1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40 #include "kfd_svm.h"
41 
42 /**
43  * DOC: GPUVM
44  *
45  * GPUVM is similar to the legacy gart on older asics, however
46  * rather than there being a single global gart table
47  * for the entire GPU, there are multiple VM page tables active
48  * at any given time.  The VM page tables can contain a mix
49  * vram pages and system memory pages and system memory pages
50  * can be mapped as snooped (cached system pages) or unsnooped
51  * (uncached system pages).
52  * Each VM has an ID associated with it and there is a page table
53  * associated with each VMID.  When execting a command buffer,
54  * the kernel tells the the ring what VMID to use for that command
55  * buffer.  VMIDs are allocated dynamically as commands are submitted.
56  * The userspace drivers maintain their own address space and the kernel
57  * sets up their pages tables accordingly when they submit their
58  * command buffers and a VMID is assigned.
59  * Cayman/Trinity support up to 8 active VMs at any given time;
60  * SI supports 16.
61  */
62 
63 #define START(node) ((node)->start)
64 #define LAST(node) ((node)->last)
65 
66 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
67 		     START, LAST, static, amdgpu_vm_it)
68 
69 #undef START
70 #undef LAST
71 
72 /**
73  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
74  */
75 struct amdgpu_prt_cb {
76 
77 	/**
78 	 * @adev: amdgpu device
79 	 */
80 	struct amdgpu_device *adev;
81 
82 	/**
83 	 * @cb: callback
84 	 */
85 	struct dma_fence_cb cb;
86 };
87 
88 /*
89  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
90  * happens while holding this lock anywhere to prevent deadlocks when
91  * an MMU notifier runs in reclaim-FS context.
92  */
93 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
94 {
95 	mutex_lock(&vm->eviction_lock);
96 	vm->saved_flags = memalloc_noreclaim_save();
97 }
98 
99 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
100 {
101 	if (mutex_trylock(&vm->eviction_lock)) {
102 		vm->saved_flags = memalloc_noreclaim_save();
103 		return 1;
104 	}
105 	return 0;
106 }
107 
108 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
109 {
110 	memalloc_noreclaim_restore(vm->saved_flags);
111 	mutex_unlock(&vm->eviction_lock);
112 }
113 
114 /**
115  * amdgpu_vm_level_shift - return the addr shift for each level
116  *
117  * @adev: amdgpu_device pointer
118  * @level: VMPT level
119  *
120  * Returns:
121  * The number of bits the pfn needs to be right shifted for a level.
122  */
123 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
124 				      unsigned level)
125 {
126 	switch (level) {
127 	case AMDGPU_VM_PDB2:
128 	case AMDGPU_VM_PDB1:
129 	case AMDGPU_VM_PDB0:
130 		return 9 * (AMDGPU_VM_PDB0 - level) +
131 			adev->vm_manager.block_size;
132 	case AMDGPU_VM_PTB:
133 		return 0;
134 	default:
135 		return ~0;
136 	}
137 }
138 
139 /**
140  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
141  *
142  * @adev: amdgpu_device pointer
143  * @level: VMPT level
144  *
145  * Returns:
146  * The number of entries in a page directory or page table.
147  */
148 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
149 				      unsigned level)
150 {
151 	unsigned shift = amdgpu_vm_level_shift(adev,
152 					       adev->vm_manager.root_level);
153 
154 	if (level == adev->vm_manager.root_level)
155 		/* For the root directory */
156 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
157 			>> shift;
158 	else if (level != AMDGPU_VM_PTB)
159 		/* Everything in between */
160 		return 512;
161 	else
162 		/* For the page tables on the leaves */
163 		return AMDGPU_VM_PTE_COUNT(adev);
164 }
165 
166 /**
167  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
168  *
169  * @adev: amdgpu_device pointer
170  *
171  * Returns:
172  * The number of entries in the root page directory which needs the ATS setting.
173  */
174 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
175 {
176 	unsigned shift;
177 
178 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
179 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
180 }
181 
182 /**
183  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The mask to extract the entry number of a PD/PT from an address.
190  */
191 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
192 				       unsigned int level)
193 {
194 	if (level <= adev->vm_manager.root_level)
195 		return 0xffffffff;
196 	else if (level != AMDGPU_VM_PTB)
197 		return 0x1ff;
198 	else
199 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
200 }
201 
202 /**
203  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
204  *
205  * @adev: amdgpu_device pointer
206  * @level: VMPT level
207  *
208  * Returns:
209  * The size of the BO for a page directory or page table in bytes.
210  */
211 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
212 {
213 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
214 }
215 
216 /**
217  * amdgpu_vm_bo_evicted - vm_bo is evicted
218  *
219  * @vm_bo: vm_bo which is evicted
220  *
221  * State for PDs/PTs and per VM BOs which are not at the location they should
222  * be.
223  */
224 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
225 {
226 	struct amdgpu_vm *vm = vm_bo->vm;
227 	struct amdgpu_bo *bo = vm_bo->bo;
228 
229 	vm_bo->moved = true;
230 	if (bo->tbo.type == ttm_bo_type_kernel)
231 		list_move(&vm_bo->vm_status, &vm->evicted);
232 	else
233 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
234 }
235 /**
236  * amdgpu_vm_bo_moved - vm_bo is moved
237  *
238  * @vm_bo: vm_bo which is moved
239  *
240  * State for per VM BOs which are moved, but that change is not yet reflected
241  * in the page tables.
242  */
243 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
244 {
245 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
246 }
247 
248 /**
249  * amdgpu_vm_bo_idle - vm_bo is idle
250  *
251  * @vm_bo: vm_bo which is now idle
252  *
253  * State for PDs/PTs and per VM BOs which have gone through the state machine
254  * and are now idle.
255  */
256 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
257 {
258 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
259 	vm_bo->moved = false;
260 }
261 
262 /**
263  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
264  *
265  * @vm_bo: vm_bo which is now invalidated
266  *
267  * State for normal BOs which are invalidated and that change not yet reflected
268  * in the PTs.
269  */
270 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
271 {
272 	spin_lock(&vm_bo->vm->invalidated_lock);
273 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
274 	spin_unlock(&vm_bo->vm->invalidated_lock);
275 }
276 
277 /**
278  * amdgpu_vm_bo_relocated - vm_bo is reloacted
279  *
280  * @vm_bo: vm_bo which is relocated
281  *
282  * State for PDs/PTs which needs to update their parent PD.
283  * For the root PD, just move to idle state.
284  */
285 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
286 {
287 	if (vm_bo->bo->parent)
288 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
289 	else
290 		amdgpu_vm_bo_idle(vm_bo);
291 }
292 
293 /**
294  * amdgpu_vm_bo_done - vm_bo is done
295  *
296  * @vm_bo: vm_bo which is now done
297  *
298  * State for normal BOs which are invalidated and that change has been updated
299  * in the PTs.
300  */
301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
302 {
303 	spin_lock(&vm_bo->vm->invalidated_lock);
304 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
305 	spin_unlock(&vm_bo->vm->invalidated_lock);
306 }
307 
308 /**
309  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
310  *
311  * @base: base structure for tracking BO usage in a VM
312  * @vm: vm to which bo is to be added
313  * @bo: amdgpu buffer object
314  *
315  * Initialize a bo_va_base structure and add it to the appropriate lists
316  *
317  */
318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
319 				   struct amdgpu_vm *vm,
320 				   struct amdgpu_bo *bo)
321 {
322 	base->vm = vm;
323 	base->bo = bo;
324 	base->next = NULL;
325 	INIT_LIST_HEAD(&base->vm_status);
326 
327 	if (!bo)
328 		return;
329 	base->next = bo->vm_bo;
330 	bo->vm_bo = base;
331 
332 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
333 		return;
334 
335 	vm->bulk_moveable = false;
336 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
337 		amdgpu_vm_bo_relocated(base);
338 	else
339 		amdgpu_vm_bo_idle(base);
340 
341 	if (bo->preferred_domains &
342 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
343 		return;
344 
345 	/*
346 	 * we checked all the prerequisites, but it looks like this per vm bo
347 	 * is currently evicted. add the bo to the evicted list to make sure it
348 	 * is validated on next vm use to avoid fault.
349 	 * */
350 	amdgpu_vm_bo_evicted(base);
351 }
352 
353 /**
354  * amdgpu_vm_pt_parent - get the parent page directory
355  *
356  * @pt: child page table
357  *
358  * Helper to get the parent entry for the child page table. NULL if we are at
359  * the root page directory.
360  */
361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
362 {
363 	struct amdgpu_bo *parent = pt->base.bo->parent;
364 
365 	if (!parent)
366 		return NULL;
367 
368 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
369 }
370 
371 /*
372  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
373  */
374 struct amdgpu_vm_pt_cursor {
375 	uint64_t pfn;
376 	struct amdgpu_vm_pt *parent;
377 	struct amdgpu_vm_pt *entry;
378 	unsigned level;
379 };
380 
381 /**
382  * amdgpu_vm_pt_start - start PD/PT walk
383  *
384  * @adev: amdgpu_device pointer
385  * @vm: amdgpu_vm structure
386  * @start: start address of the walk
387  * @cursor: state to initialize
388  *
389  * Initialize a amdgpu_vm_pt_cursor to start a walk.
390  */
391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
392 			       struct amdgpu_vm *vm, uint64_t start,
393 			       struct amdgpu_vm_pt_cursor *cursor)
394 {
395 	cursor->pfn = start;
396 	cursor->parent = NULL;
397 	cursor->entry = &vm->root;
398 	cursor->level = adev->vm_manager.root_level;
399 }
400 
401 /**
402  * amdgpu_vm_pt_descendant - go to child node
403  *
404  * @adev: amdgpu_device pointer
405  * @cursor: current state
406  *
407  * Walk to the child node of the current node.
408  * Returns:
409  * True if the walk was possible, false otherwise.
410  */
411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
412 				    struct amdgpu_vm_pt_cursor *cursor)
413 {
414 	unsigned mask, shift, idx;
415 
416 	if (!cursor->entry->entries)
417 		return false;
418 
419 	BUG_ON(!cursor->entry->base.bo);
420 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
421 	shift = amdgpu_vm_level_shift(adev, cursor->level);
422 
423 	++cursor->level;
424 	idx = (cursor->pfn >> shift) & mask;
425 	cursor->parent = cursor->entry;
426 	cursor->entry = &cursor->entry->entries[idx];
427 	return true;
428 }
429 
430 /**
431  * amdgpu_vm_pt_sibling - go to sibling node
432  *
433  * @adev: amdgpu_device pointer
434  * @cursor: current state
435  *
436  * Walk to the sibling node of the current node.
437  * Returns:
438  * True if the walk was possible, false otherwise.
439  */
440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
441 				 struct amdgpu_vm_pt_cursor *cursor)
442 {
443 	unsigned shift, num_entries;
444 
445 	/* Root doesn't have a sibling */
446 	if (!cursor->parent)
447 		return false;
448 
449 	/* Go to our parents and see if we got a sibling */
450 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
451 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
452 
453 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
454 		return false;
455 
456 	cursor->pfn += 1ULL << shift;
457 	cursor->pfn &= ~((1ULL << shift) - 1);
458 	++cursor->entry;
459 	return true;
460 }
461 
462 /**
463  * amdgpu_vm_pt_ancestor - go to parent node
464  *
465  * @cursor: current state
466  *
467  * Walk to the parent node of the current node.
468  * Returns:
469  * True if the walk was possible, false otherwise.
470  */
471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
472 {
473 	if (!cursor->parent)
474 		return false;
475 
476 	--cursor->level;
477 	cursor->entry = cursor->parent;
478 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
479 	return true;
480 }
481 
482 /**
483  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
484  *
485  * @adev: amdgpu_device pointer
486  * @cursor: current state
487  *
488  * Walk the PD/PT tree to the next node.
489  */
490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
491 			      struct amdgpu_vm_pt_cursor *cursor)
492 {
493 	/* First try a newborn child */
494 	if (amdgpu_vm_pt_descendant(adev, cursor))
495 		return;
496 
497 	/* If that didn't worked try to find a sibling */
498 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
499 		/* No sibling, go to our parents and grandparents */
500 		if (!amdgpu_vm_pt_ancestor(cursor)) {
501 			cursor->pfn = ~0ll;
502 			return;
503 		}
504 	}
505 }
506 
507 /**
508  * amdgpu_vm_pt_first_dfs - start a deep first search
509  *
510  * @adev: amdgpu_device structure
511  * @vm: amdgpu_vm structure
512  * @start: optional cursor to start with
513  * @cursor: state to initialize
514  *
515  * Starts a deep first traversal of the PD/PT tree.
516  */
517 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
518 				   struct amdgpu_vm *vm,
519 				   struct amdgpu_vm_pt_cursor *start,
520 				   struct amdgpu_vm_pt_cursor *cursor)
521 {
522 	if (start)
523 		*cursor = *start;
524 	else
525 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
526 	while (amdgpu_vm_pt_descendant(adev, cursor));
527 }
528 
529 /**
530  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
531  *
532  * @start: starting point for the search
533  * @entry: current entry
534  *
535  * Returns:
536  * True when the search should continue, false otherwise.
537  */
538 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
539 				      struct amdgpu_vm_pt *entry)
540 {
541 	return entry && (!start || entry != start->entry);
542 }
543 
544 /**
545  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
546  *
547  * @adev: amdgpu_device structure
548  * @cursor: current state
549  *
550  * Move the cursor to the next node in a deep first search.
551  */
552 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
553 				  struct amdgpu_vm_pt_cursor *cursor)
554 {
555 	if (!cursor->entry)
556 		return;
557 
558 	if (!cursor->parent)
559 		cursor->entry = NULL;
560 	else if (amdgpu_vm_pt_sibling(adev, cursor))
561 		while (amdgpu_vm_pt_descendant(adev, cursor));
562 	else
563 		amdgpu_vm_pt_ancestor(cursor);
564 }
565 
566 /*
567  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
568  */
569 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
570 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
571 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
572 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
573 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
574 
575 /**
576  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
577  *
578  * @vm: vm providing the BOs
579  * @validated: head of validation list
580  * @entry: entry to add
581  *
582  * Add the page directory to the list of BOs to
583  * validate for command submission.
584  */
585 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
586 			 struct list_head *validated,
587 			 struct amdgpu_bo_list_entry *entry)
588 {
589 	entry->priority = 0;
590 	entry->tv.bo = &vm->root.base.bo->tbo;
591 	/* Two for VM updates, one for TTM and one for the CS job */
592 	entry->tv.num_shared = 4;
593 	entry->user_pages = NULL;
594 	list_add(&entry->tv.head, validated);
595 }
596 
597 /**
598  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
599  *
600  * @bo: BO which was removed from the LRU
601  *
602  * Make sure the bulk_moveable flag is updated when a BO is removed from the
603  * LRU.
604  */
605 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
606 {
607 	struct amdgpu_bo *abo;
608 	struct amdgpu_vm_bo_base *bo_base;
609 
610 	if (!amdgpu_bo_is_amdgpu_bo(bo))
611 		return;
612 
613 	if (bo->pin_count)
614 		return;
615 
616 	abo = ttm_to_amdgpu_bo(bo);
617 	if (!abo->parent)
618 		return;
619 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
620 		struct amdgpu_vm *vm = bo_base->vm;
621 
622 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
623 			vm->bulk_moveable = false;
624 	}
625 
626 }
627 /**
628  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
629  *
630  * @adev: amdgpu device pointer
631  * @vm: vm providing the BOs
632  *
633  * Move all BOs to the end of LRU and remember their positions to put them
634  * together.
635  */
636 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
637 				struct amdgpu_vm *vm)
638 {
639 	struct amdgpu_vm_bo_base *bo_base;
640 
641 	if (vm->bulk_moveable) {
642 		spin_lock(&adev->mman.bdev.lru_lock);
643 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
644 		spin_unlock(&adev->mman.bdev.lru_lock);
645 		return;
646 	}
647 
648 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
649 
650 	spin_lock(&adev->mman.bdev.lru_lock);
651 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
652 		struct amdgpu_bo *bo = bo_base->bo;
653 
654 		if (!bo->parent)
655 			continue;
656 
657 		ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem,
658 					&vm->lru_bulk_move);
659 		if (bo->shadow)
660 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
661 						&bo->shadow->tbo.mem,
662 						&vm->lru_bulk_move);
663 	}
664 	spin_unlock(&adev->mman.bdev.lru_lock);
665 
666 	vm->bulk_moveable = true;
667 }
668 
669 /**
670  * amdgpu_vm_validate_pt_bos - validate the page table BOs
671  *
672  * @adev: amdgpu device pointer
673  * @vm: vm providing the BOs
674  * @validate: callback to do the validation
675  * @param: parameter for the validation callback
676  *
677  * Validate the page table BOs on command submission if neccessary.
678  *
679  * Returns:
680  * Validation result.
681  */
682 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
683 			      int (*validate)(void *p, struct amdgpu_bo *bo),
684 			      void *param)
685 {
686 	struct amdgpu_vm_bo_base *bo_base, *tmp;
687 	int r;
688 
689 	vm->bulk_moveable &= list_empty(&vm->evicted);
690 
691 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
692 		struct amdgpu_bo *bo = bo_base->bo;
693 
694 		r = validate(param, bo);
695 		if (r)
696 			return r;
697 
698 		if (bo->tbo.type != ttm_bo_type_kernel) {
699 			amdgpu_vm_bo_moved(bo_base);
700 		} else {
701 			vm->update_funcs->map_table(bo);
702 			amdgpu_vm_bo_relocated(bo_base);
703 		}
704 	}
705 
706 	amdgpu_vm_eviction_lock(vm);
707 	vm->evicting = false;
708 	amdgpu_vm_eviction_unlock(vm);
709 
710 	return 0;
711 }
712 
713 /**
714  * amdgpu_vm_ready - check VM is ready for updates
715  *
716  * @vm: VM to check
717  *
718  * Check if all VM PDs/PTs are ready for updates
719  *
720  * Returns:
721  * True if eviction list is empty.
722  */
723 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
724 {
725 	return list_empty(&vm->evicted);
726 }
727 
728 /**
729  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
730  *
731  * @adev: amdgpu_device pointer
732  * @vm: VM to clear BO from
733  * @bo: BO to clear
734  * @immediate: use an immediate update
735  *
736  * Root PD needs to be reserved when calling this.
737  *
738  * Returns:
739  * 0 on success, errno otherwise.
740  */
741 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
742 			      struct amdgpu_vm *vm,
743 			      struct amdgpu_bo *bo,
744 			      bool immediate)
745 {
746 	struct ttm_operation_ctx ctx = { true, false };
747 	unsigned level = adev->vm_manager.root_level;
748 	struct amdgpu_vm_update_params params;
749 	struct amdgpu_bo *ancestor = bo;
750 	unsigned entries, ats_entries;
751 	uint64_t addr;
752 	int r;
753 
754 	/* Figure out our place in the hierarchy */
755 	if (ancestor->parent) {
756 		++level;
757 		while (ancestor->parent->parent) {
758 			++level;
759 			ancestor = ancestor->parent;
760 		}
761 	}
762 
763 	entries = amdgpu_bo_size(bo) / 8;
764 	if (!vm->pte_support_ats) {
765 		ats_entries = 0;
766 
767 	} else if (!bo->parent) {
768 		ats_entries = amdgpu_vm_num_ats_entries(adev);
769 		ats_entries = min(ats_entries, entries);
770 		entries -= ats_entries;
771 
772 	} else {
773 		struct amdgpu_vm_pt *pt;
774 
775 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
776 		ats_entries = amdgpu_vm_num_ats_entries(adev);
777 		if ((pt - vm->root.entries) >= ats_entries) {
778 			ats_entries = 0;
779 		} else {
780 			ats_entries = entries;
781 			entries = 0;
782 		}
783 	}
784 
785 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
786 	if (r)
787 		return r;
788 
789 	if (bo->shadow) {
790 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
791 				    &ctx);
792 		if (r)
793 			return r;
794 	}
795 
796 	r = vm->update_funcs->map_table(bo);
797 	if (r)
798 		return r;
799 
800 	memset(&params, 0, sizeof(params));
801 	params.adev = adev;
802 	params.vm = vm;
803 	params.immediate = immediate;
804 
805 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
806 	if (r)
807 		return r;
808 
809 	addr = 0;
810 	if (ats_entries) {
811 		uint64_t value = 0, flags;
812 
813 		flags = AMDGPU_PTE_DEFAULT_ATC;
814 		if (level != AMDGPU_VM_PTB) {
815 			/* Handle leaf PDEs as PTEs */
816 			flags |= AMDGPU_PDE_PTE;
817 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
818 		}
819 
820 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
821 					     value, flags);
822 		if (r)
823 			return r;
824 
825 		addr += ats_entries * 8;
826 	}
827 
828 	if (entries) {
829 		uint64_t value = 0, flags = 0;
830 
831 		if (adev->asic_type >= CHIP_VEGA10) {
832 			if (level != AMDGPU_VM_PTB) {
833 				/* Handle leaf PDEs as PTEs */
834 				flags |= AMDGPU_PDE_PTE;
835 				amdgpu_gmc_get_vm_pde(adev, level,
836 						      &value, &flags);
837 			} else {
838 				/* Workaround for fault priority problem on GMC9 */
839 				flags = AMDGPU_PTE_EXECUTABLE;
840 			}
841 		}
842 
843 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
844 					     value, flags);
845 		if (r)
846 			return r;
847 	}
848 
849 	return vm->update_funcs->commit(&params, NULL);
850 }
851 
852 /**
853  * amdgpu_vm_pt_create - create bo for PD/PT
854  *
855  * @adev: amdgpu_device pointer
856  * @vm: requesting vm
857  * @level: the page table level
858  * @immediate: use a immediate update
859  * @bo: pointer to the buffer object pointer
860  */
861 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
862 			       struct amdgpu_vm *vm,
863 			       int level, bool immediate,
864 			       struct amdgpu_bo **bo)
865 {
866 	struct amdgpu_bo_param bp;
867 	int r;
868 
869 	memset(&bp, 0, sizeof(bp));
870 
871 	bp.size = amdgpu_vm_bo_size(adev, level);
872 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
873 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
874 	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
875 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
876 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
877 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
878 	if (vm->use_cpu_for_update)
879 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
880 
881 	bp.type = ttm_bo_type_kernel;
882 	bp.no_wait_gpu = immediate;
883 	if (vm->root.base.bo)
884 		bp.resv = vm->root.base.bo->tbo.base.resv;
885 
886 	r = amdgpu_bo_create(adev, &bp, bo);
887 	if (r)
888 		return r;
889 
890 	if (vm->is_compute_context && (adev->flags & AMD_IS_APU))
891 		return 0;
892 
893 	if (!bp.resv)
894 		WARN_ON(dma_resv_lock((*bo)->tbo.base.resv,
895 				      NULL));
896 	r = amdgpu_bo_create_shadow(adev, bp.size, *bo);
897 
898 	if (!bp.resv)
899 		dma_resv_unlock((*bo)->tbo.base.resv);
900 
901 	if (r) {
902 		amdgpu_bo_unref(bo);
903 		return r;
904 	}
905 
906 	return 0;
907 }
908 
909 /**
910  * amdgpu_vm_alloc_pts - Allocate a specific page table
911  *
912  * @adev: amdgpu_device pointer
913  * @vm: VM to allocate page tables for
914  * @cursor: Which page table to allocate
915  * @immediate: use an immediate update
916  *
917  * Make sure a specific page table or directory is allocated.
918  *
919  * Returns:
920  * 1 if page table needed to be allocated, 0 if page table was already
921  * allocated, negative errno if an error occurred.
922  */
923 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
924 			       struct amdgpu_vm *vm,
925 			       struct amdgpu_vm_pt_cursor *cursor,
926 			       bool immediate)
927 {
928 	struct amdgpu_vm_pt *entry = cursor->entry;
929 	struct amdgpu_bo *pt;
930 	int r;
931 
932 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
933 		unsigned num_entries;
934 
935 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
936 		entry->entries = kvmalloc_array(num_entries,
937 						sizeof(*entry->entries),
938 						GFP_KERNEL | __GFP_ZERO);
939 		if (!entry->entries)
940 			return -ENOMEM;
941 	}
942 
943 	if (entry->base.bo)
944 		return 0;
945 
946 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
947 	if (r)
948 		return r;
949 
950 	/* Keep a reference to the root directory to avoid
951 	 * freeing them up in the wrong order.
952 	 */
953 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
954 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
955 
956 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
957 	if (r)
958 		goto error_free_pt;
959 
960 	return 0;
961 
962 error_free_pt:
963 	amdgpu_bo_unref(&pt->shadow);
964 	amdgpu_bo_unref(&pt);
965 	return r;
966 }
967 
968 /**
969  * amdgpu_vm_free_table - fre one PD/PT
970  *
971  * @entry: PDE to free
972  */
973 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
974 {
975 	if (entry->base.bo) {
976 		entry->base.bo->vm_bo = NULL;
977 		list_del(&entry->base.vm_status);
978 		amdgpu_bo_unref(&entry->base.bo->shadow);
979 		amdgpu_bo_unref(&entry->base.bo);
980 	}
981 	kvfree(entry->entries);
982 	entry->entries = NULL;
983 }
984 
985 /**
986  * amdgpu_vm_free_pts - free PD/PT levels
987  *
988  * @adev: amdgpu device structure
989  * @vm: amdgpu vm structure
990  * @start: optional cursor where to start freeing PDs/PTs
991  *
992  * Free the page directory or page table level and all sub levels.
993  */
994 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
995 			       struct amdgpu_vm *vm,
996 			       struct amdgpu_vm_pt_cursor *start)
997 {
998 	struct amdgpu_vm_pt_cursor cursor;
999 	struct amdgpu_vm_pt *entry;
1000 
1001 	vm->bulk_moveable = false;
1002 
1003 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1004 		amdgpu_vm_free_table(entry);
1005 
1006 	if (start)
1007 		amdgpu_vm_free_table(start->entry);
1008 }
1009 
1010 /**
1011  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1012  *
1013  * @adev: amdgpu_device pointer
1014  */
1015 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1016 {
1017 	const struct amdgpu_ip_block *ip_block;
1018 	bool has_compute_vm_bug;
1019 	struct amdgpu_ring *ring;
1020 	int i;
1021 
1022 	has_compute_vm_bug = false;
1023 
1024 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1025 	if (ip_block) {
1026 		/* Compute has a VM bug for GFX version < 7.
1027 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1028 		if (ip_block->version->major <= 7)
1029 			has_compute_vm_bug = true;
1030 		else if (ip_block->version->major == 8)
1031 			if (adev->gfx.mec_fw_version < 673)
1032 				has_compute_vm_bug = true;
1033 	}
1034 
1035 	for (i = 0; i < adev->num_rings; i++) {
1036 		ring = adev->rings[i];
1037 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1038 			/* only compute rings */
1039 			ring->has_compute_vm_bug = has_compute_vm_bug;
1040 		else
1041 			ring->has_compute_vm_bug = false;
1042 	}
1043 }
1044 
1045 /**
1046  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1047  *
1048  * @ring: ring on which the job will be submitted
1049  * @job: job to submit
1050  *
1051  * Returns:
1052  * True if sync is needed.
1053  */
1054 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1055 				  struct amdgpu_job *job)
1056 {
1057 	struct amdgpu_device *adev = ring->adev;
1058 	unsigned vmhub = ring->funcs->vmhub;
1059 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1060 	struct amdgpu_vmid *id;
1061 	bool gds_switch_needed;
1062 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1063 
1064 	if (job->vmid == 0)
1065 		return false;
1066 	id = &id_mgr->ids[job->vmid];
1067 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1068 		id->gds_base != job->gds_base ||
1069 		id->gds_size != job->gds_size ||
1070 		id->gws_base != job->gws_base ||
1071 		id->gws_size != job->gws_size ||
1072 		id->oa_base != job->oa_base ||
1073 		id->oa_size != job->oa_size);
1074 
1075 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1076 		return true;
1077 
1078 	return vm_flush_needed || gds_switch_needed;
1079 }
1080 
1081 /**
1082  * amdgpu_vm_flush - hardware flush the vm
1083  *
1084  * @ring: ring to use for flush
1085  * @job:  related job
1086  * @need_pipe_sync: is pipe sync needed
1087  *
1088  * Emit a VM flush when it is necessary.
1089  *
1090  * Returns:
1091  * 0 on success, errno otherwise.
1092  */
1093 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1094 		    bool need_pipe_sync)
1095 {
1096 	struct amdgpu_device *adev = ring->adev;
1097 	unsigned vmhub = ring->funcs->vmhub;
1098 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1099 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1100 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1101 		id->gds_base != job->gds_base ||
1102 		id->gds_size != job->gds_size ||
1103 		id->gws_base != job->gws_base ||
1104 		id->gws_size != job->gws_size ||
1105 		id->oa_base != job->oa_base ||
1106 		id->oa_size != job->oa_size);
1107 	bool vm_flush_needed = job->vm_needs_flush;
1108 	struct dma_fence *fence = NULL;
1109 	bool pasid_mapping_needed = false;
1110 	unsigned patch_offset = 0;
1111 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1112 	int r;
1113 
1114 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1115 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1116 
1117 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1118 		gds_switch_needed = true;
1119 		vm_flush_needed = true;
1120 		pasid_mapping_needed = true;
1121 	}
1122 
1123 	mutex_lock(&id_mgr->lock);
1124 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1125 	    !dma_fence_is_signaled(id->pasid_mapping))
1126 		pasid_mapping_needed = true;
1127 	mutex_unlock(&id_mgr->lock);
1128 
1129 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1130 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1131 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1132 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1133 		ring->funcs->emit_wreg;
1134 
1135 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1136 		return 0;
1137 
1138 	if (ring->funcs->init_cond_exec)
1139 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1140 
1141 	if (need_pipe_sync)
1142 		amdgpu_ring_emit_pipeline_sync(ring);
1143 
1144 	if (vm_flush_needed) {
1145 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1146 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1147 	}
1148 
1149 	if (pasid_mapping_needed)
1150 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1151 
1152 	if (vm_flush_needed || pasid_mapping_needed) {
1153 		r = amdgpu_fence_emit(ring, &fence, 0);
1154 		if (r)
1155 			return r;
1156 	}
1157 
1158 	if (vm_flush_needed) {
1159 		mutex_lock(&id_mgr->lock);
1160 		dma_fence_put(id->last_flush);
1161 		id->last_flush = dma_fence_get(fence);
1162 		id->current_gpu_reset_count =
1163 			atomic_read(&adev->gpu_reset_counter);
1164 		mutex_unlock(&id_mgr->lock);
1165 	}
1166 
1167 	if (pasid_mapping_needed) {
1168 		mutex_lock(&id_mgr->lock);
1169 		id->pasid = job->pasid;
1170 		dma_fence_put(id->pasid_mapping);
1171 		id->pasid_mapping = dma_fence_get(fence);
1172 		mutex_unlock(&id_mgr->lock);
1173 	}
1174 	dma_fence_put(fence);
1175 
1176 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1177 		id->gds_base = job->gds_base;
1178 		id->gds_size = job->gds_size;
1179 		id->gws_base = job->gws_base;
1180 		id->gws_size = job->gws_size;
1181 		id->oa_base = job->oa_base;
1182 		id->oa_size = job->oa_size;
1183 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1184 					    job->gds_size, job->gws_base,
1185 					    job->gws_size, job->oa_base,
1186 					    job->oa_size);
1187 	}
1188 
1189 	if (ring->funcs->patch_cond_exec)
1190 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1191 
1192 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1193 	if (ring->funcs->emit_switch_buffer) {
1194 		amdgpu_ring_emit_switch_buffer(ring);
1195 		amdgpu_ring_emit_switch_buffer(ring);
1196 	}
1197 	return 0;
1198 }
1199 
1200 /**
1201  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1202  *
1203  * @vm: requested vm
1204  * @bo: requested buffer object
1205  *
1206  * Find @bo inside the requested vm.
1207  * Search inside the @bos vm list for the requested vm
1208  * Returns the found bo_va or NULL if none is found
1209  *
1210  * Object has to be reserved!
1211  *
1212  * Returns:
1213  * Found bo_va or NULL.
1214  */
1215 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1216 				       struct amdgpu_bo *bo)
1217 {
1218 	struct amdgpu_vm_bo_base *base;
1219 
1220 	for (base = bo->vm_bo; base; base = base->next) {
1221 		if (base->vm != vm)
1222 			continue;
1223 
1224 		return container_of(base, struct amdgpu_bo_va, base);
1225 	}
1226 	return NULL;
1227 }
1228 
1229 /**
1230  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1231  *
1232  * @pages_addr: optional DMA address to use for lookup
1233  * @addr: the unmapped addr
1234  *
1235  * Look up the physical address of the page that the pte resolves
1236  * to.
1237  *
1238  * Returns:
1239  * The pointer for the page table entry.
1240  */
1241 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1242 {
1243 	uint64_t result;
1244 
1245 	/* page table offset */
1246 	result = pages_addr[addr >> PAGE_SHIFT];
1247 
1248 	/* in case cpu page size != gpu page size*/
1249 	result |= addr & (~PAGE_MASK);
1250 
1251 	result &= 0xFFFFFFFFFFFFF000ULL;
1252 
1253 	return result;
1254 }
1255 
1256 /**
1257  * amdgpu_vm_update_pde - update a single level in the hierarchy
1258  *
1259  * @params: parameters for the update
1260  * @vm: requested vm
1261  * @entry: entry to update
1262  *
1263  * Makes sure the requested entry in parent is up to date.
1264  */
1265 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1266 				struct amdgpu_vm *vm,
1267 				struct amdgpu_vm_pt *entry)
1268 {
1269 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1270 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1271 	uint64_t pde, pt, flags;
1272 	unsigned level;
1273 
1274 	for (level = 0, pbo = bo->parent; pbo; ++level)
1275 		pbo = pbo->parent;
1276 
1277 	level += params->adev->vm_manager.root_level;
1278 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1279 	pde = (entry - parent->entries) * 8;
1280 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1281 }
1282 
1283 /**
1284  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1285  *
1286  * @adev: amdgpu_device pointer
1287  * @vm: related vm
1288  *
1289  * Mark all PD level as invalid after an error.
1290  */
1291 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1292 				     struct amdgpu_vm *vm)
1293 {
1294 	struct amdgpu_vm_pt_cursor cursor;
1295 	struct amdgpu_vm_pt *entry;
1296 
1297 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1298 		if (entry->base.bo && !entry->base.moved)
1299 			amdgpu_vm_bo_relocated(&entry->base);
1300 }
1301 
1302 /**
1303  * amdgpu_vm_update_pdes - make sure that all directories are valid
1304  *
1305  * @adev: amdgpu_device pointer
1306  * @vm: requested vm
1307  * @immediate: submit immediately to the paging queue
1308  *
1309  * Makes sure all directories are up to date.
1310  *
1311  * Returns:
1312  * 0 for success, error for failure.
1313  */
1314 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1315 			  struct amdgpu_vm *vm, bool immediate)
1316 {
1317 	struct amdgpu_vm_update_params params;
1318 	int r;
1319 
1320 	if (list_empty(&vm->relocated))
1321 		return 0;
1322 
1323 	memset(&params, 0, sizeof(params));
1324 	params.adev = adev;
1325 	params.vm = vm;
1326 	params.immediate = immediate;
1327 
1328 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1329 	if (r)
1330 		return r;
1331 
1332 	while (!list_empty(&vm->relocated)) {
1333 		struct amdgpu_vm_pt *entry;
1334 
1335 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1336 					 base.vm_status);
1337 		amdgpu_vm_bo_idle(&entry->base);
1338 
1339 		r = amdgpu_vm_update_pde(&params, vm, entry);
1340 		if (r)
1341 			goto error;
1342 	}
1343 
1344 	r = vm->update_funcs->commit(&params, &vm->last_update);
1345 	if (r)
1346 		goto error;
1347 	return 0;
1348 
1349 error:
1350 	amdgpu_vm_invalidate_pds(adev, vm);
1351 	return r;
1352 }
1353 
1354 /*
1355  * amdgpu_vm_update_flags - figure out flags for PTE updates
1356  *
1357  * Make sure to set the right flags for the PTEs at the desired level.
1358  */
1359 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1360 				   struct amdgpu_bo *bo, unsigned level,
1361 				   uint64_t pe, uint64_t addr,
1362 				   unsigned count, uint32_t incr,
1363 				   uint64_t flags)
1364 
1365 {
1366 	if (level != AMDGPU_VM_PTB) {
1367 		flags |= AMDGPU_PDE_PTE;
1368 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1369 
1370 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1371 		   !(flags & AMDGPU_PTE_VALID) &&
1372 		   !(flags & AMDGPU_PTE_PRT)) {
1373 
1374 		/* Workaround for fault priority problem on GMC9 */
1375 		flags |= AMDGPU_PTE_EXECUTABLE;
1376 	}
1377 
1378 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1379 					 flags);
1380 }
1381 
1382 /**
1383  * amdgpu_vm_fragment - get fragment for PTEs
1384  *
1385  * @params: see amdgpu_vm_update_params definition
1386  * @start: first PTE to handle
1387  * @end: last PTE to handle
1388  * @flags: hw mapping flags
1389  * @frag: resulting fragment size
1390  * @frag_end: end of this fragment
1391  *
1392  * Returns the first possible fragment for the start and end address.
1393  */
1394 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1395 			       uint64_t start, uint64_t end, uint64_t flags,
1396 			       unsigned int *frag, uint64_t *frag_end)
1397 {
1398 	/**
1399 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1400 	 * field in the PTE. When this field is set to a non-zero value, page
1401 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1402 	 * flags are considered valid for all PTEs within the fragment range
1403 	 * and corresponding mappings are assumed to be physically contiguous.
1404 	 *
1405 	 * The L1 TLB can store a single PTE for the whole fragment,
1406 	 * significantly increasing the space available for translation
1407 	 * caching. This leads to large improvements in throughput when the
1408 	 * TLB is under pressure.
1409 	 *
1410 	 * The L2 TLB distributes small and large fragments into two
1411 	 * asymmetric partitions. The large fragment cache is significantly
1412 	 * larger. Thus, we try to use large fragments wherever possible.
1413 	 * Userspace can support this by aligning virtual base address and
1414 	 * allocation size to the fragment size.
1415 	 *
1416 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1417 	 * is now directly feed with small/huge/giant pages from the walker.
1418 	 */
1419 	unsigned max_frag;
1420 
1421 	if (params->adev->asic_type < CHIP_VEGA10)
1422 		max_frag = params->adev->vm_manager.fragment_size;
1423 	else
1424 		max_frag = 31;
1425 
1426 	/* system pages are non continuously */
1427 	if (params->pages_addr) {
1428 		*frag = 0;
1429 		*frag_end = end;
1430 		return;
1431 	}
1432 
1433 	/* This intentionally wraps around if no bit is set */
1434 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1435 	if (*frag >= max_frag) {
1436 		*frag = max_frag;
1437 		*frag_end = end & ~((1ULL << max_frag) - 1);
1438 	} else {
1439 		*frag_end = start + (1 << *frag);
1440 	}
1441 }
1442 
1443 /**
1444  * amdgpu_vm_update_ptes - make sure that page tables are valid
1445  *
1446  * @params: see amdgpu_vm_update_params definition
1447  * @start: start of GPU address range
1448  * @end: end of GPU address range
1449  * @dst: destination address to map to, the next dst inside the function
1450  * @flags: mapping flags
1451  *
1452  * Update the page tables in the range @start - @end.
1453  *
1454  * Returns:
1455  * 0 for success, -EINVAL for failure.
1456  */
1457 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1458 				 uint64_t start, uint64_t end,
1459 				 uint64_t dst, uint64_t flags)
1460 {
1461 	struct amdgpu_device *adev = params->adev;
1462 	struct amdgpu_vm_pt_cursor cursor;
1463 	uint64_t frag_start = start, frag_end;
1464 	unsigned int frag;
1465 	int r;
1466 
1467 	/* figure out the initial fragment */
1468 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1469 
1470 	/* walk over the address space and update the PTs */
1471 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1472 	while (cursor.pfn < end) {
1473 		unsigned shift, parent_shift, mask;
1474 		uint64_t incr, entry_end, pe_start;
1475 		struct amdgpu_bo *pt;
1476 
1477 		if (!params->unlocked) {
1478 			/* make sure that the page tables covering the
1479 			 * address range are actually allocated
1480 			 */
1481 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1482 						&cursor, params->immediate);
1483 			if (r)
1484 				return r;
1485 		}
1486 
1487 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1488 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1489 		if (params->unlocked) {
1490 			/* Unlocked updates are only allowed on the leaves */
1491 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1492 				continue;
1493 		} else if (adev->asic_type < CHIP_VEGA10 &&
1494 			   (flags & AMDGPU_PTE_VALID)) {
1495 			/* No huge page support before GMC v9 */
1496 			if (cursor.level != AMDGPU_VM_PTB) {
1497 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1498 					return -ENOENT;
1499 				continue;
1500 			}
1501 		} else if (frag < shift) {
1502 			/* We can't use this level when the fragment size is
1503 			 * smaller than the address shift. Go to the next
1504 			 * child entry and try again.
1505 			 */
1506 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1507 				continue;
1508 		} else if (frag >= parent_shift) {
1509 			/* If the fragment size is even larger than the parent
1510 			 * shift we should go up one level and check it again.
1511 			 */
1512 			if (!amdgpu_vm_pt_ancestor(&cursor))
1513 				return -EINVAL;
1514 			continue;
1515 		}
1516 
1517 		pt = cursor.entry->base.bo;
1518 		if (!pt) {
1519 			/* We need all PDs and PTs for mapping something, */
1520 			if (flags & AMDGPU_PTE_VALID)
1521 				return -ENOENT;
1522 
1523 			/* but unmapping something can happen at a higher
1524 			 * level.
1525 			 */
1526 			if (!amdgpu_vm_pt_ancestor(&cursor))
1527 				return -EINVAL;
1528 
1529 			pt = cursor.entry->base.bo;
1530 			shift = parent_shift;
1531 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1532 				   1ULL << shift));
1533 		}
1534 
1535 		/* Looks good so far, calculate parameters for the update */
1536 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1537 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1538 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1539 		entry_end = ((uint64_t)mask + 1) << shift;
1540 		entry_end += cursor.pfn & ~(entry_end - 1);
1541 		entry_end = min(entry_end, end);
1542 
1543 		do {
1544 			struct amdgpu_vm *vm = params->vm;
1545 			uint64_t upd_end = min(entry_end, frag_end);
1546 			unsigned nptes = (upd_end - frag_start) >> shift;
1547 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1548 
1549 			/* This can happen when we set higher level PDs to
1550 			 * silent to stop fault floods.
1551 			 */
1552 			nptes = max(nptes, 1u);
1553 
1554 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1555 						    nptes, dst, incr, upd_flags,
1556 						    vm->task_info.pid,
1557 						    vm->immediate.fence_context);
1558 			amdgpu_vm_update_flags(params, pt, cursor.level,
1559 					       pe_start, dst, nptes, incr,
1560 					       upd_flags);
1561 
1562 			pe_start += nptes * 8;
1563 			dst += nptes * incr;
1564 
1565 			frag_start = upd_end;
1566 			if (frag_start >= frag_end) {
1567 				/* figure out the next fragment */
1568 				amdgpu_vm_fragment(params, frag_start, end,
1569 						   flags, &frag, &frag_end);
1570 				if (frag < shift)
1571 					break;
1572 			}
1573 		} while (frag_start < entry_end);
1574 
1575 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1576 			/* Free all child entries.
1577 			 * Update the tables with the flags and addresses and free up subsequent
1578 			 * tables in the case of huge pages or freed up areas.
1579 			 * This is the maximum you can free, because all other page tables are not
1580 			 * completely covered by the range and so potentially still in use.
1581 			 */
1582 			while (cursor.pfn < frag_start) {
1583 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1584 				amdgpu_vm_pt_next(adev, &cursor);
1585 			}
1586 
1587 		} else if (frag >= shift) {
1588 			/* or just move on to the next on the same level. */
1589 			amdgpu_vm_pt_next(adev, &cursor);
1590 		}
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 /**
1597  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1598  *
1599  * @adev: amdgpu_device pointer of the VM
1600  * @bo_adev: amdgpu_device pointer of the mapped BO
1601  * @vm: requested vm
1602  * @immediate: immediate submission in a page fault
1603  * @unlocked: unlocked invalidation during MM callback
1604  * @resv: fences we need to sync to
1605  * @start: start of mapped range
1606  * @last: last mapped entry
1607  * @flags: flags for the entries
1608  * @offset: offset into nodes and pages_addr
1609  * @nodes: array of drm_mm_nodes with the MC addresses
1610  * @pages_addr: DMA addresses to use for mapping
1611  * @fence: optional resulting fence
1612  *
1613  * Fill in the page table entries between @start and @last.
1614  *
1615  * Returns:
1616  * 0 for success, -EINVAL for failure.
1617  */
1618 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1619 				struct amdgpu_device *bo_adev,
1620 				struct amdgpu_vm *vm, bool immediate,
1621 				bool unlocked, struct dma_resv *resv,
1622 				uint64_t start, uint64_t last,
1623 				uint64_t flags, uint64_t offset,
1624 				struct drm_mm_node *nodes,
1625 				dma_addr_t *pages_addr,
1626 				struct dma_fence **fence)
1627 {
1628 	struct amdgpu_vm_update_params params;
1629 	enum amdgpu_sync_mode sync_mode;
1630 	uint64_t pfn;
1631 	int r;
1632 
1633 	memset(&params, 0, sizeof(params));
1634 	params.adev = adev;
1635 	params.vm = vm;
1636 	params.immediate = immediate;
1637 	params.pages_addr = pages_addr;
1638 	params.unlocked = unlocked;
1639 
1640 	/* Implicitly sync to command submissions in the same VM before
1641 	 * unmapping. Sync to moving fences before mapping.
1642 	 */
1643 	if (!(flags & AMDGPU_PTE_VALID))
1644 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1645 	else
1646 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1647 
1648 	pfn = offset >> PAGE_SHIFT;
1649 	if (nodes) {
1650 		while (pfn >= nodes->size) {
1651 			pfn -= nodes->size;
1652 			++nodes;
1653 		}
1654 	}
1655 
1656 	amdgpu_vm_eviction_lock(vm);
1657 	if (vm->evicting) {
1658 		r = -EBUSY;
1659 		goto error_unlock;
1660 	}
1661 
1662 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1663 		struct dma_fence *tmp = dma_fence_get_stub();
1664 
1665 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1666 		swap(vm->last_unlocked, tmp);
1667 		dma_fence_put(tmp);
1668 	}
1669 
1670 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1671 	if (r)
1672 		goto error_unlock;
1673 
1674 	do {
1675 		uint64_t tmp, num_entries, addr;
1676 
1677 
1678 		num_entries = last - start + 1;
1679 		if (nodes) {
1680 			addr = nodes->start << PAGE_SHIFT;
1681 			num_entries = min((nodes->size - pfn) *
1682 				AMDGPU_GPU_PAGES_IN_CPU_PAGE, num_entries);
1683 		} else {
1684 			addr = 0;
1685 		}
1686 
1687 		if (pages_addr) {
1688 			bool contiguous = true;
1689 
1690 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1691 				uint64_t count;
1692 
1693 				contiguous = pages_addr[pfn + 1] ==
1694 					pages_addr[pfn] + PAGE_SIZE;
1695 
1696 				tmp = num_entries /
1697 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1698 				for (count = 2; count < tmp; ++count) {
1699 					uint64_t idx = pfn + count;
1700 
1701 					if (contiguous != (pages_addr[idx] ==
1702 					    pages_addr[idx - 1] + PAGE_SIZE))
1703 						break;
1704 				}
1705 				num_entries = count *
1706 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1707 			}
1708 
1709 			if (!contiguous) {
1710 				addr = pfn << PAGE_SHIFT;
1711 				params.pages_addr = pages_addr;
1712 			} else {
1713 				addr = pages_addr[pfn];
1714 				params.pages_addr = NULL;
1715 			}
1716 
1717 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1718 			addr += bo_adev->vm_manager.vram_base_offset;
1719 			addr += pfn << PAGE_SHIFT;
1720 		}
1721 
1722 		tmp = start + num_entries;
1723 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1724 		if (r)
1725 			goto error_unlock;
1726 
1727 		pfn += num_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1728 		if (nodes && nodes->size == pfn) {
1729 			pfn = 0;
1730 			++nodes;
1731 		}
1732 		start = tmp;
1733 
1734 	} while (unlikely(start != last + 1));
1735 
1736 	r = vm->update_funcs->commit(&params, fence);
1737 
1738 error_unlock:
1739 	amdgpu_vm_eviction_unlock(vm);
1740 	return r;
1741 }
1742 
1743 /**
1744  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1745  *
1746  * @adev: amdgpu_device pointer
1747  * @bo_va: requested BO and VM object
1748  * @clear: if true clear the entries
1749  *
1750  * Fill in the page table entries for @bo_va.
1751  *
1752  * Returns:
1753  * 0 for success, -EINVAL for failure.
1754  */
1755 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1756 			bool clear)
1757 {
1758 	struct amdgpu_bo *bo = bo_va->base.bo;
1759 	struct amdgpu_vm *vm = bo_va->base.vm;
1760 	struct amdgpu_bo_va_mapping *mapping;
1761 	dma_addr_t *pages_addr = NULL;
1762 	struct ttm_resource *mem;
1763 	struct drm_mm_node *nodes;
1764 	struct dma_fence **last_update;
1765 	struct dma_resv *resv;
1766 	uint64_t flags;
1767 	struct amdgpu_device *bo_adev = adev;
1768 	int r;
1769 
1770 	if (clear || !bo) {
1771 		mem = NULL;
1772 		nodes = NULL;
1773 		resv = vm->root.base.bo->tbo.base.resv;
1774 	} else {
1775 		struct drm_gem_object *obj = &bo->tbo.base;
1776 
1777 		resv = bo->tbo.base.resv;
1778 		if (obj->import_attach && bo_va->is_xgmi) {
1779 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1780 			struct drm_gem_object *gobj = dma_buf->priv;
1781 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1782 
1783 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1784 				bo = gem_to_amdgpu_bo(gobj);
1785 		}
1786 		mem = &bo->tbo.mem;
1787 		nodes = mem->mm_node;
1788 		if (mem->mem_type == TTM_PL_TT)
1789 			pages_addr = bo->tbo.ttm->dma_address;
1790 	}
1791 
1792 	if (bo) {
1793 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1794 
1795 		if (amdgpu_bo_encrypted(bo))
1796 			flags |= AMDGPU_PTE_TMZ;
1797 
1798 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1799 	} else {
1800 		flags = 0x0;
1801 	}
1802 
1803 	if (clear || (bo && bo->tbo.base.resv ==
1804 		      vm->root.base.bo->tbo.base.resv))
1805 		last_update = &vm->last_update;
1806 	else
1807 		last_update = &bo_va->last_pt_update;
1808 
1809 	if (!clear && bo_va->base.moved) {
1810 		bo_va->base.moved = false;
1811 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1812 
1813 	} else if (bo_va->cleared != clear) {
1814 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1815 	}
1816 
1817 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1818 		uint64_t update_flags = flags;
1819 
1820 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1821 		 * but in case of something, we filter the flags in first place
1822 		 */
1823 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1824 			update_flags &= ~AMDGPU_PTE_READABLE;
1825 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1826 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1827 
1828 		/* Apply ASIC specific mapping flags */
1829 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1830 
1831 		trace_amdgpu_vm_bo_update(mapping);
1832 
1833 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1834 						resv, mapping->start,
1835 						mapping->last, update_flags,
1836 						mapping->offset, nodes,
1837 						pages_addr, last_update);
1838 		if (r)
1839 			return r;
1840 	}
1841 
1842 	/* If the BO is not in its preferred location add it back to
1843 	 * the evicted list so that it gets validated again on the
1844 	 * next command submission.
1845 	 */
1846 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1847 		uint32_t mem_type = bo->tbo.mem.mem_type;
1848 
1849 		if (!(bo->preferred_domains &
1850 		      amdgpu_mem_type_to_domain(mem_type)))
1851 			amdgpu_vm_bo_evicted(&bo_va->base);
1852 		else
1853 			amdgpu_vm_bo_idle(&bo_va->base);
1854 	} else {
1855 		amdgpu_vm_bo_done(&bo_va->base);
1856 	}
1857 
1858 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1859 	bo_va->cleared = clear;
1860 
1861 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1862 		list_for_each_entry(mapping, &bo_va->valids, list)
1863 			trace_amdgpu_vm_bo_mapping(mapping);
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 /**
1870  * amdgpu_vm_update_prt_state - update the global PRT state
1871  *
1872  * @adev: amdgpu_device pointer
1873  */
1874 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1875 {
1876 	unsigned long flags;
1877 	bool enable;
1878 
1879 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1880 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1881 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1882 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1883 }
1884 
1885 /**
1886  * amdgpu_vm_prt_get - add a PRT user
1887  *
1888  * @adev: amdgpu_device pointer
1889  */
1890 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1891 {
1892 	if (!adev->gmc.gmc_funcs->set_prt)
1893 		return;
1894 
1895 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1896 		amdgpu_vm_update_prt_state(adev);
1897 }
1898 
1899 /**
1900  * amdgpu_vm_prt_put - drop a PRT user
1901  *
1902  * @adev: amdgpu_device pointer
1903  */
1904 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1905 {
1906 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1907 		amdgpu_vm_update_prt_state(adev);
1908 }
1909 
1910 /**
1911  * amdgpu_vm_prt_cb - callback for updating the PRT status
1912  *
1913  * @fence: fence for the callback
1914  * @_cb: the callback function
1915  */
1916 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1917 {
1918 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1919 
1920 	amdgpu_vm_prt_put(cb->adev);
1921 	kfree(cb);
1922 }
1923 
1924 /**
1925  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1926  *
1927  * @adev: amdgpu_device pointer
1928  * @fence: fence for the callback
1929  */
1930 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1931 				 struct dma_fence *fence)
1932 {
1933 	struct amdgpu_prt_cb *cb;
1934 
1935 	if (!adev->gmc.gmc_funcs->set_prt)
1936 		return;
1937 
1938 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1939 	if (!cb) {
1940 		/* Last resort when we are OOM */
1941 		if (fence)
1942 			dma_fence_wait(fence, false);
1943 
1944 		amdgpu_vm_prt_put(adev);
1945 	} else {
1946 		cb->adev = adev;
1947 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1948 						     amdgpu_vm_prt_cb))
1949 			amdgpu_vm_prt_cb(fence, &cb->cb);
1950 	}
1951 }
1952 
1953 /**
1954  * amdgpu_vm_free_mapping - free a mapping
1955  *
1956  * @adev: amdgpu_device pointer
1957  * @vm: requested vm
1958  * @mapping: mapping to be freed
1959  * @fence: fence of the unmap operation
1960  *
1961  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1962  */
1963 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1964 				   struct amdgpu_vm *vm,
1965 				   struct amdgpu_bo_va_mapping *mapping,
1966 				   struct dma_fence *fence)
1967 {
1968 	if (mapping->flags & AMDGPU_PTE_PRT)
1969 		amdgpu_vm_add_prt_cb(adev, fence);
1970 	kfree(mapping);
1971 }
1972 
1973 /**
1974  * amdgpu_vm_prt_fini - finish all prt mappings
1975  *
1976  * @adev: amdgpu_device pointer
1977  * @vm: requested vm
1978  *
1979  * Register a cleanup callback to disable PRT support after VM dies.
1980  */
1981 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1982 {
1983 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1984 	struct dma_fence *excl, **shared;
1985 	unsigned i, shared_count;
1986 	int r;
1987 
1988 	r = dma_resv_get_fences_rcu(resv, &excl,
1989 					      &shared_count, &shared);
1990 	if (r) {
1991 		/* Not enough memory to grab the fence list, as last resort
1992 		 * block for all the fences to complete.
1993 		 */
1994 		dma_resv_wait_timeout_rcu(resv, true, false,
1995 						    MAX_SCHEDULE_TIMEOUT);
1996 		return;
1997 	}
1998 
1999 	/* Add a callback for each fence in the reservation object */
2000 	amdgpu_vm_prt_get(adev);
2001 	amdgpu_vm_add_prt_cb(adev, excl);
2002 
2003 	for (i = 0; i < shared_count; ++i) {
2004 		amdgpu_vm_prt_get(adev);
2005 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2006 	}
2007 
2008 	kfree(shared);
2009 }
2010 
2011 /**
2012  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2013  *
2014  * @adev: amdgpu_device pointer
2015  * @vm: requested vm
2016  * @fence: optional resulting fence (unchanged if no work needed to be done
2017  * or if an error occurred)
2018  *
2019  * Make sure all freed BOs are cleared in the PT.
2020  * PTs have to be reserved and mutex must be locked!
2021  *
2022  * Returns:
2023  * 0 for success.
2024  *
2025  */
2026 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2027 			  struct amdgpu_vm *vm,
2028 			  struct dma_fence **fence)
2029 {
2030 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2031 	struct amdgpu_bo_va_mapping *mapping;
2032 	uint64_t init_pte_value = 0;
2033 	struct dma_fence *f = NULL;
2034 	int r;
2035 
2036 	while (!list_empty(&vm->freed)) {
2037 		mapping = list_first_entry(&vm->freed,
2038 			struct amdgpu_bo_va_mapping, list);
2039 		list_del(&mapping->list);
2040 
2041 		if (vm->pte_support_ats &&
2042 		    mapping->start < AMDGPU_GMC_HOLE_START)
2043 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2044 
2045 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2046 						resv, mapping->start,
2047 						mapping->last, init_pte_value,
2048 						0, NULL, NULL, &f);
2049 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2050 		if (r) {
2051 			dma_fence_put(f);
2052 			return r;
2053 		}
2054 	}
2055 
2056 	if (fence && f) {
2057 		dma_fence_put(*fence);
2058 		*fence = f;
2059 	} else {
2060 		dma_fence_put(f);
2061 	}
2062 
2063 	return 0;
2064 
2065 }
2066 
2067 /**
2068  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2069  *
2070  * @adev: amdgpu_device pointer
2071  * @vm: requested vm
2072  *
2073  * Make sure all BOs which are moved are updated in the PTs.
2074  *
2075  * Returns:
2076  * 0 for success.
2077  *
2078  * PTs have to be reserved!
2079  */
2080 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2081 			   struct amdgpu_vm *vm)
2082 {
2083 	struct amdgpu_bo_va *bo_va, *tmp;
2084 	struct dma_resv *resv;
2085 	bool clear;
2086 	int r;
2087 
2088 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2089 		/* Per VM BOs never need to bo cleared in the page tables */
2090 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2091 		if (r)
2092 			return r;
2093 	}
2094 
2095 	spin_lock(&vm->invalidated_lock);
2096 	while (!list_empty(&vm->invalidated)) {
2097 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2098 					 base.vm_status);
2099 		resv = bo_va->base.bo->tbo.base.resv;
2100 		spin_unlock(&vm->invalidated_lock);
2101 
2102 		/* Try to reserve the BO to avoid clearing its ptes */
2103 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2104 			clear = false;
2105 		/* Somebody else is using the BO right now */
2106 		else
2107 			clear = true;
2108 
2109 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2110 		if (r)
2111 			return r;
2112 
2113 		if (!clear)
2114 			dma_resv_unlock(resv);
2115 		spin_lock(&vm->invalidated_lock);
2116 	}
2117 	spin_unlock(&vm->invalidated_lock);
2118 
2119 	return 0;
2120 }
2121 
2122 /**
2123  * amdgpu_vm_bo_add - add a bo to a specific vm
2124  *
2125  * @adev: amdgpu_device pointer
2126  * @vm: requested vm
2127  * @bo: amdgpu buffer object
2128  *
2129  * Add @bo into the requested vm.
2130  * Add @bo to the list of bos associated with the vm
2131  *
2132  * Returns:
2133  * Newly added bo_va or NULL for failure
2134  *
2135  * Object has to be reserved!
2136  */
2137 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2138 				      struct amdgpu_vm *vm,
2139 				      struct amdgpu_bo *bo)
2140 {
2141 	struct amdgpu_bo_va *bo_va;
2142 
2143 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2144 	if (bo_va == NULL) {
2145 		return NULL;
2146 	}
2147 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2148 
2149 	bo_va->ref_count = 1;
2150 	INIT_LIST_HEAD(&bo_va->valids);
2151 	INIT_LIST_HEAD(&bo_va->invalids);
2152 
2153 	if (!bo)
2154 		return bo_va;
2155 
2156 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2157 		bo_va->is_xgmi = true;
2158 		/* Power up XGMI if it can be potentially used */
2159 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2160 	}
2161 
2162 	return bo_va;
2163 }
2164 
2165 
2166 /**
2167  * amdgpu_vm_bo_insert_map - insert a new mapping
2168  *
2169  * @adev: amdgpu_device pointer
2170  * @bo_va: bo_va to store the address
2171  * @mapping: the mapping to insert
2172  *
2173  * Insert a new mapping into all structures.
2174  */
2175 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2176 				    struct amdgpu_bo_va *bo_va,
2177 				    struct amdgpu_bo_va_mapping *mapping)
2178 {
2179 	struct amdgpu_vm *vm = bo_va->base.vm;
2180 	struct amdgpu_bo *bo = bo_va->base.bo;
2181 
2182 	mapping->bo_va = bo_va;
2183 	list_add(&mapping->list, &bo_va->invalids);
2184 	amdgpu_vm_it_insert(mapping, &vm->va);
2185 
2186 	if (mapping->flags & AMDGPU_PTE_PRT)
2187 		amdgpu_vm_prt_get(adev);
2188 
2189 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2190 	    !bo_va->base.moved) {
2191 		list_move(&bo_va->base.vm_status, &vm->moved);
2192 	}
2193 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2194 }
2195 
2196 /**
2197  * amdgpu_vm_bo_map - map bo inside a vm
2198  *
2199  * @adev: amdgpu_device pointer
2200  * @bo_va: bo_va to store the address
2201  * @saddr: where to map the BO
2202  * @offset: requested offset in the BO
2203  * @size: BO size in bytes
2204  * @flags: attributes of pages (read/write/valid/etc.)
2205  *
2206  * Add a mapping of the BO at the specefied addr into the VM.
2207  *
2208  * Returns:
2209  * 0 for success, error for failure.
2210  *
2211  * Object has to be reserved and unreserved outside!
2212  */
2213 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2214 		     struct amdgpu_bo_va *bo_va,
2215 		     uint64_t saddr, uint64_t offset,
2216 		     uint64_t size, uint64_t flags)
2217 {
2218 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2219 	struct amdgpu_bo *bo = bo_va->base.bo;
2220 	struct amdgpu_vm *vm = bo_va->base.vm;
2221 	uint64_t eaddr;
2222 
2223 	/* validate the parameters */
2224 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2225 	    size == 0 || size & ~PAGE_MASK)
2226 		return -EINVAL;
2227 
2228 	/* make sure object fit at this offset */
2229 	eaddr = saddr + size - 1;
2230 	if (saddr >= eaddr ||
2231 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2232 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2233 		return -EINVAL;
2234 
2235 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2236 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2237 
2238 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2239 	if (tmp) {
2240 		/* bo and tmp overlap, invalid addr */
2241 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2242 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2243 			tmp->start, tmp->last + 1);
2244 		return -EINVAL;
2245 	}
2246 
2247 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2248 	if (!mapping)
2249 		return -ENOMEM;
2250 
2251 	mapping->start = saddr;
2252 	mapping->last = eaddr;
2253 	mapping->offset = offset;
2254 	mapping->flags = flags;
2255 
2256 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2257 
2258 	return 0;
2259 }
2260 
2261 /**
2262  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2263  *
2264  * @adev: amdgpu_device pointer
2265  * @bo_va: bo_va to store the address
2266  * @saddr: where to map the BO
2267  * @offset: requested offset in the BO
2268  * @size: BO size in bytes
2269  * @flags: attributes of pages (read/write/valid/etc.)
2270  *
2271  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2272  * mappings as we do so.
2273  *
2274  * Returns:
2275  * 0 for success, error for failure.
2276  *
2277  * Object has to be reserved and unreserved outside!
2278  */
2279 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2280 			     struct amdgpu_bo_va *bo_va,
2281 			     uint64_t saddr, uint64_t offset,
2282 			     uint64_t size, uint64_t flags)
2283 {
2284 	struct amdgpu_bo_va_mapping *mapping;
2285 	struct amdgpu_bo *bo = bo_va->base.bo;
2286 	uint64_t eaddr;
2287 	int r;
2288 
2289 	/* validate the parameters */
2290 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2291 	    size == 0 || size & ~PAGE_MASK)
2292 		return -EINVAL;
2293 
2294 	/* make sure object fit at this offset */
2295 	eaddr = saddr + size - 1;
2296 	if (saddr >= eaddr ||
2297 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2298 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2299 		return -EINVAL;
2300 
2301 	/* Allocate all the needed memory */
2302 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2303 	if (!mapping)
2304 		return -ENOMEM;
2305 
2306 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2307 	if (r) {
2308 		kfree(mapping);
2309 		return r;
2310 	}
2311 
2312 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2313 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2314 
2315 	mapping->start = saddr;
2316 	mapping->last = eaddr;
2317 	mapping->offset = offset;
2318 	mapping->flags = flags;
2319 
2320 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2321 
2322 	return 0;
2323 }
2324 
2325 /**
2326  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2327  *
2328  * @adev: amdgpu_device pointer
2329  * @bo_va: bo_va to remove the address from
2330  * @saddr: where to the BO is mapped
2331  *
2332  * Remove a mapping of the BO at the specefied addr from the VM.
2333  *
2334  * Returns:
2335  * 0 for success, error for failure.
2336  *
2337  * Object has to be reserved and unreserved outside!
2338  */
2339 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2340 		       struct amdgpu_bo_va *bo_va,
2341 		       uint64_t saddr)
2342 {
2343 	struct amdgpu_bo_va_mapping *mapping;
2344 	struct amdgpu_vm *vm = bo_va->base.vm;
2345 	bool valid = true;
2346 
2347 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2348 
2349 	list_for_each_entry(mapping, &bo_va->valids, list) {
2350 		if (mapping->start == saddr)
2351 			break;
2352 	}
2353 
2354 	if (&mapping->list == &bo_va->valids) {
2355 		valid = false;
2356 
2357 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2358 			if (mapping->start == saddr)
2359 				break;
2360 		}
2361 
2362 		if (&mapping->list == &bo_va->invalids)
2363 			return -ENOENT;
2364 	}
2365 
2366 	list_del(&mapping->list);
2367 	amdgpu_vm_it_remove(mapping, &vm->va);
2368 	mapping->bo_va = NULL;
2369 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2370 
2371 	if (valid)
2372 		list_add(&mapping->list, &vm->freed);
2373 	else
2374 		amdgpu_vm_free_mapping(adev, vm, mapping,
2375 				       bo_va->last_pt_update);
2376 
2377 	return 0;
2378 }
2379 
2380 /**
2381  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2382  *
2383  * @adev: amdgpu_device pointer
2384  * @vm: VM structure to use
2385  * @saddr: start of the range
2386  * @size: size of the range
2387  *
2388  * Remove all mappings in a range, split them as appropriate.
2389  *
2390  * Returns:
2391  * 0 for success, error for failure.
2392  */
2393 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2394 				struct amdgpu_vm *vm,
2395 				uint64_t saddr, uint64_t size)
2396 {
2397 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2398 	LIST_HEAD(removed);
2399 	uint64_t eaddr;
2400 
2401 	eaddr = saddr + size - 1;
2402 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2403 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2404 
2405 	/* Allocate all the needed memory */
2406 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2407 	if (!before)
2408 		return -ENOMEM;
2409 	INIT_LIST_HEAD(&before->list);
2410 
2411 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2412 	if (!after) {
2413 		kfree(before);
2414 		return -ENOMEM;
2415 	}
2416 	INIT_LIST_HEAD(&after->list);
2417 
2418 	/* Now gather all removed mappings */
2419 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2420 	while (tmp) {
2421 		/* Remember mapping split at the start */
2422 		if (tmp->start < saddr) {
2423 			before->start = tmp->start;
2424 			before->last = saddr - 1;
2425 			before->offset = tmp->offset;
2426 			before->flags = tmp->flags;
2427 			before->bo_va = tmp->bo_va;
2428 			list_add(&before->list, &tmp->bo_va->invalids);
2429 		}
2430 
2431 		/* Remember mapping split at the end */
2432 		if (tmp->last > eaddr) {
2433 			after->start = eaddr + 1;
2434 			after->last = tmp->last;
2435 			after->offset = tmp->offset;
2436 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2437 			after->flags = tmp->flags;
2438 			after->bo_va = tmp->bo_va;
2439 			list_add(&after->list, &tmp->bo_va->invalids);
2440 		}
2441 
2442 		list_del(&tmp->list);
2443 		list_add(&tmp->list, &removed);
2444 
2445 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2446 	}
2447 
2448 	/* And free them up */
2449 	list_for_each_entry_safe(tmp, next, &removed, list) {
2450 		amdgpu_vm_it_remove(tmp, &vm->va);
2451 		list_del(&tmp->list);
2452 
2453 		if (tmp->start < saddr)
2454 		    tmp->start = saddr;
2455 		if (tmp->last > eaddr)
2456 		    tmp->last = eaddr;
2457 
2458 		tmp->bo_va = NULL;
2459 		list_add(&tmp->list, &vm->freed);
2460 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2461 	}
2462 
2463 	/* Insert partial mapping before the range */
2464 	if (!list_empty(&before->list)) {
2465 		amdgpu_vm_it_insert(before, &vm->va);
2466 		if (before->flags & AMDGPU_PTE_PRT)
2467 			amdgpu_vm_prt_get(adev);
2468 	} else {
2469 		kfree(before);
2470 	}
2471 
2472 	/* Insert partial mapping after the range */
2473 	if (!list_empty(&after->list)) {
2474 		amdgpu_vm_it_insert(after, &vm->va);
2475 		if (after->flags & AMDGPU_PTE_PRT)
2476 			amdgpu_vm_prt_get(adev);
2477 	} else {
2478 		kfree(after);
2479 	}
2480 
2481 	return 0;
2482 }
2483 
2484 /**
2485  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2486  *
2487  * @vm: the requested VM
2488  * @addr: the address
2489  *
2490  * Find a mapping by it's address.
2491  *
2492  * Returns:
2493  * The amdgpu_bo_va_mapping matching for addr or NULL
2494  *
2495  */
2496 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2497 							 uint64_t addr)
2498 {
2499 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2500 }
2501 
2502 /**
2503  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2504  *
2505  * @vm: the requested vm
2506  * @ticket: CS ticket
2507  *
2508  * Trace all mappings of BOs reserved during a command submission.
2509  */
2510 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2511 {
2512 	struct amdgpu_bo_va_mapping *mapping;
2513 
2514 	if (!trace_amdgpu_vm_bo_cs_enabled())
2515 		return;
2516 
2517 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2518 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2519 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2520 			struct amdgpu_bo *bo;
2521 
2522 			bo = mapping->bo_va->base.bo;
2523 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2524 			    ticket)
2525 				continue;
2526 		}
2527 
2528 		trace_amdgpu_vm_bo_cs(mapping);
2529 	}
2530 }
2531 
2532 /**
2533  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2534  *
2535  * @adev: amdgpu_device pointer
2536  * @bo_va: requested bo_va
2537  *
2538  * Remove @bo_va->bo from the requested vm.
2539  *
2540  * Object have to be reserved!
2541  */
2542 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2543 		      struct amdgpu_bo_va *bo_va)
2544 {
2545 	struct amdgpu_bo_va_mapping *mapping, *next;
2546 	struct amdgpu_bo *bo = bo_va->base.bo;
2547 	struct amdgpu_vm *vm = bo_va->base.vm;
2548 	struct amdgpu_vm_bo_base **base;
2549 
2550 	if (bo) {
2551 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2552 			vm->bulk_moveable = false;
2553 
2554 		for (base = &bo_va->base.bo->vm_bo; *base;
2555 		     base = &(*base)->next) {
2556 			if (*base != &bo_va->base)
2557 				continue;
2558 
2559 			*base = bo_va->base.next;
2560 			break;
2561 		}
2562 	}
2563 
2564 	spin_lock(&vm->invalidated_lock);
2565 	list_del(&bo_va->base.vm_status);
2566 	spin_unlock(&vm->invalidated_lock);
2567 
2568 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2569 		list_del(&mapping->list);
2570 		amdgpu_vm_it_remove(mapping, &vm->va);
2571 		mapping->bo_va = NULL;
2572 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2573 		list_add(&mapping->list, &vm->freed);
2574 	}
2575 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2576 		list_del(&mapping->list);
2577 		amdgpu_vm_it_remove(mapping, &vm->va);
2578 		amdgpu_vm_free_mapping(adev, vm, mapping,
2579 				       bo_va->last_pt_update);
2580 	}
2581 
2582 	dma_fence_put(bo_va->last_pt_update);
2583 
2584 	if (bo && bo_va->is_xgmi)
2585 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2586 
2587 	kfree(bo_va);
2588 }
2589 
2590 /**
2591  * amdgpu_vm_evictable - check if we can evict a VM
2592  *
2593  * @bo: A page table of the VM.
2594  *
2595  * Check if it is possible to evict a VM.
2596  */
2597 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2598 {
2599 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2600 
2601 	/* Page tables of a destroyed VM can go away immediately */
2602 	if (!bo_base || !bo_base->vm)
2603 		return true;
2604 
2605 	/* Don't evict VM page tables while they are busy */
2606 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2607 		return false;
2608 
2609 	/* Try to block ongoing updates */
2610 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2611 		return false;
2612 
2613 	/* Don't evict VM page tables while they are updated */
2614 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2615 		amdgpu_vm_eviction_unlock(bo_base->vm);
2616 		return false;
2617 	}
2618 
2619 	bo_base->vm->evicting = true;
2620 	amdgpu_vm_eviction_unlock(bo_base->vm);
2621 	return true;
2622 }
2623 
2624 /**
2625  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2626  *
2627  * @adev: amdgpu_device pointer
2628  * @bo: amdgpu buffer object
2629  * @evicted: is the BO evicted
2630  *
2631  * Mark @bo as invalid.
2632  */
2633 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2634 			     struct amdgpu_bo *bo, bool evicted)
2635 {
2636 	struct amdgpu_vm_bo_base *bo_base;
2637 
2638 	/* shadow bo doesn't have bo base, its validation needs its parent */
2639 	if (bo->parent && bo->parent->shadow == bo)
2640 		bo = bo->parent;
2641 
2642 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2643 		struct amdgpu_vm *vm = bo_base->vm;
2644 
2645 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2646 			amdgpu_vm_bo_evicted(bo_base);
2647 			continue;
2648 		}
2649 
2650 		if (bo_base->moved)
2651 			continue;
2652 		bo_base->moved = true;
2653 
2654 		if (bo->tbo.type == ttm_bo_type_kernel)
2655 			amdgpu_vm_bo_relocated(bo_base);
2656 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2657 			amdgpu_vm_bo_moved(bo_base);
2658 		else
2659 			amdgpu_vm_bo_invalidated(bo_base);
2660 	}
2661 }
2662 
2663 /**
2664  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2665  *
2666  * @vm_size: VM size
2667  *
2668  * Returns:
2669  * VM page table as power of two
2670  */
2671 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2672 {
2673 	/* Total bits covered by PD + PTs */
2674 	unsigned bits = ilog2(vm_size) + 18;
2675 
2676 	/* Make sure the PD is 4K in size up to 8GB address space.
2677 	   Above that split equal between PD and PTs */
2678 	if (vm_size <= 8)
2679 		return (bits - 9);
2680 	else
2681 		return ((bits + 3) / 2);
2682 }
2683 
2684 /**
2685  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2686  *
2687  * @adev: amdgpu_device pointer
2688  * @min_vm_size: the minimum vm size in GB if it's set auto
2689  * @fragment_size_default: Default PTE fragment size
2690  * @max_level: max VMPT level
2691  * @max_bits: max address space size in bits
2692  *
2693  */
2694 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2695 			   uint32_t fragment_size_default, unsigned max_level,
2696 			   unsigned max_bits)
2697 {
2698 	unsigned int max_size = 1 << (max_bits - 30);
2699 	unsigned int vm_size;
2700 	uint64_t tmp;
2701 
2702 	/* adjust vm size first */
2703 	if (amdgpu_vm_size != -1) {
2704 		vm_size = amdgpu_vm_size;
2705 		if (vm_size > max_size) {
2706 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2707 				 amdgpu_vm_size, max_size);
2708 			vm_size = max_size;
2709 		}
2710 	} else {
2711 		struct sysinfo si;
2712 		unsigned int phys_ram_gb;
2713 
2714 		/* Optimal VM size depends on the amount of physical
2715 		 * RAM available. Underlying requirements and
2716 		 * assumptions:
2717 		 *
2718 		 *  - Need to map system memory and VRAM from all GPUs
2719 		 *     - VRAM from other GPUs not known here
2720 		 *     - Assume VRAM <= system memory
2721 		 *  - On GFX8 and older, VM space can be segmented for
2722 		 *    different MTYPEs
2723 		 *  - Need to allow room for fragmentation, guard pages etc.
2724 		 *
2725 		 * This adds up to a rough guess of system memory x3.
2726 		 * Round up to power of two to maximize the available
2727 		 * VM size with the given page table size.
2728 		 */
2729 		si_meminfo(&si);
2730 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2731 			       (1 << 30) - 1) >> 30;
2732 		vm_size = roundup_pow_of_two(
2733 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2734 	}
2735 
2736 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2737 
2738 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2739 	if (amdgpu_vm_block_size != -1)
2740 		tmp >>= amdgpu_vm_block_size - 9;
2741 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2742 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2743 	switch (adev->vm_manager.num_level) {
2744 	case 3:
2745 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2746 		break;
2747 	case 2:
2748 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2749 		break;
2750 	case 1:
2751 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2752 		break;
2753 	default:
2754 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2755 	}
2756 	/* block size depends on vm size and hw setup*/
2757 	if (amdgpu_vm_block_size != -1)
2758 		adev->vm_manager.block_size =
2759 			min((unsigned)amdgpu_vm_block_size, max_bits
2760 			    - AMDGPU_GPU_PAGE_SHIFT
2761 			    - 9 * adev->vm_manager.num_level);
2762 	else if (adev->vm_manager.num_level > 1)
2763 		adev->vm_manager.block_size = 9;
2764 	else
2765 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2766 
2767 	if (amdgpu_vm_fragment_size == -1)
2768 		adev->vm_manager.fragment_size = fragment_size_default;
2769 	else
2770 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2771 
2772 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2773 		 vm_size, adev->vm_manager.num_level + 1,
2774 		 adev->vm_manager.block_size,
2775 		 adev->vm_manager.fragment_size);
2776 }
2777 
2778 /**
2779  * amdgpu_vm_wait_idle - wait for the VM to become idle
2780  *
2781  * @vm: VM object to wait for
2782  * @timeout: timeout to wait for VM to become idle
2783  */
2784 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2785 {
2786 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2787 					    true, true, timeout);
2788 	if (timeout <= 0)
2789 		return timeout;
2790 
2791 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2792 }
2793 
2794 /**
2795  * amdgpu_vm_init - initialize a vm instance
2796  *
2797  * @adev: amdgpu_device pointer
2798  * @vm: requested vm
2799  * @pasid: Process address space identifier
2800  *
2801  * Init @vm fields.
2802  *
2803  * Returns:
2804  * 0 for success, error for failure.
2805  */
2806 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid)
2807 {
2808 	struct amdgpu_bo *root;
2809 	int r, i;
2810 
2811 	vm->va = RB_ROOT_CACHED;
2812 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2813 		vm->reserved_vmid[i] = NULL;
2814 	INIT_LIST_HEAD(&vm->evicted);
2815 	INIT_LIST_HEAD(&vm->relocated);
2816 	INIT_LIST_HEAD(&vm->moved);
2817 	INIT_LIST_HEAD(&vm->idle);
2818 	INIT_LIST_HEAD(&vm->invalidated);
2819 	spin_lock_init(&vm->invalidated_lock);
2820 	INIT_LIST_HEAD(&vm->freed);
2821 	INIT_LIST_HEAD(&vm->done);
2822 
2823 	/* create scheduler entities for page table updates */
2824 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2825 				  adev->vm_manager.vm_pte_scheds,
2826 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2827 	if (r)
2828 		return r;
2829 
2830 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2831 				  adev->vm_manager.vm_pte_scheds,
2832 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2833 	if (r)
2834 		goto error_free_immediate;
2835 
2836 	vm->pte_support_ats = false;
2837 	vm->is_compute_context = false;
2838 
2839 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2840 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2841 
2842 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2843 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2844 	WARN_ONCE((vm->use_cpu_for_update &&
2845 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2846 		  "CPU update of VM recommended only for large BAR system\n");
2847 
2848 	if (vm->use_cpu_for_update)
2849 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2850 	else
2851 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2852 	vm->last_update = NULL;
2853 	vm->last_unlocked = dma_fence_get_stub();
2854 
2855 	mutex_init(&vm->eviction_lock);
2856 	vm->evicting = false;
2857 
2858 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2859 				false, &root);
2860 	if (r)
2861 		goto error_free_delayed;
2862 
2863 	r = amdgpu_bo_reserve(root, true);
2864 	if (r)
2865 		goto error_free_root;
2866 
2867 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2868 	if (r)
2869 		goto error_unreserve;
2870 
2871 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2872 
2873 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2874 	if (r)
2875 		goto error_unreserve;
2876 
2877 	amdgpu_bo_unreserve(vm->root.base.bo);
2878 
2879 	if (pasid) {
2880 		unsigned long flags;
2881 
2882 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2883 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2884 			      GFP_ATOMIC);
2885 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2886 		if (r < 0)
2887 			goto error_free_root;
2888 
2889 		vm->pasid = pasid;
2890 	}
2891 
2892 	INIT_KFIFO(vm->faults);
2893 
2894 	return 0;
2895 
2896 error_unreserve:
2897 	amdgpu_bo_unreserve(vm->root.base.bo);
2898 
2899 error_free_root:
2900 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2901 	amdgpu_bo_unref(&vm->root.base.bo);
2902 	vm->root.base.bo = NULL;
2903 
2904 error_free_delayed:
2905 	dma_fence_put(vm->last_unlocked);
2906 	drm_sched_entity_destroy(&vm->delayed);
2907 
2908 error_free_immediate:
2909 	drm_sched_entity_destroy(&vm->immediate);
2910 
2911 	return r;
2912 }
2913 
2914 /**
2915  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2916  *
2917  * @adev: amdgpu_device pointer
2918  * @vm: the VM to check
2919  *
2920  * check all entries of the root PD, if any subsequent PDs are allocated,
2921  * it means there are page table creating and filling, and is no a clean
2922  * VM
2923  *
2924  * Returns:
2925  *	0 if this VM is clean
2926  */
2927 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2928 	struct amdgpu_vm *vm)
2929 {
2930 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2931 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2932 	unsigned int i = 0;
2933 
2934 	if (!(vm->root.entries))
2935 		return 0;
2936 
2937 	for (i = 0; i < entries; i++) {
2938 		if (vm->root.entries[i].base.bo)
2939 			return -EINVAL;
2940 	}
2941 
2942 	return 0;
2943 }
2944 
2945 /**
2946  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2947  *
2948  * @adev: amdgpu_device pointer
2949  * @vm: requested vm
2950  * @pasid: pasid to use
2951  *
2952  * This only works on GFX VMs that don't have any BOs added and no
2953  * page tables allocated yet.
2954  *
2955  * Changes the following VM parameters:
2956  * - use_cpu_for_update
2957  * - pte_supports_ats
2958  * - pasid (old PASID is released, because compute manages its own PASIDs)
2959  *
2960  * Reinitializes the page directory to reflect the changed ATS
2961  * setting.
2962  *
2963  * Returns:
2964  * 0 for success, -errno for errors.
2965  */
2966 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2967 			   u32 pasid)
2968 {
2969 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2970 	int r;
2971 
2972 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2973 	if (r)
2974 		return r;
2975 
2976 	/* Sanity checks */
2977 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2978 	if (r)
2979 		goto unreserve_bo;
2980 
2981 	if (pasid) {
2982 		unsigned long flags;
2983 
2984 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2985 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2986 			      GFP_ATOMIC);
2987 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2988 
2989 		if (r == -ENOSPC)
2990 			goto unreserve_bo;
2991 		r = 0;
2992 	}
2993 
2994 	/* Check if PD needs to be reinitialized and do it before
2995 	 * changing any other state, in case it fails.
2996 	 */
2997 	if (pte_support_ats != vm->pte_support_ats) {
2998 		vm->pte_support_ats = pte_support_ats;
2999 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3000 		if (r)
3001 			goto free_idr;
3002 	}
3003 
3004 	/* Update VM state */
3005 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3006 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3007 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3008 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3009 	WARN_ONCE((vm->use_cpu_for_update &&
3010 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3011 		  "CPU update of VM recommended only for large BAR system\n");
3012 
3013 	if (vm->use_cpu_for_update) {
3014 		/* Sync with last SDMA update/clear before switching to CPU */
3015 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3016 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3017 		if (r)
3018 			goto free_idr;
3019 
3020 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3021 	} else {
3022 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3023 	}
3024 	dma_fence_put(vm->last_update);
3025 	vm->last_update = NULL;
3026 	vm->is_compute_context = true;
3027 
3028 	if (vm->pasid) {
3029 		unsigned long flags;
3030 
3031 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3032 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3033 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3034 
3035 		/* Free the original amdgpu allocated pasid
3036 		 * Will be replaced with kfd allocated pasid
3037 		 */
3038 		amdgpu_pasid_free(vm->pasid);
3039 		vm->pasid = 0;
3040 	}
3041 
3042 	/* Free the shadow bo for compute VM */
3043 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3044 
3045 	if (pasid)
3046 		vm->pasid = pasid;
3047 
3048 	goto unreserve_bo;
3049 
3050 free_idr:
3051 	if (pasid) {
3052 		unsigned long flags;
3053 
3054 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3055 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3056 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3057 	}
3058 unreserve_bo:
3059 	amdgpu_bo_unreserve(vm->root.base.bo);
3060 	return r;
3061 }
3062 
3063 /**
3064  * amdgpu_vm_release_compute - release a compute vm
3065  * @adev: amdgpu_device pointer
3066  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3067  *
3068  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3069  * pasid from vm. Compute should stop use of vm after this call.
3070  */
3071 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3072 {
3073 	if (vm->pasid) {
3074 		unsigned long flags;
3075 
3076 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3077 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3078 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3079 	}
3080 	vm->pasid = 0;
3081 	vm->is_compute_context = false;
3082 }
3083 
3084 /**
3085  * amdgpu_vm_fini - tear down a vm instance
3086  *
3087  * @adev: amdgpu_device pointer
3088  * @vm: requested vm
3089  *
3090  * Tear down @vm.
3091  * Unbind the VM and remove all bos from the vm bo list
3092  */
3093 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3094 {
3095 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3096 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3097 	struct amdgpu_bo *root;
3098 	int i;
3099 
3100 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3101 
3102 	root = amdgpu_bo_ref(vm->root.base.bo);
3103 	amdgpu_bo_reserve(root, true);
3104 	if (vm->pasid) {
3105 		unsigned long flags;
3106 
3107 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3108 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3109 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3110 		vm->pasid = 0;
3111 	}
3112 
3113 	dma_fence_wait(vm->last_unlocked, false);
3114 	dma_fence_put(vm->last_unlocked);
3115 
3116 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3117 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3118 			amdgpu_vm_prt_fini(adev, vm);
3119 			prt_fini_needed = false;
3120 		}
3121 
3122 		list_del(&mapping->list);
3123 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3124 	}
3125 
3126 	amdgpu_vm_free_pts(adev, vm, NULL);
3127 	amdgpu_bo_unreserve(root);
3128 	amdgpu_bo_unref(&root);
3129 	WARN_ON(vm->root.base.bo);
3130 
3131 	drm_sched_entity_destroy(&vm->immediate);
3132 	drm_sched_entity_destroy(&vm->delayed);
3133 
3134 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3135 		dev_err(adev->dev, "still active bo inside vm\n");
3136 	}
3137 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3138 					     &vm->va.rb_root, rb) {
3139 		/* Don't remove the mapping here, we don't want to trigger a
3140 		 * rebalance and the tree is about to be destroyed anyway.
3141 		 */
3142 		list_del(&mapping->list);
3143 		kfree(mapping);
3144 	}
3145 
3146 	dma_fence_put(vm->last_update);
3147 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3148 		amdgpu_vmid_free_reserved(adev, vm, i);
3149 }
3150 
3151 /**
3152  * amdgpu_vm_manager_init - init the VM manager
3153  *
3154  * @adev: amdgpu_device pointer
3155  *
3156  * Initialize the VM manager structures
3157  */
3158 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3159 {
3160 	unsigned i;
3161 
3162 	/* Concurrent flushes are only possible starting with Vega10 and
3163 	 * are broken on Navi10 and Navi14.
3164 	 */
3165 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3166 					      adev->asic_type == CHIP_NAVI10 ||
3167 					      adev->asic_type == CHIP_NAVI14);
3168 	amdgpu_vmid_mgr_init(adev);
3169 
3170 	adev->vm_manager.fence_context =
3171 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3172 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3173 		adev->vm_manager.seqno[i] = 0;
3174 
3175 	spin_lock_init(&adev->vm_manager.prt_lock);
3176 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3177 
3178 	/* If not overridden by the user, by default, only in large BAR systems
3179 	 * Compute VM tables will be updated by CPU
3180 	 */
3181 #ifdef CONFIG_X86_64
3182 	if (amdgpu_vm_update_mode == -1) {
3183 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3184 			adev->vm_manager.vm_update_mode =
3185 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3186 		else
3187 			adev->vm_manager.vm_update_mode = 0;
3188 	} else
3189 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3190 #else
3191 	adev->vm_manager.vm_update_mode = 0;
3192 #endif
3193 
3194 	idr_init(&adev->vm_manager.pasid_idr);
3195 	spin_lock_init(&adev->vm_manager.pasid_lock);
3196 }
3197 
3198 /**
3199  * amdgpu_vm_manager_fini - cleanup VM manager
3200  *
3201  * @adev: amdgpu_device pointer
3202  *
3203  * Cleanup the VM manager and free resources.
3204  */
3205 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3206 {
3207 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3208 	idr_destroy(&adev->vm_manager.pasid_idr);
3209 
3210 	amdgpu_vmid_mgr_fini(adev);
3211 }
3212 
3213 /**
3214  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3215  *
3216  * @dev: drm device pointer
3217  * @data: drm_amdgpu_vm
3218  * @filp: drm file pointer
3219  *
3220  * Returns:
3221  * 0 for success, -errno for errors.
3222  */
3223 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3224 {
3225 	union drm_amdgpu_vm *args = data;
3226 	struct amdgpu_device *adev = drm_to_adev(dev);
3227 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3228 	long timeout = msecs_to_jiffies(2000);
3229 	int r;
3230 
3231 	switch (args->in.op) {
3232 	case AMDGPU_VM_OP_RESERVE_VMID:
3233 		/* We only have requirement to reserve vmid from gfxhub */
3234 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3235 					       AMDGPU_GFXHUB_0);
3236 		if (r)
3237 			return r;
3238 		break;
3239 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3240 		if (amdgpu_sriov_runtime(adev))
3241 			timeout = 8 * timeout;
3242 
3243 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3244 		 * not referenced anymore.
3245 		 */
3246 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3247 		if (r)
3248 			return r;
3249 
3250 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3251 		if (r < 0)
3252 			return r;
3253 
3254 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3255 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3256 		break;
3257 	default:
3258 		return -EINVAL;
3259 	}
3260 
3261 	return 0;
3262 }
3263 
3264 /**
3265  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3266  *
3267  * @adev: drm device pointer
3268  * @pasid: PASID identifier for VM
3269  * @task_info: task_info to fill.
3270  */
3271 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3272 			 struct amdgpu_task_info *task_info)
3273 {
3274 	struct amdgpu_vm *vm;
3275 	unsigned long flags;
3276 
3277 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3278 
3279 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3280 	if (vm)
3281 		*task_info = vm->task_info;
3282 
3283 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3284 }
3285 
3286 /**
3287  * amdgpu_vm_set_task_info - Sets VMs task info.
3288  *
3289  * @vm: vm for which to set the info
3290  */
3291 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3292 {
3293 	if (vm->task_info.pid)
3294 		return;
3295 
3296 	vm->task_info.pid = current->pid;
3297 	get_task_comm(vm->task_info.task_name, current);
3298 
3299 	if (current->group_leader->mm != current->mm)
3300 		return;
3301 
3302 	vm->task_info.tgid = current->group_leader->pid;
3303 	get_task_comm(vm->task_info.process_name, current->group_leader);
3304 }
3305 
3306 /**
3307  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3308  * @adev: amdgpu device pointer
3309  * @pasid: PASID of the VM
3310  * @addr: Address of the fault
3311  *
3312  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3313  * shouldn't be reported any more.
3314  */
3315 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3316 			    uint64_t addr)
3317 {
3318 	bool is_compute_context = false;
3319 	struct amdgpu_bo *root;
3320 	uint64_t value, flags;
3321 	struct amdgpu_vm *vm;
3322 	int r;
3323 
3324 	spin_lock(&adev->vm_manager.pasid_lock);
3325 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3326 	if (vm) {
3327 		root = amdgpu_bo_ref(vm->root.base.bo);
3328 		is_compute_context = vm->is_compute_context;
3329 	} else {
3330 		root = NULL;
3331 	}
3332 	spin_unlock(&adev->vm_manager.pasid_lock);
3333 
3334 	if (!root)
3335 		return false;
3336 
3337 	addr /= AMDGPU_GPU_PAGE_SIZE;
3338 
3339 	if (is_compute_context &&
3340 	    !svm_range_restore_pages(adev, pasid, addr)) {
3341 		amdgpu_bo_unref(&root);
3342 		return true;
3343 	}
3344 
3345 	r = amdgpu_bo_reserve(root, true);
3346 	if (r)
3347 		goto error_unref;
3348 
3349 	/* Double check that the VM still exists */
3350 	spin_lock(&adev->vm_manager.pasid_lock);
3351 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3352 	if (vm && vm->root.base.bo != root)
3353 		vm = NULL;
3354 	spin_unlock(&adev->vm_manager.pasid_lock);
3355 	if (!vm)
3356 		goto error_unlock;
3357 
3358 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3359 		AMDGPU_PTE_SYSTEM;
3360 
3361 	if (is_compute_context) {
3362 		/* Intentionally setting invalid PTE flag
3363 		 * combination to force a no-retry-fault
3364 		 */
3365 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3366 			AMDGPU_PTE_TF;
3367 		value = 0;
3368 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3369 		/* Redirect the access to the dummy page */
3370 		value = adev->dummy_page_addr;
3371 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3372 			AMDGPU_PTE_WRITEABLE;
3373 
3374 	} else {
3375 		/* Let the hw retry silently on the PTE */
3376 		value = 0;
3377 	}
3378 
3379 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3380 	if (r) {
3381 		pr_debug("failed %d to reserve fence slot\n", r);
3382 		goto error_unlock;
3383 	}
3384 
3385 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3386 					addr, flags, value, NULL, NULL,
3387 					NULL);
3388 	if (r)
3389 		goto error_unlock;
3390 
3391 	r = amdgpu_vm_update_pdes(adev, vm, true);
3392 
3393 error_unlock:
3394 	amdgpu_bo_unreserve(root);
3395 	if (r < 0)
3396 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3397 
3398 error_unref:
3399 	amdgpu_bo_unref(&root);
3400 
3401 	return false;
3402 }
3403 
3404 #if defined(CONFIG_DEBUG_FS)
3405 /**
3406  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3407  *
3408  * @vm: Requested VM for printing BO info
3409  * @m: debugfs file
3410  *
3411  * Print BO information in debugfs file for the VM
3412  */
3413 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3414 {
3415 	struct amdgpu_bo_va *bo_va, *tmp;
3416 	u64 total_idle = 0;
3417 	u64 total_evicted = 0;
3418 	u64 total_relocated = 0;
3419 	u64 total_moved = 0;
3420 	u64 total_invalidated = 0;
3421 	u64 total_done = 0;
3422 	unsigned int total_idle_objs = 0;
3423 	unsigned int total_evicted_objs = 0;
3424 	unsigned int total_relocated_objs = 0;
3425 	unsigned int total_moved_objs = 0;
3426 	unsigned int total_invalidated_objs = 0;
3427 	unsigned int total_done_objs = 0;
3428 	unsigned int id = 0;
3429 
3430 	seq_puts(m, "\tIdle BOs:\n");
3431 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3432 		if (!bo_va->base.bo)
3433 			continue;
3434 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3435 	}
3436 	total_idle_objs = id;
3437 	id = 0;
3438 
3439 	seq_puts(m, "\tEvicted BOs:\n");
3440 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3441 		if (!bo_va->base.bo)
3442 			continue;
3443 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3444 	}
3445 	total_evicted_objs = id;
3446 	id = 0;
3447 
3448 	seq_puts(m, "\tRelocated BOs:\n");
3449 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3450 		if (!bo_va->base.bo)
3451 			continue;
3452 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3453 	}
3454 	total_relocated_objs = id;
3455 	id = 0;
3456 
3457 	seq_puts(m, "\tMoved BOs:\n");
3458 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3459 		if (!bo_va->base.bo)
3460 			continue;
3461 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3462 	}
3463 	total_moved_objs = id;
3464 	id = 0;
3465 
3466 	seq_puts(m, "\tInvalidated BOs:\n");
3467 	spin_lock(&vm->invalidated_lock);
3468 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3469 		if (!bo_va->base.bo)
3470 			continue;
3471 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3472 	}
3473 	total_invalidated_objs = id;
3474 	id = 0;
3475 
3476 	seq_puts(m, "\tDone BOs:\n");
3477 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3478 		if (!bo_va->base.bo)
3479 			continue;
3480 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3481 	}
3482 	spin_unlock(&vm->invalidated_lock);
3483 	total_done_objs = id;
3484 
3485 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3486 		   total_idle_objs);
3487 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3488 		   total_evicted_objs);
3489 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3490 		   total_relocated_objs);
3491 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3492 		   total_moved_objs);
3493 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3494 		   total_invalidated_objs);
3495 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3496 		   total_done_objs);
3497 }
3498 #endif
3499