediate:
2898 	drm_sched_entity_destroy(&vm->immediate);
2899 
2900 	return r;
2901 }
2902 
2903 /**
2904  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2905  *
2906  * @adev: amdgpu_device pointer
2907  * @vm: the VM to check
2908  *
2909  * check all entries of the root PD, if any subsequent PDs are allocated,
2910  * it means there are page table creating and filling, and is no a clean
2911  * VM
2912  *
2913  * Returns:
2914  *	0 if this VM is clean
2915  */
2916 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2917 	struct amdgpu_vm *vm)
2918 {
2919 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2920 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2921 	unsigned int i = 0;
2922 
2923 	if (!(vm->root.entries))
2924 		return 0;
2925 
2926 	for (i = 0; i < entries; i++) {
2927 		if (vm->root.entries[i].base.bo)
2928 			return -EINVAL;
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 /**
2935  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2936  *
2937  * @adev: amdgpu_device pointer
2938  * @vm: requested vm
2939  * @pasid: pasid to use
2940  *
2941  * This only works on GFX VMs that don't have any BOs added and no
2942  * page tables allocated yet.
2943  *
2944  * Changes the following VM parameters:
2945  * - use_cpu_for_update
2946  * - pte_supports_ats
2947  * - pasid (old PASID is released, because compute manages its own PASIDs)
2948  *
2949  * Reinitializes the page directory to reflect the changed ATS
2950  * setting.
2951  *
2952  * Returns:
2953  * 0 for success, -errno for errors.
2954  */
2955 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2956 			   u32 pasid)
2957 {
2958 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2959 	int r;
2960 
2961 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2962 	if (r)
2963 		return r;
2964 
2965 	/* Sanity checks */
2966 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2967 	if (r)
2968 		goto unreserve_bo;
2969 
2970 	if (pasid) {
2971 		unsigned long flags;
2972 
2973 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2974 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2975 			      GFP_ATOMIC);
2976 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2977 
2978 		if (r == -ENOSPC)
2979 			goto unreserve_bo;
2980 		r = 0;
2981 	}
2982 
2983 	/* Check if PD needs to be reinitialized and do it before
2984 	 * changing any other state, in case it fails.
2985 	 */
2986 	if (pte_support_ats != vm->pte_support_ats) {
2987 		vm->pte_support_ats = pte_support_ats;
2988 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2989 		if (r)
2990 			goto free_idr;
2991 	}
2992 
2993 	/* Update VM state */
2994 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2995 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2996 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2997 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2998 	WARN_ONCE((vm->use_cpu_for_update &&
2999 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3000 		  "CPU update of VM recommended only for large BAR system\n");
3001 
3002 	if (vm->use_cpu_for_update) {
3003 		/* Sync with last SDMA update/clear before switching to CPU */
3004 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3005 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3006 		if (r)
3007 			goto free_idr;
3008 
3009 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3010 	} else {
3011 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3012 	}
3013 	dma_fence_put(vm->last_update);
3014 	vm->last_update = NULL;
3015 	vm->is_compute_context = true;
3016 
3017 	if (vm->pasid) {
3018 		unsigned long flags;
3019 
3020 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3021 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3022 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3023 
3024 		/* Free the original amdgpu allocated pasid
3025 		 * Will be replaced with kfd allocated pasid
3026 		 */
3027 		amdgpu_pasid_free(vm->pasid);
3028 		vm->pasid = 0;
3029 	}
3030 
3031 	/* Free the shadow bo for compute VM */
3032 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3033 
3034 	if (pasid)
3035 		vm->pasid = pasid;
3036 
3037 	goto unreserve_bo;
3038 
3039 free_idr:
3040 	if (pasid) {
3041 		unsigned long flags;
3042 
3043 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3044 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3045 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3046 	}
3047 unreserve_bo:
3048 	amdgpu_bo_unreserve(vm->root.base.bo);
3049 	return r;
3050 }
3051 
3052 /**
3053  * amdgpu_vm_release_compute - release a compute vm
3054  * @adev: amdgpu_device pointer
3055  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3056  *
3057  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3058  * pasid from vm. Compute should stop use of vm after this call.
3059  */
3060 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3061 {
3062 	if (vm->pasid) {
3063 		unsigned long flags;
3064 
3065 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3066 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3067 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3068 	}
3069 	vm->pasid = 0;
3070 	vm->is_compute_context = false;
3071 }
3072 
3073 /**
3074  * amdgpu_vm_fini - tear down a vm instance
3075  *
3076  * @adev: amdgpu_device pointer
3077  * @vm: requested vm
3078  *
3079  * Tear down @vm.
3080  * Unbind the VM and remove all bos from the vm bo list
3081  */
3082 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3083 {
3084 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3085 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3086 	struct amdgpu_bo *root;
3087 	int i;
3088 
3089 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3090 
3091 	root = amdgpu_bo_ref(vm->root.base.bo);
3092 	amdgpu_bo_reserve(root, true);
3093 	if (vm->pasid) {
3094 		unsigned long flags;
3095 
3096 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3097 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3098 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3099 		vm->pasid = 0;
3100 	}
3101 
3102 	dma_fence_wait(vm->last_unlocked, false);
3103 	dma_fence_put(vm->last_unlocked);
3104 
3105 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3106 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3107 			amdgpu_vm_prt_fini(adev, vm);
3108 			prt_fini_needed = false;
3109 		}
3110 
3111 		list_del(&mapping->list);
3112 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3113 	}
3114 
3115 	amdgpu_vm_free_pts(adev, vm, NULL);
3116 	amdgpu_bo_unreserve(root);
3117 	amdgpu_bo_unref(&root);
3118 	WARN_ON(vm->root.base.bo);
3119 
3120 	drm_sched_entity_destroy(&vm->immediate);
3121 	drm_sched_entity_destroy(&vm->delayed);
3122 
3123 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3124 		dev_err(adev->dev, "still active bo inside vm\n");
3125 	}
3126 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3127 					     &vm->va.rb_root, rb) {
3128 		/* Don't remove the mapping here, we don't want to trigger a
3129 		 * rebalance and the tree is about to be destroyed anyway.
3130 		 */
3131 		list_del(&mapping->list);
3132 		kfree(mapping);
3133 	}
3134 
3135 	dma_fence_put(vm->last_update);
3136 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3137 		amdgpu_vmid_free_reserved(adev, vm, i);
3138 }
3139 
3140 /**
3141  * amdgpu_vm_manager_init - init the VM manager
3142  *
3143  * @adev: amdgpu_device pointer
3144  *
3145  * Initialize the VM manager structures
3146  */
3147 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3148 {
3149 	unsigned i;
3150 
3151 	/* Concurrent flushes are only possible starting with Vega10 and
3152 	 * are broken on Navi10 and Navi14.
3153 	 */
3154 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3155 					      adev->asic_type == CHIP_NAVI10 ||
3156 					      adev->asic_type == CHIP_NAVI14);
3157 	amdgpu_vmid_mgr_init(adev);
3158 
3159 	adev->vm_manager.fence_context =
3160 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3161 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3162 		adev->vm_manager.seqno[i] = 0;
3163 
3164 	spin_lock_init(&adev->vm_manager.prt_lock);
3165 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3166 
3167 	/* If not overridden by the user, by default, only in large BAR systems
3168 	 * Compute VM tables will be updated by CPU
3169 	 */
3170 #ifdef CONFIG_X86_64
3171 	if (amdgpu_vm_update_mode == -1) {
3172 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3173 			adev->vm_manager.vm_update_mode =
3174 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3175 		else
3176 			adev->vm_manager.vm_update_mode = 0;
3177 	} else
3178 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3179 #else
3180 	adev->vm_manager.vm_update_mode = 0;
3181 #endif
3182 
3183 	idr_init(&adev->vm_manager.pasid_idr);
3184 	spin_lock_init(&adev->vm_manager.pasid_lock);
3185 }
3186 
3187 /**
3188  * amdgpu_vm_manager_fini - cleanup VM manager
3189  *
3190  * @adev: amdgpu_device pointer
3191  *
3192  * Cleanup the VM manager and free resources.
3193  */
3194 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3195 {
3196 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3197 	idr_destroy(&adev->vm_manager.pasid_idr);
3198 
3199 	amdgpu_vmid_mgr_fini(adev);
3200 }
3201 
3202 /**
3203  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3204  *
3205  * @dev: drm device pointer
3206  * @data: drm_amdgpu_vm
3207  * @filp: drm file pointer
3208  *
3209  * Returns:
3210  * 0 for success, -errno for errors.
3211  */
3212 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3213 {
3214 	union drm_amdgpu_vm *args = data;
3215 	struct amdgpu_device *adev = drm_to_adev(dev);
3216 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3217 	long timeout = msecs_to_jiffies(2000);
3218 	int r;
3219 
3220 	switch (args->in.op) {
3221 	case AMDGPU_VM_OP_RESERVE_VMID:
3222 		/* We only have requirement to reserve vmid from gfxhub */
3223 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3224 					       AMDGPU_GFXHUB_0);
3225 		if (r)
3226 			return r;
3227 		break;
3228 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3229 		if (amdgpu_sriov_runtime(adev))
3230 			timeout = 8 * timeout;
3231 
3232 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3233 		 * not referenced anymore.
3234 		 */
3235 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3236 		if (r)
3237 			return r;
3238 
3239 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3240 		if (r < 0)
3241 			return r;
3242 
3243 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3244 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3245 		break;
3246 	default:
3247 		return -EINVAL;
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 /**
3254  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3255  *
3256  * @adev: drm device pointer
3257  * @pasid: PASID identifier for VM
3258  * @task_info: task_info to fill.
3259  */
3260 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3261 			 struct amdgpu_task_info *task_info)
3262 {
3263 	struct amdgpu_vm *vm;
3264 	unsigned long flags;
3265 
3266 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3267 
3268 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3269 	if (vm)
3270 		*task_info = vm->task_info;
3271 
3272 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3273 }
3274 
3275 /**
3276  * amdgpu_vm_set_task_info - Sets VMs task info.
3277  *
3278  * @vm: vm for which to set the info
3279  */
3280 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3281 {
3282 	if (vm->task_info.pid)
3283 		return;
3284 
3285 	vm->task_info.pid = current->pid;
3286 	get_task_comm(vm->task_info.task_name, current);
3287 
3288 	if (current->group_leader->mm != current->mm)
3289 		return;
3290 
3291 	vm->task_info.tgid = current->group_leader->pid;
3292 	get_task_comm(vm->task_info.process_name, current->group_leader);
3293 }
3294 
3295 /**
3296  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3297  * @adev: amdgpu device pointer
3298  * @pasid: PASID of the VM
3299  * @addr: Address of the fault
3300  *
3301  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3302  * shouldn't be reported any more.
3303  */
3304 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3305 			    uint64_t addr)
3306 {
3307 	struct amdgpu_bo *root;
3308 	uint64_t value, flags;
3309 	struct amdgpu_vm *vm;
3310 	int r;
3311 
3312 	spin_lock(&adev->vm_manager.pasid_lock);
3313 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3314 	if (vm)
3315 		root = amdgpu_bo_ref(vm->root.base.bo);
3316 	else
3317 		root = NULL;
3318 	spin_unlock(&adev->vm_manager.pasid_lock);
3319 
3320 	if (!root)
3321 		return false;
3322 
3323 	r = amdgpu_bo_reserve(root, true);
3324 	if (r)
3325 		goto error_unref;
3326 
3327 	/* Double check that the VM still exists */
3328 	spin_lock(&adev->vm_manager.pasid_lock);
3329 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3330 	if (vm && vm->root.base.bo != root)
3331 		vm = NULL;
3332 	spin_unlock(&adev->vm_manager.pasid_lock);
3333 	if (!vm)
3334 		goto error_unlock;
3335 
3336 	addr /= AMDGPU_GPU_PAGE_SIZE;
3337 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3338 		AMDGPU_PTE_SYSTEM;
3339 
3340 	if (vm->is_compute_context) {
3341 		/* Intentionally setting invalid PTE flag
3342 		 * combination to force a no-retry-fault
3343 		 */
3344 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3345 			AMDGPU_PTE_TF;
3346 		value = 0;
3347 
3348 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3349 		/* Redirect the access to the dummy page */
3350 		value = adev->dummy_page_addr;
3351 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3352 			AMDGPU_PTE_WRITEABLE;
3353 
3354 	} else {
3355 		/* Let the hw retry silently on the PTE */
3356 		value = 0;
3357 	}
3358 
3359 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3360 	if (r) {
3361 		pr_debug("failed %d to reserve fence slot\n", r);
3362 		goto error_unlock;
3363 	}
3364 
3365 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3366 					addr, flags, value, NULL, NULL,
3367 					NULL);
3368 	if (r)
3369 		goto error_unlock;
3370 
3371 	r = amdgpu_vm_update_pdes(adev, vm, true);
3372 
3373 error_unlock:
3374 	amdgpu_bo_unreserve(root);
3375 	if (r < 0)
3376 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3377 
3378 error_unref:
3379 	amdgpu_bo_unref(&root);
3380 
3381 	return false;
3382 }
3383 
3384 #if defined(CONFIG_DEBUG_FS)
3385 /**
3386  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3387  *
3388  * @vm: Requested VM for printing BO info
3389  * @m: debugfs file
3390  *
3391  * Print BO information in debugfs file for the VM
3392  */
3393 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3394 {
3395 	struct amdgpu_bo_va *bo_va, *tmp;
3396 	u64 total_idle = 0;
3397 	u64 total_evicted = 0;
3398 	u64 total_relocated = 0;
3399 	u64 total_moved = 0;
3400 	u64 total_invalidated = 0;
3401 	u64 total_done = 0;
3402 	unsigned int total_idle_objs = 0;
3403 	unsigned int total_evicted_objs = 0;
3404 	unsigned int total_relocated_objs = 0;
3405 	unsigned int total_moved_objs = 0;
3406 	unsigned int total_invalidated_objs = 0;
3407 	unsigned int total_done_objs = 0;
3408 	unsigned int id = 0;
3409 
3410 	seq_puts(m, "\tIdle BOs:\n");
3411 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3412 		if (!bo_va->base.bo)
3413 			continue;
3414 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3415 	}
3416 	total_idle_objs = id;
3417 	id = 0;
3418 
3419 	seq_puts(m, "\tEvicted BOs:\n");
3420 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3421 		if (!bo_va->base.bo)
3422 			continue;
3423 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3424 	}
3425 	total_evicted_objs = id;
3426 	id = 0;
3427 
3428 	seq_puts(m, "\tRelocated BOs:\n");
3429 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3430 		if (!bo_va->base.bo)
3431 			continue;
3432 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3433 	}
3434 	total_relocated_objs = id;
3435 	id = 0;
3436 
3437 	seq_puts(m, "\tMoved BOs:\n");
3438 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3439 		if (!bo_va->base.bo)
3440 			continue;
3441 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3442 	}
3443 	total_moved_objs = id;
3444 	id = 0;
3445 
3446 	seq_puts(m, "\tInvalidated BOs:\n");
3447 	spin_lock(&vm->invalidated_lock);
3448 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3449 		if (!bo_va->base.bo)
3450 			continue;
3451 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3452 	}
3453 	total_invalidated_objs = id;
3454 	id = 0;
3455 
3456 	seq_puts(m, "\tDone BOs:\n");
3457 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3458 		if (!bo_va->base.bo)
3459 			continue;
3460 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3461 	}
3462 	spin_unlock(&vm->invalidated_lock);
3463 	total_done_objs = id;
3464 
3465 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3466 		   total_idle_objs);
3467 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3468 		   total_evicted_objs);
3469 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3470 		   total_relocated_objs);
3471 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3472 		   total_moved_objs);
3473 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3474 		   total_invalidated_objs);
3475 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3476 		   total_done_objs);
3477 }
3478 #endif
3479