1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When executing a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /** 92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 93 * 94 * @adev: amdgpu_device pointer 95 * @vm: amdgpu_vm pointer 96 * @pasid: the pasid the VM is using on this GPU 97 * 98 * Set the pasid this VM is using on this GPU, can also be used to remove the 99 * pasid by passing in zero. 100 * 101 */ 102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 103 u32 pasid) 104 { 105 int r; 106 107 if (vm->pasid == pasid) 108 return 0; 109 110 if (vm->pasid) { 111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 112 if (r < 0) 113 return r; 114 115 vm->pasid = 0; 116 } 117 118 if (pasid) { 119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 120 GFP_KERNEL)); 121 if (r < 0) 122 return r; 123 124 vm->pasid = pasid; 125 } 126 127 128 return 0; 129 } 130 131 /* 132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 133 * happens while holding this lock anywhere to prevent deadlocks when 134 * an MMU notifier runs in reclaim-FS context. 135 */ 136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 137 { 138 mutex_lock(&vm->eviction_lock); 139 vm->saved_flags = memalloc_noreclaim_save(); 140 } 141 142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 143 { 144 if (mutex_trylock(&vm->eviction_lock)) { 145 vm->saved_flags = memalloc_noreclaim_save(); 146 return 1; 147 } 148 return 0; 149 } 150 151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 152 { 153 memalloc_noreclaim_restore(vm->saved_flags); 154 mutex_unlock(&vm->eviction_lock); 155 } 156 157 /** 158 * amdgpu_vm_level_shift - return the addr shift for each level 159 * 160 * @adev: amdgpu_device pointer 161 * @level: VMPT level 162 * 163 * Returns: 164 * The number of bits the pfn needs to be right shifted for a level. 165 */ 166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 167 unsigned level) 168 { 169 switch (level) { 170 case AMDGPU_VM_PDB2: 171 case AMDGPU_VM_PDB1: 172 case AMDGPU_VM_PDB0: 173 return 9 * (AMDGPU_VM_PDB0 - level) + 174 adev->vm_manager.block_size; 175 case AMDGPU_VM_PTB: 176 return 0; 177 default: 178 return ~0; 179 } 180 } 181 182 /** 183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The number of entries in a page directory or page table. 190 */ 191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 192 unsigned level) 193 { 194 unsigned shift = amdgpu_vm_level_shift(adev, 195 adev->vm_manager.root_level); 196 197 if (level == adev->vm_manager.root_level) 198 /* For the root directory */ 199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 200 >> shift; 201 else if (level != AMDGPU_VM_PTB) 202 /* Everything in between */ 203 return 512; 204 else 205 /* For the page tables on the leaves */ 206 return AMDGPU_VM_PTE_COUNT(adev); 207 } 208 209 /** 210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 211 * 212 * @adev: amdgpu_device pointer 213 * 214 * Returns: 215 * The number of entries in the root page directory which needs the ATS setting. 216 */ 217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 218 { 219 unsigned shift; 220 221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 223 } 224 225 /** 226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 227 * 228 * @adev: amdgpu_device pointer 229 * @level: VMPT level 230 * 231 * Returns: 232 * The mask to extract the entry number of a PD/PT from an address. 233 */ 234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 235 unsigned int level) 236 { 237 if (level <= adev->vm_manager.root_level) 238 return 0xffffffff; 239 else if (level != AMDGPU_VM_PTB) 240 return 0x1ff; 241 else 242 return AMDGPU_VM_PTE_COUNT(adev) - 1; 243 } 244 245 /** 246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 247 * 248 * @adev: amdgpu_device pointer 249 * @level: VMPT level 250 * 251 * Returns: 252 * The size of the BO for a page directory or page table in bytes. 253 */ 254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 255 { 256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 257 } 258 259 /** 260 * amdgpu_vm_bo_evicted - vm_bo is evicted 261 * 262 * @vm_bo: vm_bo which is evicted 263 * 264 * State for PDs/PTs and per VM BOs which are not at the location they should 265 * be. 266 */ 267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 struct amdgpu_vm *vm = vm_bo->vm; 270 struct amdgpu_bo *bo = vm_bo->bo; 271 272 vm_bo->moved = true; 273 if (bo->tbo.type == ttm_bo_type_kernel) 274 list_move(&vm_bo->vm_status, &vm->evicted); 275 else 276 list_move_tail(&vm_bo->vm_status, &vm->evicted); 277 } 278 /** 279 * amdgpu_vm_bo_moved - vm_bo is moved 280 * 281 * @vm_bo: vm_bo which is moved 282 * 283 * State for per VM BOs which are moved, but that change is not yet reflected 284 * in the page tables. 285 */ 286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 289 } 290 291 /** 292 * amdgpu_vm_bo_idle - vm_bo is idle 293 * 294 * @vm_bo: vm_bo which is now idle 295 * 296 * State for PDs/PTs and per VM BOs which have gone through the state machine 297 * and are now idle. 298 */ 299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 300 { 301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 302 vm_bo->moved = false; 303 } 304 305 /** 306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 307 * 308 * @vm_bo: vm_bo which is now invalidated 309 * 310 * State for normal BOs which are invalidated and that change not yet reflected 311 * in the PTs. 312 */ 313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 314 { 315 spin_lock(&vm_bo->vm->invalidated_lock); 316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 317 spin_unlock(&vm_bo->vm->invalidated_lock); 318 } 319 320 /** 321 * amdgpu_vm_bo_relocated - vm_bo is reloacted 322 * 323 * @vm_bo: vm_bo which is relocated 324 * 325 * State for PDs/PTs which needs to update their parent PD. 326 * For the root PD, just move to idle state. 327 */ 328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 329 { 330 if (vm_bo->bo->parent) 331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 332 else 333 amdgpu_vm_bo_idle(vm_bo); 334 } 335 336 /** 337 * amdgpu_vm_bo_done - vm_bo is done 338 * 339 * @vm_bo: vm_bo which is now done 340 * 341 * State for normal BOs which are invalidated and that change has been updated 342 * in the PTs. 343 */ 344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 345 { 346 spin_lock(&vm_bo->vm->invalidated_lock); 347 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 348 spin_unlock(&vm_bo->vm->invalidated_lock); 349 } 350 351 /** 352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 353 * 354 * @base: base structure for tracking BO usage in a VM 355 * @vm: vm to which bo is to be added 356 * @bo: amdgpu buffer object 357 * 358 * Initialize a bo_va_base structure and add it to the appropriate lists 359 * 360 */ 361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 362 struct amdgpu_vm *vm, 363 struct amdgpu_bo *bo) 364 { 365 base->vm = vm; 366 base->bo = bo; 367 base->next = NULL; 368 INIT_LIST_HEAD(&base->vm_status); 369 370 if (!bo) 371 return; 372 base->next = bo->vm_bo; 373 bo->vm_bo = base; 374 375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 376 return; 377 378 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 379 380 vm->bulk_moveable = false; 381 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 382 amdgpu_vm_bo_relocated(base); 383 else 384 amdgpu_vm_bo_idle(base); 385 386 if (bo->preferred_domains & 387 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 388 return; 389 390 /* 391 * we checked all the prerequisites, but it looks like this per vm bo 392 * is currently evicted. add the bo to the evicted list to make sure it 393 * is validated on next vm use to avoid fault. 394 * */ 395 amdgpu_vm_bo_evicted(base); 396 } 397 398 /** 399 * amdgpu_vm_pt_parent - get the parent page directory 400 * 401 * @pt: child page table 402 * 403 * Helper to get the parent entry for the child page table. NULL if we are at 404 * the root page directory. 405 */ 406 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 407 { 408 struct amdgpu_bo *parent = pt->bo->parent; 409 410 if (!parent) 411 return NULL; 412 413 return parent->vm_bo; 414 } 415 416 /* 417 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 418 */ 419 struct amdgpu_vm_pt_cursor { 420 uint64_t pfn; 421 struct amdgpu_vm_bo_base *parent; 422 struct amdgpu_vm_bo_base *entry; 423 unsigned level; 424 }; 425 426 /** 427 * amdgpu_vm_pt_start - start PD/PT walk 428 * 429 * @adev: amdgpu_device pointer 430 * @vm: amdgpu_vm structure 431 * @start: start address of the walk 432 * @cursor: state to initialize 433 * 434 * Initialize a amdgpu_vm_pt_cursor to start a walk. 435 */ 436 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 437 struct amdgpu_vm *vm, uint64_t start, 438 struct amdgpu_vm_pt_cursor *cursor) 439 { 440 cursor->pfn = start; 441 cursor->parent = NULL; 442 cursor->entry = &vm->root; 443 cursor->level = adev->vm_manager.root_level; 444 } 445 446 /** 447 * amdgpu_vm_pt_descendant - go to child node 448 * 449 * @adev: amdgpu_device pointer 450 * @cursor: current state 451 * 452 * Walk to the child node of the current node. 453 * Returns: 454 * True if the walk was possible, false otherwise. 455 */ 456 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 457 struct amdgpu_vm_pt_cursor *cursor) 458 { 459 unsigned mask, shift, idx; 460 461 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 462 !cursor->entry->bo) 463 return false; 464 465 mask = amdgpu_vm_entries_mask(adev, cursor->level); 466 shift = amdgpu_vm_level_shift(adev, cursor->level); 467 468 ++cursor->level; 469 idx = (cursor->pfn >> shift) & mask; 470 cursor->parent = cursor->entry; 471 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 472 return true; 473 } 474 475 /** 476 * amdgpu_vm_pt_sibling - go to sibling node 477 * 478 * @adev: amdgpu_device pointer 479 * @cursor: current state 480 * 481 * Walk to the sibling node of the current node. 482 * Returns: 483 * True if the walk was possible, false otherwise. 484 */ 485 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 486 struct amdgpu_vm_pt_cursor *cursor) 487 { 488 unsigned shift, num_entries; 489 490 /* Root doesn't have a sibling */ 491 if (!cursor->parent) 492 return false; 493 494 /* Go to our parents and see if we got a sibling */ 495 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 496 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 497 498 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 499 return false; 500 501 cursor->pfn += 1ULL << shift; 502 cursor->pfn &= ~((1ULL << shift) - 1); 503 ++cursor->entry; 504 return true; 505 } 506 507 /** 508 * amdgpu_vm_pt_ancestor - go to parent node 509 * 510 * @cursor: current state 511 * 512 * Walk to the parent node of the current node. 513 * Returns: 514 * True if the walk was possible, false otherwise. 515 */ 516 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 517 { 518 if (!cursor->parent) 519 return false; 520 521 --cursor->level; 522 cursor->entry = cursor->parent; 523 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 524 return true; 525 } 526 527 /** 528 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 529 * 530 * @adev: amdgpu_device pointer 531 * @cursor: current state 532 * 533 * Walk the PD/PT tree to the next node. 534 */ 535 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 536 struct amdgpu_vm_pt_cursor *cursor) 537 { 538 /* First try a newborn child */ 539 if (amdgpu_vm_pt_descendant(adev, cursor)) 540 return; 541 542 /* If that didn't worked try to find a sibling */ 543 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 544 /* No sibling, go to our parents and grandparents */ 545 if (!amdgpu_vm_pt_ancestor(cursor)) { 546 cursor->pfn = ~0ll; 547 return; 548 } 549 } 550 } 551 552 /** 553 * amdgpu_vm_pt_first_dfs - start a deep first search 554 * 555 * @adev: amdgpu_device structure 556 * @vm: amdgpu_vm structure 557 * @start: optional cursor to start with 558 * @cursor: state to initialize 559 * 560 * Starts a deep first traversal of the PD/PT tree. 561 */ 562 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 563 struct amdgpu_vm *vm, 564 struct amdgpu_vm_pt_cursor *start, 565 struct amdgpu_vm_pt_cursor *cursor) 566 { 567 if (start) 568 *cursor = *start; 569 else 570 amdgpu_vm_pt_start(adev, vm, 0, cursor); 571 while (amdgpu_vm_pt_descendant(adev, cursor)); 572 } 573 574 /** 575 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 576 * 577 * @start: starting point for the search 578 * @entry: current entry 579 * 580 * Returns: 581 * True when the search should continue, false otherwise. 582 */ 583 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 584 struct amdgpu_vm_bo_base *entry) 585 { 586 return entry && (!start || entry != start->entry); 587 } 588 589 /** 590 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 591 * 592 * @adev: amdgpu_device structure 593 * @cursor: current state 594 * 595 * Move the cursor to the next node in a deep first search. 596 */ 597 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 598 struct amdgpu_vm_pt_cursor *cursor) 599 { 600 if (!cursor->entry) 601 return; 602 603 if (!cursor->parent) 604 cursor->entry = NULL; 605 else if (amdgpu_vm_pt_sibling(adev, cursor)) 606 while (amdgpu_vm_pt_descendant(adev, cursor)); 607 else 608 amdgpu_vm_pt_ancestor(cursor); 609 } 610 611 /* 612 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 613 */ 614 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 615 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 617 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 618 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 619 620 /** 621 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 622 * 623 * @vm: vm providing the BOs 624 * @validated: head of validation list 625 * @entry: entry to add 626 * 627 * Add the page directory to the list of BOs to 628 * validate for command submission. 629 */ 630 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 631 struct list_head *validated, 632 struct amdgpu_bo_list_entry *entry) 633 { 634 entry->priority = 0; 635 entry->tv.bo = &vm->root.bo->tbo; 636 /* Two for VM updates, one for TTM and one for the CS job */ 637 entry->tv.num_shared = 4; 638 entry->user_pages = NULL; 639 list_add(&entry->tv.head, validated); 640 } 641 642 /** 643 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 644 * 645 * @bo: BO which was removed from the LRU 646 * 647 * Make sure the bulk_moveable flag is updated when a BO is removed from the 648 * LRU. 649 */ 650 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 651 { 652 struct amdgpu_bo *abo; 653 struct amdgpu_vm_bo_base *bo_base; 654 655 if (!amdgpu_bo_is_amdgpu_bo(bo)) 656 return; 657 658 if (bo->pin_count) 659 return; 660 661 abo = ttm_to_amdgpu_bo(bo); 662 if (!abo->parent) 663 return; 664 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 665 struct amdgpu_vm *vm = bo_base->vm; 666 667 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv) 668 vm->bulk_moveable = false; 669 } 670 671 } 672 /** 673 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 674 * 675 * @adev: amdgpu device pointer 676 * @vm: vm providing the BOs 677 * 678 * Move all BOs to the end of LRU and remember their positions to put them 679 * together. 680 */ 681 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 682 struct amdgpu_vm *vm) 683 { 684 struct amdgpu_vm_bo_base *bo_base; 685 686 if (vm->bulk_moveable) { 687 spin_lock(&adev->mman.bdev.lru_lock); 688 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 689 spin_unlock(&adev->mman.bdev.lru_lock); 690 return; 691 } 692 693 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 694 695 spin_lock(&adev->mman.bdev.lru_lock); 696 list_for_each_entry(bo_base, &vm->idle, vm_status) { 697 struct amdgpu_bo *bo = bo_base->bo; 698 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 699 700 if (!bo->parent) 701 continue; 702 703 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource, 704 &vm->lru_bulk_move); 705 if (shadow) 706 ttm_bo_move_to_lru_tail(&shadow->tbo, 707 shadow->tbo.resource, 708 &vm->lru_bulk_move); 709 } 710 spin_unlock(&adev->mman.bdev.lru_lock); 711 712 vm->bulk_moveable = true; 713 } 714 715 /** 716 * amdgpu_vm_validate_pt_bos - validate the page table BOs 717 * 718 * @adev: amdgpu device pointer 719 * @vm: vm providing the BOs 720 * @validate: callback to do the validation 721 * @param: parameter for the validation callback 722 * 723 * Validate the page table BOs on command submission if neccessary. 724 * 725 * Returns: 726 * Validation result. 727 */ 728 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 729 int (*validate)(void *p, struct amdgpu_bo *bo), 730 void *param) 731 { 732 struct amdgpu_vm_bo_base *bo_base, *tmp; 733 int r; 734 735 vm->bulk_moveable &= list_empty(&vm->evicted); 736 737 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 738 struct amdgpu_bo *bo = bo_base->bo; 739 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 740 741 r = validate(param, bo); 742 if (r) 743 return r; 744 if (shadow) { 745 r = validate(param, shadow); 746 if (r) 747 return r; 748 } 749 750 if (bo->tbo.type != ttm_bo_type_kernel) { 751 amdgpu_vm_bo_moved(bo_base); 752 } else { 753 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 754 amdgpu_vm_bo_relocated(bo_base); 755 } 756 } 757 758 amdgpu_vm_eviction_lock(vm); 759 vm->evicting = false; 760 amdgpu_vm_eviction_unlock(vm); 761 762 return 0; 763 } 764 765 /** 766 * amdgpu_vm_ready - check VM is ready for updates 767 * 768 * @vm: VM to check 769 * 770 * Check if all VM PDs/PTs are ready for updates 771 * 772 * Returns: 773 * True if VM is not evicting. 774 */ 775 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 776 { 777 bool ret; 778 779 amdgpu_vm_eviction_lock(vm); 780 ret = !vm->evicting; 781 amdgpu_vm_eviction_unlock(vm); 782 783 return ret && list_empty(&vm->evicted); 784 } 785 786 /** 787 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 788 * 789 * @adev: amdgpu_device pointer 790 * @vm: VM to clear BO from 791 * @vmbo: BO to clear 792 * @immediate: use an immediate update 793 * 794 * Root PD needs to be reserved when calling this. 795 * 796 * Returns: 797 * 0 on success, errno otherwise. 798 */ 799 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 800 struct amdgpu_vm *vm, 801 struct amdgpu_bo_vm *vmbo, 802 bool immediate) 803 { 804 struct ttm_operation_ctx ctx = { true, false }; 805 unsigned level = adev->vm_manager.root_level; 806 struct amdgpu_vm_update_params params; 807 struct amdgpu_bo *ancestor = &vmbo->bo; 808 struct amdgpu_bo *bo = &vmbo->bo; 809 unsigned entries, ats_entries; 810 uint64_t addr; 811 int r, idx; 812 813 /* Figure out our place in the hierarchy */ 814 if (ancestor->parent) { 815 ++level; 816 while (ancestor->parent->parent) { 817 ++level; 818 ancestor = ancestor->parent; 819 } 820 } 821 822 entries = amdgpu_bo_size(bo) / 8; 823 if (!vm->pte_support_ats) { 824 ats_entries = 0; 825 826 } else if (!bo->parent) { 827 ats_entries = amdgpu_vm_num_ats_entries(adev); 828 ats_entries = min(ats_entries, entries); 829 entries -= ats_entries; 830 831 } else { 832 struct amdgpu_vm_bo_base *pt; 833 834 pt = ancestor->vm_bo; 835 ats_entries = amdgpu_vm_num_ats_entries(adev); 836 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 837 ats_entries = 0; 838 } else { 839 ats_entries = entries; 840 entries = 0; 841 } 842 } 843 844 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 845 if (r) 846 return r; 847 848 if (vmbo->shadow) { 849 struct amdgpu_bo *shadow = vmbo->shadow; 850 851 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 852 if (r) 853 return r; 854 } 855 856 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 857 return -ENODEV; 858 859 r = vm->update_funcs->map_table(vmbo); 860 if (r) 861 goto exit; 862 863 memset(¶ms, 0, sizeof(params)); 864 params.adev = adev; 865 params.vm = vm; 866 params.immediate = immediate; 867 868 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 869 if (r) 870 goto exit; 871 872 addr = 0; 873 if (ats_entries) { 874 uint64_t value = 0, flags; 875 876 flags = AMDGPU_PTE_DEFAULT_ATC; 877 if (level != AMDGPU_VM_PTB) { 878 /* Handle leaf PDEs as PTEs */ 879 flags |= AMDGPU_PDE_PTE; 880 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 881 } 882 883 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 884 value, flags); 885 if (r) 886 goto exit; 887 888 addr += ats_entries * 8; 889 } 890 891 if (entries) { 892 uint64_t value = 0, flags = 0; 893 894 if (adev->asic_type >= CHIP_VEGA10) { 895 if (level != AMDGPU_VM_PTB) { 896 /* Handle leaf PDEs as PTEs */ 897 flags |= AMDGPU_PDE_PTE; 898 amdgpu_gmc_get_vm_pde(adev, level, 899 &value, &flags); 900 } else { 901 /* Workaround for fault priority problem on GMC9 */ 902 flags = AMDGPU_PTE_EXECUTABLE; 903 } 904 } 905 906 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 907 value, flags); 908 if (r) 909 goto exit; 910 } 911 912 r = vm->update_funcs->commit(¶ms, NULL); 913 exit: 914 drm_dev_exit(idx); 915 return r; 916 } 917 918 /** 919 * amdgpu_vm_pt_create - create bo for PD/PT 920 * 921 * @adev: amdgpu_device pointer 922 * @vm: requesting vm 923 * @level: the page table level 924 * @immediate: use a immediate update 925 * @vmbo: pointer to the buffer object pointer 926 */ 927 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 928 struct amdgpu_vm *vm, 929 int level, bool immediate, 930 struct amdgpu_bo_vm **vmbo) 931 { 932 struct amdgpu_bo_param bp; 933 struct amdgpu_bo *bo; 934 struct dma_resv *resv; 935 unsigned int num_entries; 936 int r; 937 938 memset(&bp, 0, sizeof(bp)); 939 940 bp.size = amdgpu_vm_bo_size(adev, level); 941 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 942 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 943 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 944 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 945 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 946 947 if (level < AMDGPU_VM_PTB) 948 num_entries = amdgpu_vm_num_entries(adev, level); 949 else 950 num_entries = 0; 951 952 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 953 954 if (vm->use_cpu_for_update) 955 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 956 957 bp.type = ttm_bo_type_kernel; 958 bp.no_wait_gpu = immediate; 959 if (vm->root.bo) 960 bp.resv = vm->root.bo->tbo.base.resv; 961 962 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 963 if (r) 964 return r; 965 966 bo = &(*vmbo)->bo; 967 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 968 (*vmbo)->shadow = NULL; 969 return 0; 970 } 971 972 if (!bp.resv) 973 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 974 NULL)); 975 resv = bp.resv; 976 memset(&bp, 0, sizeof(bp)); 977 bp.size = amdgpu_vm_bo_size(adev, level); 978 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 979 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 980 bp.type = ttm_bo_type_kernel; 981 bp.resv = bo->tbo.base.resv; 982 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 983 984 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 985 986 if (!resv) 987 dma_resv_unlock(bo->tbo.base.resv); 988 989 if (r) { 990 amdgpu_bo_unref(&bo); 991 return r; 992 } 993 994 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 995 amdgpu_bo_add_to_shadow_list(*vmbo); 996 997 return 0; 998 } 999 1000 /** 1001 * amdgpu_vm_alloc_pts - Allocate a specific page table 1002 * 1003 * @adev: amdgpu_device pointer 1004 * @vm: VM to allocate page tables for 1005 * @cursor: Which page table to allocate 1006 * @immediate: use an immediate update 1007 * 1008 * Make sure a specific page table or directory is allocated. 1009 * 1010 * Returns: 1011 * 1 if page table needed to be allocated, 0 if page table was already 1012 * allocated, negative errno if an error occurred. 1013 */ 1014 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 1015 struct amdgpu_vm *vm, 1016 struct amdgpu_vm_pt_cursor *cursor, 1017 bool immediate) 1018 { 1019 struct amdgpu_vm_bo_base *entry = cursor->entry; 1020 struct amdgpu_bo *pt_bo; 1021 struct amdgpu_bo_vm *pt; 1022 int r; 1023 1024 if (entry->bo) 1025 return 0; 1026 1027 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 1028 if (r) 1029 return r; 1030 1031 /* Keep a reference to the root directory to avoid 1032 * freeing them up in the wrong order. 1033 */ 1034 pt_bo = &pt->bo; 1035 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 1036 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 1037 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 1038 if (r) 1039 goto error_free_pt; 1040 1041 return 0; 1042 1043 error_free_pt: 1044 amdgpu_bo_unref(&pt->shadow); 1045 amdgpu_bo_unref(&pt_bo); 1046 return r; 1047 } 1048 1049 /** 1050 * amdgpu_vm_free_table - fre one PD/PT 1051 * 1052 * @entry: PDE to free 1053 */ 1054 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 1055 { 1056 struct amdgpu_bo *shadow; 1057 1058 if (!entry->bo) 1059 return; 1060 shadow = amdgpu_bo_shadowed(entry->bo); 1061 entry->bo->vm_bo = NULL; 1062 list_del(&entry->vm_status); 1063 amdgpu_bo_unref(&shadow); 1064 amdgpu_bo_unref(&entry->bo); 1065 } 1066 1067 /** 1068 * amdgpu_vm_free_pts - free PD/PT levels 1069 * 1070 * @adev: amdgpu device structure 1071 * @vm: amdgpu vm structure 1072 * @start: optional cursor where to start freeing PDs/PTs 1073 * 1074 * Free the page directory or page table level and all sub levels. 1075 */ 1076 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1077 struct amdgpu_vm *vm, 1078 struct amdgpu_vm_pt_cursor *start) 1079 { 1080 struct amdgpu_vm_pt_cursor cursor; 1081 struct amdgpu_vm_bo_base *entry; 1082 1083 vm->bulk_moveable = false; 1084 1085 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1086 amdgpu_vm_free_table(entry); 1087 1088 if (start) 1089 amdgpu_vm_free_table(start->entry); 1090 } 1091 1092 /** 1093 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1094 * 1095 * @adev: amdgpu_device pointer 1096 */ 1097 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1098 { 1099 const struct amdgpu_ip_block *ip_block; 1100 bool has_compute_vm_bug; 1101 struct amdgpu_ring *ring; 1102 int i; 1103 1104 has_compute_vm_bug = false; 1105 1106 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1107 if (ip_block) { 1108 /* Compute has a VM bug for GFX version < 7. 1109 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1110 if (ip_block->version->major <= 7) 1111 has_compute_vm_bug = true; 1112 else if (ip_block->version->major == 8) 1113 if (adev->gfx.mec_fw_version < 673) 1114 has_compute_vm_bug = true; 1115 } 1116 1117 for (i = 0; i < adev->num_rings; i++) { 1118 ring = adev->rings[i]; 1119 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1120 /* only compute rings */ 1121 ring->has_compute_vm_bug = has_compute_vm_bug; 1122 else 1123 ring->has_compute_vm_bug = false; 1124 } 1125 } 1126 1127 /** 1128 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1129 * 1130 * @ring: ring on which the job will be submitted 1131 * @job: job to submit 1132 * 1133 * Returns: 1134 * True if sync is needed. 1135 */ 1136 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1137 struct amdgpu_job *job) 1138 { 1139 struct amdgpu_device *adev = ring->adev; 1140 unsigned vmhub = ring->funcs->vmhub; 1141 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1142 struct amdgpu_vmid *id; 1143 bool gds_switch_needed; 1144 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1145 1146 if (job->vmid == 0) 1147 return false; 1148 id = &id_mgr->ids[job->vmid]; 1149 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1150 id->gds_base != job->gds_base || 1151 id->gds_size != job->gds_size || 1152 id->gws_base != job->gws_base || 1153 id->gws_size != job->gws_size || 1154 id->oa_base != job->oa_base || 1155 id->oa_size != job->oa_size); 1156 1157 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1158 return true; 1159 1160 return vm_flush_needed || gds_switch_needed; 1161 } 1162 1163 /** 1164 * amdgpu_vm_flush - hardware flush the vm 1165 * 1166 * @ring: ring to use for flush 1167 * @job: related job 1168 * @need_pipe_sync: is pipe sync needed 1169 * 1170 * Emit a VM flush when it is necessary. 1171 * 1172 * Returns: 1173 * 0 on success, errno otherwise. 1174 */ 1175 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1176 bool need_pipe_sync) 1177 { 1178 struct amdgpu_device *adev = ring->adev; 1179 unsigned vmhub = ring->funcs->vmhub; 1180 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1181 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1182 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1183 id->gds_base != job->gds_base || 1184 id->gds_size != job->gds_size || 1185 id->gws_base != job->gws_base || 1186 id->gws_size != job->gws_size || 1187 id->oa_base != job->oa_base || 1188 id->oa_size != job->oa_size); 1189 bool vm_flush_needed = job->vm_needs_flush; 1190 struct dma_fence *fence = NULL; 1191 bool pasid_mapping_needed = false; 1192 unsigned patch_offset = 0; 1193 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1194 int r; 1195 1196 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1197 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1198 1199 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1200 gds_switch_needed = true; 1201 vm_flush_needed = true; 1202 pasid_mapping_needed = true; 1203 } 1204 1205 mutex_lock(&id_mgr->lock); 1206 if (id->pasid != job->pasid || !id->pasid_mapping || 1207 !dma_fence_is_signaled(id->pasid_mapping)) 1208 pasid_mapping_needed = true; 1209 mutex_unlock(&id_mgr->lock); 1210 1211 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1212 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1213 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1214 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1215 ring->funcs->emit_wreg; 1216 1217 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1218 return 0; 1219 1220 if (ring->funcs->init_cond_exec) 1221 patch_offset = amdgpu_ring_init_cond_exec(ring); 1222 1223 if (need_pipe_sync) 1224 amdgpu_ring_emit_pipeline_sync(ring); 1225 1226 if (vm_flush_needed) { 1227 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1228 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1229 } 1230 1231 if (pasid_mapping_needed) 1232 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1233 1234 if (vm_flush_needed || pasid_mapping_needed) { 1235 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1236 if (r) 1237 return r; 1238 } 1239 1240 if (vm_flush_needed) { 1241 mutex_lock(&id_mgr->lock); 1242 dma_fence_put(id->last_flush); 1243 id->last_flush = dma_fence_get(fence); 1244 id->current_gpu_reset_count = 1245 atomic_read(&adev->gpu_reset_counter); 1246 mutex_unlock(&id_mgr->lock); 1247 } 1248 1249 if (pasid_mapping_needed) { 1250 mutex_lock(&id_mgr->lock); 1251 id->pasid = job->pasid; 1252 dma_fence_put(id->pasid_mapping); 1253 id->pasid_mapping = dma_fence_get(fence); 1254 mutex_unlock(&id_mgr->lock); 1255 } 1256 dma_fence_put(fence); 1257 1258 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1259 id->gds_base = job->gds_base; 1260 id->gds_size = job->gds_size; 1261 id->gws_base = job->gws_base; 1262 id->gws_size = job->gws_size; 1263 id->oa_base = job->oa_base; 1264 id->oa_size = job->oa_size; 1265 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1266 job->gds_size, job->gws_base, 1267 job->gws_size, job->oa_base, 1268 job->oa_size); 1269 } 1270 1271 if (ring->funcs->patch_cond_exec) 1272 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1273 1274 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1275 if (ring->funcs->emit_switch_buffer) { 1276 amdgpu_ring_emit_switch_buffer(ring); 1277 amdgpu_ring_emit_switch_buffer(ring); 1278 } 1279 return 0; 1280 } 1281 1282 /** 1283 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1284 * 1285 * @vm: requested vm 1286 * @bo: requested buffer object 1287 * 1288 * Find @bo inside the requested vm. 1289 * Search inside the @bos vm list for the requested vm 1290 * Returns the found bo_va or NULL if none is found 1291 * 1292 * Object has to be reserved! 1293 * 1294 * Returns: 1295 * Found bo_va or NULL. 1296 */ 1297 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1298 struct amdgpu_bo *bo) 1299 { 1300 struct amdgpu_vm_bo_base *base; 1301 1302 for (base = bo->vm_bo; base; base = base->next) { 1303 if (base->vm != vm) 1304 continue; 1305 1306 return container_of(base, struct amdgpu_bo_va, base); 1307 } 1308 return NULL; 1309 } 1310 1311 /** 1312 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1313 * 1314 * @pages_addr: optional DMA address to use for lookup 1315 * @addr: the unmapped addr 1316 * 1317 * Look up the physical address of the page that the pte resolves 1318 * to. 1319 * 1320 * Returns: 1321 * The pointer for the page table entry. 1322 */ 1323 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1324 { 1325 uint64_t result; 1326 1327 /* page table offset */ 1328 result = pages_addr[addr >> PAGE_SHIFT]; 1329 1330 /* in case cpu page size != gpu page size*/ 1331 result |= addr & (~PAGE_MASK); 1332 1333 result &= 0xFFFFFFFFFFFFF000ULL; 1334 1335 return result; 1336 } 1337 1338 /** 1339 * amdgpu_vm_update_pde - update a single level in the hierarchy 1340 * 1341 * @params: parameters for the update 1342 * @vm: requested vm 1343 * @entry: entry to update 1344 * 1345 * Makes sure the requested entry in parent is up to date. 1346 */ 1347 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1348 struct amdgpu_vm *vm, 1349 struct amdgpu_vm_bo_base *entry) 1350 { 1351 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1352 struct amdgpu_bo *bo = parent->bo, *pbo; 1353 uint64_t pde, pt, flags; 1354 unsigned level; 1355 1356 for (level = 0, pbo = bo->parent; pbo; ++level) 1357 pbo = pbo->parent; 1358 1359 level += params->adev->vm_manager.root_level; 1360 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1361 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1362 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1363 1, 0, flags); 1364 } 1365 1366 /** 1367 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1368 * 1369 * @adev: amdgpu_device pointer 1370 * @vm: related vm 1371 * 1372 * Mark all PD level as invalid after an error. 1373 */ 1374 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1375 struct amdgpu_vm *vm) 1376 { 1377 struct amdgpu_vm_pt_cursor cursor; 1378 struct amdgpu_vm_bo_base *entry; 1379 1380 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1381 if (entry->bo && !entry->moved) 1382 amdgpu_vm_bo_relocated(entry); 1383 } 1384 1385 /** 1386 * amdgpu_vm_update_pdes - make sure that all directories are valid 1387 * 1388 * @adev: amdgpu_device pointer 1389 * @vm: requested vm 1390 * @immediate: submit immediately to the paging queue 1391 * 1392 * Makes sure all directories are up to date. 1393 * 1394 * Returns: 1395 * 0 for success, error for failure. 1396 */ 1397 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1398 struct amdgpu_vm *vm, bool immediate) 1399 { 1400 struct amdgpu_vm_update_params params; 1401 int r, idx; 1402 1403 if (list_empty(&vm->relocated)) 1404 return 0; 1405 1406 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1407 return -ENODEV; 1408 1409 memset(¶ms, 0, sizeof(params)); 1410 params.adev = adev; 1411 params.vm = vm; 1412 params.immediate = immediate; 1413 1414 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1415 if (r) 1416 goto exit; 1417 1418 while (!list_empty(&vm->relocated)) { 1419 struct amdgpu_vm_bo_base *entry; 1420 1421 entry = list_first_entry(&vm->relocated, 1422 struct amdgpu_vm_bo_base, 1423 vm_status); 1424 amdgpu_vm_bo_idle(entry); 1425 1426 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1427 if (r) 1428 goto error; 1429 } 1430 1431 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1432 if (r) 1433 goto error; 1434 drm_dev_exit(idx); 1435 return 0; 1436 1437 error: 1438 amdgpu_vm_invalidate_pds(adev, vm); 1439 exit: 1440 drm_dev_exit(idx); 1441 return r; 1442 } 1443 1444 /* 1445 * amdgpu_vm_update_flags - figure out flags for PTE updates 1446 * 1447 * Make sure to set the right flags for the PTEs at the desired level. 1448 */ 1449 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1450 struct amdgpu_bo_vm *pt, unsigned int level, 1451 uint64_t pe, uint64_t addr, 1452 unsigned int count, uint32_t incr, 1453 uint64_t flags) 1454 1455 { 1456 if (level != AMDGPU_VM_PTB) { 1457 flags |= AMDGPU_PDE_PTE; 1458 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1459 1460 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1461 !(flags & AMDGPU_PTE_VALID) && 1462 !(flags & AMDGPU_PTE_PRT)) { 1463 1464 /* Workaround for fault priority problem on GMC9 */ 1465 flags |= AMDGPU_PTE_EXECUTABLE; 1466 } 1467 1468 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1469 flags); 1470 } 1471 1472 /** 1473 * amdgpu_vm_fragment - get fragment for PTEs 1474 * 1475 * @params: see amdgpu_vm_update_params definition 1476 * @start: first PTE to handle 1477 * @end: last PTE to handle 1478 * @flags: hw mapping flags 1479 * @frag: resulting fragment size 1480 * @frag_end: end of this fragment 1481 * 1482 * Returns the first possible fragment for the start and end address. 1483 */ 1484 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1485 uint64_t start, uint64_t end, uint64_t flags, 1486 unsigned int *frag, uint64_t *frag_end) 1487 { 1488 /** 1489 * The MC L1 TLB supports variable sized pages, based on a fragment 1490 * field in the PTE. When this field is set to a non-zero value, page 1491 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1492 * flags are considered valid for all PTEs within the fragment range 1493 * and corresponding mappings are assumed to be physically contiguous. 1494 * 1495 * The L1 TLB can store a single PTE for the whole fragment, 1496 * significantly increasing the space available for translation 1497 * caching. This leads to large improvements in throughput when the 1498 * TLB is under pressure. 1499 * 1500 * The L2 TLB distributes small and large fragments into two 1501 * asymmetric partitions. The large fragment cache is significantly 1502 * larger. Thus, we try to use large fragments wherever possible. 1503 * Userspace can support this by aligning virtual base address and 1504 * allocation size to the fragment size. 1505 * 1506 * Starting with Vega10 the fragment size only controls the L1. The L2 1507 * is now directly feed with small/huge/giant pages from the walker. 1508 */ 1509 unsigned max_frag; 1510 1511 if (params->adev->asic_type < CHIP_VEGA10) 1512 max_frag = params->adev->vm_manager.fragment_size; 1513 else 1514 max_frag = 31; 1515 1516 /* system pages are non continuously */ 1517 if (params->pages_addr) { 1518 *frag = 0; 1519 *frag_end = end; 1520 return; 1521 } 1522 1523 /* This intentionally wraps around if no bit is set */ 1524 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1525 if (*frag >= max_frag) { 1526 *frag = max_frag; 1527 *frag_end = end & ~((1ULL << max_frag) - 1); 1528 } else { 1529 *frag_end = start + (1 << *frag); 1530 } 1531 } 1532 1533 /** 1534 * amdgpu_vm_update_ptes - make sure that page tables are valid 1535 * 1536 * @params: see amdgpu_vm_update_params definition 1537 * @start: start of GPU address range 1538 * @end: end of GPU address range 1539 * @dst: destination address to map to, the next dst inside the function 1540 * @flags: mapping flags 1541 * 1542 * Update the page tables in the range @start - @end. 1543 * 1544 * Returns: 1545 * 0 for success, -EINVAL for failure. 1546 */ 1547 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1548 uint64_t start, uint64_t end, 1549 uint64_t dst, uint64_t flags) 1550 { 1551 struct amdgpu_device *adev = params->adev; 1552 struct amdgpu_vm_pt_cursor cursor; 1553 uint64_t frag_start = start, frag_end; 1554 unsigned int frag; 1555 int r; 1556 1557 /* figure out the initial fragment */ 1558 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1559 1560 /* walk over the address space and update the PTs */ 1561 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1562 while (cursor.pfn < end) { 1563 unsigned shift, parent_shift, mask; 1564 uint64_t incr, entry_end, pe_start; 1565 struct amdgpu_bo *pt; 1566 1567 if (!params->unlocked) { 1568 /* make sure that the page tables covering the 1569 * address range are actually allocated 1570 */ 1571 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1572 &cursor, params->immediate); 1573 if (r) 1574 return r; 1575 } 1576 1577 shift = amdgpu_vm_level_shift(adev, cursor.level); 1578 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1579 if (params->unlocked) { 1580 /* Unlocked updates are only allowed on the leaves */ 1581 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1582 continue; 1583 } else if (adev->asic_type < CHIP_VEGA10 && 1584 (flags & AMDGPU_PTE_VALID)) { 1585 /* No huge page support before GMC v9 */ 1586 if (cursor.level != AMDGPU_VM_PTB) { 1587 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1588 return -ENOENT; 1589 continue; 1590 } 1591 } else if (frag < shift) { 1592 /* We can't use this level when the fragment size is 1593 * smaller than the address shift. Go to the next 1594 * child entry and try again. 1595 */ 1596 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1597 continue; 1598 } else if (frag >= parent_shift) { 1599 /* If the fragment size is even larger than the parent 1600 * shift we should go up one level and check it again. 1601 */ 1602 if (!amdgpu_vm_pt_ancestor(&cursor)) 1603 return -EINVAL; 1604 continue; 1605 } 1606 1607 pt = cursor.entry->bo; 1608 if (!pt) { 1609 /* We need all PDs and PTs for mapping something, */ 1610 if (flags & AMDGPU_PTE_VALID) 1611 return -ENOENT; 1612 1613 /* but unmapping something can happen at a higher 1614 * level. 1615 */ 1616 if (!amdgpu_vm_pt_ancestor(&cursor)) 1617 return -EINVAL; 1618 1619 pt = cursor.entry->bo; 1620 shift = parent_shift; 1621 frag_end = max(frag_end, ALIGN(frag_start + 1, 1622 1ULL << shift)); 1623 } 1624 1625 /* Looks good so far, calculate parameters for the update */ 1626 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1627 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1628 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1629 entry_end = ((uint64_t)mask + 1) << shift; 1630 entry_end += cursor.pfn & ~(entry_end - 1); 1631 entry_end = min(entry_end, end); 1632 1633 do { 1634 struct amdgpu_vm *vm = params->vm; 1635 uint64_t upd_end = min(entry_end, frag_end); 1636 unsigned nptes = (upd_end - frag_start) >> shift; 1637 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1638 1639 /* This can happen when we set higher level PDs to 1640 * silent to stop fault floods. 1641 */ 1642 nptes = max(nptes, 1u); 1643 1644 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1645 min(nptes, 32u), dst, incr, upd_flags, 1646 vm->task_info.pid, 1647 vm->immediate.fence_context); 1648 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1649 cursor.level, pe_start, dst, 1650 nptes, incr, upd_flags); 1651 1652 pe_start += nptes * 8; 1653 dst += nptes * incr; 1654 1655 frag_start = upd_end; 1656 if (frag_start >= frag_end) { 1657 /* figure out the next fragment */ 1658 amdgpu_vm_fragment(params, frag_start, end, 1659 flags, &frag, &frag_end); 1660 if (frag < shift) 1661 break; 1662 } 1663 } while (frag_start < entry_end); 1664 1665 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1666 /* Free all child entries. 1667 * Update the tables with the flags and addresses and free up subsequent 1668 * tables in the case of huge pages or freed up areas. 1669 * This is the maximum you can free, because all other page tables are not 1670 * completely covered by the range and so potentially still in use. 1671 */ 1672 while (cursor.pfn < frag_start) { 1673 /* Make sure previous mapping is freed */ 1674 if (cursor.entry->bo) { 1675 params->table_freed = true; 1676 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1677 } 1678 amdgpu_vm_pt_next(adev, &cursor); 1679 } 1680 1681 } else if (frag >= shift) { 1682 /* or just move on to the next on the same level. */ 1683 amdgpu_vm_pt_next(adev, &cursor); 1684 } 1685 } 1686 1687 return 0; 1688 } 1689 1690 /** 1691 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1692 * 1693 * @adev: amdgpu_device pointer of the VM 1694 * @bo_adev: amdgpu_device pointer of the mapped BO 1695 * @vm: requested vm 1696 * @immediate: immediate submission in a page fault 1697 * @unlocked: unlocked invalidation during MM callback 1698 * @resv: fences we need to sync to 1699 * @start: start of mapped range 1700 * @last: last mapped entry 1701 * @flags: flags for the entries 1702 * @offset: offset into nodes and pages_addr 1703 * @res: ttm_resource to map 1704 * @pages_addr: DMA addresses to use for mapping 1705 * @fence: optional resulting fence 1706 * @table_freed: return true if page table is freed 1707 * 1708 * Fill in the page table entries between @start and @last. 1709 * 1710 * Returns: 1711 * 0 for success, -EINVAL for failure. 1712 */ 1713 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1714 struct amdgpu_device *bo_adev, 1715 struct amdgpu_vm *vm, bool immediate, 1716 bool unlocked, struct dma_resv *resv, 1717 uint64_t start, uint64_t last, 1718 uint64_t flags, uint64_t offset, 1719 struct ttm_resource *res, 1720 dma_addr_t *pages_addr, 1721 struct dma_fence **fence, 1722 bool *table_freed) 1723 { 1724 struct amdgpu_vm_update_params params; 1725 struct amdgpu_res_cursor cursor; 1726 enum amdgpu_sync_mode sync_mode; 1727 int r, idx; 1728 1729 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1730 return -ENODEV; 1731 1732 memset(¶ms, 0, sizeof(params)); 1733 params.adev = adev; 1734 params.vm = vm; 1735 params.immediate = immediate; 1736 params.pages_addr = pages_addr; 1737 params.unlocked = unlocked; 1738 1739 /* Implicitly sync to command submissions in the same VM before 1740 * unmapping. Sync to moving fences before mapping. 1741 */ 1742 if (!(flags & AMDGPU_PTE_VALID)) 1743 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1744 else 1745 sync_mode = AMDGPU_SYNC_EXPLICIT; 1746 1747 amdgpu_vm_eviction_lock(vm); 1748 if (vm->evicting) { 1749 r = -EBUSY; 1750 goto error_unlock; 1751 } 1752 1753 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1754 struct dma_fence *tmp = dma_fence_get_stub(); 1755 1756 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1757 swap(vm->last_unlocked, tmp); 1758 dma_fence_put(tmp); 1759 } 1760 1761 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1762 if (r) 1763 goto error_unlock; 1764 1765 amdgpu_res_first(pages_addr ? NULL : res, offset, 1766 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1767 while (cursor.remaining) { 1768 uint64_t tmp, num_entries, addr; 1769 1770 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1771 if (pages_addr) { 1772 bool contiguous = true; 1773 1774 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1775 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1776 uint64_t count; 1777 1778 contiguous = pages_addr[pfn + 1] == 1779 pages_addr[pfn] + PAGE_SIZE; 1780 1781 tmp = num_entries / 1782 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1783 for (count = 2; count < tmp; ++count) { 1784 uint64_t idx = pfn + count; 1785 1786 if (contiguous != (pages_addr[idx] == 1787 pages_addr[idx - 1] + PAGE_SIZE)) 1788 break; 1789 } 1790 num_entries = count * 1791 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1792 } 1793 1794 if (!contiguous) { 1795 addr = cursor.start; 1796 params.pages_addr = pages_addr; 1797 } else { 1798 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1799 params.pages_addr = NULL; 1800 } 1801 1802 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1803 addr = bo_adev->vm_manager.vram_base_offset + 1804 cursor.start; 1805 } else { 1806 addr = 0; 1807 } 1808 1809 tmp = start + num_entries; 1810 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1811 if (r) 1812 goto error_unlock; 1813 1814 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1815 start = tmp; 1816 } 1817 1818 r = vm->update_funcs->commit(¶ms, fence); 1819 1820 if (table_freed) 1821 *table_freed = *table_freed || params.table_freed; 1822 1823 error_unlock: 1824 amdgpu_vm_eviction_unlock(vm); 1825 drm_dev_exit(idx); 1826 return r; 1827 } 1828 1829 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1830 uint64_t *gtt_mem, uint64_t *cpu_mem) 1831 { 1832 struct amdgpu_bo_va *bo_va, *tmp; 1833 1834 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1835 if (!bo_va->base.bo) 1836 continue; 1837 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1838 gtt_mem, cpu_mem); 1839 } 1840 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1841 if (!bo_va->base.bo) 1842 continue; 1843 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1844 gtt_mem, cpu_mem); 1845 } 1846 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1847 if (!bo_va->base.bo) 1848 continue; 1849 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1850 gtt_mem, cpu_mem); 1851 } 1852 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1853 if (!bo_va->base.bo) 1854 continue; 1855 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1856 gtt_mem, cpu_mem); 1857 } 1858 spin_lock(&vm->invalidated_lock); 1859 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1860 if (!bo_va->base.bo) 1861 continue; 1862 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1863 gtt_mem, cpu_mem); 1864 } 1865 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1866 if (!bo_va->base.bo) 1867 continue; 1868 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1869 gtt_mem, cpu_mem); 1870 } 1871 spin_unlock(&vm->invalidated_lock); 1872 } 1873 /** 1874 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1875 * 1876 * @adev: amdgpu_device pointer 1877 * @bo_va: requested BO and VM object 1878 * @clear: if true clear the entries 1879 * @table_freed: return true if page table is freed 1880 * 1881 * Fill in the page table entries for @bo_va. 1882 * 1883 * Returns: 1884 * 0 for success, -EINVAL for failure. 1885 */ 1886 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1887 bool clear, bool *table_freed) 1888 { 1889 struct amdgpu_bo *bo = bo_va->base.bo; 1890 struct amdgpu_vm *vm = bo_va->base.vm; 1891 struct amdgpu_bo_va_mapping *mapping; 1892 dma_addr_t *pages_addr = NULL; 1893 struct ttm_resource *mem; 1894 struct dma_fence **last_update; 1895 struct dma_resv *resv; 1896 uint64_t flags; 1897 struct amdgpu_device *bo_adev = adev; 1898 int r; 1899 1900 if (clear || !bo) { 1901 mem = NULL; 1902 resv = vm->root.bo->tbo.base.resv; 1903 } else { 1904 struct drm_gem_object *obj = &bo->tbo.base; 1905 1906 resv = bo->tbo.base.resv; 1907 if (obj->import_attach && bo_va->is_xgmi) { 1908 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1909 struct drm_gem_object *gobj = dma_buf->priv; 1910 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1911 1912 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1913 bo = gem_to_amdgpu_bo(gobj); 1914 } 1915 mem = bo->tbo.resource; 1916 if (mem->mem_type == TTM_PL_TT || 1917 mem->mem_type == AMDGPU_PL_PREEMPT) 1918 pages_addr = bo->tbo.ttm->dma_address; 1919 } 1920 1921 if (bo) { 1922 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1923 1924 if (amdgpu_bo_encrypted(bo)) 1925 flags |= AMDGPU_PTE_TMZ; 1926 1927 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1928 } else { 1929 flags = 0x0; 1930 } 1931 1932 if (clear || (bo && bo->tbo.base.resv == 1933 vm->root.bo->tbo.base.resv)) 1934 last_update = &vm->last_update; 1935 else 1936 last_update = &bo_va->last_pt_update; 1937 1938 if (!clear && bo_va->base.moved) { 1939 bo_va->base.moved = false; 1940 list_splice_init(&bo_va->valids, &bo_va->invalids); 1941 1942 } else if (bo_va->cleared != clear) { 1943 list_splice_init(&bo_va->valids, &bo_va->invalids); 1944 } 1945 1946 list_for_each_entry(mapping, &bo_va->invalids, list) { 1947 uint64_t update_flags = flags; 1948 1949 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1950 * but in case of something, we filter the flags in first place 1951 */ 1952 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1953 update_flags &= ~AMDGPU_PTE_READABLE; 1954 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1955 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1956 1957 /* Apply ASIC specific mapping flags */ 1958 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1959 1960 trace_amdgpu_vm_bo_update(mapping); 1961 1962 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1963 resv, mapping->start, 1964 mapping->last, update_flags, 1965 mapping->offset, mem, 1966 pages_addr, last_update, table_freed); 1967 if (r) 1968 return r; 1969 } 1970 1971 /* If the BO is not in its preferred location add it back to 1972 * the evicted list so that it gets validated again on the 1973 * next command submission. 1974 */ 1975 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1976 uint32_t mem_type = bo->tbo.resource->mem_type; 1977 1978 if (!(bo->preferred_domains & 1979 amdgpu_mem_type_to_domain(mem_type))) 1980 amdgpu_vm_bo_evicted(&bo_va->base); 1981 else 1982 amdgpu_vm_bo_idle(&bo_va->base); 1983 } else { 1984 amdgpu_vm_bo_done(&bo_va->base); 1985 } 1986 1987 list_splice_init(&bo_va->invalids, &bo_va->valids); 1988 bo_va->cleared = clear; 1989 1990 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1991 list_for_each_entry(mapping, &bo_va->valids, list) 1992 trace_amdgpu_vm_bo_mapping(mapping); 1993 } 1994 1995 return 0; 1996 } 1997 1998 /** 1999 * amdgpu_vm_update_prt_state - update the global PRT state 2000 * 2001 * @adev: amdgpu_device pointer 2002 */ 2003 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2004 { 2005 unsigned long flags; 2006 bool enable; 2007 2008 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2009 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2010 adev->gmc.gmc_funcs->set_prt(adev, enable); 2011 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2012 } 2013 2014 /** 2015 * amdgpu_vm_prt_get - add a PRT user 2016 * 2017 * @adev: amdgpu_device pointer 2018 */ 2019 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2020 { 2021 if (!adev->gmc.gmc_funcs->set_prt) 2022 return; 2023 2024 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2025 amdgpu_vm_update_prt_state(adev); 2026 } 2027 2028 /** 2029 * amdgpu_vm_prt_put - drop a PRT user 2030 * 2031 * @adev: amdgpu_device pointer 2032 */ 2033 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2034 { 2035 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2036 amdgpu_vm_update_prt_state(adev); 2037 } 2038 2039 /** 2040 * amdgpu_vm_prt_cb - callback for updating the PRT status 2041 * 2042 * @fence: fence for the callback 2043 * @_cb: the callback function 2044 */ 2045 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2046 { 2047 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2048 2049 amdgpu_vm_prt_put(cb->adev); 2050 kfree(cb); 2051 } 2052 2053 /** 2054 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2055 * 2056 * @adev: amdgpu_device pointer 2057 * @fence: fence for the callback 2058 */ 2059 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2060 struct dma_fence *fence) 2061 { 2062 struct amdgpu_prt_cb *cb; 2063 2064 if (!adev->gmc.gmc_funcs->set_prt) 2065 return; 2066 2067 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2068 if (!cb) { 2069 /* Last resort when we are OOM */ 2070 if (fence) 2071 dma_fence_wait(fence, false); 2072 2073 amdgpu_vm_prt_put(adev); 2074 } else { 2075 cb->adev = adev; 2076 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2077 amdgpu_vm_prt_cb)) 2078 amdgpu_vm_prt_cb(fence, &cb->cb); 2079 } 2080 } 2081 2082 /** 2083 * amdgpu_vm_free_mapping - free a mapping 2084 * 2085 * @adev: amdgpu_device pointer 2086 * @vm: requested vm 2087 * @mapping: mapping to be freed 2088 * @fence: fence of the unmap operation 2089 * 2090 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2091 */ 2092 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2093 struct amdgpu_vm *vm, 2094 struct amdgpu_bo_va_mapping *mapping, 2095 struct dma_fence *fence) 2096 { 2097 if (mapping->flags & AMDGPU_PTE_PRT) 2098 amdgpu_vm_add_prt_cb(adev, fence); 2099 kfree(mapping); 2100 } 2101 2102 /** 2103 * amdgpu_vm_prt_fini - finish all prt mappings 2104 * 2105 * @adev: amdgpu_device pointer 2106 * @vm: requested vm 2107 * 2108 * Register a cleanup callback to disable PRT support after VM dies. 2109 */ 2110 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2111 { 2112 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2113 struct dma_resv_iter cursor; 2114 struct dma_fence *fence; 2115 2116 dma_resv_for_each_fence(&cursor, resv, true, fence) { 2117 /* Add a callback for each fence in the reservation object */ 2118 amdgpu_vm_prt_get(adev); 2119 amdgpu_vm_add_prt_cb(adev, fence); 2120 } 2121 } 2122 2123 /** 2124 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2125 * 2126 * @adev: amdgpu_device pointer 2127 * @vm: requested vm 2128 * @fence: optional resulting fence (unchanged if no work needed to be done 2129 * or if an error occurred) 2130 * 2131 * Make sure all freed BOs are cleared in the PT. 2132 * PTs have to be reserved and mutex must be locked! 2133 * 2134 * Returns: 2135 * 0 for success. 2136 * 2137 */ 2138 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2139 struct amdgpu_vm *vm, 2140 struct dma_fence **fence) 2141 { 2142 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2143 struct amdgpu_bo_va_mapping *mapping; 2144 uint64_t init_pte_value = 0; 2145 struct dma_fence *f = NULL; 2146 int r; 2147 2148 while (!list_empty(&vm->freed)) { 2149 mapping = list_first_entry(&vm->freed, 2150 struct amdgpu_bo_va_mapping, list); 2151 list_del(&mapping->list); 2152 2153 if (vm->pte_support_ats && 2154 mapping->start < AMDGPU_GMC_HOLE_START) 2155 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2156 2157 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2158 resv, mapping->start, 2159 mapping->last, init_pte_value, 2160 0, NULL, NULL, &f, NULL); 2161 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2162 if (r) { 2163 dma_fence_put(f); 2164 return r; 2165 } 2166 } 2167 2168 if (fence && f) { 2169 dma_fence_put(*fence); 2170 *fence = f; 2171 } else { 2172 dma_fence_put(f); 2173 } 2174 2175 return 0; 2176 2177 } 2178 2179 /** 2180 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2181 * 2182 * @adev: amdgpu_device pointer 2183 * @vm: requested vm 2184 * 2185 * Make sure all BOs which are moved are updated in the PTs. 2186 * 2187 * Returns: 2188 * 0 for success. 2189 * 2190 * PTs have to be reserved! 2191 */ 2192 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2193 struct amdgpu_vm *vm) 2194 { 2195 struct amdgpu_bo_va *bo_va, *tmp; 2196 struct dma_resv *resv; 2197 bool clear; 2198 int r; 2199 2200 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2201 /* Per VM BOs never need to bo cleared in the page tables */ 2202 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2203 if (r) 2204 return r; 2205 } 2206 2207 spin_lock(&vm->invalidated_lock); 2208 while (!list_empty(&vm->invalidated)) { 2209 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2210 base.vm_status); 2211 resv = bo_va->base.bo->tbo.base.resv; 2212 spin_unlock(&vm->invalidated_lock); 2213 2214 /* Try to reserve the BO to avoid clearing its ptes */ 2215 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2216 clear = false; 2217 /* Somebody else is using the BO right now */ 2218 else 2219 clear = true; 2220 2221 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2222 if (r) 2223 return r; 2224 2225 if (!clear) 2226 dma_resv_unlock(resv); 2227 spin_lock(&vm->invalidated_lock); 2228 } 2229 spin_unlock(&vm->invalidated_lock); 2230 2231 return 0; 2232 } 2233 2234 /** 2235 * amdgpu_vm_bo_add - add a bo to a specific vm 2236 * 2237 * @adev: amdgpu_device pointer 2238 * @vm: requested vm 2239 * @bo: amdgpu buffer object 2240 * 2241 * Add @bo into the requested vm. 2242 * Add @bo to the list of bos associated with the vm 2243 * 2244 * Returns: 2245 * Newly added bo_va or NULL for failure 2246 * 2247 * Object has to be reserved! 2248 */ 2249 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2250 struct amdgpu_vm *vm, 2251 struct amdgpu_bo *bo) 2252 { 2253 struct amdgpu_bo_va *bo_va; 2254 2255 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2256 if (bo_va == NULL) { 2257 return NULL; 2258 } 2259 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2260 2261 bo_va->ref_count = 1; 2262 INIT_LIST_HEAD(&bo_va->valids); 2263 INIT_LIST_HEAD(&bo_va->invalids); 2264 2265 if (!bo) 2266 return bo_va; 2267 2268 dma_resv_assert_held(bo->tbo.base.resv); 2269 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2270 bo_va->is_xgmi = true; 2271 /* Power up XGMI if it can be potentially used */ 2272 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2273 } 2274 2275 return bo_va; 2276 } 2277 2278 2279 /** 2280 * amdgpu_vm_bo_insert_map - insert a new mapping 2281 * 2282 * @adev: amdgpu_device pointer 2283 * @bo_va: bo_va to store the address 2284 * @mapping: the mapping to insert 2285 * 2286 * Insert a new mapping into all structures. 2287 */ 2288 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2289 struct amdgpu_bo_va *bo_va, 2290 struct amdgpu_bo_va_mapping *mapping) 2291 { 2292 struct amdgpu_vm *vm = bo_va->base.vm; 2293 struct amdgpu_bo *bo = bo_va->base.bo; 2294 2295 mapping->bo_va = bo_va; 2296 list_add(&mapping->list, &bo_va->invalids); 2297 amdgpu_vm_it_insert(mapping, &vm->va); 2298 2299 if (mapping->flags & AMDGPU_PTE_PRT) 2300 amdgpu_vm_prt_get(adev); 2301 2302 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2303 !bo_va->base.moved) { 2304 list_move(&bo_va->base.vm_status, &vm->moved); 2305 } 2306 trace_amdgpu_vm_bo_map(bo_va, mapping); 2307 } 2308 2309 /** 2310 * amdgpu_vm_bo_map - map bo inside a vm 2311 * 2312 * @adev: amdgpu_device pointer 2313 * @bo_va: bo_va to store the address 2314 * @saddr: where to map the BO 2315 * @offset: requested offset in the BO 2316 * @size: BO size in bytes 2317 * @flags: attributes of pages (read/write/valid/etc.) 2318 * 2319 * Add a mapping of the BO at the specefied addr into the VM. 2320 * 2321 * Returns: 2322 * 0 for success, error for failure. 2323 * 2324 * Object has to be reserved and unreserved outside! 2325 */ 2326 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2327 struct amdgpu_bo_va *bo_va, 2328 uint64_t saddr, uint64_t offset, 2329 uint64_t size, uint64_t flags) 2330 { 2331 struct amdgpu_bo_va_mapping *mapping, *tmp; 2332 struct amdgpu_bo *bo = bo_va->base.bo; 2333 struct amdgpu_vm *vm = bo_va->base.vm; 2334 uint64_t eaddr; 2335 2336 /* validate the parameters */ 2337 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2338 size == 0 || size & ~PAGE_MASK) 2339 return -EINVAL; 2340 2341 /* make sure object fit at this offset */ 2342 eaddr = saddr + size - 1; 2343 if (saddr >= eaddr || 2344 (bo && offset + size > amdgpu_bo_size(bo)) || 2345 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2346 return -EINVAL; 2347 2348 saddr /= AMDGPU_GPU_PAGE_SIZE; 2349 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2350 2351 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2352 if (tmp) { 2353 /* bo and tmp overlap, invalid addr */ 2354 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2355 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2356 tmp->start, tmp->last + 1); 2357 return -EINVAL; 2358 } 2359 2360 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2361 if (!mapping) 2362 return -ENOMEM; 2363 2364 mapping->start = saddr; 2365 mapping->last = eaddr; 2366 mapping->offset = offset; 2367 mapping->flags = flags; 2368 2369 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2370 2371 return 0; 2372 } 2373 2374 /** 2375 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2376 * 2377 * @adev: amdgpu_device pointer 2378 * @bo_va: bo_va to store the address 2379 * @saddr: where to map the BO 2380 * @offset: requested offset in the BO 2381 * @size: BO size in bytes 2382 * @flags: attributes of pages (read/write/valid/etc.) 2383 * 2384 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2385 * mappings as we do so. 2386 * 2387 * Returns: 2388 * 0 for success, error for failure. 2389 * 2390 * Object has to be reserved and unreserved outside! 2391 */ 2392 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2393 struct amdgpu_bo_va *bo_va, 2394 uint64_t saddr, uint64_t offset, 2395 uint64_t size, uint64_t flags) 2396 { 2397 struct amdgpu_bo_va_mapping *mapping; 2398 struct amdgpu_bo *bo = bo_va->base.bo; 2399 uint64_t eaddr; 2400 int r; 2401 2402 /* validate the parameters */ 2403 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2404 size == 0 || size & ~PAGE_MASK) 2405 return -EINVAL; 2406 2407 /* make sure object fit at this offset */ 2408 eaddr = saddr + size - 1; 2409 if (saddr >= eaddr || 2410 (bo && offset + size > amdgpu_bo_size(bo)) || 2411 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2412 return -EINVAL; 2413 2414 /* Allocate all the needed memory */ 2415 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2416 if (!mapping) 2417 return -ENOMEM; 2418 2419 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2420 if (r) { 2421 kfree(mapping); 2422 return r; 2423 } 2424 2425 saddr /= AMDGPU_GPU_PAGE_SIZE; 2426 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2427 2428 mapping->start = saddr; 2429 mapping->last = eaddr; 2430 mapping->offset = offset; 2431 mapping->flags = flags; 2432 2433 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2434 2435 return 0; 2436 } 2437 2438 /** 2439 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2440 * 2441 * @adev: amdgpu_device pointer 2442 * @bo_va: bo_va to remove the address from 2443 * @saddr: where to the BO is mapped 2444 * 2445 * Remove a mapping of the BO at the specefied addr from the VM. 2446 * 2447 * Returns: 2448 * 0 for success, error for failure. 2449 * 2450 * Object has to be reserved and unreserved outside! 2451 */ 2452 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2453 struct amdgpu_bo_va *bo_va, 2454 uint64_t saddr) 2455 { 2456 struct amdgpu_bo_va_mapping *mapping; 2457 struct amdgpu_vm *vm = bo_va->base.vm; 2458 bool valid = true; 2459 2460 saddr /= AMDGPU_GPU_PAGE_SIZE; 2461 2462 list_for_each_entry(mapping, &bo_va->valids, list) { 2463 if (mapping->start == saddr) 2464 break; 2465 } 2466 2467 if (&mapping->list == &bo_va->valids) { 2468 valid = false; 2469 2470 list_for_each_entry(mapping, &bo_va->invalids, list) { 2471 if (mapping->start == saddr) 2472 break; 2473 } 2474 2475 if (&mapping->list == &bo_va->invalids) 2476 return -ENOENT; 2477 } 2478 2479 list_del(&mapping->list); 2480 amdgpu_vm_it_remove(mapping, &vm->va); 2481 mapping->bo_va = NULL; 2482 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2483 2484 if (valid) 2485 list_add(&mapping->list, &vm->freed); 2486 else 2487 amdgpu_vm_free_mapping(adev, vm, mapping, 2488 bo_va->last_pt_update); 2489 2490 return 0; 2491 } 2492 2493 /** 2494 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2495 * 2496 * @adev: amdgpu_device pointer 2497 * @vm: VM structure to use 2498 * @saddr: start of the range 2499 * @size: size of the range 2500 * 2501 * Remove all mappings in a range, split them as appropriate. 2502 * 2503 * Returns: 2504 * 0 for success, error for failure. 2505 */ 2506 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2507 struct amdgpu_vm *vm, 2508 uint64_t saddr, uint64_t size) 2509 { 2510 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2511 LIST_HEAD(removed); 2512 uint64_t eaddr; 2513 2514 eaddr = saddr + size - 1; 2515 saddr /= AMDGPU_GPU_PAGE_SIZE; 2516 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2517 2518 /* Allocate all the needed memory */ 2519 before = kzalloc(sizeof(*before), GFP_KERNEL); 2520 if (!before) 2521 return -ENOMEM; 2522 INIT_LIST_HEAD(&before->list); 2523 2524 after = kzalloc(sizeof(*after), GFP_KERNEL); 2525 if (!after) { 2526 kfree(before); 2527 return -ENOMEM; 2528 } 2529 INIT_LIST_HEAD(&after->list); 2530 2531 /* Now gather all removed mappings */ 2532 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2533 while (tmp) { 2534 /* Remember mapping split at the start */ 2535 if (tmp->start < saddr) { 2536 before->start = tmp->start; 2537 before->last = saddr - 1; 2538 before->offset = tmp->offset; 2539 before->flags = tmp->flags; 2540 before->bo_va = tmp->bo_va; 2541 list_add(&before->list, &tmp->bo_va->invalids); 2542 } 2543 2544 /* Remember mapping split at the end */ 2545 if (tmp->last > eaddr) { 2546 after->start = eaddr + 1; 2547 after->last = tmp->last; 2548 after->offset = tmp->offset; 2549 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2550 after->flags = tmp->flags; 2551 after->bo_va = tmp->bo_va; 2552 list_add(&after->list, &tmp->bo_va->invalids); 2553 } 2554 2555 list_del(&tmp->list); 2556 list_add(&tmp->list, &removed); 2557 2558 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2559 } 2560 2561 /* And free them up */ 2562 list_for_each_entry_safe(tmp, next, &removed, list) { 2563 amdgpu_vm_it_remove(tmp, &vm->va); 2564 list_del(&tmp->list); 2565 2566 if (tmp->start < saddr) 2567 tmp->start = saddr; 2568 if (tmp->last > eaddr) 2569 tmp->last = eaddr; 2570 2571 tmp->bo_va = NULL; 2572 list_add(&tmp->list, &vm->freed); 2573 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2574 } 2575 2576 /* Insert partial mapping before the range */ 2577 if (!list_empty(&before->list)) { 2578 amdgpu_vm_it_insert(before, &vm->va); 2579 if (before->flags & AMDGPU_PTE_PRT) 2580 amdgpu_vm_prt_get(adev); 2581 } else { 2582 kfree(before); 2583 } 2584 2585 /* Insert partial mapping after the range */ 2586 if (!list_empty(&after->list)) { 2587 amdgpu_vm_it_insert(after, &vm->va); 2588 if (after->flags & AMDGPU_PTE_PRT) 2589 amdgpu_vm_prt_get(adev); 2590 } else { 2591 kfree(after); 2592 } 2593 2594 return 0; 2595 } 2596 2597 /** 2598 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2599 * 2600 * @vm: the requested VM 2601 * @addr: the address 2602 * 2603 * Find a mapping by it's address. 2604 * 2605 * Returns: 2606 * The amdgpu_bo_va_mapping matching for addr or NULL 2607 * 2608 */ 2609 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2610 uint64_t addr) 2611 { 2612 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2613 } 2614 2615 /** 2616 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2617 * 2618 * @vm: the requested vm 2619 * @ticket: CS ticket 2620 * 2621 * Trace all mappings of BOs reserved during a command submission. 2622 */ 2623 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2624 { 2625 struct amdgpu_bo_va_mapping *mapping; 2626 2627 if (!trace_amdgpu_vm_bo_cs_enabled()) 2628 return; 2629 2630 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2631 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2632 if (mapping->bo_va && mapping->bo_va->base.bo) { 2633 struct amdgpu_bo *bo; 2634 2635 bo = mapping->bo_va->base.bo; 2636 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2637 ticket) 2638 continue; 2639 } 2640 2641 trace_amdgpu_vm_bo_cs(mapping); 2642 } 2643 } 2644 2645 /** 2646 * amdgpu_vm_bo_del - remove a bo from a specific vm 2647 * 2648 * @adev: amdgpu_device pointer 2649 * @bo_va: requested bo_va 2650 * 2651 * Remove @bo_va->bo from the requested vm. 2652 * 2653 * Object have to be reserved! 2654 */ 2655 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2656 struct amdgpu_bo_va *bo_va) 2657 { 2658 struct amdgpu_bo_va_mapping *mapping, *next; 2659 struct amdgpu_bo *bo = bo_va->base.bo; 2660 struct amdgpu_vm *vm = bo_va->base.vm; 2661 struct amdgpu_vm_bo_base **base; 2662 2663 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2664 2665 if (bo) { 2666 dma_resv_assert_held(bo->tbo.base.resv); 2667 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2668 vm->bulk_moveable = false; 2669 2670 for (base = &bo_va->base.bo->vm_bo; *base; 2671 base = &(*base)->next) { 2672 if (*base != &bo_va->base) 2673 continue; 2674 2675 *base = bo_va->base.next; 2676 break; 2677 } 2678 } 2679 2680 spin_lock(&vm->invalidated_lock); 2681 list_del(&bo_va->base.vm_status); 2682 spin_unlock(&vm->invalidated_lock); 2683 2684 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2685 list_del(&mapping->list); 2686 amdgpu_vm_it_remove(mapping, &vm->va); 2687 mapping->bo_va = NULL; 2688 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2689 list_add(&mapping->list, &vm->freed); 2690 } 2691 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2692 list_del(&mapping->list); 2693 amdgpu_vm_it_remove(mapping, &vm->va); 2694 amdgpu_vm_free_mapping(adev, vm, mapping, 2695 bo_va->last_pt_update); 2696 } 2697 2698 dma_fence_put(bo_va->last_pt_update); 2699 2700 if (bo && bo_va->is_xgmi) 2701 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2702 2703 kfree(bo_va); 2704 } 2705 2706 /** 2707 * amdgpu_vm_evictable - check if we can evict a VM 2708 * 2709 * @bo: A page table of the VM. 2710 * 2711 * Check if it is possible to evict a VM. 2712 */ 2713 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2714 { 2715 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2716 2717 /* Page tables of a destroyed VM can go away immediately */ 2718 if (!bo_base || !bo_base->vm) 2719 return true; 2720 2721 /* Don't evict VM page tables while they are busy */ 2722 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2723 return false; 2724 2725 /* Try to block ongoing updates */ 2726 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2727 return false; 2728 2729 /* Don't evict VM page tables while they are updated */ 2730 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2731 amdgpu_vm_eviction_unlock(bo_base->vm); 2732 return false; 2733 } 2734 2735 bo_base->vm->evicting = true; 2736 amdgpu_vm_eviction_unlock(bo_base->vm); 2737 return true; 2738 } 2739 2740 /** 2741 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2742 * 2743 * @adev: amdgpu_device pointer 2744 * @bo: amdgpu buffer object 2745 * @evicted: is the BO evicted 2746 * 2747 * Mark @bo as invalid. 2748 */ 2749 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2750 struct amdgpu_bo *bo, bool evicted) 2751 { 2752 struct amdgpu_vm_bo_base *bo_base; 2753 2754 /* shadow bo doesn't have bo base, its validation needs its parent */ 2755 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2756 bo = bo->parent; 2757 2758 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2759 struct amdgpu_vm *vm = bo_base->vm; 2760 2761 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2762 amdgpu_vm_bo_evicted(bo_base); 2763 continue; 2764 } 2765 2766 if (bo_base->moved) 2767 continue; 2768 bo_base->moved = true; 2769 2770 if (bo->tbo.type == ttm_bo_type_kernel) 2771 amdgpu_vm_bo_relocated(bo_base); 2772 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2773 amdgpu_vm_bo_moved(bo_base); 2774 else 2775 amdgpu_vm_bo_invalidated(bo_base); 2776 } 2777 } 2778 2779 /** 2780 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2781 * 2782 * @vm_size: VM size 2783 * 2784 * Returns: 2785 * VM page table as power of two 2786 */ 2787 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2788 { 2789 /* Total bits covered by PD + PTs */ 2790 unsigned bits = ilog2(vm_size) + 18; 2791 2792 /* Make sure the PD is 4K in size up to 8GB address space. 2793 Above that split equal between PD and PTs */ 2794 if (vm_size <= 8) 2795 return (bits - 9); 2796 else 2797 return ((bits + 3) / 2); 2798 } 2799 2800 /** 2801 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2802 * 2803 * @adev: amdgpu_device pointer 2804 * @min_vm_size: the minimum vm size in GB if it's set auto 2805 * @fragment_size_default: Default PTE fragment size 2806 * @max_level: max VMPT level 2807 * @max_bits: max address space size in bits 2808 * 2809 */ 2810 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2811 uint32_t fragment_size_default, unsigned max_level, 2812 unsigned max_bits) 2813 { 2814 unsigned int max_size = 1 << (max_bits - 30); 2815 unsigned int vm_size; 2816 uint64_t tmp; 2817 2818 /* adjust vm size first */ 2819 if (amdgpu_vm_size != -1) { 2820 vm_size = amdgpu_vm_size; 2821 if (vm_size > max_size) { 2822 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2823 amdgpu_vm_size, max_size); 2824 vm_size = max_size; 2825 } 2826 } else { 2827 struct sysinfo si; 2828 unsigned int phys_ram_gb; 2829 2830 /* Optimal VM size depends on the amount of physical 2831 * RAM available. Underlying requirements and 2832 * assumptions: 2833 * 2834 * - Need to map system memory and VRAM from all GPUs 2835 * - VRAM from other GPUs not known here 2836 * - Assume VRAM <= system memory 2837 * - On GFX8 and older, VM space can be segmented for 2838 * different MTYPEs 2839 * - Need to allow room for fragmentation, guard pages etc. 2840 * 2841 * This adds up to a rough guess of system memory x3. 2842 * Round up to power of two to maximize the available 2843 * VM size with the given page table size. 2844 */ 2845 si_meminfo(&si); 2846 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2847 (1 << 30) - 1) >> 30; 2848 vm_size = roundup_pow_of_two( 2849 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2850 } 2851 2852 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2853 2854 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2855 if (amdgpu_vm_block_size != -1) 2856 tmp >>= amdgpu_vm_block_size - 9; 2857 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2858 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2859 switch (adev->vm_manager.num_level) { 2860 case 3: 2861 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2862 break; 2863 case 2: 2864 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2865 break; 2866 case 1: 2867 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2868 break; 2869 default: 2870 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2871 } 2872 /* block size depends on vm size and hw setup*/ 2873 if (amdgpu_vm_block_size != -1) 2874 adev->vm_manager.block_size = 2875 min((unsigned)amdgpu_vm_block_size, max_bits 2876 - AMDGPU_GPU_PAGE_SHIFT 2877 - 9 * adev->vm_manager.num_level); 2878 else if (adev->vm_manager.num_level > 1) 2879 adev->vm_manager.block_size = 9; 2880 else 2881 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2882 2883 if (amdgpu_vm_fragment_size == -1) 2884 adev->vm_manager.fragment_size = fragment_size_default; 2885 else 2886 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2887 2888 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2889 vm_size, adev->vm_manager.num_level + 1, 2890 adev->vm_manager.block_size, 2891 adev->vm_manager.fragment_size); 2892 } 2893 2894 /** 2895 * amdgpu_vm_wait_idle - wait for the VM to become idle 2896 * 2897 * @vm: VM object to wait for 2898 * @timeout: timeout to wait for VM to become idle 2899 */ 2900 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2901 { 2902 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2903 true, timeout); 2904 if (timeout <= 0) 2905 return timeout; 2906 2907 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2908 } 2909 2910 /** 2911 * amdgpu_vm_init - initialize a vm instance 2912 * 2913 * @adev: amdgpu_device pointer 2914 * @vm: requested vm 2915 * 2916 * Init @vm fields. 2917 * 2918 * Returns: 2919 * 0 for success, error for failure. 2920 */ 2921 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2922 { 2923 struct amdgpu_bo *root_bo; 2924 struct amdgpu_bo_vm *root; 2925 int r, i; 2926 2927 vm->va = RB_ROOT_CACHED; 2928 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2929 vm->reserved_vmid[i] = NULL; 2930 INIT_LIST_HEAD(&vm->evicted); 2931 INIT_LIST_HEAD(&vm->relocated); 2932 INIT_LIST_HEAD(&vm->moved); 2933 INIT_LIST_HEAD(&vm->idle); 2934 INIT_LIST_HEAD(&vm->invalidated); 2935 spin_lock_init(&vm->invalidated_lock); 2936 INIT_LIST_HEAD(&vm->freed); 2937 INIT_LIST_HEAD(&vm->done); 2938 2939 /* create scheduler entities for page table updates */ 2940 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2941 adev->vm_manager.vm_pte_scheds, 2942 adev->vm_manager.vm_pte_num_scheds, NULL); 2943 if (r) 2944 return r; 2945 2946 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2947 adev->vm_manager.vm_pte_scheds, 2948 adev->vm_manager.vm_pte_num_scheds, NULL); 2949 if (r) 2950 goto error_free_immediate; 2951 2952 vm->pte_support_ats = false; 2953 vm->is_compute_context = false; 2954 2955 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2956 AMDGPU_VM_USE_CPU_FOR_GFX); 2957 2958 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2959 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2960 WARN_ONCE((vm->use_cpu_for_update && 2961 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2962 "CPU update of VM recommended only for large BAR system\n"); 2963 2964 if (vm->use_cpu_for_update) 2965 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2966 else 2967 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2968 vm->last_update = NULL; 2969 vm->last_unlocked = dma_fence_get_stub(); 2970 2971 mutex_init(&vm->eviction_lock); 2972 vm->evicting = false; 2973 2974 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2975 false, &root); 2976 if (r) 2977 goto error_free_delayed; 2978 root_bo = &root->bo; 2979 r = amdgpu_bo_reserve(root_bo, true); 2980 if (r) 2981 goto error_free_root; 2982 2983 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2984 if (r) 2985 goto error_unreserve; 2986 2987 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2988 2989 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2990 if (r) 2991 goto error_unreserve; 2992 2993 amdgpu_bo_unreserve(vm->root.bo); 2994 2995 INIT_KFIFO(vm->faults); 2996 2997 return 0; 2998 2999 error_unreserve: 3000 amdgpu_bo_unreserve(vm->root.bo); 3001 3002 error_free_root: 3003 amdgpu_bo_unref(&root->shadow); 3004 amdgpu_bo_unref(&root_bo); 3005 vm->root.bo = NULL; 3006 3007 error_free_delayed: 3008 dma_fence_put(vm->last_unlocked); 3009 drm_sched_entity_destroy(&vm->delayed); 3010 3011 error_free_immediate: 3012 drm_sched_entity_destroy(&vm->immediate); 3013 3014 return r; 3015 } 3016 3017 /** 3018 * amdgpu_vm_check_clean_reserved - check if a VM is clean 3019 * 3020 * @adev: amdgpu_device pointer 3021 * @vm: the VM to check 3022 * 3023 * check all entries of the root PD, if any subsequent PDs are allocated, 3024 * it means there are page table creating and filling, and is no a clean 3025 * VM 3026 * 3027 * Returns: 3028 * 0 if this VM is clean 3029 */ 3030 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3031 struct amdgpu_vm *vm) 3032 { 3033 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3034 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3035 unsigned int i = 0; 3036 3037 for (i = 0; i < entries; i++) { 3038 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 3039 return -EINVAL; 3040 } 3041 3042 return 0; 3043 } 3044 3045 /** 3046 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3047 * 3048 * @adev: amdgpu_device pointer 3049 * @vm: requested vm 3050 * 3051 * This only works on GFX VMs that don't have any BOs added and no 3052 * page tables allocated yet. 3053 * 3054 * Changes the following VM parameters: 3055 * - use_cpu_for_update 3056 * - pte_supports_ats 3057 * 3058 * Reinitializes the page directory to reflect the changed ATS 3059 * setting. 3060 * 3061 * Returns: 3062 * 0 for success, -errno for errors. 3063 */ 3064 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3065 { 3066 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3067 int r; 3068 3069 r = amdgpu_bo_reserve(vm->root.bo, true); 3070 if (r) 3071 return r; 3072 3073 /* Sanity checks */ 3074 r = amdgpu_vm_check_clean_reserved(adev, vm); 3075 if (r) 3076 goto unreserve_bo; 3077 3078 /* Check if PD needs to be reinitialized and do it before 3079 * changing any other state, in case it fails. 3080 */ 3081 if (pte_support_ats != vm->pte_support_ats) { 3082 vm->pte_support_ats = pte_support_ats; 3083 r = amdgpu_vm_clear_bo(adev, vm, 3084 to_amdgpu_bo_vm(vm->root.bo), 3085 false); 3086 if (r) 3087 goto unreserve_bo; 3088 } 3089 3090 /* Update VM state */ 3091 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3092 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3093 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3094 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3095 WARN_ONCE((vm->use_cpu_for_update && 3096 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3097 "CPU update of VM recommended only for large BAR system\n"); 3098 3099 if (vm->use_cpu_for_update) { 3100 /* Sync with last SDMA update/clear before switching to CPU */ 3101 r = amdgpu_bo_sync_wait(vm->root.bo, 3102 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3103 if (r) 3104 goto unreserve_bo; 3105 3106 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3107 } else { 3108 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3109 } 3110 dma_fence_put(vm->last_update); 3111 vm->last_update = NULL; 3112 vm->is_compute_context = true; 3113 3114 /* Free the shadow bo for compute VM */ 3115 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3116 3117 goto unreserve_bo; 3118 3119 unreserve_bo: 3120 amdgpu_bo_unreserve(vm->root.bo); 3121 return r; 3122 } 3123 3124 /** 3125 * amdgpu_vm_release_compute - release a compute vm 3126 * @adev: amdgpu_device pointer 3127 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3128 * 3129 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3130 * pasid from vm. Compute should stop use of vm after this call. 3131 */ 3132 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3133 { 3134 amdgpu_vm_set_pasid(adev, vm, 0); 3135 vm->is_compute_context = false; 3136 } 3137 3138 /** 3139 * amdgpu_vm_fini - tear down a vm instance 3140 * 3141 * @adev: amdgpu_device pointer 3142 * @vm: requested vm 3143 * 3144 * Tear down @vm. 3145 * Unbind the VM and remove all bos from the vm bo list 3146 */ 3147 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3148 { 3149 struct amdgpu_bo_va_mapping *mapping, *tmp; 3150 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3151 struct amdgpu_bo *root; 3152 int i; 3153 3154 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3155 3156 root = amdgpu_bo_ref(vm->root.bo); 3157 amdgpu_bo_reserve(root, true); 3158 amdgpu_vm_set_pasid(adev, vm, 0); 3159 dma_fence_wait(vm->last_unlocked, false); 3160 dma_fence_put(vm->last_unlocked); 3161 3162 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3163 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3164 amdgpu_vm_prt_fini(adev, vm); 3165 prt_fini_needed = false; 3166 } 3167 3168 list_del(&mapping->list); 3169 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3170 } 3171 3172 amdgpu_vm_free_pts(adev, vm, NULL); 3173 amdgpu_bo_unreserve(root); 3174 amdgpu_bo_unref(&root); 3175 WARN_ON(vm->root.bo); 3176 3177 drm_sched_entity_destroy(&vm->immediate); 3178 drm_sched_entity_destroy(&vm->delayed); 3179 3180 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3181 dev_err(adev->dev, "still active bo inside vm\n"); 3182 } 3183 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3184 &vm->va.rb_root, rb) { 3185 /* Don't remove the mapping here, we don't want to trigger a 3186 * rebalance and the tree is about to be destroyed anyway. 3187 */ 3188 list_del(&mapping->list); 3189 kfree(mapping); 3190 } 3191 3192 dma_fence_put(vm->last_update); 3193 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3194 amdgpu_vmid_free_reserved(adev, vm, i); 3195 } 3196 3197 /** 3198 * amdgpu_vm_manager_init - init the VM manager 3199 * 3200 * @adev: amdgpu_device pointer 3201 * 3202 * Initialize the VM manager structures 3203 */ 3204 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3205 { 3206 unsigned i; 3207 3208 /* Concurrent flushes are only possible starting with Vega10 and 3209 * are broken on Navi10 and Navi14. 3210 */ 3211 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3212 adev->asic_type == CHIP_NAVI10 || 3213 adev->asic_type == CHIP_NAVI14); 3214 amdgpu_vmid_mgr_init(adev); 3215 3216 adev->vm_manager.fence_context = 3217 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3218 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3219 adev->vm_manager.seqno[i] = 0; 3220 3221 spin_lock_init(&adev->vm_manager.prt_lock); 3222 atomic_set(&adev->vm_manager.num_prt_users, 0); 3223 3224 /* If not overridden by the user, by default, only in large BAR systems 3225 * Compute VM tables will be updated by CPU 3226 */ 3227 #ifdef CONFIG_X86_64 3228 if (amdgpu_vm_update_mode == -1) { 3229 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3230 adev->vm_manager.vm_update_mode = 3231 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3232 else 3233 adev->vm_manager.vm_update_mode = 0; 3234 } else 3235 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3236 #else 3237 adev->vm_manager.vm_update_mode = 0; 3238 #endif 3239 3240 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3241 } 3242 3243 /** 3244 * amdgpu_vm_manager_fini - cleanup VM manager 3245 * 3246 * @adev: amdgpu_device pointer 3247 * 3248 * Cleanup the VM manager and free resources. 3249 */ 3250 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3251 { 3252 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3253 xa_destroy(&adev->vm_manager.pasids); 3254 3255 amdgpu_vmid_mgr_fini(adev); 3256 } 3257 3258 /** 3259 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3260 * 3261 * @dev: drm device pointer 3262 * @data: drm_amdgpu_vm 3263 * @filp: drm file pointer 3264 * 3265 * Returns: 3266 * 0 for success, -errno for errors. 3267 */ 3268 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3269 { 3270 union drm_amdgpu_vm *args = data; 3271 struct amdgpu_device *adev = drm_to_adev(dev); 3272 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3273 long timeout = msecs_to_jiffies(2000); 3274 int r; 3275 3276 switch (args->in.op) { 3277 case AMDGPU_VM_OP_RESERVE_VMID: 3278 /* We only have requirement to reserve vmid from gfxhub */ 3279 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3280 AMDGPU_GFXHUB_0); 3281 if (r) 3282 return r; 3283 break; 3284 case AMDGPU_VM_OP_UNRESERVE_VMID: 3285 if (amdgpu_sriov_runtime(adev)) 3286 timeout = 8 * timeout; 3287 3288 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3289 * not referenced anymore. 3290 */ 3291 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3292 if (r) 3293 return r; 3294 3295 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3296 if (r < 0) 3297 return r; 3298 3299 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3300 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3301 break; 3302 default: 3303 return -EINVAL; 3304 } 3305 3306 return 0; 3307 } 3308 3309 /** 3310 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3311 * 3312 * @adev: drm device pointer 3313 * @pasid: PASID identifier for VM 3314 * @task_info: task_info to fill. 3315 */ 3316 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3317 struct amdgpu_task_info *task_info) 3318 { 3319 struct amdgpu_vm *vm; 3320 unsigned long flags; 3321 3322 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3323 3324 vm = xa_load(&adev->vm_manager.pasids, pasid); 3325 if (vm) 3326 *task_info = vm->task_info; 3327 3328 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3329 } 3330 3331 /** 3332 * amdgpu_vm_set_task_info - Sets VMs task info. 3333 * 3334 * @vm: vm for which to set the info 3335 */ 3336 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3337 { 3338 if (vm->task_info.pid) 3339 return; 3340 3341 vm->task_info.pid = current->pid; 3342 get_task_comm(vm->task_info.task_name, current); 3343 3344 if (current->group_leader->mm != current->mm) 3345 return; 3346 3347 vm->task_info.tgid = current->group_leader->pid; 3348 get_task_comm(vm->task_info.process_name, current->group_leader); 3349 } 3350 3351 /** 3352 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3353 * @adev: amdgpu device pointer 3354 * @pasid: PASID of the VM 3355 * @addr: Address of the fault 3356 * @write_fault: true is write fault, false is read fault 3357 * 3358 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3359 * shouldn't be reported any more. 3360 */ 3361 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3362 uint64_t addr, bool write_fault) 3363 { 3364 bool is_compute_context = false; 3365 struct amdgpu_bo *root; 3366 unsigned long irqflags; 3367 uint64_t value, flags; 3368 struct amdgpu_vm *vm; 3369 int r; 3370 3371 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3372 vm = xa_load(&adev->vm_manager.pasids, pasid); 3373 if (vm) { 3374 root = amdgpu_bo_ref(vm->root.bo); 3375 is_compute_context = vm->is_compute_context; 3376 } else { 3377 root = NULL; 3378 } 3379 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3380 3381 if (!root) 3382 return false; 3383 3384 addr /= AMDGPU_GPU_PAGE_SIZE; 3385 3386 if (is_compute_context && 3387 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3388 amdgpu_bo_unref(&root); 3389 return true; 3390 } 3391 3392 r = amdgpu_bo_reserve(root, true); 3393 if (r) 3394 goto error_unref; 3395 3396 /* Double check that the VM still exists */ 3397 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3398 vm = xa_load(&adev->vm_manager.pasids, pasid); 3399 if (vm && vm->root.bo != root) 3400 vm = NULL; 3401 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3402 if (!vm) 3403 goto error_unlock; 3404 3405 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3406 AMDGPU_PTE_SYSTEM; 3407 3408 if (is_compute_context) { 3409 /* Intentionally setting invalid PTE flag 3410 * combination to force a no-retry-fault 3411 */ 3412 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3413 AMDGPU_PTE_TF; 3414 value = 0; 3415 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3416 /* Redirect the access to the dummy page */ 3417 value = adev->dummy_page_addr; 3418 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3419 AMDGPU_PTE_WRITEABLE; 3420 3421 } else { 3422 /* Let the hw retry silently on the PTE */ 3423 value = 0; 3424 } 3425 3426 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3427 if (r) { 3428 pr_debug("failed %d to reserve fence slot\n", r); 3429 goto error_unlock; 3430 } 3431 3432 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3433 addr, flags, value, NULL, NULL, NULL, 3434 NULL); 3435 if (r) 3436 goto error_unlock; 3437 3438 r = amdgpu_vm_update_pdes(adev, vm, true); 3439 3440 error_unlock: 3441 amdgpu_bo_unreserve(root); 3442 if (r < 0) 3443 DRM_ERROR("Can't handle page fault (%d)\n", r); 3444 3445 error_unref: 3446 amdgpu_bo_unref(&root); 3447 3448 return false; 3449 } 3450 3451 #if defined(CONFIG_DEBUG_FS) 3452 /** 3453 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3454 * 3455 * @vm: Requested VM for printing BO info 3456 * @m: debugfs file 3457 * 3458 * Print BO information in debugfs file for the VM 3459 */ 3460 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3461 { 3462 struct amdgpu_bo_va *bo_va, *tmp; 3463 u64 total_idle = 0; 3464 u64 total_evicted = 0; 3465 u64 total_relocated = 0; 3466 u64 total_moved = 0; 3467 u64 total_invalidated = 0; 3468 u64 total_done = 0; 3469 unsigned int total_idle_objs = 0; 3470 unsigned int total_evicted_objs = 0; 3471 unsigned int total_relocated_objs = 0; 3472 unsigned int total_moved_objs = 0; 3473 unsigned int total_invalidated_objs = 0; 3474 unsigned int total_done_objs = 0; 3475 unsigned int id = 0; 3476 3477 seq_puts(m, "\tIdle BOs:\n"); 3478 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3479 if (!bo_va->base.bo) 3480 continue; 3481 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3482 } 3483 total_idle_objs = id; 3484 id = 0; 3485 3486 seq_puts(m, "\tEvicted BOs:\n"); 3487 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3488 if (!bo_va->base.bo) 3489 continue; 3490 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3491 } 3492 total_evicted_objs = id; 3493 id = 0; 3494 3495 seq_puts(m, "\tRelocated BOs:\n"); 3496 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3497 if (!bo_va->base.bo) 3498 continue; 3499 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3500 } 3501 total_relocated_objs = id; 3502 id = 0; 3503 3504 seq_puts(m, "\tMoved BOs:\n"); 3505 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3506 if (!bo_va->base.bo) 3507 continue; 3508 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3509 } 3510 total_moved_objs = id; 3511 id = 0; 3512 3513 seq_puts(m, "\tInvalidated BOs:\n"); 3514 spin_lock(&vm->invalidated_lock); 3515 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3516 if (!bo_va->base.bo) 3517 continue; 3518 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3519 } 3520 total_invalidated_objs = id; 3521 id = 0; 3522 3523 seq_puts(m, "\tDone BOs:\n"); 3524 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3525 if (!bo_va->base.bo) 3526 continue; 3527 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3528 } 3529 spin_unlock(&vm->invalidated_lock); 3530 total_done_objs = id; 3531 3532 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3533 total_idle_objs); 3534 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3535 total_evicted_objs); 3536 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3537 total_relocated_objs); 3538 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3539 total_moved_objs); 3540 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3541 total_invalidated_objs); 3542 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3543 total_done_objs); 3544 } 3545 #endif 3546