1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include "amdgpu.h" 35 #include "amdgpu_trace.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_gmc.h" 38 #include "amdgpu_xgmi.h" 39 #include "amdgpu_dma_buf.h" 40 #include "kfd_svm.h" 41 42 /** 43 * DOC: GPUVM 44 * 45 * GPUVM is similar to the legacy gart on older asics, however 46 * rather than there being a single global gart table 47 * for the entire GPU, there are multiple VM page tables active 48 * at any given time. The VM page tables can contain a mix 49 * vram pages and system memory pages and system memory pages 50 * can be mapped as snooped (cached system pages) or unsnooped 51 * (uncached system pages). 52 * Each VM has an ID associated with it and there is a page table 53 * associated with each VMID. When execting a command buffer, 54 * the kernel tells the the ring what VMID to use for that command 55 * buffer. VMIDs are allocated dynamically as commands are submitted. 56 * The userspace drivers maintain their own address space and the kernel 57 * sets up their pages tables accordingly when they submit their 58 * command buffers and a VMID is assigned. 59 * Cayman/Trinity support up to 8 active VMs at any given time; 60 * SI supports 16. 61 */ 62 63 #define START(node) ((node)->start) 64 #define LAST(node) ((node)->last) 65 66 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 67 START, LAST, static, amdgpu_vm_it) 68 69 #undef START 70 #undef LAST 71 72 /** 73 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 74 */ 75 struct amdgpu_prt_cb { 76 77 /** 78 * @adev: amdgpu device 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @cb: callback 84 */ 85 struct dma_fence_cb cb; 86 }; 87 88 /* 89 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 90 * happens while holding this lock anywhere to prevent deadlocks when 91 * an MMU notifier runs in reclaim-FS context. 92 */ 93 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 94 { 95 mutex_lock(&vm->eviction_lock); 96 vm->saved_flags = memalloc_noreclaim_save(); 97 } 98 99 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 100 { 101 if (mutex_trylock(&vm->eviction_lock)) { 102 vm->saved_flags = memalloc_noreclaim_save(); 103 return 1; 104 } 105 return 0; 106 } 107 108 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 109 { 110 memalloc_noreclaim_restore(vm->saved_flags); 111 mutex_unlock(&vm->eviction_lock); 112 } 113 114 /** 115 * amdgpu_vm_level_shift - return the addr shift for each level 116 * 117 * @adev: amdgpu_device pointer 118 * @level: VMPT level 119 * 120 * Returns: 121 * The number of bits the pfn needs to be right shifted for a level. 122 */ 123 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 124 unsigned level) 125 { 126 switch (level) { 127 case AMDGPU_VM_PDB2: 128 case AMDGPU_VM_PDB1: 129 case AMDGPU_VM_PDB0: 130 return 9 * (AMDGPU_VM_PDB0 - level) + 131 adev->vm_manager.block_size; 132 case AMDGPU_VM_PTB: 133 return 0; 134 default: 135 return ~0; 136 } 137 } 138 139 /** 140 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 141 * 142 * @adev: amdgpu_device pointer 143 * @level: VMPT level 144 * 145 * Returns: 146 * The number of entries in a page directory or page table. 147 */ 148 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 149 unsigned level) 150 { 151 unsigned shift = amdgpu_vm_level_shift(adev, 152 adev->vm_manager.root_level); 153 154 if (level == adev->vm_manager.root_level) 155 /* For the root directory */ 156 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 157 >> shift; 158 else if (level != AMDGPU_VM_PTB) 159 /* Everything in between */ 160 return 512; 161 else 162 /* For the page tables on the leaves */ 163 return AMDGPU_VM_PTE_COUNT(adev); 164 } 165 166 /** 167 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 168 * 169 * @adev: amdgpu_device pointer 170 * 171 * Returns: 172 * The number of entries in the root page directory which needs the ATS setting. 173 */ 174 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 175 { 176 unsigned shift; 177 178 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 179 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 180 } 181 182 /** 183 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The mask to extract the entry number of a PD/PT from an address. 190 */ 191 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 192 unsigned int level) 193 { 194 if (level <= adev->vm_manager.root_level) 195 return 0xffffffff; 196 else if (level != AMDGPU_VM_PTB) 197 return 0x1ff; 198 else 199 return AMDGPU_VM_PTE_COUNT(adev) - 1; 200 } 201 202 /** 203 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 204 * 205 * @adev: amdgpu_device pointer 206 * @level: VMPT level 207 * 208 * Returns: 209 * The size of the BO for a page directory or page table in bytes. 210 */ 211 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 212 { 213 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 214 } 215 216 /** 217 * amdgpu_vm_bo_evicted - vm_bo is evicted 218 * 219 * @vm_bo: vm_bo which is evicted 220 * 221 * State for PDs/PTs and per VM BOs which are not at the location they should 222 * be. 223 */ 224 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 225 { 226 struct amdgpu_vm *vm = vm_bo->vm; 227 struct amdgpu_bo *bo = vm_bo->bo; 228 229 vm_bo->moved = true; 230 if (bo->tbo.type == ttm_bo_type_kernel) 231 list_move(&vm_bo->vm_status, &vm->evicted); 232 else 233 list_move_tail(&vm_bo->vm_status, &vm->evicted); 234 } 235 /** 236 * amdgpu_vm_bo_moved - vm_bo is moved 237 * 238 * @vm_bo: vm_bo which is moved 239 * 240 * State for per VM BOs which are moved, but that change is not yet reflected 241 * in the page tables. 242 */ 243 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 244 { 245 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 246 } 247 248 /** 249 * amdgpu_vm_bo_idle - vm_bo is idle 250 * 251 * @vm_bo: vm_bo which is now idle 252 * 253 * State for PDs/PTs and per VM BOs which have gone through the state machine 254 * and are now idle. 255 */ 256 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 257 { 258 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 259 vm_bo->moved = false; 260 } 261 262 /** 263 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 264 * 265 * @vm_bo: vm_bo which is now invalidated 266 * 267 * State for normal BOs which are invalidated and that change not yet reflected 268 * in the PTs. 269 */ 270 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 271 { 272 spin_lock(&vm_bo->vm->invalidated_lock); 273 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 274 spin_unlock(&vm_bo->vm->invalidated_lock); 275 } 276 277 /** 278 * amdgpu_vm_bo_relocated - vm_bo is reloacted 279 * 280 * @vm_bo: vm_bo which is relocated 281 * 282 * State for PDs/PTs which needs to update their parent PD. 283 * For the root PD, just move to idle state. 284 */ 285 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 286 { 287 if (vm_bo->bo->parent) 288 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 289 else 290 amdgpu_vm_bo_idle(vm_bo); 291 } 292 293 /** 294 * amdgpu_vm_bo_done - vm_bo is done 295 * 296 * @vm_bo: vm_bo which is now done 297 * 298 * State for normal BOs which are invalidated and that change has been updated 299 * in the PTs. 300 */ 301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 302 { 303 spin_lock(&vm_bo->vm->invalidated_lock); 304 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 305 spin_unlock(&vm_bo->vm->invalidated_lock); 306 } 307 308 /** 309 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 310 * 311 * @base: base structure for tracking BO usage in a VM 312 * @vm: vm to which bo is to be added 313 * @bo: amdgpu buffer object 314 * 315 * Initialize a bo_va_base structure and add it to the appropriate lists 316 * 317 */ 318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 319 struct amdgpu_vm *vm, 320 struct amdgpu_bo *bo) 321 { 322 base->vm = vm; 323 base->bo = bo; 324 base->next = NULL; 325 INIT_LIST_HEAD(&base->vm_status); 326 327 if (!bo) 328 return; 329 base->next = bo->vm_bo; 330 bo->vm_bo = base; 331 332 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 333 return; 334 335 vm->bulk_moveable = false; 336 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 337 amdgpu_vm_bo_relocated(base); 338 else 339 amdgpu_vm_bo_idle(base); 340 341 if (bo->preferred_domains & 342 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 343 return; 344 345 /* 346 * we checked all the prerequisites, but it looks like this per vm bo 347 * is currently evicted. add the bo to the evicted list to make sure it 348 * is validated on next vm use to avoid fault. 349 * */ 350 amdgpu_vm_bo_evicted(base); 351 } 352 353 /** 354 * amdgpu_vm_pt_parent - get the parent page directory 355 * 356 * @pt: child page table 357 * 358 * Helper to get the parent entry for the child page table. NULL if we are at 359 * the root page directory. 360 */ 361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 362 { 363 struct amdgpu_bo *parent = pt->base.bo->parent; 364 365 if (!parent) 366 return NULL; 367 368 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 369 } 370 371 /* 372 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 373 */ 374 struct amdgpu_vm_pt_cursor { 375 uint64_t pfn; 376 struct amdgpu_vm_pt *parent; 377 struct amdgpu_vm_pt *entry; 378 unsigned level; 379 }; 380 381 /** 382 * amdgpu_vm_pt_start - start PD/PT walk 383 * 384 * @adev: amdgpu_device pointer 385 * @vm: amdgpu_vm structure 386 * @start: start address of the walk 387 * @cursor: state to initialize 388 * 389 * Initialize a amdgpu_vm_pt_cursor to start a walk. 390 */ 391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 392 struct amdgpu_vm *vm, uint64_t start, 393 struct amdgpu_vm_pt_cursor *cursor) 394 { 395 cursor->pfn = start; 396 cursor->parent = NULL; 397 cursor->entry = &vm->root; 398 cursor->level = adev->vm_manager.root_level; 399 } 400 401 /** 402 * amdgpu_vm_pt_descendant - go to child node 403 * 404 * @adev: amdgpu_device pointer 405 * @cursor: current state 406 * 407 * Walk to the child node of the current node. 408 * Returns: 409 * True if the walk was possible, false otherwise. 410 */ 411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 412 struct amdgpu_vm_pt_cursor *cursor) 413 { 414 unsigned mask, shift, idx; 415 416 if (!cursor->entry->entries) 417 return false; 418 419 BUG_ON(!cursor->entry->base.bo); 420 mask = amdgpu_vm_entries_mask(adev, cursor->level); 421 shift = amdgpu_vm_level_shift(adev, cursor->level); 422 423 ++cursor->level; 424 idx = (cursor->pfn >> shift) & mask; 425 cursor->parent = cursor->entry; 426 cursor->entry = &cursor->entry->entries[idx]; 427 return true; 428 } 429 430 /** 431 * amdgpu_vm_pt_sibling - go to sibling node 432 * 433 * @adev: amdgpu_device pointer 434 * @cursor: current state 435 * 436 * Walk to the sibling node of the current node. 437 * Returns: 438 * True if the walk was possible, false otherwise. 439 */ 440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 441 struct amdgpu_vm_pt_cursor *cursor) 442 { 443 unsigned shift, num_entries; 444 445 /* Root doesn't have a sibling */ 446 if (!cursor->parent) 447 return false; 448 449 /* Go to our parents and see if we got a sibling */ 450 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 451 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 452 453 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 454 return false; 455 456 cursor->pfn += 1ULL << shift; 457 cursor->pfn &= ~((1ULL << shift) - 1); 458 ++cursor->entry; 459 return true; 460 } 461 462 /** 463 * amdgpu_vm_pt_ancestor - go to parent node 464 * 465 * @cursor: current state 466 * 467 * Walk to the parent node of the current node. 468 * Returns: 469 * True if the walk was possible, false otherwise. 470 */ 471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 472 { 473 if (!cursor->parent) 474 return false; 475 476 --cursor->level; 477 cursor->entry = cursor->parent; 478 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 479 return true; 480 } 481 482 /** 483 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 484 * 485 * @adev: amdgpu_device pointer 486 * @cursor: current state 487 * 488 * Walk the PD/PT tree to the next node. 489 */ 490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 491 struct amdgpu_vm_pt_cursor *cursor) 492 { 493 /* First try a newborn child */ 494 if (amdgpu_vm_pt_descendant(adev, cursor)) 495 return; 496 497 /* If that didn't worked try to find a sibling */ 498 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 499 /* No sibling, go to our parents and grandparents */ 500 if (!amdgpu_vm_pt_ancestor(cursor)) { 501 cursor->pfn = ~0ll; 502 return; 503 } 504 } 505 } 506 507 /** 508 * amdgpu_vm_pt_first_dfs - start a deep first search 509 * 510 * @adev: amdgpu_device structure 511 * @vm: amdgpu_vm structure 512 * @start: optional cursor to start with 513 * @cursor: state to initialize 514 * 515 * Starts a deep first traversal of the PD/PT tree. 516 */ 517 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 518 struct amdgpu_vm *vm, 519 struct amdgpu_vm_pt_cursor *start, 520 struct amdgpu_vm_pt_cursor *cursor) 521 { 522 if (start) 523 *cursor = *start; 524 else 525 amdgpu_vm_pt_start(adev, vm, 0, cursor); 526 while (amdgpu_vm_pt_descendant(adev, cursor)); 527 } 528 529 /** 530 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 531 * 532 * @start: starting point for the search 533 * @entry: current entry 534 * 535 * Returns: 536 * True when the search should continue, false otherwise. 537 */ 538 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 539 struct amdgpu_vm_pt *entry) 540 { 541 return entry && (!start || entry != start->entry); 542 } 543 544 /** 545 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 546 * 547 * @adev: amdgpu_device structure 548 * @cursor: current state 549 * 550 * Move the cursor to the next node in a deep first search. 551 */ 552 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 553 struct amdgpu_vm_pt_cursor *cursor) 554 { 555 if (!cursor->entry) 556 return; 557 558 if (!cursor->parent) 559 cursor->entry = NULL; 560 else if (amdgpu_vm_pt_sibling(adev, cursor)) 561 while (amdgpu_vm_pt_descendant(adev, cursor)); 562 else 563 amdgpu_vm_pt_ancestor(cursor); 564 } 565 566 /* 567 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 568 */ 569 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 570 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 571 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 572 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 573 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 574 575 /** 576 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 577 * 578 * @vm: vm providing the BOs 579 * @validated: head of validation list 580 * @entry: entry to add 581 * 582 * Add the page directory to the list of BOs to 583 * validate for command submission. 584 */ 585 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 586 struct list_head *validated, 587 struct amdgpu_bo_list_entry *entry) 588 { 589 entry->priority = 0; 590 entry->tv.bo = &vm->root.base.bo->tbo; 591 /* Two for VM updates, one for TTM and one for the CS job */ 592 entry->tv.num_shared = 4; 593 entry->user_pages = NULL; 594 list_add(&entry->tv.head, validated); 595 } 596 597 /** 598 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 599 * 600 * @bo: BO which was removed from the LRU 601 * 602 * Make sure the bulk_moveable flag is updated when a BO is removed from the 603 * LRU. 604 */ 605 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 606 { 607 struct amdgpu_bo *abo; 608 struct amdgpu_vm_bo_base *bo_base; 609 610 if (!amdgpu_bo_is_amdgpu_bo(bo)) 611 return; 612 613 if (bo->pin_count) 614 return; 615 616 abo = ttm_to_amdgpu_bo(bo); 617 if (!abo->parent) 618 return; 619 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 620 struct amdgpu_vm *vm = bo_base->vm; 621 622 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 623 vm->bulk_moveable = false; 624 } 625 626 } 627 /** 628 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 629 * 630 * @adev: amdgpu device pointer 631 * @vm: vm providing the BOs 632 * 633 * Move all BOs to the end of LRU and remember their positions to put them 634 * together. 635 */ 636 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 637 struct amdgpu_vm *vm) 638 { 639 struct amdgpu_vm_bo_base *bo_base; 640 641 if (vm->bulk_moveable) { 642 spin_lock(&adev->mman.bdev.lru_lock); 643 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 644 spin_unlock(&adev->mman.bdev.lru_lock); 645 return; 646 } 647 648 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 649 650 spin_lock(&adev->mman.bdev.lru_lock); 651 list_for_each_entry(bo_base, &vm->idle, vm_status) { 652 struct amdgpu_bo *bo = bo_base->bo; 653 654 if (!bo->parent) 655 continue; 656 657 ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem, 658 &vm->lru_bulk_move); 659 if (bo->shadow) 660 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 661 &bo->shadow->tbo.mem, 662 &vm->lru_bulk_move); 663 } 664 spin_unlock(&adev->mman.bdev.lru_lock); 665 666 vm->bulk_moveable = true; 667 } 668 669 /** 670 * amdgpu_vm_validate_pt_bos - validate the page table BOs 671 * 672 * @adev: amdgpu device pointer 673 * @vm: vm providing the BOs 674 * @validate: callback to do the validation 675 * @param: parameter for the validation callback 676 * 677 * Validate the page table BOs on command submission if neccessary. 678 * 679 * Returns: 680 * Validation result. 681 */ 682 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 683 int (*validate)(void *p, struct amdgpu_bo *bo), 684 void *param) 685 { 686 struct amdgpu_vm_bo_base *bo_base, *tmp; 687 int r; 688 689 vm->bulk_moveable &= list_empty(&vm->evicted); 690 691 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 692 struct amdgpu_bo *bo = bo_base->bo; 693 694 r = validate(param, bo); 695 if (r) 696 return r; 697 698 if (bo->tbo.type != ttm_bo_type_kernel) { 699 amdgpu_vm_bo_moved(bo_base); 700 } else { 701 vm->update_funcs->map_table(bo); 702 amdgpu_vm_bo_relocated(bo_base); 703 } 704 } 705 706 amdgpu_vm_eviction_lock(vm); 707 vm->evicting = false; 708 amdgpu_vm_eviction_unlock(vm); 709 710 return 0; 711 } 712 713 /** 714 * amdgpu_vm_ready - check VM is ready for updates 715 * 716 * @vm: VM to check 717 * 718 * Check if all VM PDs/PTs are ready for updates 719 * 720 * Returns: 721 * True if eviction list is empty. 722 */ 723 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 724 { 725 return list_empty(&vm->evicted); 726 } 727 728 /** 729 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 730 * 731 * @adev: amdgpu_device pointer 732 * @vm: VM to clear BO from 733 * @bo: BO to clear 734 * @immediate: use an immediate update 735 * 736 * Root PD needs to be reserved when calling this. 737 * 738 * Returns: 739 * 0 on success, errno otherwise. 740 */ 741 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 742 struct amdgpu_vm *vm, 743 struct amdgpu_bo *bo, 744 bool immediate) 745 { 746 struct ttm_operation_ctx ctx = { true, false }; 747 unsigned level = adev->vm_manager.root_level; 748 struct amdgpu_vm_update_params params; 749 struct amdgpu_bo *ancestor = bo; 750 unsigned entries, ats_entries; 751 uint64_t addr; 752 int r; 753 754 /* Figure out our place in the hierarchy */ 755 if (ancestor->parent) { 756 ++level; 757 while (ancestor->parent->parent) { 758 ++level; 759 ancestor = ancestor->parent; 760 } 761 } 762 763 entries = amdgpu_bo_size(bo) / 8; 764 if (!vm->pte_support_ats) { 765 ats_entries = 0; 766 767 } else if (!bo->parent) { 768 ats_entries = amdgpu_vm_num_ats_entries(adev); 769 ats_entries = min(ats_entries, entries); 770 entries -= ats_entries; 771 772 } else { 773 struct amdgpu_vm_pt *pt; 774 775 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 776 ats_entries = amdgpu_vm_num_ats_entries(adev); 777 if ((pt - vm->root.entries) >= ats_entries) { 778 ats_entries = 0; 779 } else { 780 ats_entries = entries; 781 entries = 0; 782 } 783 } 784 785 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 786 if (r) 787 return r; 788 789 if (bo->shadow) { 790 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 791 &ctx); 792 if (r) 793 return r; 794 } 795 796 r = vm->update_funcs->map_table(bo); 797 if (r) 798 return r; 799 800 memset(¶ms, 0, sizeof(params)); 801 params.adev = adev; 802 params.vm = vm; 803 params.immediate = immediate; 804 805 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 806 if (r) 807 return r; 808 809 addr = 0; 810 if (ats_entries) { 811 uint64_t value = 0, flags; 812 813 flags = AMDGPU_PTE_DEFAULT_ATC; 814 if (level != AMDGPU_VM_PTB) { 815 /* Handle leaf PDEs as PTEs */ 816 flags |= AMDGPU_PDE_PTE; 817 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 818 } 819 820 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 821 value, flags); 822 if (r) 823 return r; 824 825 addr += ats_entries * 8; 826 } 827 828 if (entries) { 829 uint64_t value = 0, flags = 0; 830 831 if (adev->asic_type >= CHIP_VEGA10) { 832 if (level != AMDGPU_VM_PTB) { 833 /* Handle leaf PDEs as PTEs */ 834 flags |= AMDGPU_PDE_PTE; 835 amdgpu_gmc_get_vm_pde(adev, level, 836 &value, &flags); 837 } else { 838 /* Workaround for fault priority problem on GMC9 */ 839 flags = AMDGPU_PTE_EXECUTABLE; 840 } 841 } 842 843 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 844 value, flags); 845 if (r) 846 return r; 847 } 848 849 return vm->update_funcs->commit(¶ms, NULL); 850 } 851 852 /** 853 * amdgpu_vm_pt_create - create bo for PD/PT 854 * 855 * @adev: amdgpu_device pointer 856 * @vm: requesting vm 857 * @level: the page table level 858 * @immediate: use a immediate update 859 * @bo: pointer to the buffer object pointer 860 */ 861 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 862 struct amdgpu_vm *vm, 863 int level, bool immediate, 864 struct amdgpu_bo **bo) 865 { 866 struct amdgpu_bo_param bp; 867 int r; 868 869 memset(&bp, 0, sizeof(bp)); 870 871 bp.size = amdgpu_vm_bo_size(adev, level); 872 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 873 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 874 bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain); 875 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 876 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 877 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 878 if (vm->use_cpu_for_update) 879 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 880 881 bp.type = ttm_bo_type_kernel; 882 bp.no_wait_gpu = immediate; 883 if (vm->root.base.bo) 884 bp.resv = vm->root.base.bo->tbo.base.resv; 885 886 r = amdgpu_bo_create(adev, &bp, bo); 887 if (r) 888 return r; 889 890 if (vm->is_compute_context && (adev->flags & AMD_IS_APU)) 891 return 0; 892 893 if (!bp.resv) 894 WARN_ON(dma_resv_lock((*bo)->tbo.base.resv, 895 NULL)); 896 r = amdgpu_bo_create_shadow(adev, bp.size, *bo); 897 898 if (!bp.resv) 899 dma_resv_unlock((*bo)->tbo.base.resv); 900 901 if (r) { 902 amdgpu_bo_unref(bo); 903 return r; 904 } 905 906 return 0; 907 } 908 909 /** 910 * amdgpu_vm_alloc_pts - Allocate a specific page table 911 * 912 * @adev: amdgpu_device pointer 913 * @vm: VM to allocate page tables for 914 * @cursor: Which page table to allocate 915 * @immediate: use an immediate update 916 * 917 * Make sure a specific page table or directory is allocated. 918 * 919 * Returns: 920 * 1 if page table needed to be allocated, 0 if page table was already 921 * allocated, negative errno if an error occurred. 922 */ 923 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 924 struct amdgpu_vm *vm, 925 struct amdgpu_vm_pt_cursor *cursor, 926 bool immediate) 927 { 928 struct amdgpu_vm_pt *entry = cursor->entry; 929 struct amdgpu_bo *pt; 930 int r; 931 932 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 933 unsigned num_entries; 934 935 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 936 entry->entries = kvmalloc_array(num_entries, 937 sizeof(*entry->entries), 938 GFP_KERNEL | __GFP_ZERO); 939 if (!entry->entries) 940 return -ENOMEM; 941 } 942 943 if (entry->base.bo) 944 return 0; 945 946 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 947 if (r) 948 return r; 949 950 /* Keep a reference to the root directory to avoid 951 * freeing them up in the wrong order. 952 */ 953 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 954 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 955 956 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 957 if (r) 958 goto error_free_pt; 959 960 return 0; 961 962 error_free_pt: 963 amdgpu_bo_unref(&pt->shadow); 964 amdgpu_bo_unref(&pt); 965 return r; 966 } 967 968 /** 969 * amdgpu_vm_free_table - fre one PD/PT 970 * 971 * @entry: PDE to free 972 */ 973 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 974 { 975 if (entry->base.bo) { 976 entry->base.bo->vm_bo = NULL; 977 list_del(&entry->base.vm_status); 978 amdgpu_bo_unref(&entry->base.bo->shadow); 979 amdgpu_bo_unref(&entry->base.bo); 980 } 981 kvfree(entry->entries); 982 entry->entries = NULL; 983 } 984 985 /** 986 * amdgpu_vm_free_pts - free PD/PT levels 987 * 988 * @adev: amdgpu device structure 989 * @vm: amdgpu vm structure 990 * @start: optional cursor where to start freeing PDs/PTs 991 * 992 * Free the page directory or page table level and all sub levels. 993 */ 994 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 995 struct amdgpu_vm *vm, 996 struct amdgpu_vm_pt_cursor *start) 997 { 998 struct amdgpu_vm_pt_cursor cursor; 999 struct amdgpu_vm_pt *entry; 1000 1001 vm->bulk_moveable = false; 1002 1003 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1004 amdgpu_vm_free_table(entry); 1005 1006 if (start) 1007 amdgpu_vm_free_table(start->entry); 1008 } 1009 1010 /** 1011 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1012 * 1013 * @adev: amdgpu_device pointer 1014 */ 1015 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1016 { 1017 const struct amdgpu_ip_block *ip_block; 1018 bool has_compute_vm_bug; 1019 struct amdgpu_ring *ring; 1020 int i; 1021 1022 has_compute_vm_bug = false; 1023 1024 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1025 if (ip_block) { 1026 /* Compute has a VM bug for GFX version < 7. 1027 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1028 if (ip_block->version->major <= 7) 1029 has_compute_vm_bug = true; 1030 else if (ip_block->version->major == 8) 1031 if (adev->gfx.mec_fw_version < 673) 1032 has_compute_vm_bug = true; 1033 } 1034 1035 for (i = 0; i < adev->num_rings; i++) { 1036 ring = adev->rings[i]; 1037 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1038 /* only compute rings */ 1039 ring->has_compute_vm_bug = has_compute_vm_bug; 1040 else 1041 ring->has_compute_vm_bug = false; 1042 } 1043 } 1044 1045 /** 1046 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1047 * 1048 * @ring: ring on which the job will be submitted 1049 * @job: job to submit 1050 * 1051 * Returns: 1052 * True if sync is needed. 1053 */ 1054 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1055 struct amdgpu_job *job) 1056 { 1057 struct amdgpu_device *adev = ring->adev; 1058 unsigned vmhub = ring->funcs->vmhub; 1059 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1060 struct amdgpu_vmid *id; 1061 bool gds_switch_needed; 1062 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1063 1064 if (job->vmid == 0) 1065 return false; 1066 id = &id_mgr->ids[job->vmid]; 1067 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1068 id->gds_base != job->gds_base || 1069 id->gds_size != job->gds_size || 1070 id->gws_base != job->gws_base || 1071 id->gws_size != job->gws_size || 1072 id->oa_base != job->oa_base || 1073 id->oa_size != job->oa_size); 1074 1075 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1076 return true; 1077 1078 return vm_flush_needed || gds_switch_needed; 1079 } 1080 1081 /** 1082 * amdgpu_vm_flush - hardware flush the vm 1083 * 1084 * @ring: ring to use for flush 1085 * @job: related job 1086 * @need_pipe_sync: is pipe sync needed 1087 * 1088 * Emit a VM flush when it is necessary. 1089 * 1090 * Returns: 1091 * 0 on success, errno otherwise. 1092 */ 1093 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1094 bool need_pipe_sync) 1095 { 1096 struct amdgpu_device *adev = ring->adev; 1097 unsigned vmhub = ring->funcs->vmhub; 1098 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1099 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1100 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1101 id->gds_base != job->gds_base || 1102 id->gds_size != job->gds_size || 1103 id->gws_base != job->gws_base || 1104 id->gws_size != job->gws_size || 1105 id->oa_base != job->oa_base || 1106 id->oa_size != job->oa_size); 1107 bool vm_flush_needed = job->vm_needs_flush; 1108 struct dma_fence *fence = NULL; 1109 bool pasid_mapping_needed = false; 1110 unsigned patch_offset = 0; 1111 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1112 int r; 1113 1114 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1115 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1116 1117 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1118 gds_switch_needed = true; 1119 vm_flush_needed = true; 1120 pasid_mapping_needed = true; 1121 } 1122 1123 mutex_lock(&id_mgr->lock); 1124 if (id->pasid != job->pasid || !id->pasid_mapping || 1125 !dma_fence_is_signaled(id->pasid_mapping)) 1126 pasid_mapping_needed = true; 1127 mutex_unlock(&id_mgr->lock); 1128 1129 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1130 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1131 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1132 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1133 ring->funcs->emit_wreg; 1134 1135 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1136 return 0; 1137 1138 if (ring->funcs->init_cond_exec) 1139 patch_offset = amdgpu_ring_init_cond_exec(ring); 1140 1141 if (need_pipe_sync) 1142 amdgpu_ring_emit_pipeline_sync(ring); 1143 1144 if (vm_flush_needed) { 1145 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1146 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1147 } 1148 1149 if (pasid_mapping_needed) 1150 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1151 1152 if (vm_flush_needed || pasid_mapping_needed) { 1153 r = amdgpu_fence_emit(ring, &fence, 0); 1154 if (r) 1155 return r; 1156 } 1157 1158 if (vm_flush_needed) { 1159 mutex_lock(&id_mgr->lock); 1160 dma_fence_put(id->last_flush); 1161 id->last_flush = dma_fence_get(fence); 1162 id->current_gpu_reset_count = 1163 atomic_read(&adev->gpu_reset_counter); 1164 mutex_unlock(&id_mgr->lock); 1165 } 1166 1167 if (pasid_mapping_needed) { 1168 mutex_lock(&id_mgr->lock); 1169 id->pasid = job->pasid; 1170 dma_fence_put(id->pasid_mapping); 1171 id->pasid_mapping = dma_fence_get(fence); 1172 mutex_unlock(&id_mgr->lock); 1173 } 1174 dma_fence_put(fence); 1175 1176 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1177 id->gds_base = job->gds_base; 1178 id->gds_size = job->gds_size; 1179 id->gws_base = job->gws_base; 1180 id->gws_size = job->gws_size; 1181 id->oa_base = job->oa_base; 1182 id->oa_size = job->oa_size; 1183 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1184 job->gds_size, job->gws_base, 1185 job->gws_size, job->oa_base, 1186 job->oa_size); 1187 } 1188 1189 if (ring->funcs->patch_cond_exec) 1190 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1191 1192 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1193 if (ring->funcs->emit_switch_buffer) { 1194 amdgpu_ring_emit_switch_buffer(ring); 1195 amdgpu_ring_emit_switch_buffer(ring); 1196 } 1197 return 0; 1198 } 1199 1200 /** 1201 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1202 * 1203 * @vm: requested vm 1204 * @bo: requested buffer object 1205 * 1206 * Find @bo inside the requested vm. 1207 * Search inside the @bos vm list for the requested vm 1208 * Returns the found bo_va or NULL if none is found 1209 * 1210 * Object has to be reserved! 1211 * 1212 * Returns: 1213 * Found bo_va or NULL. 1214 */ 1215 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1216 struct amdgpu_bo *bo) 1217 { 1218 struct amdgpu_vm_bo_base *base; 1219 1220 for (base = bo->vm_bo; base; base = base->next) { 1221 if (base->vm != vm) 1222 continue; 1223 1224 return container_of(base, struct amdgpu_bo_va, base); 1225 } 1226 return NULL; 1227 } 1228 1229 /** 1230 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1231 * 1232 * @pages_addr: optional DMA address to use for lookup 1233 * @addr: the unmapped addr 1234 * 1235 * Look up the physical address of the page that the pte resolves 1236 * to. 1237 * 1238 * Returns: 1239 * The pointer for the page table entry. 1240 */ 1241 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1242 { 1243 uint64_t result; 1244 1245 /* page table offset */ 1246 result = pages_addr[addr >> PAGE_SHIFT]; 1247 1248 /* in case cpu page size != gpu page size*/ 1249 result |= addr & (~PAGE_MASK); 1250 1251 result &= 0xFFFFFFFFFFFFF000ULL; 1252 1253 return result; 1254 } 1255 1256 /** 1257 * amdgpu_vm_update_pde - update a single level in the hierarchy 1258 * 1259 * @params: parameters for the update 1260 * @vm: requested vm 1261 * @entry: entry to update 1262 * 1263 * Makes sure the requested entry in parent is up to date. 1264 */ 1265 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1266 struct amdgpu_vm *vm, 1267 struct amdgpu_vm_pt *entry) 1268 { 1269 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1270 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1271 uint64_t pde, pt, flags; 1272 unsigned level; 1273 1274 for (level = 0, pbo = bo->parent; pbo; ++level) 1275 pbo = pbo->parent; 1276 1277 level += params->adev->vm_manager.root_level; 1278 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1279 pde = (entry - parent->entries) * 8; 1280 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1281 } 1282 1283 /** 1284 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1285 * 1286 * @adev: amdgpu_device pointer 1287 * @vm: related vm 1288 * 1289 * Mark all PD level as invalid after an error. 1290 */ 1291 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1292 struct amdgpu_vm *vm) 1293 { 1294 struct amdgpu_vm_pt_cursor cursor; 1295 struct amdgpu_vm_pt *entry; 1296 1297 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1298 if (entry->base.bo && !entry->base.moved) 1299 amdgpu_vm_bo_relocated(&entry->base); 1300 } 1301 1302 /** 1303 * amdgpu_vm_update_pdes - make sure that all directories are valid 1304 * 1305 * @adev: amdgpu_device pointer 1306 * @vm: requested vm 1307 * @immediate: submit immediately to the paging queue 1308 * 1309 * Makes sure all directories are up to date. 1310 * 1311 * Returns: 1312 * 0 for success, error for failure. 1313 */ 1314 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1315 struct amdgpu_vm *vm, bool immediate) 1316 { 1317 struct amdgpu_vm_update_params params; 1318 int r; 1319 1320 if (list_empty(&vm->relocated)) 1321 return 0; 1322 1323 memset(¶ms, 0, sizeof(params)); 1324 params.adev = adev; 1325 params.vm = vm; 1326 params.immediate = immediate; 1327 1328 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1329 if (r) 1330 return r; 1331 1332 while (!list_empty(&vm->relocated)) { 1333 struct amdgpu_vm_pt *entry; 1334 1335 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1336 base.vm_status); 1337 amdgpu_vm_bo_idle(&entry->base); 1338 1339 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1340 if (r) 1341 goto error; 1342 } 1343 1344 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1345 if (r) 1346 goto error; 1347 return 0; 1348 1349 error: 1350 amdgpu_vm_invalidate_pds(adev, vm); 1351 return r; 1352 } 1353 1354 /* 1355 * amdgpu_vm_update_flags - figure out flags for PTE updates 1356 * 1357 * Make sure to set the right flags for the PTEs at the desired level. 1358 */ 1359 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1360 struct amdgpu_bo *bo, unsigned level, 1361 uint64_t pe, uint64_t addr, 1362 unsigned count, uint32_t incr, 1363 uint64_t flags) 1364 1365 { 1366 if (level != AMDGPU_VM_PTB) { 1367 flags |= AMDGPU_PDE_PTE; 1368 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1369 1370 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1371 !(flags & AMDGPU_PTE_VALID) && 1372 !(flags & AMDGPU_PTE_PRT)) { 1373 1374 /* Workaround for fault priority problem on GMC9 */ 1375 flags |= AMDGPU_PTE_EXECUTABLE; 1376 } 1377 1378 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1379 flags); 1380 } 1381 1382 /** 1383 * amdgpu_vm_fragment - get fragment for PTEs 1384 * 1385 * @params: see amdgpu_vm_update_params definition 1386 * @start: first PTE to handle 1387 * @end: last PTE to handle 1388 * @flags: hw mapping flags 1389 * @frag: resulting fragment size 1390 * @frag_end: end of this fragment 1391 * 1392 * Returns the first possible fragment for the start and end address. 1393 */ 1394 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1395 uint64_t start, uint64_t end, uint64_t flags, 1396 unsigned int *frag, uint64_t *frag_end) 1397 { 1398 /** 1399 * The MC L1 TLB supports variable sized pages, based on a fragment 1400 * field in the PTE. When this field is set to a non-zero value, page 1401 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1402 * flags are considered valid for all PTEs within the fragment range 1403 * and corresponding mappings are assumed to be physically contiguous. 1404 * 1405 * The L1 TLB can store a single PTE for the whole fragment, 1406 * significantly increasing the space available for translation 1407 * caching. This leads to large improvements in throughput when the 1408 * TLB is under pressure. 1409 * 1410 * The L2 TLB distributes small and large fragments into two 1411 * asymmetric partitions. The large fragment cache is significantly 1412 * larger. Thus, we try to use large fragments wherever possible. 1413 * Userspace can support this by aligning virtual base address and 1414 * allocation size to the fragment size. 1415 * 1416 * Starting with Vega10 the fragment size only controls the L1. The L2 1417 * is now directly feed with small/huge/giant pages from the walker. 1418 */ 1419 unsigned max_frag; 1420 1421 if (params->adev->asic_type < CHIP_VEGA10) 1422 max_frag = params->adev->vm_manager.fragment_size; 1423 else 1424 max_frag = 31; 1425 1426 /* system pages are non continuously */ 1427 if (params->pages_addr) { 1428 *frag = 0; 1429 *frag_end = end; 1430 return; 1431 } 1432 1433 /* This intentionally wraps around if no bit is set */ 1434 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1435 if (*frag >= max_frag) { 1436 *frag = max_frag; 1437 *frag_end = end & ~((1ULL << max_frag) - 1); 1438 } else { 1439 *frag_end = start + (1 << *frag); 1440 } 1441 } 1442 1443 /** 1444 * amdgpu_vm_update_ptes - make sure that page tables are valid 1445 * 1446 * @params: see amdgpu_vm_update_params definition 1447 * @start: start of GPU address range 1448 * @end: end of GPU address range 1449 * @dst: destination address to map to, the next dst inside the function 1450 * @flags: mapping flags 1451 * 1452 * Update the page tables in the range @start - @end. 1453 * 1454 * Returns: 1455 * 0 for success, -EINVAL for failure. 1456 */ 1457 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1458 uint64_t start, uint64_t end, 1459 uint64_t dst, uint64_t flags) 1460 { 1461 struct amdgpu_device *adev = params->adev; 1462 struct amdgpu_vm_pt_cursor cursor; 1463 uint64_t frag_start = start, frag_end; 1464 unsigned int frag; 1465 int r; 1466 1467 /* figure out the initial fragment */ 1468 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1469 1470 /* walk over the address space and update the PTs */ 1471 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1472 while (cursor.pfn < end) { 1473 unsigned shift, parent_shift, mask; 1474 uint64_t incr, entry_end, pe_start; 1475 struct amdgpu_bo *pt; 1476 1477 if (!params->unlocked) { 1478 /* make sure that the page tables covering the 1479 * address range are actually allocated 1480 */ 1481 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1482 &cursor, params->immediate); 1483 if (r) 1484 return r; 1485 } 1486 1487 shift = amdgpu_vm_level_shift(adev, cursor.level); 1488 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1489 if (params->unlocked) { 1490 /* Unlocked updates are only allowed on the leaves */ 1491 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1492 continue; 1493 } else if (adev->asic_type < CHIP_VEGA10 && 1494 (flags & AMDGPU_PTE_VALID)) { 1495 /* No huge page support before GMC v9 */ 1496 if (cursor.level != AMDGPU_VM_PTB) { 1497 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1498 return -ENOENT; 1499 continue; 1500 } 1501 } else if (frag < shift) { 1502 /* We can't use this level when the fragment size is 1503 * smaller than the address shift. Go to the next 1504 * child entry and try again. 1505 */ 1506 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1507 continue; 1508 } else if (frag >= parent_shift) { 1509 /* If the fragment size is even larger than the parent 1510 * shift we should go up one level and check it again. 1511 */ 1512 if (!amdgpu_vm_pt_ancestor(&cursor)) 1513 return -EINVAL; 1514 continue; 1515 } 1516 1517 pt = cursor.entry->base.bo; 1518 if (!pt) { 1519 /* We need all PDs and PTs for mapping something, */ 1520 if (flags & AMDGPU_PTE_VALID) 1521 return -ENOENT; 1522 1523 /* but unmapping something can happen at a higher 1524 * level. 1525 */ 1526 if (!amdgpu_vm_pt_ancestor(&cursor)) 1527 return -EINVAL; 1528 1529 pt = cursor.entry->base.bo; 1530 shift = parent_shift; 1531 frag_end = max(frag_end, ALIGN(frag_start + 1, 1532 1ULL << shift)); 1533 } 1534 1535 /* Looks good so far, calculate parameters for the update */ 1536 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1537 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1538 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1539 entry_end = ((uint64_t)mask + 1) << shift; 1540 entry_end += cursor.pfn & ~(entry_end - 1); 1541 entry_end = min(entry_end, end); 1542 1543 do { 1544 struct amdgpu_vm *vm = params->vm; 1545 uint64_t upd_end = min(entry_end, frag_end); 1546 unsigned nptes = (upd_end - frag_start) >> shift; 1547 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1548 1549 /* This can happen when we set higher level PDs to 1550 * silent to stop fault floods. 1551 */ 1552 nptes = max(nptes, 1u); 1553 1554 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1555 nptes, dst, incr, upd_flags, 1556 vm->task_info.pid, 1557 vm->immediate.fence_context); 1558 amdgpu_vm_update_flags(params, pt, cursor.level, 1559 pe_start, dst, nptes, incr, 1560 upd_flags); 1561 1562 pe_start += nptes * 8; 1563 dst += nptes * incr; 1564 1565 frag_start = upd_end; 1566 if (frag_start >= frag_end) { 1567 /* figure out the next fragment */ 1568 amdgpu_vm_fragment(params, frag_start, end, 1569 flags, &frag, &frag_end); 1570 if (frag < shift) 1571 break; 1572 } 1573 } while (frag_start < entry_end); 1574 1575 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1576 /* Free all child entries. 1577 * Update the tables with the flags and addresses and free up subsequent 1578 * tables in the case of huge pages or freed up areas. 1579 * This is the maximum you can free, because all other page tables are not 1580 * completely covered by the range and so potentially still in use. 1581 */ 1582 while (cursor.pfn < frag_start) { 1583 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1584 amdgpu_vm_pt_next(adev, &cursor); 1585 } 1586 1587 } else if (frag >= shift) { 1588 /* or just move on to the next on the same level. */ 1589 amdgpu_vm_pt_next(adev, &cursor); 1590 } 1591 } 1592 1593 return 0; 1594 } 1595 1596 /** 1597 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1598 * 1599 * @adev: amdgpu_device pointer of the VM 1600 * @bo_adev: amdgpu_device pointer of the mapped BO 1601 * @vm: requested vm 1602 * @immediate: immediate submission in a page fault 1603 * @unlocked: unlocked invalidation during MM callback 1604 * @resv: fences we need to sync to 1605 * @start: start of mapped range 1606 * @last: last mapped entry 1607 * @flags: flags for the entries 1608 * @offset: offset into nodes and pages_addr 1609 * @nodes: array of drm_mm_nodes with the MC addresses 1610 * @pages_addr: DMA addresses to use for mapping 1611 * @fence: optional resulting fence 1612 * 1613 * Fill in the page table entries between @start and @last. 1614 * 1615 * Returns: 1616 * 0 for success, -EINVAL for failure. 1617 */ 1618 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1619 struct amdgpu_device *bo_adev, 1620 struct amdgpu_vm *vm, bool immediate, 1621 bool unlocked, struct dma_resv *resv, 1622 uint64_t start, uint64_t last, 1623 uint64_t flags, uint64_t offset, 1624 struct drm_mm_node *nodes, 1625 dma_addr_t *pages_addr, 1626 struct dma_fence **fence) 1627 { 1628 struct amdgpu_vm_update_params params; 1629 enum amdgpu_sync_mode sync_mode; 1630 uint64_t pfn; 1631 int r; 1632 1633 memset(¶ms, 0, sizeof(params)); 1634 params.adev = adev; 1635 params.vm = vm; 1636 params.immediate = immediate; 1637 params.pages_addr = pages_addr; 1638 params.unlocked = unlocked; 1639 1640 /* Implicitly sync to command submissions in the same VM before 1641 * unmapping. Sync to moving fences before mapping. 1642 */ 1643 if (!(flags & AMDGPU_PTE_VALID)) 1644 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1645 else 1646 sync_mode = AMDGPU_SYNC_EXPLICIT; 1647 1648 pfn = offset >> PAGE_SHIFT; 1649 if (nodes) { 1650 while (pfn >= nodes->size) { 1651 pfn -= nodes->size; 1652 ++nodes; 1653 } 1654 } 1655 1656 amdgpu_vm_eviction_lock(vm); 1657 if (vm->evicting) { 1658 r = -EBUSY; 1659 goto error_unlock; 1660 } 1661 1662 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1663 struct dma_fence *tmp = dma_fence_get_stub(); 1664 1665 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1666 swap(vm->last_unlocked, tmp); 1667 dma_fence_put(tmp); 1668 } 1669 1670 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1671 if (r) 1672 goto error_unlock; 1673 1674 do { 1675 uint64_t tmp, num_entries, addr; 1676 1677 1678 num_entries = last - start + 1; 1679 if (nodes) { 1680 addr = nodes->start << PAGE_SHIFT; 1681 num_entries = min((nodes->size - pfn) * 1682 AMDGPU_GPU_PAGES_IN_CPU_PAGE, num_entries); 1683 } else { 1684 addr = 0; 1685 } 1686 1687 if (pages_addr) { 1688 bool contiguous = true; 1689 1690 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1691 uint64_t count; 1692 1693 contiguous = pages_addr[pfn + 1] == 1694 pages_addr[pfn] + PAGE_SIZE; 1695 1696 tmp = num_entries / 1697 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1698 for (count = 2; count < tmp; ++count) { 1699 uint64_t idx = pfn + count; 1700 1701 if (contiguous != (pages_addr[idx] == 1702 pages_addr[idx - 1] + PAGE_SIZE)) 1703 break; 1704 } 1705 num_entries = count * 1706 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1707 } 1708 1709 if (!contiguous) { 1710 addr = pfn << PAGE_SHIFT; 1711 params.pages_addr = pages_addr; 1712 } else { 1713 addr = pages_addr[pfn]; 1714 params.pages_addr = NULL; 1715 } 1716 1717 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1718 addr += bo_adev->vm_manager.vram_base_offset; 1719 addr += pfn << PAGE_SHIFT; 1720 } 1721 1722 tmp = start + num_entries; 1723 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1724 if (r) 1725 goto error_unlock; 1726 1727 pfn += num_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1728 if (nodes && nodes->size == pfn) { 1729 pfn = 0; 1730 ++nodes; 1731 } 1732 start = tmp; 1733 1734 } while (unlikely(start != last + 1)); 1735 1736 r = vm->update_funcs->commit(¶ms, fence); 1737 1738 error_unlock: 1739 amdgpu_vm_eviction_unlock(vm); 1740 return r; 1741 } 1742 1743 /** 1744 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1745 * 1746 * @adev: amdgpu_device pointer 1747 * @bo_va: requested BO and VM object 1748 * @clear: if true clear the entries 1749 * 1750 * Fill in the page table entries for @bo_va. 1751 * 1752 * Returns: 1753 * 0 for success, -EINVAL for failure. 1754 */ 1755 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1756 bool clear) 1757 { 1758 struct amdgpu_bo *bo = bo_va->base.bo; 1759 struct amdgpu_vm *vm = bo_va->base.vm; 1760 struct amdgpu_bo_va_mapping *mapping; 1761 dma_addr_t *pages_addr = NULL; 1762 struct ttm_resource *mem; 1763 struct drm_mm_node *nodes; 1764 struct dma_fence **last_update; 1765 struct dma_resv *resv; 1766 uint64_t flags; 1767 struct amdgpu_device *bo_adev = adev; 1768 int r; 1769 1770 if (clear || !bo) { 1771 mem = NULL; 1772 nodes = NULL; 1773 resv = vm->root.base.bo->tbo.base.resv; 1774 } else { 1775 struct drm_gem_object *obj = &bo->tbo.base; 1776 1777 resv = bo->tbo.base.resv; 1778 if (obj->import_attach && bo_va->is_xgmi) { 1779 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1780 struct drm_gem_object *gobj = dma_buf->priv; 1781 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1782 1783 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1784 bo = gem_to_amdgpu_bo(gobj); 1785 } 1786 mem = &bo->tbo.mem; 1787 nodes = mem->mm_node; 1788 if (mem->mem_type == TTM_PL_TT) 1789 pages_addr = bo->tbo.ttm->dma_address; 1790 } 1791 1792 if (bo) { 1793 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1794 1795 if (amdgpu_bo_encrypted(bo)) 1796 flags |= AMDGPU_PTE_TMZ; 1797 1798 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1799 } else { 1800 flags = 0x0; 1801 } 1802 1803 if (clear || (bo && bo->tbo.base.resv == 1804 vm->root.base.bo->tbo.base.resv)) 1805 last_update = &vm->last_update; 1806 else 1807 last_update = &bo_va->last_pt_update; 1808 1809 if (!clear && bo_va->base.moved) { 1810 bo_va->base.moved = false; 1811 list_splice_init(&bo_va->valids, &bo_va->invalids); 1812 1813 } else if (bo_va->cleared != clear) { 1814 list_splice_init(&bo_va->valids, &bo_va->invalids); 1815 } 1816 1817 list_for_each_entry(mapping, &bo_va->invalids, list) { 1818 uint64_t update_flags = flags; 1819 1820 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1821 * but in case of something, we filter the flags in first place 1822 */ 1823 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1824 update_flags &= ~AMDGPU_PTE_READABLE; 1825 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1826 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1827 1828 /* Apply ASIC specific mapping flags */ 1829 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1830 1831 trace_amdgpu_vm_bo_update(mapping); 1832 1833 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1834 resv, mapping->start, 1835 mapping->last, update_flags, 1836 mapping->offset, nodes, 1837 pages_addr, last_update); 1838 if (r) 1839 return r; 1840 } 1841 1842 /* If the BO is not in its preferred location add it back to 1843 * the evicted list so that it gets validated again on the 1844 * next command submission. 1845 */ 1846 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1847 uint32_t mem_type = bo->tbo.mem.mem_type; 1848 1849 if (!(bo->preferred_domains & 1850 amdgpu_mem_type_to_domain(mem_type))) 1851 amdgpu_vm_bo_evicted(&bo_va->base); 1852 else 1853 amdgpu_vm_bo_idle(&bo_va->base); 1854 } else { 1855 amdgpu_vm_bo_done(&bo_va->base); 1856 } 1857 1858 list_splice_init(&bo_va->invalids, &bo_va->valids); 1859 bo_va->cleared = clear; 1860 1861 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1862 list_for_each_entry(mapping, &bo_va->valids, list) 1863 trace_amdgpu_vm_bo_mapping(mapping); 1864 } 1865 1866 return 0; 1867 } 1868 1869 /** 1870 * amdgpu_vm_update_prt_state - update the global PRT state 1871 * 1872 * @adev: amdgpu_device pointer 1873 */ 1874 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1875 { 1876 unsigned long flags; 1877 bool enable; 1878 1879 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1880 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1881 adev->gmc.gmc_funcs->set_prt(adev, enable); 1882 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1883 } 1884 1885 /** 1886 * amdgpu_vm_prt_get - add a PRT user 1887 * 1888 * @adev: amdgpu_device pointer 1889 */ 1890 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1891 { 1892 if (!adev->gmc.gmc_funcs->set_prt) 1893 return; 1894 1895 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1896 amdgpu_vm_update_prt_state(adev); 1897 } 1898 1899 /** 1900 * amdgpu_vm_prt_put - drop a PRT user 1901 * 1902 * @adev: amdgpu_device pointer 1903 */ 1904 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1905 { 1906 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1907 amdgpu_vm_update_prt_state(adev); 1908 } 1909 1910 /** 1911 * amdgpu_vm_prt_cb - callback for updating the PRT status 1912 * 1913 * @fence: fence for the callback 1914 * @_cb: the callback function 1915 */ 1916 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1917 { 1918 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1919 1920 amdgpu_vm_prt_put(cb->adev); 1921 kfree(cb); 1922 } 1923 1924 /** 1925 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1926 * 1927 * @adev: amdgpu_device pointer 1928 * @fence: fence for the callback 1929 */ 1930 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1931 struct dma_fence *fence) 1932 { 1933 struct amdgpu_prt_cb *cb; 1934 1935 if (!adev->gmc.gmc_funcs->set_prt) 1936 return; 1937 1938 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1939 if (!cb) { 1940 /* Last resort when we are OOM */ 1941 if (fence) 1942 dma_fence_wait(fence, false); 1943 1944 amdgpu_vm_prt_put(adev); 1945 } else { 1946 cb->adev = adev; 1947 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1948 amdgpu_vm_prt_cb)) 1949 amdgpu_vm_prt_cb(fence, &cb->cb); 1950 } 1951 } 1952 1953 /** 1954 * amdgpu_vm_free_mapping - free a mapping 1955 * 1956 * @adev: amdgpu_device pointer 1957 * @vm: requested vm 1958 * @mapping: mapping to be freed 1959 * @fence: fence of the unmap operation 1960 * 1961 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1962 */ 1963 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1964 struct amdgpu_vm *vm, 1965 struct amdgpu_bo_va_mapping *mapping, 1966 struct dma_fence *fence) 1967 { 1968 if (mapping->flags & AMDGPU_PTE_PRT) 1969 amdgpu_vm_add_prt_cb(adev, fence); 1970 kfree(mapping); 1971 } 1972 1973 /** 1974 * amdgpu_vm_prt_fini - finish all prt mappings 1975 * 1976 * @adev: amdgpu_device pointer 1977 * @vm: requested vm 1978 * 1979 * Register a cleanup callback to disable PRT support after VM dies. 1980 */ 1981 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1982 { 1983 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1984 struct dma_fence *excl, **shared; 1985 unsigned i, shared_count; 1986 int r; 1987 1988 r = dma_resv_get_fences_rcu(resv, &excl, 1989 &shared_count, &shared); 1990 if (r) { 1991 /* Not enough memory to grab the fence list, as last resort 1992 * block for all the fences to complete. 1993 */ 1994 dma_resv_wait_timeout_rcu(resv, true, false, 1995 MAX_SCHEDULE_TIMEOUT); 1996 return; 1997 } 1998 1999 /* Add a callback for each fence in the reservation object */ 2000 amdgpu_vm_prt_get(adev); 2001 amdgpu_vm_add_prt_cb(adev, excl); 2002 2003 for (i = 0; i < shared_count; ++i) { 2004 amdgpu_vm_prt_get(adev); 2005 amdgpu_vm_add_prt_cb(adev, shared[i]); 2006 } 2007 2008 kfree(shared); 2009 } 2010 2011 /** 2012 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2013 * 2014 * @adev: amdgpu_device pointer 2015 * @vm: requested vm 2016 * @fence: optional resulting fence (unchanged if no work needed to be done 2017 * or if an error occurred) 2018 * 2019 * Make sure all freed BOs are cleared in the PT. 2020 * PTs have to be reserved and mutex must be locked! 2021 * 2022 * Returns: 2023 * 0 for success. 2024 * 2025 */ 2026 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2027 struct amdgpu_vm *vm, 2028 struct dma_fence **fence) 2029 { 2030 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2031 struct amdgpu_bo_va_mapping *mapping; 2032 uint64_t init_pte_value = 0; 2033 struct dma_fence *f = NULL; 2034 int r; 2035 2036 while (!list_empty(&vm->freed)) { 2037 mapping = list_first_entry(&vm->freed, 2038 struct amdgpu_bo_va_mapping, list); 2039 list_del(&mapping->list); 2040 2041 if (vm->pte_support_ats && 2042 mapping->start < AMDGPU_GMC_HOLE_START) 2043 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2044 2045 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2046 resv, mapping->start, 2047 mapping->last, init_pte_value, 2048 0, NULL, NULL, &f); 2049 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2050 if (r) { 2051 dma_fence_put(f); 2052 return r; 2053 } 2054 } 2055 2056 if (fence && f) { 2057 dma_fence_put(*fence); 2058 *fence = f; 2059 } else { 2060 dma_fence_put(f); 2061 } 2062 2063 return 0; 2064 2065 } 2066 2067 /** 2068 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2069 * 2070 * @adev: amdgpu_device pointer 2071 * @vm: requested vm 2072 * 2073 * Make sure all BOs which are moved are updated in the PTs. 2074 * 2075 * Returns: 2076 * 0 for success. 2077 * 2078 * PTs have to be reserved! 2079 */ 2080 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2081 struct amdgpu_vm *vm) 2082 { 2083 struct amdgpu_bo_va *bo_va, *tmp; 2084 struct dma_resv *resv; 2085 bool clear; 2086 int r; 2087 2088 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2089 /* Per VM BOs never need to bo cleared in the page tables */ 2090 r = amdgpu_vm_bo_update(adev, bo_va, false); 2091 if (r) 2092 return r; 2093 } 2094 2095 spin_lock(&vm->invalidated_lock); 2096 while (!list_empty(&vm->invalidated)) { 2097 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2098 base.vm_status); 2099 resv = bo_va->base.bo->tbo.base.resv; 2100 spin_unlock(&vm->invalidated_lock); 2101 2102 /* Try to reserve the BO to avoid clearing its ptes */ 2103 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2104 clear = false; 2105 /* Somebody else is using the BO right now */ 2106 else 2107 clear = true; 2108 2109 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2110 if (r) 2111 return r; 2112 2113 if (!clear) 2114 dma_resv_unlock(resv); 2115 spin_lock(&vm->invalidated_lock); 2116 } 2117 spin_unlock(&vm->invalidated_lock); 2118 2119 return 0; 2120 } 2121 2122 /** 2123 * amdgpu_vm_bo_add - add a bo to a specific vm 2124 * 2125 * @adev: amdgpu_device pointer 2126 * @vm: requested vm 2127 * @bo: amdgpu buffer object 2128 * 2129 * Add @bo into the requested vm. 2130 * Add @bo to the list of bos associated with the vm 2131 * 2132 * Returns: 2133 * Newly added bo_va or NULL for failure 2134 * 2135 * Object has to be reserved! 2136 */ 2137 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2138 struct amdgpu_vm *vm, 2139 struct amdgpu_bo *bo) 2140 { 2141 struct amdgpu_bo_va *bo_va; 2142 2143 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2144 if (bo_va == NULL) { 2145 return NULL; 2146 } 2147 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2148 2149 bo_va->ref_count = 1; 2150 INIT_LIST_HEAD(&bo_va->valids); 2151 INIT_LIST_HEAD(&bo_va->invalids); 2152 2153 if (!bo) 2154 return bo_va; 2155 2156 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2157 bo_va->is_xgmi = true; 2158 /* Power up XGMI if it can be potentially used */ 2159 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2160 } 2161 2162 return bo_va; 2163 } 2164 2165 2166 /** 2167 * amdgpu_vm_bo_insert_map - insert a new mapping 2168 * 2169 * @adev: amdgpu_device pointer 2170 * @bo_va: bo_va to store the address 2171 * @mapping: the mapping to insert 2172 * 2173 * Insert a new mapping into all structures. 2174 */ 2175 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2176 struct amdgpu_bo_va *bo_va, 2177 struct amdgpu_bo_va_mapping *mapping) 2178 { 2179 struct amdgpu_vm *vm = bo_va->base.vm; 2180 struct amdgpu_bo *bo = bo_va->base.bo; 2181 2182 mapping->bo_va = bo_va; 2183 list_add(&mapping->list, &bo_va->invalids); 2184 amdgpu_vm_it_insert(mapping, &vm->va); 2185 2186 if (mapping->flags & AMDGPU_PTE_PRT) 2187 amdgpu_vm_prt_get(adev); 2188 2189 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2190 !bo_va->base.moved) { 2191 list_move(&bo_va->base.vm_status, &vm->moved); 2192 } 2193 trace_amdgpu_vm_bo_map(bo_va, mapping); 2194 } 2195 2196 /** 2197 * amdgpu_vm_bo_map - map bo inside a vm 2198 * 2199 * @adev: amdgpu_device pointer 2200 * @bo_va: bo_va to store the address 2201 * @saddr: where to map the BO 2202 * @offset: requested offset in the BO 2203 * @size: BO size in bytes 2204 * @flags: attributes of pages (read/write/valid/etc.) 2205 * 2206 * Add a mapping of the BO at the specefied addr into the VM. 2207 * 2208 * Returns: 2209 * 0 for success, error for failure. 2210 * 2211 * Object has to be reserved and unreserved outside! 2212 */ 2213 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2214 struct amdgpu_bo_va *bo_va, 2215 uint64_t saddr, uint64_t offset, 2216 uint64_t size, uint64_t flags) 2217 { 2218 struct amdgpu_bo_va_mapping *mapping, *tmp; 2219 struct amdgpu_bo *bo = bo_va->base.bo; 2220 struct amdgpu_vm *vm = bo_va->base.vm; 2221 uint64_t eaddr; 2222 2223 /* validate the parameters */ 2224 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2225 size == 0 || size & ~PAGE_MASK) 2226 return -EINVAL; 2227 2228 /* make sure object fit at this offset */ 2229 eaddr = saddr + size - 1; 2230 if (saddr >= eaddr || 2231 (bo && offset + size > amdgpu_bo_size(bo)) || 2232 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2233 return -EINVAL; 2234 2235 saddr /= AMDGPU_GPU_PAGE_SIZE; 2236 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2237 2238 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2239 if (tmp) { 2240 /* bo and tmp overlap, invalid addr */ 2241 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2242 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2243 tmp->start, tmp->last + 1); 2244 return -EINVAL; 2245 } 2246 2247 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2248 if (!mapping) 2249 return -ENOMEM; 2250 2251 mapping->start = saddr; 2252 mapping->last = eaddr; 2253 mapping->offset = offset; 2254 mapping->flags = flags; 2255 2256 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2257 2258 return 0; 2259 } 2260 2261 /** 2262 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2263 * 2264 * @adev: amdgpu_device pointer 2265 * @bo_va: bo_va to store the address 2266 * @saddr: where to map the BO 2267 * @offset: requested offset in the BO 2268 * @size: BO size in bytes 2269 * @flags: attributes of pages (read/write/valid/etc.) 2270 * 2271 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2272 * mappings as we do so. 2273 * 2274 * Returns: 2275 * 0 for success, error for failure. 2276 * 2277 * Object has to be reserved and unreserved outside! 2278 */ 2279 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2280 struct amdgpu_bo_va *bo_va, 2281 uint64_t saddr, uint64_t offset, 2282 uint64_t size, uint64_t flags) 2283 { 2284 struct amdgpu_bo_va_mapping *mapping; 2285 struct amdgpu_bo *bo = bo_va->base.bo; 2286 uint64_t eaddr; 2287 int r; 2288 2289 /* validate the parameters */ 2290 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2291 size == 0 || size & ~PAGE_MASK) 2292 return -EINVAL; 2293 2294 /* make sure object fit at this offset */ 2295 eaddr = saddr + size - 1; 2296 if (saddr >= eaddr || 2297 (bo && offset + size > amdgpu_bo_size(bo)) || 2298 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2299 return -EINVAL; 2300 2301 /* Allocate all the needed memory */ 2302 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2303 if (!mapping) 2304 return -ENOMEM; 2305 2306 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2307 if (r) { 2308 kfree(mapping); 2309 return r; 2310 } 2311 2312 saddr /= AMDGPU_GPU_PAGE_SIZE; 2313 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2314 2315 mapping->start = saddr; 2316 mapping->last = eaddr; 2317 mapping->offset = offset; 2318 mapping->flags = flags; 2319 2320 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2321 2322 return 0; 2323 } 2324 2325 /** 2326 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2327 * 2328 * @adev: amdgpu_device pointer 2329 * @bo_va: bo_va to remove the address from 2330 * @saddr: where to the BO is mapped 2331 * 2332 * Remove a mapping of the BO at the specefied addr from the VM. 2333 * 2334 * Returns: 2335 * 0 for success, error for failure. 2336 * 2337 * Object has to be reserved and unreserved outside! 2338 */ 2339 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2340 struct amdgpu_bo_va *bo_va, 2341 uint64_t saddr) 2342 { 2343 struct amdgpu_bo_va_mapping *mapping; 2344 struct amdgpu_vm *vm = bo_va->base.vm; 2345 bool valid = true; 2346 2347 saddr /= AMDGPU_GPU_PAGE_SIZE; 2348 2349 list_for_each_entry(mapping, &bo_va->valids, list) { 2350 if (mapping->start == saddr) 2351 break; 2352 } 2353 2354 if (&mapping->list == &bo_va->valids) { 2355 valid = false; 2356 2357 list_for_each_entry(mapping, &bo_va->invalids, list) { 2358 if (mapping->start == saddr) 2359 break; 2360 } 2361 2362 if (&mapping->list == &bo_va->invalids) 2363 return -ENOENT; 2364 } 2365 2366 list_del(&mapping->list); 2367 amdgpu_vm_it_remove(mapping, &vm->va); 2368 mapping->bo_va = NULL; 2369 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2370 2371 if (valid) 2372 list_add(&mapping->list, &vm->freed); 2373 else 2374 amdgpu_vm_free_mapping(adev, vm, mapping, 2375 bo_va->last_pt_update); 2376 2377 return 0; 2378 } 2379 2380 /** 2381 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2382 * 2383 * @adev: amdgpu_device pointer 2384 * @vm: VM structure to use 2385 * @saddr: start of the range 2386 * @size: size of the range 2387 * 2388 * Remove all mappings in a range, split them as appropriate. 2389 * 2390 * Returns: 2391 * 0 for success, error for failure. 2392 */ 2393 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2394 struct amdgpu_vm *vm, 2395 uint64_t saddr, uint64_t size) 2396 { 2397 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2398 LIST_HEAD(removed); 2399 uint64_t eaddr; 2400 2401 eaddr = saddr + size - 1; 2402 saddr /= AMDGPU_GPU_PAGE_SIZE; 2403 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2404 2405 /* Allocate all the needed memory */ 2406 before = kzalloc(sizeof(*before), GFP_KERNEL); 2407 if (!before) 2408 return -ENOMEM; 2409 INIT_LIST_HEAD(&before->list); 2410 2411 after = kzalloc(sizeof(*after), GFP_KERNEL); 2412 if (!after) { 2413 kfree(before); 2414 return -ENOMEM; 2415 } 2416 INIT_LIST_HEAD(&after->list); 2417 2418 /* Now gather all removed mappings */ 2419 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2420 while (tmp) { 2421 /* Remember mapping split at the start */ 2422 if (tmp->start < saddr) { 2423 before->start = tmp->start; 2424 before->last = saddr - 1; 2425 before->offset = tmp->offset; 2426 before->flags = tmp->flags; 2427 before->bo_va = tmp->bo_va; 2428 list_add(&before->list, &tmp->bo_va->invalids); 2429 } 2430 2431 /* Remember mapping split at the end */ 2432 if (tmp->last > eaddr) { 2433 after->start = eaddr + 1; 2434 after->last = tmp->last; 2435 after->offset = tmp->offset; 2436 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2437 after->flags = tmp->flags; 2438 after->bo_va = tmp->bo_va; 2439 list_add(&after->list, &tmp->bo_va->invalids); 2440 } 2441 2442 list_del(&tmp->list); 2443 list_add(&tmp->list, &removed); 2444 2445 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2446 } 2447 2448 /* And free them up */ 2449 list_for_each_entry_safe(tmp, next, &removed, list) { 2450 amdgpu_vm_it_remove(tmp, &vm->va); 2451 list_del(&tmp->list); 2452 2453 if (tmp->start < saddr) 2454 tmp->start = saddr; 2455 if (tmp->last > eaddr) 2456 tmp->last = eaddr; 2457 2458 tmp->bo_va = NULL; 2459 list_add(&tmp->list, &vm->freed); 2460 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2461 } 2462 2463 /* Insert partial mapping before the range */ 2464 if (!list_empty(&before->list)) { 2465 amdgpu_vm_it_insert(before, &vm->va); 2466 if (before->flags & AMDGPU_PTE_PRT) 2467 amdgpu_vm_prt_get(adev); 2468 } else { 2469 kfree(before); 2470 } 2471 2472 /* Insert partial mapping after the range */ 2473 if (!list_empty(&after->list)) { 2474 amdgpu_vm_it_insert(after, &vm->va); 2475 if (after->flags & AMDGPU_PTE_PRT) 2476 amdgpu_vm_prt_get(adev); 2477 } else { 2478 kfree(after); 2479 } 2480 2481 return 0; 2482 } 2483 2484 /** 2485 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2486 * 2487 * @vm: the requested VM 2488 * @addr: the address 2489 * 2490 * Find a mapping by it's address. 2491 * 2492 * Returns: 2493 * The amdgpu_bo_va_mapping matching for addr or NULL 2494 * 2495 */ 2496 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2497 uint64_t addr) 2498 { 2499 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2500 } 2501 2502 /** 2503 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2504 * 2505 * @vm: the requested vm 2506 * @ticket: CS ticket 2507 * 2508 * Trace all mappings of BOs reserved during a command submission. 2509 */ 2510 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2511 { 2512 struct amdgpu_bo_va_mapping *mapping; 2513 2514 if (!trace_amdgpu_vm_bo_cs_enabled()) 2515 return; 2516 2517 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2518 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2519 if (mapping->bo_va && mapping->bo_va->base.bo) { 2520 struct amdgpu_bo *bo; 2521 2522 bo = mapping->bo_va->base.bo; 2523 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2524 ticket) 2525 continue; 2526 } 2527 2528 trace_amdgpu_vm_bo_cs(mapping); 2529 } 2530 } 2531 2532 /** 2533 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2534 * 2535 * @adev: amdgpu_device pointer 2536 * @bo_va: requested bo_va 2537 * 2538 * Remove @bo_va->bo from the requested vm. 2539 * 2540 * Object have to be reserved! 2541 */ 2542 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2543 struct amdgpu_bo_va *bo_va) 2544 { 2545 struct amdgpu_bo_va_mapping *mapping, *next; 2546 struct amdgpu_bo *bo = bo_va->base.bo; 2547 struct amdgpu_vm *vm = bo_va->base.vm; 2548 struct amdgpu_vm_bo_base **base; 2549 2550 if (bo) { 2551 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2552 vm->bulk_moveable = false; 2553 2554 for (base = &bo_va->base.bo->vm_bo; *base; 2555 base = &(*base)->next) { 2556 if (*base != &bo_va->base) 2557 continue; 2558 2559 *base = bo_va->base.next; 2560 break; 2561 } 2562 } 2563 2564 spin_lock(&vm->invalidated_lock); 2565 list_del(&bo_va->base.vm_status); 2566 spin_unlock(&vm->invalidated_lock); 2567 2568 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2569 list_del(&mapping->list); 2570 amdgpu_vm_it_remove(mapping, &vm->va); 2571 mapping->bo_va = NULL; 2572 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2573 list_add(&mapping->list, &vm->freed); 2574 } 2575 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2576 list_del(&mapping->list); 2577 amdgpu_vm_it_remove(mapping, &vm->va); 2578 amdgpu_vm_free_mapping(adev, vm, mapping, 2579 bo_va->last_pt_update); 2580 } 2581 2582 dma_fence_put(bo_va->last_pt_update); 2583 2584 if (bo && bo_va->is_xgmi) 2585 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2586 2587 kfree(bo_va); 2588 } 2589 2590 /** 2591 * amdgpu_vm_evictable - check if we can evict a VM 2592 * 2593 * @bo: A page table of the VM. 2594 * 2595 * Check if it is possible to evict a VM. 2596 */ 2597 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2598 { 2599 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2600 2601 /* Page tables of a destroyed VM can go away immediately */ 2602 if (!bo_base || !bo_base->vm) 2603 return true; 2604 2605 /* Don't evict VM page tables while they are busy */ 2606 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2607 return false; 2608 2609 /* Try to block ongoing updates */ 2610 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2611 return false; 2612 2613 /* Don't evict VM page tables while they are updated */ 2614 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2615 amdgpu_vm_eviction_unlock(bo_base->vm); 2616 return false; 2617 } 2618 2619 bo_base->vm->evicting = true; 2620 amdgpu_vm_eviction_unlock(bo_base->vm); 2621 return true; 2622 } 2623 2624 /** 2625 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2626 * 2627 * @adev: amdgpu_device pointer 2628 * @bo: amdgpu buffer object 2629 * @evicted: is the BO evicted 2630 * 2631 * Mark @bo as invalid. 2632 */ 2633 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2634 struct amdgpu_bo *bo, bool evicted) 2635 { 2636 struct amdgpu_vm_bo_base *bo_base; 2637 2638 /* shadow bo doesn't have bo base, its validation needs its parent */ 2639 if (bo->parent && bo->parent->shadow == bo) 2640 bo = bo->parent; 2641 2642 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2643 struct amdgpu_vm *vm = bo_base->vm; 2644 2645 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2646 amdgpu_vm_bo_evicted(bo_base); 2647 continue; 2648 } 2649 2650 if (bo_base->moved) 2651 continue; 2652 bo_base->moved = true; 2653 2654 if (bo->tbo.type == ttm_bo_type_kernel) 2655 amdgpu_vm_bo_relocated(bo_base); 2656 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2657 amdgpu_vm_bo_moved(bo_base); 2658 else 2659 amdgpu_vm_bo_invalidated(bo_base); 2660 } 2661 } 2662 2663 /** 2664 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2665 * 2666 * @vm_size: VM size 2667 * 2668 * Returns: 2669 * VM page table as power of two 2670 */ 2671 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2672 { 2673 /* Total bits covered by PD + PTs */ 2674 unsigned bits = ilog2(vm_size) + 18; 2675 2676 /* Make sure the PD is 4K in size up to 8GB address space. 2677 Above that split equal between PD and PTs */ 2678 if (vm_size <= 8) 2679 return (bits - 9); 2680 else 2681 return ((bits + 3) / 2); 2682 } 2683 2684 /** 2685 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2686 * 2687 * @adev: amdgpu_device pointer 2688 * @min_vm_size: the minimum vm size in GB if it's set auto 2689 * @fragment_size_default: Default PTE fragment size 2690 * @max_level: max VMPT level 2691 * @max_bits: max address space size in bits 2692 * 2693 */ 2694 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2695 uint32_t fragment_size_default, unsigned max_level, 2696 unsigned max_bits) 2697 { 2698 unsigned int max_size = 1 << (max_bits - 30); 2699 unsigned int vm_size; 2700 uint64_t tmp; 2701 2702 /* adjust vm size first */ 2703 if (amdgpu_vm_size != -1) { 2704 vm_size = amdgpu_vm_size; 2705 if (vm_size > max_size) { 2706 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2707 amdgpu_vm_size, max_size); 2708 vm_size = max_size; 2709 } 2710 } else { 2711 struct sysinfo si; 2712 unsigned int phys_ram_gb; 2713 2714 /* Optimal VM size depends on the amount of physical 2715 * RAM available. Underlying requirements and 2716 * assumptions: 2717 * 2718 * - Need to map system memory and VRAM from all GPUs 2719 * - VRAM from other GPUs not known here 2720 * - Assume VRAM <= system memory 2721 * - On GFX8 and older, VM space can be segmented for 2722 * different MTYPEs 2723 * - Need to allow room for fragmentation, guard pages etc. 2724 * 2725 * This adds up to a rough guess of system memory x3. 2726 * Round up to power of two to maximize the available 2727 * VM size with the given page table size. 2728 */ 2729 si_meminfo(&si); 2730 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2731 (1 << 30) - 1) >> 30; 2732 vm_size = roundup_pow_of_two( 2733 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2734 } 2735 2736 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2737 2738 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2739 if (amdgpu_vm_block_size != -1) 2740 tmp >>= amdgpu_vm_block_size - 9; 2741 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2742 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2743 switch (adev->vm_manager.num_level) { 2744 case 3: 2745 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2746 break; 2747 case 2: 2748 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2749 break; 2750 case 1: 2751 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2752 break; 2753 default: 2754 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2755 } 2756 /* block size depends on vm size and hw setup*/ 2757 if (amdgpu_vm_block_size != -1) 2758 adev->vm_manager.block_size = 2759 min((unsigned)amdgpu_vm_block_size, max_bits 2760 - AMDGPU_GPU_PAGE_SHIFT 2761 - 9 * adev->vm_manager.num_level); 2762 else if (adev->vm_manager.num_level > 1) 2763 adev->vm_manager.block_size = 9; 2764 else 2765 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2766 2767 if (amdgpu_vm_fragment_size == -1) 2768 adev->vm_manager.fragment_size = fragment_size_default; 2769 else 2770 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2771 2772 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2773 vm_size, adev->vm_manager.num_level + 1, 2774 adev->vm_manager.block_size, 2775 adev->vm_manager.fragment_size); 2776 } 2777 2778 /** 2779 * amdgpu_vm_wait_idle - wait for the VM to become idle 2780 * 2781 * @vm: VM object to wait for 2782 * @timeout: timeout to wait for VM to become idle 2783 */ 2784 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2785 { 2786 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2787 true, true, timeout); 2788 if (timeout <= 0) 2789 return timeout; 2790 2791 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2792 } 2793 2794 /** 2795 * amdgpu_vm_init - initialize a vm instance 2796 * 2797 * @adev: amdgpu_device pointer 2798 * @vm: requested vm 2799 * @pasid: Process address space identifier 2800 * 2801 * Init @vm fields. 2802 * 2803 * Returns: 2804 * 0 for success, error for failure. 2805 */ 2806 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid) 2807 { 2808 struct amdgpu_bo *root; 2809 int r, i; 2810 2811 vm->va = RB_ROOT_CACHED; 2812 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2813 vm->reserved_vmid[i] = NULL; 2814 INIT_LIST_HEAD(&vm->evicted); 2815 INIT_LIST_HEAD(&vm->relocated); 2816 INIT_LIST_HEAD(&vm->moved); 2817 INIT_LIST_HEAD(&vm->idle); 2818 INIT_LIST_HEAD(&vm->invalidated); 2819 spin_lock_init(&vm->invalidated_lock); 2820 INIT_LIST_HEAD(&vm->freed); 2821 INIT_LIST_HEAD(&vm->done); 2822 2823 /* create scheduler entities for page table updates */ 2824 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2825 adev->vm_manager.vm_pte_scheds, 2826 adev->vm_manager.vm_pte_num_scheds, NULL); 2827 if (r) 2828 return r; 2829 2830 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2831 adev->vm_manager.vm_pte_scheds, 2832 adev->vm_manager.vm_pte_num_scheds, NULL); 2833 if (r) 2834 goto error_free_immediate; 2835 2836 vm->pte_support_ats = false; 2837 vm->is_compute_context = false; 2838 2839 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2840 AMDGPU_VM_USE_CPU_FOR_GFX); 2841 2842 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2843 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2844 WARN_ONCE((vm->use_cpu_for_update && 2845 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2846 "CPU update of VM recommended only for large BAR system\n"); 2847 2848 if (vm->use_cpu_for_update) 2849 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2850 else 2851 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2852 vm->last_update = NULL; 2853 vm->last_unlocked = dma_fence_get_stub(); 2854 2855 mutex_init(&vm->eviction_lock); 2856 vm->evicting = false; 2857 2858 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2859 false, &root); 2860 if (r) 2861 goto error_free_delayed; 2862 2863 r = amdgpu_bo_reserve(root, true); 2864 if (r) 2865 goto error_free_root; 2866 2867 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2868 if (r) 2869 goto error_unreserve; 2870 2871 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2872 2873 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2874 if (r) 2875 goto error_unreserve; 2876 2877 amdgpu_bo_unreserve(vm->root.base.bo); 2878 2879 if (pasid) { 2880 unsigned long flags; 2881 2882 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2883 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2884 GFP_ATOMIC); 2885 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2886 if (r < 0) 2887 goto error_free_root; 2888 2889 vm->pasid = pasid; 2890 } 2891 2892 INIT_KFIFO(vm->faults); 2893 2894 return 0; 2895 2896 error_unreserve: 2897 amdgpu_bo_unreserve(vm->root.base.bo); 2898 2899 error_free_root: 2900 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2901 amdgpu_bo_unref(&vm->root.base.bo); 2902 vm->root.base.bo = NULL; 2903 2904 error_free_delayed: 2905 dma_fence_put(vm->last_unlocked); 2906 drm_sched_entity_destroy(&vm->delayed); 2907 2908 error_free_immediate: 2909 drm_sched_entity_destroy(&vm->immediate); 2910 2911 return r; 2912 } 2913 2914 /** 2915 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2916 * 2917 * @adev: amdgpu_device pointer 2918 * @vm: the VM to check 2919 * 2920 * check all entries of the root PD, if any subsequent PDs are allocated, 2921 * it means there are page table creating and filling, and is no a clean 2922 * VM 2923 * 2924 * Returns: 2925 * 0 if this VM is clean 2926 */ 2927 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2928 struct amdgpu_vm *vm) 2929 { 2930 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2931 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2932 unsigned int i = 0; 2933 2934 if (!(vm->root.entries)) 2935 return 0; 2936 2937 for (i = 0; i < entries; i++) { 2938 if (vm->root.entries[i].base.bo) 2939 return -EINVAL; 2940 } 2941 2942 return 0; 2943 } 2944 2945 /** 2946 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2947 * 2948 * @adev: amdgpu_device pointer 2949 * @vm: requested vm 2950 * @pasid: pasid to use 2951 * 2952 * This only works on GFX VMs that don't have any BOs added and no 2953 * page tables allocated yet. 2954 * 2955 * Changes the following VM parameters: 2956 * - use_cpu_for_update 2957 * - pte_supports_ats 2958 * - pasid (old PASID is released, because compute manages its own PASIDs) 2959 * 2960 * Reinitializes the page directory to reflect the changed ATS 2961 * setting. 2962 * 2963 * Returns: 2964 * 0 for success, -errno for errors. 2965 */ 2966 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2967 u32 pasid) 2968 { 2969 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2970 int r; 2971 2972 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2973 if (r) 2974 return r; 2975 2976 /* Sanity checks */ 2977 r = amdgpu_vm_check_clean_reserved(adev, vm); 2978 if (r) 2979 goto unreserve_bo; 2980 2981 if (pasid) { 2982 unsigned long flags; 2983 2984 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2985 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2986 GFP_ATOMIC); 2987 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2988 2989 if (r == -ENOSPC) 2990 goto unreserve_bo; 2991 r = 0; 2992 } 2993 2994 /* Check if PD needs to be reinitialized and do it before 2995 * changing any other state, in case it fails. 2996 */ 2997 if (pte_support_ats != vm->pte_support_ats) { 2998 vm->pte_support_ats = pte_support_ats; 2999 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 3000 if (r) 3001 goto free_idr; 3002 } 3003 3004 /* Update VM state */ 3005 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3006 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3007 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3008 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3009 WARN_ONCE((vm->use_cpu_for_update && 3010 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3011 "CPU update of VM recommended only for large BAR system\n"); 3012 3013 if (vm->use_cpu_for_update) { 3014 /* Sync with last SDMA update/clear before switching to CPU */ 3015 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3016 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3017 if (r) 3018 goto free_idr; 3019 3020 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3021 } else { 3022 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3023 } 3024 dma_fence_put(vm->last_update); 3025 vm->last_update = NULL; 3026 vm->is_compute_context = true; 3027 3028 if (vm->pasid) { 3029 unsigned long flags; 3030 3031 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3032 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3033 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3034 3035 /* Free the original amdgpu allocated pasid 3036 * Will be replaced with kfd allocated pasid 3037 */ 3038 amdgpu_pasid_free(vm->pasid); 3039 vm->pasid = 0; 3040 } 3041 3042 /* Free the shadow bo for compute VM */ 3043 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3044 3045 if (pasid) 3046 vm->pasid = pasid; 3047 3048 goto unreserve_bo; 3049 3050 free_idr: 3051 if (pasid) { 3052 unsigned long flags; 3053 3054 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3055 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3056 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3057 } 3058 unreserve_bo: 3059 amdgpu_bo_unreserve(vm->root.base.bo); 3060 return r; 3061 } 3062 3063 /** 3064 * amdgpu_vm_release_compute - release a compute vm 3065 * @adev: amdgpu_device pointer 3066 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3067 * 3068 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3069 * pasid from vm. Compute should stop use of vm after this call. 3070 */ 3071 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3072 { 3073 if (vm->pasid) { 3074 unsigned long flags; 3075 3076 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3077 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3078 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3079 } 3080 vm->pasid = 0; 3081 vm->is_compute_context = false; 3082 } 3083 3084 /** 3085 * amdgpu_vm_fini - tear down a vm instance 3086 * 3087 * @adev: amdgpu_device pointer 3088 * @vm: requested vm 3089 * 3090 * Tear down @vm. 3091 * Unbind the VM and remove all bos from the vm bo list 3092 */ 3093 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3094 { 3095 struct amdgpu_bo_va_mapping *mapping, *tmp; 3096 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3097 struct amdgpu_bo *root; 3098 int i; 3099 3100 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3101 3102 root = amdgpu_bo_ref(vm->root.base.bo); 3103 amdgpu_bo_reserve(root, true); 3104 if (vm->pasid) { 3105 unsigned long flags; 3106 3107 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3108 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3109 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3110 vm->pasid = 0; 3111 } 3112 3113 dma_fence_wait(vm->last_unlocked, false); 3114 dma_fence_put(vm->last_unlocked); 3115 3116 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3117 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3118 amdgpu_vm_prt_fini(adev, vm); 3119 prt_fini_needed = false; 3120 } 3121 3122 list_del(&mapping->list); 3123 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3124 } 3125 3126 amdgpu_vm_free_pts(adev, vm, NULL); 3127 amdgpu_bo_unreserve(root); 3128 amdgpu_bo_unref(&root); 3129 WARN_ON(vm->root.base.bo); 3130 3131 drm_sched_entity_destroy(&vm->immediate); 3132 drm_sched_entity_destroy(&vm->delayed); 3133 3134 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3135 dev_err(adev->dev, "still active bo inside vm\n"); 3136 } 3137 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3138 &vm->va.rb_root, rb) { 3139 /* Don't remove the mapping here, we don't want to trigger a 3140 * rebalance and the tree is about to be destroyed anyway. 3141 */ 3142 list_del(&mapping->list); 3143 kfree(mapping); 3144 } 3145 3146 dma_fence_put(vm->last_update); 3147 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3148 amdgpu_vmid_free_reserved(adev, vm, i); 3149 } 3150 3151 /** 3152 * amdgpu_vm_manager_init - init the VM manager 3153 * 3154 * @adev: amdgpu_device pointer 3155 * 3156 * Initialize the VM manager structures 3157 */ 3158 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3159 { 3160 unsigned i; 3161 3162 /* Concurrent flushes are only possible starting with Vega10 and 3163 * are broken on Navi10 and Navi14. 3164 */ 3165 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3166 adev->asic_type == CHIP_NAVI10 || 3167 adev->asic_type == CHIP_NAVI14); 3168 amdgpu_vmid_mgr_init(adev); 3169 3170 adev->vm_manager.fence_context = 3171 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3172 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3173 adev->vm_manager.seqno[i] = 0; 3174 3175 spin_lock_init(&adev->vm_manager.prt_lock); 3176 atomic_set(&adev->vm_manager.num_prt_users, 0); 3177 3178 /* If not overridden by the user, by default, only in large BAR systems 3179 * Compute VM tables will be updated by CPU 3180 */ 3181 #ifdef CONFIG_X86_64 3182 if (amdgpu_vm_update_mode == -1) { 3183 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3184 adev->vm_manager.vm_update_mode = 3185 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3186 else 3187 adev->vm_manager.vm_update_mode = 0; 3188 } else 3189 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3190 #else 3191 adev->vm_manager.vm_update_mode = 0; 3192 #endif 3193 3194 idr_init(&adev->vm_manager.pasid_idr); 3195 spin_lock_init(&adev->vm_manager.pasid_lock); 3196 } 3197 3198 /** 3199 * amdgpu_vm_manager_fini - cleanup VM manager 3200 * 3201 * @adev: amdgpu_device pointer 3202 * 3203 * Cleanup the VM manager and free resources. 3204 */ 3205 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3206 { 3207 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3208 idr_destroy(&adev->vm_manager.pasid_idr); 3209 3210 amdgpu_vmid_mgr_fini(adev); 3211 } 3212 3213 /** 3214 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3215 * 3216 * @dev: drm device pointer 3217 * @data: drm_amdgpu_vm 3218 * @filp: drm file pointer 3219 * 3220 * Returns: 3221 * 0 for success, -errno for errors. 3222 */ 3223 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3224 { 3225 union drm_amdgpu_vm *args = data; 3226 struct amdgpu_device *adev = drm_to_adev(dev); 3227 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3228 long timeout = msecs_to_jiffies(2000); 3229 int r; 3230 3231 switch (args->in.op) { 3232 case AMDGPU_VM_OP_RESERVE_VMID: 3233 /* We only have requirement to reserve vmid from gfxhub */ 3234 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3235 AMDGPU_GFXHUB_0); 3236 if (r) 3237 return r; 3238 break; 3239 case AMDGPU_VM_OP_UNRESERVE_VMID: 3240 if (amdgpu_sriov_runtime(adev)) 3241 timeout = 8 * timeout; 3242 3243 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3244 * not referenced anymore. 3245 */ 3246 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3247 if (r) 3248 return r; 3249 3250 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3251 if (r < 0) 3252 return r; 3253 3254 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3255 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3256 break; 3257 default: 3258 return -EINVAL; 3259 } 3260 3261 return 0; 3262 } 3263 3264 /** 3265 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3266 * 3267 * @adev: drm device pointer 3268 * @pasid: PASID identifier for VM 3269 * @task_info: task_info to fill. 3270 */ 3271 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3272 struct amdgpu_task_info *task_info) 3273 { 3274 struct amdgpu_vm *vm; 3275 unsigned long flags; 3276 3277 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3278 3279 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3280 if (vm) 3281 *task_info = vm->task_info; 3282 3283 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3284 } 3285 3286 /** 3287 * amdgpu_vm_set_task_info - Sets VMs task info. 3288 * 3289 * @vm: vm for which to set the info 3290 */ 3291 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3292 { 3293 if (vm->task_info.pid) 3294 return; 3295 3296 vm->task_info.pid = current->pid; 3297 get_task_comm(vm->task_info.task_name, current); 3298 3299 if (current->group_leader->mm != current->mm) 3300 return; 3301 3302 vm->task_info.tgid = current->group_leader->pid; 3303 get_task_comm(vm->task_info.process_name, current->group_leader); 3304 } 3305 3306 /** 3307 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3308 * @adev: amdgpu device pointer 3309 * @pasid: PASID of the VM 3310 * @addr: Address of the fault 3311 * 3312 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3313 * shouldn't be reported any more. 3314 */ 3315 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3316 uint64_t addr) 3317 { 3318 bool is_compute_context = false; 3319 struct amdgpu_bo *root; 3320 uint64_t value, flags; 3321 struct amdgpu_vm *vm; 3322 int r; 3323 3324 spin_lock(&adev->vm_manager.pasid_lock); 3325 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3326 if (vm) { 3327 root = amdgpu_bo_ref(vm->root.base.bo); 3328 is_compute_context = vm->is_compute_context; 3329 } else { 3330 root = NULL; 3331 } 3332 spin_unlock(&adev->vm_manager.pasid_lock); 3333 3334 if (!root) 3335 return false; 3336 3337 addr /= AMDGPU_GPU_PAGE_SIZE; 3338 3339 if (is_compute_context && 3340 !svm_range_restore_pages(adev, pasid, addr)) { 3341 amdgpu_bo_unref(&root); 3342 return true; 3343 } 3344 3345 r = amdgpu_bo_reserve(root, true); 3346 if (r) 3347 goto error_unref; 3348 3349 /* Double check that the VM still exists */ 3350 spin_lock(&adev->vm_manager.pasid_lock); 3351 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3352 if (vm && vm->root.base.bo != root) 3353 vm = NULL; 3354 spin_unlock(&adev->vm_manager.pasid_lock); 3355 if (!vm) 3356 goto error_unlock; 3357 3358 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3359 AMDGPU_PTE_SYSTEM; 3360 3361 if (is_compute_context) { 3362 /* Intentionally setting invalid PTE flag 3363 * combination to force a no-retry-fault 3364 */ 3365 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3366 AMDGPU_PTE_TF; 3367 value = 0; 3368 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3369 /* Redirect the access to the dummy page */ 3370 value = adev->dummy_page_addr; 3371 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3372 AMDGPU_PTE_WRITEABLE; 3373 3374 } else { 3375 /* Let the hw retry silently on the PTE */ 3376 value = 0; 3377 } 3378 3379 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3380 if (r) { 3381 pr_debug("failed %d to reserve fence slot\n", r); 3382 goto error_unlock; 3383 } 3384 3385 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3386 addr, flags, value, NULL, NULL, 3387 NULL); 3388 if (r) 3389 goto error_unlock; 3390 3391 r = amdgpu_vm_update_pdes(adev, vm, true); 3392 3393 error_unlock: 3394 amdgpu_bo_unreserve(root); 3395 if (r < 0) 3396 DRM_ERROR("Can't handle page fault (%d)\n", r); 3397 3398 error_unref: 3399 amdgpu_bo_unref(&root); 3400 3401 return false; 3402 } 3403 3404 #if defined(CONFIG_DEBUG_FS) 3405 /** 3406 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3407 * 3408 * @vm: Requested VM for printing BO info 3409 * @m: debugfs file 3410 * 3411 * Print BO information in debugfs file for the VM 3412 */ 3413 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3414 { 3415 struct amdgpu_bo_va *bo_va, *tmp; 3416 u64 total_idle = 0; 3417 u64 total_evicted = 0; 3418 u64 total_relocated = 0; 3419 u64 total_moved = 0; 3420 u64 total_invalidated = 0; 3421 u64 total_done = 0; 3422 unsigned int total_idle_objs = 0; 3423 unsigned int total_evicted_objs = 0; 3424 unsigned int total_relocated_objs = 0; 3425 unsigned int total_moved_objs = 0; 3426 unsigned int total_invalidated_objs = 0; 3427 unsigned int total_done_objs = 0; 3428 unsigned int id = 0; 3429 3430 seq_puts(m, "\tIdle BOs:\n"); 3431 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3432 if (!bo_va->base.bo) 3433 continue; 3434 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3435 } 3436 total_idle_objs = id; 3437 id = 0; 3438 3439 seq_puts(m, "\tEvicted BOs:\n"); 3440 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3441 if (!bo_va->base.bo) 3442 continue; 3443 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3444 } 3445 total_evicted_objs = id; 3446 id = 0; 3447 3448 seq_puts(m, "\tRelocated BOs:\n"); 3449 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3450 if (!bo_va->base.bo) 3451 continue; 3452 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3453 } 3454 total_relocated_objs = id; 3455 id = 0; 3456 3457 seq_puts(m, "\tMoved BOs:\n"); 3458 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3459 if (!bo_va->base.bo) 3460 continue; 3461 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3462 } 3463 total_moved_objs = id; 3464 id = 0; 3465 3466 seq_puts(m, "\tInvalidated BOs:\n"); 3467 spin_lock(&vm->invalidated_lock); 3468 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3469 if (!bo_va->base.bo) 3470 continue; 3471 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3472 } 3473 total_invalidated_objs = id; 3474 id = 0; 3475 3476 seq_puts(m, "\tDone BOs:\n"); 3477 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3478 if (!bo_va->base.bo) 3479 continue; 3480 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3481 } 3482 spin_unlock(&vm->invalidated_lock); 3483 total_done_objs = id; 3484 3485 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3486 total_idle_objs); 3487 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3488 total_evicted_objs); 3489 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3490 total_relocated_objs); 3491 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3492 total_moved_objs); 3493 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3494 total_invalidated_objs); 3495 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3496 total_done_objs); 3497 } 3498 #endif 3499