1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 36 /* 37 * PASID manager 38 * 39 * PASIDs are global address space identifiers that can be shared 40 * between the GPU, an IOMMU and the driver. VMs on different devices 41 * may use the same PASID if they share the same address 42 * space. Therefore PASIDs are allocated using a global IDA. VMs are 43 * looked up from the PASID per amdgpu_device. 44 */ 45 static DEFINE_IDA(amdgpu_vm_pasid_ida); 46 47 /** 48 * amdgpu_vm_alloc_pasid - Allocate a PASID 49 * @bits: Maximum width of the PASID in bits, must be at least 1 50 * 51 * Allocates a PASID of the given width while keeping smaller PASIDs 52 * available if possible. 53 * 54 * Returns a positive integer on success. Returns %-EINVAL if bits==0. 55 * Returns %-ENOSPC if no PASID was available. Returns %-ENOMEM on 56 * memory allocation failure. 57 */ 58 int amdgpu_vm_alloc_pasid(unsigned int bits) 59 { 60 int pasid = -EINVAL; 61 62 for (bits = min(bits, 31U); bits > 0; bits--) { 63 pasid = ida_simple_get(&amdgpu_vm_pasid_ida, 64 1U << (bits - 1), 1U << bits, 65 GFP_KERNEL); 66 if (pasid != -ENOSPC) 67 break; 68 } 69 70 return pasid; 71 } 72 73 /** 74 * amdgpu_vm_free_pasid - Free a PASID 75 * @pasid: PASID to free 76 */ 77 void amdgpu_vm_free_pasid(unsigned int pasid) 78 { 79 ida_simple_remove(&amdgpu_vm_pasid_ida, pasid); 80 } 81 82 /* 83 * GPUVM 84 * GPUVM is similar to the legacy gart on older asics, however 85 * rather than there being a single global gart table 86 * for the entire GPU, there are multiple VM page tables active 87 * at any given time. The VM page tables can contain a mix 88 * vram pages and system memory pages and system memory pages 89 * can be mapped as snooped (cached system pages) or unsnooped 90 * (uncached system pages). 91 * Each VM has an ID associated with it and there is a page table 92 * associated with each VMID. When execting a command buffer, 93 * the kernel tells the the ring what VMID to use for that command 94 * buffer. VMIDs are allocated dynamically as commands are submitted. 95 * The userspace drivers maintain their own address space and the kernel 96 * sets up their pages tables accordingly when they submit their 97 * command buffers and a VMID is assigned. 98 * Cayman/Trinity support up to 8 active VMs at any given time; 99 * SI supports 16. 100 */ 101 102 #define START(node) ((node)->start) 103 #define LAST(node) ((node)->last) 104 105 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 106 START, LAST, static, amdgpu_vm_it) 107 108 #undef START 109 #undef LAST 110 111 /* Local structure. Encapsulate some VM table update parameters to reduce 112 * the number of function parameters 113 */ 114 struct amdgpu_pte_update_params { 115 /* amdgpu device we do this update for */ 116 struct amdgpu_device *adev; 117 /* optional amdgpu_vm we do this update for */ 118 struct amdgpu_vm *vm; 119 /* address where to copy page table entries from */ 120 uint64_t src; 121 /* indirect buffer to fill with commands */ 122 struct amdgpu_ib *ib; 123 /* Function which actually does the update */ 124 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 125 uint64_t addr, unsigned count, uint32_t incr, 126 uint64_t flags); 127 /* The next two are used during VM update by CPU 128 * DMA addresses to use for mapping 129 * Kernel pointer of PD/PT BO that needs to be updated 130 */ 131 dma_addr_t *pages_addr; 132 void *kptr; 133 }; 134 135 /* Helper to disable partial resident texture feature from a fence callback */ 136 struct amdgpu_prt_cb { 137 struct amdgpu_device *adev; 138 struct dma_fence_cb cb; 139 }; 140 141 /** 142 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 143 * 144 * @adev: amdgpu_device pointer 145 * 146 * Calculate the number of entries in a page directory or page table. 147 */ 148 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 149 unsigned level) 150 { 151 if (level == 0) 152 /* For the root directory */ 153 return adev->vm_manager.max_pfn >> 154 (adev->vm_manager.block_size * 155 adev->vm_manager.num_level); 156 else if (level == adev->vm_manager.num_level) 157 /* For the page tables on the leaves */ 158 return AMDGPU_VM_PTE_COUNT(adev); 159 else 160 /* Everything in between */ 161 return 1 << adev->vm_manager.block_size; 162 } 163 164 /** 165 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 166 * 167 * @adev: amdgpu_device pointer 168 * 169 * Calculate the size of the BO for a page directory or page table in bytes. 170 */ 171 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 172 { 173 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 174 } 175 176 /** 177 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 178 * 179 * @vm: vm providing the BOs 180 * @validated: head of validation list 181 * @entry: entry to add 182 * 183 * Add the page directory to the list of BOs to 184 * validate for command submission. 185 */ 186 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 187 struct list_head *validated, 188 struct amdgpu_bo_list_entry *entry) 189 { 190 entry->robj = vm->root.base.bo; 191 entry->priority = 0; 192 entry->tv.bo = &entry->robj->tbo; 193 entry->tv.shared = true; 194 entry->user_pages = NULL; 195 list_add(&entry->tv.head, validated); 196 } 197 198 /** 199 * amdgpu_vm_validate_pt_bos - validate the page table BOs 200 * 201 * @adev: amdgpu device pointer 202 * @vm: vm providing the BOs 203 * @validate: callback to do the validation 204 * @param: parameter for the validation callback 205 * 206 * Validate the page table BOs on command submission if neccessary. 207 */ 208 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 209 int (*validate)(void *p, struct amdgpu_bo *bo), 210 void *param) 211 { 212 struct ttm_bo_global *glob = adev->mman.bdev.glob; 213 int r; 214 215 spin_lock(&vm->status_lock); 216 while (!list_empty(&vm->evicted)) { 217 struct amdgpu_vm_bo_base *bo_base; 218 struct amdgpu_bo *bo; 219 220 bo_base = list_first_entry(&vm->evicted, 221 struct amdgpu_vm_bo_base, 222 vm_status); 223 spin_unlock(&vm->status_lock); 224 225 bo = bo_base->bo; 226 BUG_ON(!bo); 227 if (bo->parent) { 228 r = validate(param, bo); 229 if (r) 230 return r; 231 232 spin_lock(&glob->lru_lock); 233 ttm_bo_move_to_lru_tail(&bo->tbo); 234 if (bo->shadow) 235 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 236 spin_unlock(&glob->lru_lock); 237 } 238 239 if (bo->tbo.type == ttm_bo_type_kernel && 240 vm->use_cpu_for_update) { 241 r = amdgpu_bo_kmap(bo, NULL); 242 if (r) 243 return r; 244 } 245 246 spin_lock(&vm->status_lock); 247 if (bo->tbo.type != ttm_bo_type_kernel) 248 list_move(&bo_base->vm_status, &vm->moved); 249 else 250 list_move(&bo_base->vm_status, &vm->relocated); 251 } 252 spin_unlock(&vm->status_lock); 253 254 return 0; 255 } 256 257 /** 258 * amdgpu_vm_ready - check VM is ready for updates 259 * 260 * @vm: VM to check 261 * 262 * Check if all VM PDs/PTs are ready for updates 263 */ 264 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 265 { 266 bool ready; 267 268 spin_lock(&vm->status_lock); 269 ready = list_empty(&vm->evicted); 270 spin_unlock(&vm->status_lock); 271 272 return ready; 273 } 274 275 /** 276 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 277 * 278 * @adev: amdgpu_device pointer 279 * @vm: requested vm 280 * @saddr: start of the address range 281 * @eaddr: end of the address range 282 * 283 * Make sure the page directories and page tables are allocated 284 */ 285 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 286 struct amdgpu_vm *vm, 287 struct amdgpu_vm_pt *parent, 288 uint64_t saddr, uint64_t eaddr, 289 unsigned level) 290 { 291 unsigned shift = (adev->vm_manager.num_level - level) * 292 adev->vm_manager.block_size; 293 unsigned pt_idx, from, to; 294 int r; 295 u64 flags; 296 uint64_t init_value = 0; 297 298 if (!parent->entries) { 299 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 300 301 parent->entries = kvmalloc_array(num_entries, 302 sizeof(struct amdgpu_vm_pt), 303 GFP_KERNEL | __GFP_ZERO); 304 if (!parent->entries) 305 return -ENOMEM; 306 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 307 } 308 309 from = saddr >> shift; 310 to = eaddr >> shift; 311 if (from >= amdgpu_vm_num_entries(adev, level) || 312 to >= amdgpu_vm_num_entries(adev, level)) 313 return -EINVAL; 314 315 if (to > parent->last_entry_used) 316 parent->last_entry_used = to; 317 318 ++level; 319 saddr = saddr & ((1 << shift) - 1); 320 eaddr = eaddr & ((1 << shift) - 1); 321 322 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 323 AMDGPU_GEM_CREATE_VRAM_CLEARED; 324 if (vm->use_cpu_for_update) 325 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 326 else 327 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 328 AMDGPU_GEM_CREATE_SHADOW); 329 330 if (vm->pte_support_ats) { 331 init_value = AMDGPU_PTE_DEFAULT_ATC; 332 if (level != adev->vm_manager.num_level - 1) 333 init_value |= AMDGPU_PDE_PTE; 334 335 } 336 337 /* walk over the address space and allocate the page tables */ 338 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 339 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 340 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 341 struct amdgpu_bo *pt; 342 343 if (!entry->base.bo) { 344 r = amdgpu_bo_create(adev, 345 amdgpu_vm_bo_size(adev, level), 346 AMDGPU_GPU_PAGE_SIZE, true, 347 AMDGPU_GEM_DOMAIN_VRAM, 348 flags, 349 NULL, resv, init_value, &pt); 350 if (r) 351 return r; 352 353 if (vm->use_cpu_for_update) { 354 r = amdgpu_bo_kmap(pt, NULL); 355 if (r) { 356 amdgpu_bo_unref(&pt); 357 return r; 358 } 359 } 360 361 /* Keep a reference to the root directory to avoid 362 * freeing them up in the wrong order. 363 */ 364 pt->parent = amdgpu_bo_ref(parent->base.bo); 365 366 entry->base.vm = vm; 367 entry->base.bo = pt; 368 list_add_tail(&entry->base.bo_list, &pt->va); 369 spin_lock(&vm->status_lock); 370 list_add(&entry->base.vm_status, &vm->relocated); 371 spin_unlock(&vm->status_lock); 372 entry->addr = 0; 373 } 374 375 if (level < adev->vm_manager.num_level) { 376 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 377 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 378 ((1 << shift) - 1); 379 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 380 sub_eaddr, level); 381 if (r) 382 return r; 383 } 384 } 385 386 return 0; 387 } 388 389 /** 390 * amdgpu_vm_alloc_pts - Allocate page tables. 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: VM to allocate page tables for 394 * @saddr: Start address which needs to be allocated 395 * @size: Size from start address we need. 396 * 397 * Make sure the page tables are allocated. 398 */ 399 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, 401 uint64_t saddr, uint64_t size) 402 { 403 uint64_t last_pfn; 404 uint64_t eaddr; 405 406 /* validate the parameters */ 407 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 408 return -EINVAL; 409 410 eaddr = saddr + size - 1; 411 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 412 if (last_pfn >= adev->vm_manager.max_pfn) { 413 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 414 last_pfn, adev->vm_manager.max_pfn); 415 return -EINVAL; 416 } 417 418 saddr /= AMDGPU_GPU_PAGE_SIZE; 419 eaddr /= AMDGPU_GPU_PAGE_SIZE; 420 421 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); 422 } 423 424 /** 425 * amdgpu_vm_had_gpu_reset - check if reset occured since last use 426 * 427 * @adev: amdgpu_device pointer 428 * @id: VMID structure 429 * 430 * Check if GPU reset occured since last use of the VMID. 431 */ 432 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev, 433 struct amdgpu_vm_id *id) 434 { 435 return id->current_gpu_reset_count != 436 atomic_read(&adev->gpu_reset_counter); 437 } 438 439 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub) 440 { 441 return !!vm->reserved_vmid[vmhub]; 442 } 443 444 /* idr_mgr->lock must be held */ 445 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm, 446 struct amdgpu_ring *ring, 447 struct amdgpu_sync *sync, 448 struct dma_fence *fence, 449 struct amdgpu_job *job) 450 { 451 struct amdgpu_device *adev = ring->adev; 452 unsigned vmhub = ring->funcs->vmhub; 453 uint64_t fence_context = adev->fence_context + ring->idx; 454 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub]; 455 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 456 struct dma_fence *updates = sync->last_vm_update; 457 int r = 0; 458 struct dma_fence *flushed, *tmp; 459 bool needs_flush = vm->use_cpu_for_update; 460 461 flushed = id->flushed_updates; 462 if ((amdgpu_vm_had_gpu_reset(adev, id)) || 463 (atomic64_read(&id->owner) != vm->client_id) || 464 (job->vm_pd_addr != id->pd_gpu_addr) || 465 (updates && (!flushed || updates->context != flushed->context || 466 dma_fence_is_later(updates, flushed))) || 467 (!id->last_flush || (id->last_flush->context != fence_context && 468 !dma_fence_is_signaled(id->last_flush)))) { 469 needs_flush = true; 470 /* to prevent one context starved by another context */ 471 id->pd_gpu_addr = 0; 472 tmp = amdgpu_sync_peek_fence(&id->active, ring); 473 if (tmp) { 474 r = amdgpu_sync_fence(adev, sync, tmp); 475 return r; 476 } 477 } 478 479 /* Good we can use this VMID. Remember this submission as 480 * user of the VMID. 481 */ 482 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 483 if (r) 484 goto out; 485 486 if (updates && (!flushed || updates->context != flushed->context || 487 dma_fence_is_later(updates, flushed))) { 488 dma_fence_put(id->flushed_updates); 489 id->flushed_updates = dma_fence_get(updates); 490 } 491 id->pd_gpu_addr = job->vm_pd_addr; 492 atomic64_set(&id->owner, vm->client_id); 493 job->vm_needs_flush = needs_flush; 494 if (needs_flush) { 495 dma_fence_put(id->last_flush); 496 id->last_flush = NULL; 497 } 498 job->vm_id = id - id_mgr->ids; 499 trace_amdgpu_vm_grab_id(vm, ring, job); 500 out: 501 return r; 502 } 503 504 /** 505 * amdgpu_vm_grab_id - allocate the next free VMID 506 * 507 * @vm: vm to allocate id for 508 * @ring: ring we want to submit job to 509 * @sync: sync object where we add dependencies 510 * @fence: fence protecting ID from reuse 511 * 512 * Allocate an id for the vm, adding fences to the sync obj as necessary. 513 */ 514 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 515 struct amdgpu_sync *sync, struct dma_fence *fence, 516 struct amdgpu_job *job) 517 { 518 struct amdgpu_device *adev = ring->adev; 519 unsigned vmhub = ring->funcs->vmhub; 520 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 521 uint64_t fence_context = adev->fence_context + ring->idx; 522 struct dma_fence *updates = sync->last_vm_update; 523 struct amdgpu_vm_id *id, *idle; 524 struct dma_fence **fences; 525 unsigned i; 526 int r = 0; 527 528 mutex_lock(&id_mgr->lock); 529 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) { 530 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job); 531 mutex_unlock(&id_mgr->lock); 532 return r; 533 } 534 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL); 535 if (!fences) { 536 mutex_unlock(&id_mgr->lock); 537 return -ENOMEM; 538 } 539 /* Check if we have an idle VMID */ 540 i = 0; 541 list_for_each_entry(idle, &id_mgr->ids_lru, list) { 542 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 543 if (!fences[i]) 544 break; 545 ++i; 546 } 547 548 /* If we can't find a idle VMID to use, wait till one becomes available */ 549 if (&idle->list == &id_mgr->ids_lru) { 550 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 551 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 552 struct dma_fence_array *array; 553 unsigned j; 554 555 for (j = 0; j < i; ++j) 556 dma_fence_get(fences[j]); 557 558 array = dma_fence_array_create(i, fences, fence_context, 559 seqno, true); 560 if (!array) { 561 for (j = 0; j < i; ++j) 562 dma_fence_put(fences[j]); 563 kfree(fences); 564 r = -ENOMEM; 565 goto error; 566 } 567 568 569 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 570 dma_fence_put(&array->base); 571 if (r) 572 goto error; 573 574 mutex_unlock(&id_mgr->lock); 575 return 0; 576 577 } 578 kfree(fences); 579 580 job->vm_needs_flush = vm->use_cpu_for_update; 581 /* Check if we can use a VMID already assigned to this VM */ 582 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) { 583 struct dma_fence *flushed; 584 bool needs_flush = vm->use_cpu_for_update; 585 586 /* Check all the prerequisites to using this VMID */ 587 if (amdgpu_vm_had_gpu_reset(adev, id)) 588 continue; 589 590 if (atomic64_read(&id->owner) != vm->client_id) 591 continue; 592 593 if (job->vm_pd_addr != id->pd_gpu_addr) 594 continue; 595 596 if (!id->last_flush || 597 (id->last_flush->context != fence_context && 598 !dma_fence_is_signaled(id->last_flush))) 599 needs_flush = true; 600 601 flushed = id->flushed_updates; 602 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) 603 needs_flush = true; 604 605 /* Concurrent flushes are only possible starting with Vega10 */ 606 if (adev->asic_type < CHIP_VEGA10 && needs_flush) 607 continue; 608 609 /* Good we can use this VMID. Remember this submission as 610 * user of the VMID. 611 */ 612 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 613 if (r) 614 goto error; 615 616 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) { 617 dma_fence_put(id->flushed_updates); 618 id->flushed_updates = dma_fence_get(updates); 619 } 620 621 if (needs_flush) 622 goto needs_flush; 623 else 624 goto no_flush_needed; 625 626 }; 627 628 /* Still no ID to use? Then use the idle one found earlier */ 629 id = idle; 630 631 /* Remember this submission as user of the VMID */ 632 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 633 if (r) 634 goto error; 635 636 id->pd_gpu_addr = job->vm_pd_addr; 637 dma_fence_put(id->flushed_updates); 638 id->flushed_updates = dma_fence_get(updates); 639 atomic64_set(&id->owner, vm->client_id); 640 641 needs_flush: 642 job->vm_needs_flush = true; 643 dma_fence_put(id->last_flush); 644 id->last_flush = NULL; 645 646 no_flush_needed: 647 list_move_tail(&id->list, &id_mgr->ids_lru); 648 649 job->vm_id = id - id_mgr->ids; 650 trace_amdgpu_vm_grab_id(vm, ring, job); 651 652 error: 653 mutex_unlock(&id_mgr->lock); 654 return r; 655 } 656 657 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev, 658 struct amdgpu_vm *vm, 659 unsigned vmhub) 660 { 661 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 662 663 mutex_lock(&id_mgr->lock); 664 if (vm->reserved_vmid[vmhub]) { 665 list_add(&vm->reserved_vmid[vmhub]->list, 666 &id_mgr->ids_lru); 667 vm->reserved_vmid[vmhub] = NULL; 668 atomic_dec(&id_mgr->reserved_vmid_num); 669 } 670 mutex_unlock(&id_mgr->lock); 671 } 672 673 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev, 674 struct amdgpu_vm *vm, 675 unsigned vmhub) 676 { 677 struct amdgpu_vm_id_manager *id_mgr; 678 struct amdgpu_vm_id *idle; 679 int r = 0; 680 681 id_mgr = &adev->vm_manager.id_mgr[vmhub]; 682 mutex_lock(&id_mgr->lock); 683 if (vm->reserved_vmid[vmhub]) 684 goto unlock; 685 if (atomic_inc_return(&id_mgr->reserved_vmid_num) > 686 AMDGPU_VM_MAX_RESERVED_VMID) { 687 DRM_ERROR("Over limitation of reserved vmid\n"); 688 atomic_dec(&id_mgr->reserved_vmid_num); 689 r = -EINVAL; 690 goto unlock; 691 } 692 /* Select the first entry VMID */ 693 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list); 694 list_del_init(&idle->list); 695 vm->reserved_vmid[vmhub] = idle; 696 mutex_unlock(&id_mgr->lock); 697 698 return 0; 699 unlock: 700 mutex_unlock(&id_mgr->lock); 701 return r; 702 } 703 704 /** 705 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 706 * 707 * @adev: amdgpu_device pointer 708 */ 709 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 710 { 711 const struct amdgpu_ip_block *ip_block; 712 bool has_compute_vm_bug; 713 struct amdgpu_ring *ring; 714 int i; 715 716 has_compute_vm_bug = false; 717 718 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 719 if (ip_block) { 720 /* Compute has a VM bug for GFX version < 7. 721 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 722 if (ip_block->version->major <= 7) 723 has_compute_vm_bug = true; 724 else if (ip_block->version->major == 8) 725 if (adev->gfx.mec_fw_version < 673) 726 has_compute_vm_bug = true; 727 } 728 729 for (i = 0; i < adev->num_rings; i++) { 730 ring = adev->rings[i]; 731 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 732 /* only compute rings */ 733 ring->has_compute_vm_bug = has_compute_vm_bug; 734 else 735 ring->has_compute_vm_bug = false; 736 } 737 } 738 739 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 740 struct amdgpu_job *job) 741 { 742 struct amdgpu_device *adev = ring->adev; 743 unsigned vmhub = ring->funcs->vmhub; 744 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 745 struct amdgpu_vm_id *id; 746 bool gds_switch_needed; 747 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 748 749 if (job->vm_id == 0) 750 return false; 751 id = &id_mgr->ids[job->vm_id]; 752 gds_switch_needed = ring->funcs->emit_gds_switch && ( 753 id->gds_base != job->gds_base || 754 id->gds_size != job->gds_size || 755 id->gws_base != job->gws_base || 756 id->gws_size != job->gws_size || 757 id->oa_base != job->oa_base || 758 id->oa_size != job->oa_size); 759 760 if (amdgpu_vm_had_gpu_reset(adev, id)) 761 return true; 762 763 return vm_flush_needed || gds_switch_needed; 764 } 765 766 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev) 767 { 768 return (adev->mc.real_vram_size == adev->mc.visible_vram_size); 769 } 770 771 /** 772 * amdgpu_vm_flush - hardware flush the vm 773 * 774 * @ring: ring to use for flush 775 * @vm_id: vmid number to use 776 * @pd_addr: address of the page directory 777 * 778 * Emit a VM flush when it is necessary. 779 */ 780 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 781 { 782 struct amdgpu_device *adev = ring->adev; 783 unsigned vmhub = ring->funcs->vmhub; 784 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 785 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id]; 786 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 787 id->gds_base != job->gds_base || 788 id->gds_size != job->gds_size || 789 id->gws_base != job->gws_base || 790 id->gws_size != job->gws_size || 791 id->oa_base != job->oa_base || 792 id->oa_size != job->oa_size); 793 bool vm_flush_needed = job->vm_needs_flush; 794 unsigned patch_offset = 0; 795 int r; 796 797 if (amdgpu_vm_had_gpu_reset(adev, id)) { 798 gds_switch_needed = true; 799 vm_flush_needed = true; 800 } 801 802 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 803 return 0; 804 805 if (ring->funcs->init_cond_exec) 806 patch_offset = amdgpu_ring_init_cond_exec(ring); 807 808 if (need_pipe_sync) 809 amdgpu_ring_emit_pipeline_sync(ring); 810 811 if (ring->funcs->emit_vm_flush && vm_flush_needed) { 812 struct dma_fence *fence; 813 814 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr); 815 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr); 816 817 r = amdgpu_fence_emit(ring, &fence); 818 if (r) 819 return r; 820 821 mutex_lock(&id_mgr->lock); 822 dma_fence_put(id->last_flush); 823 id->last_flush = fence; 824 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 825 mutex_unlock(&id_mgr->lock); 826 } 827 828 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 829 id->gds_base = job->gds_base; 830 id->gds_size = job->gds_size; 831 id->gws_base = job->gws_base; 832 id->gws_size = job->gws_size; 833 id->oa_base = job->oa_base; 834 id->oa_size = job->oa_size; 835 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base, 836 job->gds_size, job->gws_base, 837 job->gws_size, job->oa_base, 838 job->oa_size); 839 } 840 841 if (ring->funcs->patch_cond_exec) 842 amdgpu_ring_patch_cond_exec(ring, patch_offset); 843 844 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 845 if (ring->funcs->emit_switch_buffer) { 846 amdgpu_ring_emit_switch_buffer(ring); 847 amdgpu_ring_emit_switch_buffer(ring); 848 } 849 return 0; 850 } 851 852 /** 853 * amdgpu_vm_reset_id - reset VMID to zero 854 * 855 * @adev: amdgpu device structure 856 * @vm_id: vmid number to use 857 * 858 * Reset saved GDW, GWS and OA to force switch on next flush. 859 */ 860 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub, 861 unsigned vmid) 862 { 863 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 864 struct amdgpu_vm_id *id = &id_mgr->ids[vmid]; 865 866 atomic64_set(&id->owner, 0); 867 id->gds_base = 0; 868 id->gds_size = 0; 869 id->gws_base = 0; 870 id->gws_size = 0; 871 id->oa_base = 0; 872 id->oa_size = 0; 873 } 874 875 /** 876 * amdgpu_vm_reset_all_id - reset VMID to zero 877 * 878 * @adev: amdgpu device structure 879 * 880 * Reset VMID to force flush on next use 881 */ 882 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev) 883 { 884 unsigned i, j; 885 886 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 887 struct amdgpu_vm_id_manager *id_mgr = 888 &adev->vm_manager.id_mgr[i]; 889 890 for (j = 1; j < id_mgr->num_ids; ++j) 891 amdgpu_vm_reset_id(adev, i, j); 892 } 893 } 894 895 /** 896 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 897 * 898 * @vm: requested vm 899 * @bo: requested buffer object 900 * 901 * Find @bo inside the requested vm. 902 * Search inside the @bos vm list for the requested vm 903 * Returns the found bo_va or NULL if none is found 904 * 905 * Object has to be reserved! 906 */ 907 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 908 struct amdgpu_bo *bo) 909 { 910 struct amdgpu_bo_va *bo_va; 911 912 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 913 if (bo_va->base.vm == vm) { 914 return bo_va; 915 } 916 } 917 return NULL; 918 } 919 920 /** 921 * amdgpu_vm_do_set_ptes - helper to call the right asic function 922 * 923 * @params: see amdgpu_pte_update_params definition 924 * @pe: addr of the page entry 925 * @addr: dst addr to write into pe 926 * @count: number of page entries to update 927 * @incr: increase next addr by incr bytes 928 * @flags: hw access flags 929 * 930 * Traces the parameters and calls the right asic functions 931 * to setup the page table using the DMA. 932 */ 933 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 934 uint64_t pe, uint64_t addr, 935 unsigned count, uint32_t incr, 936 uint64_t flags) 937 { 938 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 939 940 if (count < 3) { 941 amdgpu_vm_write_pte(params->adev, params->ib, pe, 942 addr | flags, count, incr); 943 944 } else { 945 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 946 count, incr, flags); 947 } 948 } 949 950 /** 951 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 952 * 953 * @params: see amdgpu_pte_update_params definition 954 * @pe: addr of the page entry 955 * @addr: dst addr to write into pe 956 * @count: number of page entries to update 957 * @incr: increase next addr by incr bytes 958 * @flags: hw access flags 959 * 960 * Traces the parameters and calls the DMA function to copy the PTEs. 961 */ 962 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 963 uint64_t pe, uint64_t addr, 964 unsigned count, uint32_t incr, 965 uint64_t flags) 966 { 967 uint64_t src = (params->src + (addr >> 12) * 8); 968 969 970 trace_amdgpu_vm_copy_ptes(pe, src, count); 971 972 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 973 } 974 975 /** 976 * amdgpu_vm_map_gart - Resolve gart mapping of addr 977 * 978 * @pages_addr: optional DMA address to use for lookup 979 * @addr: the unmapped addr 980 * 981 * Look up the physical address of the page that the pte resolves 982 * to and return the pointer for the page table entry. 983 */ 984 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 985 { 986 uint64_t result; 987 988 /* page table offset */ 989 result = pages_addr[addr >> PAGE_SHIFT]; 990 991 /* in case cpu page size != gpu page size*/ 992 result |= addr & (~PAGE_MASK); 993 994 result &= 0xFFFFFFFFFFFFF000ULL; 995 996 return result; 997 } 998 999 /** 1000 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1001 * 1002 * @params: see amdgpu_pte_update_params definition 1003 * @pe: kmap addr of the page entry 1004 * @addr: dst addr to write into pe 1005 * @count: number of page entries to update 1006 * @incr: increase next addr by incr bytes 1007 * @flags: hw access flags 1008 * 1009 * Write count number of PT/PD entries directly. 1010 */ 1011 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1012 uint64_t pe, uint64_t addr, 1013 unsigned count, uint32_t incr, 1014 uint64_t flags) 1015 { 1016 unsigned int i; 1017 uint64_t value; 1018 1019 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1020 1021 for (i = 0; i < count; i++) { 1022 value = params->pages_addr ? 1023 amdgpu_vm_map_gart(params->pages_addr, addr) : 1024 addr; 1025 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1026 i, value, flags); 1027 addr += incr; 1028 } 1029 } 1030 1031 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1032 void *owner) 1033 { 1034 struct amdgpu_sync sync; 1035 int r; 1036 1037 amdgpu_sync_create(&sync); 1038 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1039 r = amdgpu_sync_wait(&sync, true); 1040 amdgpu_sync_free(&sync); 1041 1042 return r; 1043 } 1044 1045 /* 1046 * amdgpu_vm_update_level - update a single level in the hierarchy 1047 * 1048 * @adev: amdgpu_device pointer 1049 * @vm: requested vm 1050 * @parent: parent directory 1051 * 1052 * Makes sure all entries in @parent are up to date. 1053 * Returns 0 for success, error for failure. 1054 */ 1055 static int amdgpu_vm_update_level(struct amdgpu_device *adev, 1056 struct amdgpu_vm *vm, 1057 struct amdgpu_vm_pt *parent) 1058 { 1059 struct amdgpu_bo *shadow; 1060 struct amdgpu_ring *ring = NULL; 1061 uint64_t pd_addr, shadow_addr = 0; 1062 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 1063 unsigned count = 0, pt_idx, ndw = 0; 1064 struct amdgpu_job *job; 1065 struct amdgpu_pte_update_params params; 1066 struct dma_fence *fence = NULL; 1067 uint32_t incr; 1068 1069 int r; 1070 1071 if (!parent->entries) 1072 return 0; 1073 1074 memset(¶ms, 0, sizeof(params)); 1075 params.adev = adev; 1076 shadow = parent->base.bo->shadow; 1077 1078 if (vm->use_cpu_for_update) { 1079 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo); 1080 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1081 if (unlikely(r)) 1082 return r; 1083 1084 params.func = amdgpu_vm_cpu_set_ptes; 1085 } else { 1086 ring = container_of(vm->entity.sched, struct amdgpu_ring, 1087 sched); 1088 1089 /* padding, etc. */ 1090 ndw = 64; 1091 1092 /* assume the worst case */ 1093 ndw += parent->last_entry_used * 6; 1094 1095 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo); 1096 1097 if (shadow) { 1098 shadow_addr = amdgpu_bo_gpu_offset(shadow); 1099 ndw *= 2; 1100 } else { 1101 shadow_addr = 0; 1102 } 1103 1104 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1105 if (r) 1106 return r; 1107 1108 params.ib = &job->ibs[0]; 1109 params.func = amdgpu_vm_do_set_ptes; 1110 } 1111 1112 1113 /* walk over the address space and update the directory */ 1114 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1115 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1116 struct amdgpu_bo *bo = entry->base.bo; 1117 uint64_t pde, pt; 1118 1119 if (bo == NULL) 1120 continue; 1121 1122 spin_lock(&vm->status_lock); 1123 list_del_init(&entry->base.vm_status); 1124 spin_unlock(&vm->status_lock); 1125 1126 pt = amdgpu_bo_gpu_offset(bo); 1127 pt = amdgpu_gart_get_vm_pde(adev, pt); 1128 /* Don't update huge pages here */ 1129 if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) || 1130 parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID)) 1131 continue; 1132 1133 parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID; 1134 1135 pde = pd_addr + pt_idx * 8; 1136 incr = amdgpu_bo_size(bo); 1137 if (((last_pde + 8 * count) != pde) || 1138 ((last_pt + incr * count) != pt) || 1139 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 1140 1141 if (count) { 1142 if (shadow) 1143 params.func(¶ms, 1144 last_shadow, 1145 last_pt, count, 1146 incr, 1147 AMDGPU_PTE_VALID); 1148 1149 params.func(¶ms, last_pde, 1150 last_pt, count, incr, 1151 AMDGPU_PTE_VALID); 1152 } 1153 1154 count = 1; 1155 last_pde = pde; 1156 last_shadow = shadow_addr + pt_idx * 8; 1157 last_pt = pt; 1158 } else { 1159 ++count; 1160 } 1161 } 1162 1163 if (count) { 1164 if (vm->root.base.bo->shadow) 1165 params.func(¶ms, last_shadow, last_pt, 1166 count, incr, AMDGPU_PTE_VALID); 1167 1168 params.func(¶ms, last_pde, last_pt, 1169 count, incr, AMDGPU_PTE_VALID); 1170 } 1171 1172 if (!vm->use_cpu_for_update) { 1173 if (params.ib->length_dw == 0) { 1174 amdgpu_job_free(job); 1175 } else { 1176 amdgpu_ring_pad_ib(ring, params.ib); 1177 amdgpu_sync_resv(adev, &job->sync, 1178 parent->base.bo->tbo.resv, 1179 AMDGPU_FENCE_OWNER_VM, false); 1180 if (shadow) 1181 amdgpu_sync_resv(adev, &job->sync, 1182 shadow->tbo.resv, 1183 AMDGPU_FENCE_OWNER_VM, false); 1184 1185 WARN_ON(params.ib->length_dw > ndw); 1186 r = amdgpu_job_submit(job, ring, &vm->entity, 1187 AMDGPU_FENCE_OWNER_VM, &fence); 1188 if (r) 1189 goto error_free; 1190 1191 amdgpu_bo_fence(parent->base.bo, fence, true); 1192 dma_fence_put(vm->last_update); 1193 vm->last_update = fence; 1194 } 1195 } 1196 1197 return 0; 1198 1199 error_free: 1200 amdgpu_job_free(job); 1201 return r; 1202 } 1203 1204 /* 1205 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 1206 * 1207 * @parent: parent PD 1208 * 1209 * Mark all PD level as invalid after an error. 1210 */ 1211 static void amdgpu_vm_invalidate_level(struct amdgpu_vm *vm, 1212 struct amdgpu_vm_pt *parent) 1213 { 1214 unsigned pt_idx; 1215 1216 /* 1217 * Recurse into the subdirectories. This recursion is harmless because 1218 * we only have a maximum of 5 layers. 1219 */ 1220 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1221 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1222 1223 if (!entry->base.bo) 1224 continue; 1225 1226 entry->addr = ~0ULL; 1227 spin_lock(&vm->status_lock); 1228 if (list_empty(&entry->base.vm_status)) 1229 list_add(&entry->base.vm_status, &vm->relocated); 1230 spin_unlock(&vm->status_lock); 1231 amdgpu_vm_invalidate_level(vm, entry); 1232 } 1233 } 1234 1235 /* 1236 * amdgpu_vm_update_directories - make sure that all directories are valid 1237 * 1238 * @adev: amdgpu_device pointer 1239 * @vm: requested vm 1240 * 1241 * Makes sure all directories are up to date. 1242 * Returns 0 for success, error for failure. 1243 */ 1244 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1245 struct amdgpu_vm *vm) 1246 { 1247 int r = 0; 1248 1249 spin_lock(&vm->status_lock); 1250 while (!list_empty(&vm->relocated)) { 1251 struct amdgpu_vm_bo_base *bo_base; 1252 struct amdgpu_bo *bo; 1253 1254 bo_base = list_first_entry(&vm->relocated, 1255 struct amdgpu_vm_bo_base, 1256 vm_status); 1257 spin_unlock(&vm->status_lock); 1258 1259 bo = bo_base->bo->parent; 1260 if (bo) { 1261 struct amdgpu_vm_bo_base *parent; 1262 struct amdgpu_vm_pt *pt; 1263 1264 parent = list_first_entry(&bo->va, 1265 struct amdgpu_vm_bo_base, 1266 bo_list); 1267 pt = container_of(parent, struct amdgpu_vm_pt, base); 1268 1269 r = amdgpu_vm_update_level(adev, vm, pt); 1270 if (r) { 1271 amdgpu_vm_invalidate_level(vm, &vm->root); 1272 return r; 1273 } 1274 spin_lock(&vm->status_lock); 1275 } else { 1276 spin_lock(&vm->status_lock); 1277 list_del_init(&bo_base->vm_status); 1278 } 1279 } 1280 spin_unlock(&vm->status_lock); 1281 1282 if (vm->use_cpu_for_update) { 1283 /* Flush HDP */ 1284 mb(); 1285 amdgpu_gart_flush_gpu_tlb(adev, 0); 1286 } 1287 1288 return r; 1289 } 1290 1291 /** 1292 * amdgpu_vm_find_entry - find the entry for an address 1293 * 1294 * @p: see amdgpu_pte_update_params definition 1295 * @addr: virtual address in question 1296 * @entry: resulting entry or NULL 1297 * @parent: parent entry 1298 * 1299 * Find the vm_pt entry and it's parent for the given address. 1300 */ 1301 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1302 struct amdgpu_vm_pt **entry, 1303 struct amdgpu_vm_pt **parent) 1304 { 1305 unsigned idx, level = p->adev->vm_manager.num_level; 1306 1307 *parent = NULL; 1308 *entry = &p->vm->root; 1309 while ((*entry)->entries) { 1310 idx = addr >> (p->adev->vm_manager.block_size * level--); 1311 idx %= amdgpu_bo_size((*entry)->base.bo) / 8; 1312 *parent = *entry; 1313 *entry = &(*entry)->entries[idx]; 1314 } 1315 1316 if (level) 1317 *entry = NULL; 1318 } 1319 1320 /** 1321 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1322 * 1323 * @p: see amdgpu_pte_update_params definition 1324 * @entry: vm_pt entry to check 1325 * @parent: parent entry 1326 * @nptes: number of PTEs updated with this operation 1327 * @dst: destination address where the PTEs should point to 1328 * @flags: access flags fro the PTEs 1329 * 1330 * Check if we can update the PD with a huge page. 1331 */ 1332 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1333 struct amdgpu_vm_pt *entry, 1334 struct amdgpu_vm_pt *parent, 1335 unsigned nptes, uint64_t dst, 1336 uint64_t flags) 1337 { 1338 bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes); 1339 uint64_t pd_addr, pde; 1340 1341 /* In the case of a mixed PT the PDE must point to it*/ 1342 if (p->adev->asic_type < CHIP_VEGA10 || 1343 nptes != AMDGPU_VM_PTE_COUNT(p->adev) || 1344 p->src || 1345 !(flags & AMDGPU_PTE_VALID)) { 1346 1347 dst = amdgpu_bo_gpu_offset(entry->base.bo); 1348 dst = amdgpu_gart_get_vm_pde(p->adev, dst); 1349 flags = AMDGPU_PTE_VALID; 1350 } else { 1351 /* Set the huge page flag to stop scanning at this PDE */ 1352 flags |= AMDGPU_PDE_PTE; 1353 } 1354 1355 if (entry->addr == (dst | flags)) 1356 return; 1357 1358 entry->addr = (dst | flags); 1359 1360 if (use_cpu_update) { 1361 /* In case a huge page is replaced with a system 1362 * memory mapping, p->pages_addr != NULL and 1363 * amdgpu_vm_cpu_set_ptes would try to translate dst 1364 * through amdgpu_vm_map_gart. But dst is already a 1365 * GPU address (of the page table). Disable 1366 * amdgpu_vm_map_gart temporarily. 1367 */ 1368 dma_addr_t *tmp; 1369 1370 tmp = p->pages_addr; 1371 p->pages_addr = NULL; 1372 1373 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo); 1374 pde = pd_addr + (entry - parent->entries) * 8; 1375 amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags); 1376 1377 p->pages_addr = tmp; 1378 } else { 1379 if (parent->base.bo->shadow) { 1380 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo->shadow); 1381 pde = pd_addr + (entry - parent->entries) * 8; 1382 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags); 1383 } 1384 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo); 1385 pde = pd_addr + (entry - parent->entries) * 8; 1386 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags); 1387 } 1388 } 1389 1390 /** 1391 * amdgpu_vm_update_ptes - make sure that page tables are valid 1392 * 1393 * @params: see amdgpu_pte_update_params definition 1394 * @vm: requested vm 1395 * @start: start of GPU address range 1396 * @end: end of GPU address range 1397 * @dst: destination address to map to, the next dst inside the function 1398 * @flags: mapping flags 1399 * 1400 * Update the page tables in the range @start - @end. 1401 * Returns 0 for success, -EINVAL for failure. 1402 */ 1403 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1404 uint64_t start, uint64_t end, 1405 uint64_t dst, uint64_t flags) 1406 { 1407 struct amdgpu_device *adev = params->adev; 1408 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1409 1410 uint64_t addr, pe_start; 1411 struct amdgpu_bo *pt; 1412 unsigned nptes; 1413 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes); 1414 1415 /* walk over the address space and update the page tables */ 1416 for (addr = start; addr < end; addr += nptes, 1417 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1418 struct amdgpu_vm_pt *entry, *parent; 1419 1420 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1421 if (!entry) 1422 return -ENOENT; 1423 1424 if ((addr & ~mask) == (end & ~mask)) 1425 nptes = end - addr; 1426 else 1427 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1428 1429 amdgpu_vm_handle_huge_pages(params, entry, parent, 1430 nptes, dst, flags); 1431 /* We don't need to update PTEs for huge pages */ 1432 if (entry->addr & AMDGPU_PDE_PTE) 1433 continue; 1434 1435 pt = entry->base.bo; 1436 if (use_cpu_update) { 1437 pe_start = (unsigned long)amdgpu_bo_kptr(pt); 1438 } else { 1439 if (pt->shadow) { 1440 pe_start = amdgpu_bo_gpu_offset(pt->shadow); 1441 pe_start += (addr & mask) * 8; 1442 params->func(params, pe_start, dst, nptes, 1443 AMDGPU_GPU_PAGE_SIZE, flags); 1444 } 1445 pe_start = amdgpu_bo_gpu_offset(pt); 1446 } 1447 1448 pe_start += (addr & mask) * 8; 1449 params->func(params, pe_start, dst, nptes, 1450 AMDGPU_GPU_PAGE_SIZE, flags); 1451 } 1452 1453 return 0; 1454 } 1455 1456 /* 1457 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1458 * 1459 * @params: see amdgpu_pte_update_params definition 1460 * @vm: requested vm 1461 * @start: first PTE to handle 1462 * @end: last PTE to handle 1463 * @dst: addr those PTEs should point to 1464 * @flags: hw mapping flags 1465 * Returns 0 for success, -EINVAL for failure. 1466 */ 1467 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1468 uint64_t start, uint64_t end, 1469 uint64_t dst, uint64_t flags) 1470 { 1471 /** 1472 * The MC L1 TLB supports variable sized pages, based on a fragment 1473 * field in the PTE. When this field is set to a non-zero value, page 1474 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1475 * flags are considered valid for all PTEs within the fragment range 1476 * and corresponding mappings are assumed to be physically contiguous. 1477 * 1478 * The L1 TLB can store a single PTE for the whole fragment, 1479 * significantly increasing the space available for translation 1480 * caching. This leads to large improvements in throughput when the 1481 * TLB is under pressure. 1482 * 1483 * The L2 TLB distributes small and large fragments into two 1484 * asymmetric partitions. The large fragment cache is significantly 1485 * larger. Thus, we try to use large fragments wherever possible. 1486 * Userspace can support this by aligning virtual base address and 1487 * allocation size to the fragment size. 1488 */ 1489 unsigned max_frag = params->adev->vm_manager.fragment_size; 1490 int r; 1491 1492 /* system pages are non continuously */ 1493 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1494 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1495 1496 while (start != end) { 1497 uint64_t frag_flags, frag_end; 1498 unsigned frag; 1499 1500 /* This intentionally wraps around if no bit is set */ 1501 frag = min((unsigned)ffs(start) - 1, 1502 (unsigned)fls64(end - start) - 1); 1503 if (frag >= max_frag) { 1504 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1505 frag_end = end & ~((1ULL << max_frag) - 1); 1506 } else { 1507 frag_flags = AMDGPU_PTE_FRAG(frag); 1508 frag_end = start + (1 << frag); 1509 } 1510 1511 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1512 flags | frag_flags); 1513 if (r) 1514 return r; 1515 1516 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1517 start = frag_end; 1518 } 1519 1520 return 0; 1521 } 1522 1523 /** 1524 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1525 * 1526 * @adev: amdgpu_device pointer 1527 * @exclusive: fence we need to sync to 1528 * @pages_addr: DMA addresses to use for mapping 1529 * @vm: requested vm 1530 * @start: start of mapped range 1531 * @last: last mapped entry 1532 * @flags: flags for the entries 1533 * @addr: addr to set the area to 1534 * @fence: optional resulting fence 1535 * 1536 * Fill in the page table entries between @start and @last. 1537 * Returns 0 for success, -EINVAL for failure. 1538 */ 1539 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1540 struct dma_fence *exclusive, 1541 dma_addr_t *pages_addr, 1542 struct amdgpu_vm *vm, 1543 uint64_t start, uint64_t last, 1544 uint64_t flags, uint64_t addr, 1545 struct dma_fence **fence) 1546 { 1547 struct amdgpu_ring *ring; 1548 void *owner = AMDGPU_FENCE_OWNER_VM; 1549 unsigned nptes, ncmds, ndw; 1550 struct amdgpu_job *job; 1551 struct amdgpu_pte_update_params params; 1552 struct dma_fence *f = NULL; 1553 int r; 1554 1555 memset(¶ms, 0, sizeof(params)); 1556 params.adev = adev; 1557 params.vm = vm; 1558 1559 /* sync to everything on unmapping */ 1560 if (!(flags & AMDGPU_PTE_VALID)) 1561 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1562 1563 if (vm->use_cpu_for_update) { 1564 /* params.src is used as flag to indicate system Memory */ 1565 if (pages_addr) 1566 params.src = ~0; 1567 1568 /* Wait for PT BOs to be free. PTs share the same resv. object 1569 * as the root PD BO 1570 */ 1571 r = amdgpu_vm_wait_pd(adev, vm, owner); 1572 if (unlikely(r)) 1573 return r; 1574 1575 params.func = amdgpu_vm_cpu_set_ptes; 1576 params.pages_addr = pages_addr; 1577 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1578 addr, flags); 1579 } 1580 1581 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1582 1583 nptes = last - start + 1; 1584 1585 /* 1586 * reserve space for two commands every (1 << BLOCK_SIZE) 1587 * entries or 2k dwords (whatever is smaller) 1588 * 1589 * The second command is for the shadow pagetables. 1590 */ 1591 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1592 1593 /* padding, etc. */ 1594 ndw = 64; 1595 1596 /* one PDE write for each huge page */ 1597 ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6; 1598 1599 if (pages_addr) { 1600 /* copy commands needed */ 1601 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1602 1603 /* and also PTEs */ 1604 ndw += nptes * 2; 1605 1606 params.func = amdgpu_vm_do_copy_ptes; 1607 1608 } else { 1609 /* set page commands needed */ 1610 ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw; 1611 1612 /* extra commands for begin/end fragments */ 1613 ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw 1614 * adev->vm_manager.fragment_size; 1615 1616 params.func = amdgpu_vm_do_set_ptes; 1617 } 1618 1619 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1620 if (r) 1621 return r; 1622 1623 params.ib = &job->ibs[0]; 1624 1625 if (pages_addr) { 1626 uint64_t *pte; 1627 unsigned i; 1628 1629 /* Put the PTEs at the end of the IB. */ 1630 i = ndw - nptes * 2; 1631 pte= (uint64_t *)&(job->ibs->ptr[i]); 1632 params.src = job->ibs->gpu_addr + i * 4; 1633 1634 for (i = 0; i < nptes; ++i) { 1635 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1636 AMDGPU_GPU_PAGE_SIZE); 1637 pte[i] |= flags; 1638 } 1639 addr = 0; 1640 } 1641 1642 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1643 if (r) 1644 goto error_free; 1645 1646 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1647 owner, false); 1648 if (r) 1649 goto error_free; 1650 1651 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1652 if (r) 1653 goto error_free; 1654 1655 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1656 if (r) 1657 goto error_free; 1658 1659 amdgpu_ring_pad_ib(ring, params.ib); 1660 WARN_ON(params.ib->length_dw > ndw); 1661 r = amdgpu_job_submit(job, ring, &vm->entity, 1662 AMDGPU_FENCE_OWNER_VM, &f); 1663 if (r) 1664 goto error_free; 1665 1666 amdgpu_bo_fence(vm->root.base.bo, f, true); 1667 dma_fence_put(*fence); 1668 *fence = f; 1669 return 0; 1670 1671 error_free: 1672 amdgpu_job_free(job); 1673 amdgpu_vm_invalidate_level(vm, &vm->root); 1674 return r; 1675 } 1676 1677 /** 1678 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1679 * 1680 * @adev: amdgpu_device pointer 1681 * @exclusive: fence we need to sync to 1682 * @pages_addr: DMA addresses to use for mapping 1683 * @vm: requested vm 1684 * @mapping: mapped range and flags to use for the update 1685 * @flags: HW flags for the mapping 1686 * @nodes: array of drm_mm_nodes with the MC addresses 1687 * @fence: optional resulting fence 1688 * 1689 * Split the mapping into smaller chunks so that each update fits 1690 * into a SDMA IB. 1691 * Returns 0 for success, -EINVAL for failure. 1692 */ 1693 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1694 struct dma_fence *exclusive, 1695 dma_addr_t *pages_addr, 1696 struct amdgpu_vm *vm, 1697 struct amdgpu_bo_va_mapping *mapping, 1698 uint64_t flags, 1699 struct drm_mm_node *nodes, 1700 struct dma_fence **fence) 1701 { 1702 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1703 uint64_t pfn, start = mapping->start; 1704 int r; 1705 1706 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1707 * but in case of something, we filter the flags in first place 1708 */ 1709 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1710 flags &= ~AMDGPU_PTE_READABLE; 1711 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1712 flags &= ~AMDGPU_PTE_WRITEABLE; 1713 1714 flags &= ~AMDGPU_PTE_EXECUTABLE; 1715 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1716 1717 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1718 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1719 1720 if ((mapping->flags & AMDGPU_PTE_PRT) && 1721 (adev->asic_type >= CHIP_VEGA10)) { 1722 flags |= AMDGPU_PTE_PRT; 1723 flags &= ~AMDGPU_PTE_VALID; 1724 } 1725 1726 trace_amdgpu_vm_bo_update(mapping); 1727 1728 pfn = mapping->offset >> PAGE_SHIFT; 1729 if (nodes) { 1730 while (pfn >= nodes->size) { 1731 pfn -= nodes->size; 1732 ++nodes; 1733 } 1734 } 1735 1736 do { 1737 dma_addr_t *dma_addr = NULL; 1738 uint64_t max_entries; 1739 uint64_t addr, last; 1740 1741 if (nodes) { 1742 addr = nodes->start << PAGE_SHIFT; 1743 max_entries = (nodes->size - pfn) * 1744 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1745 } else { 1746 addr = 0; 1747 max_entries = S64_MAX; 1748 } 1749 1750 if (pages_addr) { 1751 uint64_t count; 1752 1753 max_entries = min(max_entries, 16ull * 1024ull); 1754 for (count = 1; count < max_entries; ++count) { 1755 uint64_t idx = pfn + count; 1756 1757 if (pages_addr[idx] != 1758 (pages_addr[idx - 1] + PAGE_SIZE)) 1759 break; 1760 } 1761 1762 if (count < min_linear_pages) { 1763 addr = pfn << PAGE_SHIFT; 1764 dma_addr = pages_addr; 1765 } else { 1766 addr = pages_addr[pfn]; 1767 max_entries = count; 1768 } 1769 1770 } else if (flags & AMDGPU_PTE_VALID) { 1771 addr += adev->vm_manager.vram_base_offset; 1772 addr += pfn << PAGE_SHIFT; 1773 } 1774 1775 last = min((uint64_t)mapping->last, start + max_entries - 1); 1776 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1777 start, last, flags, addr, 1778 fence); 1779 if (r) 1780 return r; 1781 1782 pfn += last - start + 1; 1783 if (nodes && nodes->size == pfn) { 1784 pfn = 0; 1785 ++nodes; 1786 } 1787 start = last + 1; 1788 1789 } while (unlikely(start != mapping->last + 1)); 1790 1791 return 0; 1792 } 1793 1794 /** 1795 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1796 * 1797 * @adev: amdgpu_device pointer 1798 * @bo_va: requested BO and VM object 1799 * @clear: if true clear the entries 1800 * 1801 * Fill in the page table entries for @bo_va. 1802 * Returns 0 for success, -EINVAL for failure. 1803 */ 1804 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1805 struct amdgpu_bo_va *bo_va, 1806 bool clear) 1807 { 1808 struct amdgpu_bo *bo = bo_va->base.bo; 1809 struct amdgpu_vm *vm = bo_va->base.vm; 1810 struct amdgpu_bo_va_mapping *mapping; 1811 dma_addr_t *pages_addr = NULL; 1812 struct ttm_mem_reg *mem; 1813 struct drm_mm_node *nodes; 1814 struct dma_fence *exclusive, **last_update; 1815 uint64_t flags; 1816 int r; 1817 1818 if (clear || !bo_va->base.bo) { 1819 mem = NULL; 1820 nodes = NULL; 1821 exclusive = NULL; 1822 } else { 1823 struct ttm_dma_tt *ttm; 1824 1825 mem = &bo_va->base.bo->tbo.mem; 1826 nodes = mem->mm_node; 1827 if (mem->mem_type == TTM_PL_TT) { 1828 ttm = container_of(bo_va->base.bo->tbo.ttm, 1829 struct ttm_dma_tt, ttm); 1830 pages_addr = ttm->dma_address; 1831 } 1832 exclusive = reservation_object_get_excl(bo->tbo.resv); 1833 } 1834 1835 if (bo) 1836 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1837 else 1838 flags = 0x0; 1839 1840 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1841 last_update = &vm->last_update; 1842 else 1843 last_update = &bo_va->last_pt_update; 1844 1845 if (!clear && bo_va->base.moved) { 1846 bo_va->base.moved = false; 1847 list_splice_init(&bo_va->valids, &bo_va->invalids); 1848 1849 } else if (bo_va->cleared != clear) { 1850 list_splice_init(&bo_va->valids, &bo_va->invalids); 1851 } 1852 1853 list_for_each_entry(mapping, &bo_va->invalids, list) { 1854 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1855 mapping, flags, nodes, 1856 last_update); 1857 if (r) 1858 return r; 1859 } 1860 1861 if (vm->use_cpu_for_update) { 1862 /* Flush HDP */ 1863 mb(); 1864 amdgpu_gart_flush_gpu_tlb(adev, 0); 1865 } 1866 1867 spin_lock(&vm->status_lock); 1868 list_del_init(&bo_va->base.vm_status); 1869 spin_unlock(&vm->status_lock); 1870 1871 list_splice_init(&bo_va->invalids, &bo_va->valids); 1872 bo_va->cleared = clear; 1873 1874 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1875 list_for_each_entry(mapping, &bo_va->valids, list) 1876 trace_amdgpu_vm_bo_mapping(mapping); 1877 } 1878 1879 return 0; 1880 } 1881 1882 /** 1883 * amdgpu_vm_update_prt_state - update the global PRT state 1884 */ 1885 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1886 { 1887 unsigned long flags; 1888 bool enable; 1889 1890 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1891 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1892 adev->gart.gart_funcs->set_prt(adev, enable); 1893 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1894 } 1895 1896 /** 1897 * amdgpu_vm_prt_get - add a PRT user 1898 */ 1899 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1900 { 1901 if (!adev->gart.gart_funcs->set_prt) 1902 return; 1903 1904 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1905 amdgpu_vm_update_prt_state(adev); 1906 } 1907 1908 /** 1909 * amdgpu_vm_prt_put - drop a PRT user 1910 */ 1911 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1912 { 1913 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1914 amdgpu_vm_update_prt_state(adev); 1915 } 1916 1917 /** 1918 * amdgpu_vm_prt_cb - callback for updating the PRT status 1919 */ 1920 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1921 { 1922 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1923 1924 amdgpu_vm_prt_put(cb->adev); 1925 kfree(cb); 1926 } 1927 1928 /** 1929 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1930 */ 1931 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1932 struct dma_fence *fence) 1933 { 1934 struct amdgpu_prt_cb *cb; 1935 1936 if (!adev->gart.gart_funcs->set_prt) 1937 return; 1938 1939 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1940 if (!cb) { 1941 /* Last resort when we are OOM */ 1942 if (fence) 1943 dma_fence_wait(fence, false); 1944 1945 amdgpu_vm_prt_put(adev); 1946 } else { 1947 cb->adev = adev; 1948 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1949 amdgpu_vm_prt_cb)) 1950 amdgpu_vm_prt_cb(fence, &cb->cb); 1951 } 1952 } 1953 1954 /** 1955 * amdgpu_vm_free_mapping - free a mapping 1956 * 1957 * @adev: amdgpu_device pointer 1958 * @vm: requested vm 1959 * @mapping: mapping to be freed 1960 * @fence: fence of the unmap operation 1961 * 1962 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1963 */ 1964 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1965 struct amdgpu_vm *vm, 1966 struct amdgpu_bo_va_mapping *mapping, 1967 struct dma_fence *fence) 1968 { 1969 if (mapping->flags & AMDGPU_PTE_PRT) 1970 amdgpu_vm_add_prt_cb(adev, fence); 1971 kfree(mapping); 1972 } 1973 1974 /** 1975 * amdgpu_vm_prt_fini - finish all prt mappings 1976 * 1977 * @adev: amdgpu_device pointer 1978 * @vm: requested vm 1979 * 1980 * Register a cleanup callback to disable PRT support after VM dies. 1981 */ 1982 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1983 { 1984 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1985 struct dma_fence *excl, **shared; 1986 unsigned i, shared_count; 1987 int r; 1988 1989 r = reservation_object_get_fences_rcu(resv, &excl, 1990 &shared_count, &shared); 1991 if (r) { 1992 /* Not enough memory to grab the fence list, as last resort 1993 * block for all the fences to complete. 1994 */ 1995 reservation_object_wait_timeout_rcu(resv, true, false, 1996 MAX_SCHEDULE_TIMEOUT); 1997 return; 1998 } 1999 2000 /* Add a callback for each fence in the reservation object */ 2001 amdgpu_vm_prt_get(adev); 2002 amdgpu_vm_add_prt_cb(adev, excl); 2003 2004 for (i = 0; i < shared_count; ++i) { 2005 amdgpu_vm_prt_get(adev); 2006 amdgpu_vm_add_prt_cb(adev, shared[i]); 2007 } 2008 2009 kfree(shared); 2010 } 2011 2012 /** 2013 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2014 * 2015 * @adev: amdgpu_device pointer 2016 * @vm: requested vm 2017 * @fence: optional resulting fence (unchanged if no work needed to be done 2018 * or if an error occurred) 2019 * 2020 * Make sure all freed BOs are cleared in the PT. 2021 * Returns 0 for success. 2022 * 2023 * PTs have to be reserved and mutex must be locked! 2024 */ 2025 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2026 struct amdgpu_vm *vm, 2027 struct dma_fence **fence) 2028 { 2029 struct amdgpu_bo_va_mapping *mapping; 2030 struct dma_fence *f = NULL; 2031 int r; 2032 uint64_t init_pte_value = 0; 2033 2034 while (!list_empty(&vm->freed)) { 2035 mapping = list_first_entry(&vm->freed, 2036 struct amdgpu_bo_va_mapping, list); 2037 list_del(&mapping->list); 2038 2039 if (vm->pte_support_ats) 2040 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2041 2042 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2043 mapping->start, mapping->last, 2044 init_pte_value, 0, &f); 2045 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2046 if (r) { 2047 dma_fence_put(f); 2048 return r; 2049 } 2050 } 2051 2052 if (fence && f) { 2053 dma_fence_put(*fence); 2054 *fence = f; 2055 } else { 2056 dma_fence_put(f); 2057 } 2058 2059 return 0; 2060 2061 } 2062 2063 /** 2064 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2065 * 2066 * @adev: amdgpu_device pointer 2067 * @vm: requested vm 2068 * @sync: sync object to add fences to 2069 * 2070 * Make sure all BOs which are moved are updated in the PTs. 2071 * Returns 0 for success. 2072 * 2073 * PTs have to be reserved! 2074 */ 2075 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2076 struct amdgpu_vm *vm) 2077 { 2078 bool clear; 2079 int r = 0; 2080 2081 spin_lock(&vm->status_lock); 2082 while (!list_empty(&vm->moved)) { 2083 struct amdgpu_bo_va *bo_va; 2084 2085 bo_va = list_first_entry(&vm->moved, 2086 struct amdgpu_bo_va, base.vm_status); 2087 spin_unlock(&vm->status_lock); 2088 2089 /* Per VM BOs never need to bo cleared in the page tables */ 2090 clear = bo_va->base.bo->tbo.resv != vm->root.base.bo->tbo.resv; 2091 2092 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2093 if (r) 2094 return r; 2095 2096 spin_lock(&vm->status_lock); 2097 } 2098 spin_unlock(&vm->status_lock); 2099 2100 return r; 2101 } 2102 2103 /** 2104 * amdgpu_vm_bo_add - add a bo to a specific vm 2105 * 2106 * @adev: amdgpu_device pointer 2107 * @vm: requested vm 2108 * @bo: amdgpu buffer object 2109 * 2110 * Add @bo into the requested vm. 2111 * Add @bo to the list of bos associated with the vm 2112 * Returns newly added bo_va or NULL for failure 2113 * 2114 * Object has to be reserved! 2115 */ 2116 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2117 struct amdgpu_vm *vm, 2118 struct amdgpu_bo *bo) 2119 { 2120 struct amdgpu_bo_va *bo_va; 2121 2122 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2123 if (bo_va == NULL) { 2124 return NULL; 2125 } 2126 bo_va->base.vm = vm; 2127 bo_va->base.bo = bo; 2128 INIT_LIST_HEAD(&bo_va->base.bo_list); 2129 INIT_LIST_HEAD(&bo_va->base.vm_status); 2130 2131 bo_va->ref_count = 1; 2132 INIT_LIST_HEAD(&bo_va->valids); 2133 INIT_LIST_HEAD(&bo_va->invalids); 2134 2135 if (bo) 2136 list_add_tail(&bo_va->base.bo_list, &bo->va); 2137 2138 return bo_va; 2139 } 2140 2141 2142 /** 2143 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2144 * 2145 * @adev: amdgpu_device pointer 2146 * @bo_va: bo_va to store the address 2147 * @mapping: the mapping to insert 2148 * 2149 * Insert a new mapping into all structures. 2150 */ 2151 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2152 struct amdgpu_bo_va *bo_va, 2153 struct amdgpu_bo_va_mapping *mapping) 2154 { 2155 struct amdgpu_vm *vm = bo_va->base.vm; 2156 struct amdgpu_bo *bo = bo_va->base.bo; 2157 2158 mapping->bo_va = bo_va; 2159 list_add(&mapping->list, &bo_va->invalids); 2160 amdgpu_vm_it_insert(mapping, &vm->va); 2161 2162 if (mapping->flags & AMDGPU_PTE_PRT) 2163 amdgpu_vm_prt_get(adev); 2164 2165 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2166 spin_lock(&vm->status_lock); 2167 if (list_empty(&bo_va->base.vm_status)) 2168 list_add(&bo_va->base.vm_status, &vm->moved); 2169 spin_unlock(&vm->status_lock); 2170 } 2171 trace_amdgpu_vm_bo_map(bo_va, mapping); 2172 } 2173 2174 /** 2175 * amdgpu_vm_bo_map - map bo inside a vm 2176 * 2177 * @adev: amdgpu_device pointer 2178 * @bo_va: bo_va to store the address 2179 * @saddr: where to map the BO 2180 * @offset: requested offset in the BO 2181 * @flags: attributes of pages (read/write/valid/etc.) 2182 * 2183 * Add a mapping of the BO at the specefied addr into the VM. 2184 * Returns 0 for success, error for failure. 2185 * 2186 * Object has to be reserved and unreserved outside! 2187 */ 2188 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2189 struct amdgpu_bo_va *bo_va, 2190 uint64_t saddr, uint64_t offset, 2191 uint64_t size, uint64_t flags) 2192 { 2193 struct amdgpu_bo_va_mapping *mapping, *tmp; 2194 struct amdgpu_bo *bo = bo_va->base.bo; 2195 struct amdgpu_vm *vm = bo_va->base.vm; 2196 uint64_t eaddr; 2197 2198 /* validate the parameters */ 2199 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2200 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2201 return -EINVAL; 2202 2203 /* make sure object fit at this offset */ 2204 eaddr = saddr + size - 1; 2205 if (saddr >= eaddr || 2206 (bo && offset + size > amdgpu_bo_size(bo))) 2207 return -EINVAL; 2208 2209 saddr /= AMDGPU_GPU_PAGE_SIZE; 2210 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2211 2212 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2213 if (tmp) { 2214 /* bo and tmp overlap, invalid addr */ 2215 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2216 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2217 tmp->start, tmp->last + 1); 2218 return -EINVAL; 2219 } 2220 2221 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2222 if (!mapping) 2223 return -ENOMEM; 2224 2225 mapping->start = saddr; 2226 mapping->last = eaddr; 2227 mapping->offset = offset; 2228 mapping->flags = flags; 2229 2230 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2231 2232 return 0; 2233 } 2234 2235 /** 2236 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2237 * 2238 * @adev: amdgpu_device pointer 2239 * @bo_va: bo_va to store the address 2240 * @saddr: where to map the BO 2241 * @offset: requested offset in the BO 2242 * @flags: attributes of pages (read/write/valid/etc.) 2243 * 2244 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2245 * mappings as we do so. 2246 * Returns 0 for success, error for failure. 2247 * 2248 * Object has to be reserved and unreserved outside! 2249 */ 2250 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2251 struct amdgpu_bo_va *bo_va, 2252 uint64_t saddr, uint64_t offset, 2253 uint64_t size, uint64_t flags) 2254 { 2255 struct amdgpu_bo_va_mapping *mapping; 2256 struct amdgpu_bo *bo = bo_va->base.bo; 2257 uint64_t eaddr; 2258 int r; 2259 2260 /* validate the parameters */ 2261 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2262 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2263 return -EINVAL; 2264 2265 /* make sure object fit at this offset */ 2266 eaddr = saddr + size - 1; 2267 if (saddr >= eaddr || 2268 (bo && offset + size > amdgpu_bo_size(bo))) 2269 return -EINVAL; 2270 2271 /* Allocate all the needed memory */ 2272 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2273 if (!mapping) 2274 return -ENOMEM; 2275 2276 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2277 if (r) { 2278 kfree(mapping); 2279 return r; 2280 } 2281 2282 saddr /= AMDGPU_GPU_PAGE_SIZE; 2283 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2284 2285 mapping->start = saddr; 2286 mapping->last = eaddr; 2287 mapping->offset = offset; 2288 mapping->flags = flags; 2289 2290 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2291 2292 return 0; 2293 } 2294 2295 /** 2296 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2297 * 2298 * @adev: amdgpu_device pointer 2299 * @bo_va: bo_va to remove the address from 2300 * @saddr: where to the BO is mapped 2301 * 2302 * Remove a mapping of the BO at the specefied addr from the VM. 2303 * Returns 0 for success, error for failure. 2304 * 2305 * Object has to be reserved and unreserved outside! 2306 */ 2307 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2308 struct amdgpu_bo_va *bo_va, 2309 uint64_t saddr) 2310 { 2311 struct amdgpu_bo_va_mapping *mapping; 2312 struct amdgpu_vm *vm = bo_va->base.vm; 2313 bool valid = true; 2314 2315 saddr /= AMDGPU_GPU_PAGE_SIZE; 2316 2317 list_for_each_entry(mapping, &bo_va->valids, list) { 2318 if (mapping->start == saddr) 2319 break; 2320 } 2321 2322 if (&mapping->list == &bo_va->valids) { 2323 valid = false; 2324 2325 list_for_each_entry(mapping, &bo_va->invalids, list) { 2326 if (mapping->start == saddr) 2327 break; 2328 } 2329 2330 if (&mapping->list == &bo_va->invalids) 2331 return -ENOENT; 2332 } 2333 2334 list_del(&mapping->list); 2335 amdgpu_vm_it_remove(mapping, &vm->va); 2336 mapping->bo_va = NULL; 2337 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2338 2339 if (valid) 2340 list_add(&mapping->list, &vm->freed); 2341 else 2342 amdgpu_vm_free_mapping(adev, vm, mapping, 2343 bo_va->last_pt_update); 2344 2345 return 0; 2346 } 2347 2348 /** 2349 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2350 * 2351 * @adev: amdgpu_device pointer 2352 * @vm: VM structure to use 2353 * @saddr: start of the range 2354 * @size: size of the range 2355 * 2356 * Remove all mappings in a range, split them as appropriate. 2357 * Returns 0 for success, error for failure. 2358 */ 2359 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2360 struct amdgpu_vm *vm, 2361 uint64_t saddr, uint64_t size) 2362 { 2363 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2364 LIST_HEAD(removed); 2365 uint64_t eaddr; 2366 2367 eaddr = saddr + size - 1; 2368 saddr /= AMDGPU_GPU_PAGE_SIZE; 2369 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2370 2371 /* Allocate all the needed memory */ 2372 before = kzalloc(sizeof(*before), GFP_KERNEL); 2373 if (!before) 2374 return -ENOMEM; 2375 INIT_LIST_HEAD(&before->list); 2376 2377 after = kzalloc(sizeof(*after), GFP_KERNEL); 2378 if (!after) { 2379 kfree(before); 2380 return -ENOMEM; 2381 } 2382 INIT_LIST_HEAD(&after->list); 2383 2384 /* Now gather all removed mappings */ 2385 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2386 while (tmp) { 2387 /* Remember mapping split at the start */ 2388 if (tmp->start < saddr) { 2389 before->start = tmp->start; 2390 before->last = saddr - 1; 2391 before->offset = tmp->offset; 2392 before->flags = tmp->flags; 2393 list_add(&before->list, &tmp->list); 2394 } 2395 2396 /* Remember mapping split at the end */ 2397 if (tmp->last > eaddr) { 2398 after->start = eaddr + 1; 2399 after->last = tmp->last; 2400 after->offset = tmp->offset; 2401 after->offset += after->start - tmp->start; 2402 after->flags = tmp->flags; 2403 list_add(&after->list, &tmp->list); 2404 } 2405 2406 list_del(&tmp->list); 2407 list_add(&tmp->list, &removed); 2408 2409 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2410 } 2411 2412 /* And free them up */ 2413 list_for_each_entry_safe(tmp, next, &removed, list) { 2414 amdgpu_vm_it_remove(tmp, &vm->va); 2415 list_del(&tmp->list); 2416 2417 if (tmp->start < saddr) 2418 tmp->start = saddr; 2419 if (tmp->last > eaddr) 2420 tmp->last = eaddr; 2421 2422 tmp->bo_va = NULL; 2423 list_add(&tmp->list, &vm->freed); 2424 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2425 } 2426 2427 /* Insert partial mapping before the range */ 2428 if (!list_empty(&before->list)) { 2429 amdgpu_vm_it_insert(before, &vm->va); 2430 if (before->flags & AMDGPU_PTE_PRT) 2431 amdgpu_vm_prt_get(adev); 2432 } else { 2433 kfree(before); 2434 } 2435 2436 /* Insert partial mapping after the range */ 2437 if (!list_empty(&after->list)) { 2438 amdgpu_vm_it_insert(after, &vm->va); 2439 if (after->flags & AMDGPU_PTE_PRT) 2440 amdgpu_vm_prt_get(adev); 2441 } else { 2442 kfree(after); 2443 } 2444 2445 return 0; 2446 } 2447 2448 /** 2449 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2450 * 2451 * @vm: the requested VM 2452 * 2453 * Find a mapping by it's address. 2454 */ 2455 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2456 uint64_t addr) 2457 { 2458 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2459 } 2460 2461 /** 2462 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2463 * 2464 * @adev: amdgpu_device pointer 2465 * @bo_va: requested bo_va 2466 * 2467 * Remove @bo_va->bo from the requested vm. 2468 * 2469 * Object have to be reserved! 2470 */ 2471 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2472 struct amdgpu_bo_va *bo_va) 2473 { 2474 struct amdgpu_bo_va_mapping *mapping, *next; 2475 struct amdgpu_vm *vm = bo_va->base.vm; 2476 2477 list_del(&bo_va->base.bo_list); 2478 2479 spin_lock(&vm->status_lock); 2480 list_del(&bo_va->base.vm_status); 2481 spin_unlock(&vm->status_lock); 2482 2483 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2484 list_del(&mapping->list); 2485 amdgpu_vm_it_remove(mapping, &vm->va); 2486 mapping->bo_va = NULL; 2487 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2488 list_add(&mapping->list, &vm->freed); 2489 } 2490 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2491 list_del(&mapping->list); 2492 amdgpu_vm_it_remove(mapping, &vm->va); 2493 amdgpu_vm_free_mapping(adev, vm, mapping, 2494 bo_va->last_pt_update); 2495 } 2496 2497 dma_fence_put(bo_va->last_pt_update); 2498 kfree(bo_va); 2499 } 2500 2501 /** 2502 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2503 * 2504 * @adev: amdgpu_device pointer 2505 * @vm: requested vm 2506 * @bo: amdgpu buffer object 2507 * 2508 * Mark @bo as invalid. 2509 */ 2510 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2511 struct amdgpu_bo *bo, bool evicted) 2512 { 2513 struct amdgpu_vm_bo_base *bo_base; 2514 2515 list_for_each_entry(bo_base, &bo->va, bo_list) { 2516 struct amdgpu_vm *vm = bo_base->vm; 2517 2518 bo_base->moved = true; 2519 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2520 spin_lock(&bo_base->vm->status_lock); 2521 if (bo->tbo.type == ttm_bo_type_kernel) 2522 list_move(&bo_base->vm_status, &vm->evicted); 2523 else 2524 list_move_tail(&bo_base->vm_status, 2525 &vm->evicted); 2526 spin_unlock(&bo_base->vm->status_lock); 2527 continue; 2528 } 2529 2530 if (bo->tbo.type == ttm_bo_type_kernel) { 2531 spin_lock(&bo_base->vm->status_lock); 2532 if (list_empty(&bo_base->vm_status)) 2533 list_add(&bo_base->vm_status, &vm->relocated); 2534 spin_unlock(&bo_base->vm->status_lock); 2535 continue; 2536 } 2537 2538 spin_lock(&bo_base->vm->status_lock); 2539 if (list_empty(&bo_base->vm_status)) 2540 list_add(&bo_base->vm_status, &vm->moved); 2541 spin_unlock(&bo_base->vm->status_lock); 2542 } 2543 } 2544 2545 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2546 { 2547 /* Total bits covered by PD + PTs */ 2548 unsigned bits = ilog2(vm_size) + 18; 2549 2550 /* Make sure the PD is 4K in size up to 8GB address space. 2551 Above that split equal between PD and PTs */ 2552 if (vm_size <= 8) 2553 return (bits - 9); 2554 else 2555 return ((bits + 3) / 2); 2556 } 2557 2558 /** 2559 * amdgpu_vm_set_fragment_size - adjust fragment size in PTE 2560 * 2561 * @adev: amdgpu_device pointer 2562 * @fragment_size_default: the default fragment size if it's set auto 2563 */ 2564 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, 2565 uint32_t fragment_size_default) 2566 { 2567 if (amdgpu_vm_fragment_size == -1) 2568 adev->vm_manager.fragment_size = fragment_size_default; 2569 else 2570 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2571 } 2572 2573 /** 2574 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2575 * 2576 * @adev: amdgpu_device pointer 2577 * @vm_size: the default vm size if it's set auto 2578 */ 2579 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, 2580 uint32_t fragment_size_default) 2581 { 2582 /* adjust vm size firstly */ 2583 if (amdgpu_vm_size == -1) 2584 adev->vm_manager.vm_size = vm_size; 2585 else 2586 adev->vm_manager.vm_size = amdgpu_vm_size; 2587 2588 /* block size depends on vm size */ 2589 if (amdgpu_vm_block_size == -1) 2590 adev->vm_manager.block_size = 2591 amdgpu_vm_get_block_size(adev->vm_manager.vm_size); 2592 else 2593 adev->vm_manager.block_size = amdgpu_vm_block_size; 2594 2595 amdgpu_vm_set_fragment_size(adev, fragment_size_default); 2596 2597 DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n", 2598 adev->vm_manager.vm_size, adev->vm_manager.block_size, 2599 adev->vm_manager.fragment_size); 2600 } 2601 2602 /** 2603 * amdgpu_vm_init - initialize a vm instance 2604 * 2605 * @adev: amdgpu_device pointer 2606 * @vm: requested vm 2607 * @vm_context: Indicates if it GFX or Compute context 2608 * 2609 * Init @vm fields. 2610 */ 2611 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2612 int vm_context, unsigned int pasid) 2613 { 2614 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2615 AMDGPU_VM_PTE_COUNT(adev) * 8); 2616 unsigned ring_instance; 2617 struct amdgpu_ring *ring; 2618 struct amd_sched_rq *rq; 2619 int r, i; 2620 u64 flags; 2621 uint64_t init_pde_value = 0; 2622 2623 vm->va = RB_ROOT_CACHED; 2624 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 2625 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2626 vm->reserved_vmid[i] = NULL; 2627 spin_lock_init(&vm->status_lock); 2628 INIT_LIST_HEAD(&vm->evicted); 2629 INIT_LIST_HEAD(&vm->relocated); 2630 INIT_LIST_HEAD(&vm->moved); 2631 INIT_LIST_HEAD(&vm->freed); 2632 2633 /* create scheduler entity for page table updates */ 2634 2635 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2636 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2637 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2638 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 2639 r = amd_sched_entity_init(&ring->sched, &vm->entity, 2640 rq, amdgpu_sched_jobs); 2641 if (r) 2642 return r; 2643 2644 vm->pte_support_ats = false; 2645 2646 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2647 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2648 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2649 2650 if (adev->asic_type == CHIP_RAVEN) { 2651 vm->pte_support_ats = true; 2652 init_pde_value = AMDGPU_PTE_DEFAULT_ATC 2653 | AMDGPU_PDE_PTE; 2654 2655 } 2656 } else 2657 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2658 AMDGPU_VM_USE_CPU_FOR_GFX); 2659 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2660 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2661 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), 2662 "CPU update of VM recommended only for large BAR system\n"); 2663 vm->last_update = NULL; 2664 2665 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2666 AMDGPU_GEM_CREATE_VRAM_CLEARED; 2667 if (vm->use_cpu_for_update) 2668 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2669 else 2670 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2671 AMDGPU_GEM_CREATE_SHADOW); 2672 2673 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, 2674 AMDGPU_GEM_DOMAIN_VRAM, 2675 flags, 2676 NULL, NULL, init_pde_value, &vm->root.base.bo); 2677 if (r) 2678 goto error_free_sched_entity; 2679 2680 vm->root.base.vm = vm; 2681 list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va); 2682 INIT_LIST_HEAD(&vm->root.base.vm_status); 2683 2684 if (vm->use_cpu_for_update) { 2685 r = amdgpu_bo_reserve(vm->root.base.bo, false); 2686 if (r) 2687 goto error_free_root; 2688 2689 r = amdgpu_bo_kmap(vm->root.base.bo, NULL); 2690 amdgpu_bo_unreserve(vm->root.base.bo); 2691 if (r) 2692 goto error_free_root; 2693 } 2694 2695 if (pasid) { 2696 unsigned long flags; 2697 2698 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2699 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2700 GFP_ATOMIC); 2701 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2702 if (r < 0) 2703 goto error_free_root; 2704 2705 vm->pasid = pasid; 2706 } 2707 2708 INIT_KFIFO(vm->faults); 2709 vm->fault_credit = 16; 2710 2711 return 0; 2712 2713 error_free_root: 2714 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2715 amdgpu_bo_unref(&vm->root.base.bo); 2716 vm->root.base.bo = NULL; 2717 2718 error_free_sched_entity: 2719 amd_sched_entity_fini(&ring->sched, &vm->entity); 2720 2721 return r; 2722 } 2723 2724 /** 2725 * amdgpu_vm_free_levels - free PD/PT levels 2726 * 2727 * @level: PD/PT starting level to free 2728 * 2729 * Free the page directory or page table level and all sub levels. 2730 */ 2731 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) 2732 { 2733 unsigned i; 2734 2735 if (level->base.bo) { 2736 list_del(&level->base.bo_list); 2737 list_del(&level->base.vm_status); 2738 amdgpu_bo_unref(&level->base.bo->shadow); 2739 amdgpu_bo_unref(&level->base.bo); 2740 } 2741 2742 if (level->entries) 2743 for (i = 0; i <= level->last_entry_used; i++) 2744 amdgpu_vm_free_levels(&level->entries[i]); 2745 2746 kvfree(level->entries); 2747 } 2748 2749 /** 2750 * amdgpu_vm_fini - tear down a vm instance 2751 * 2752 * @adev: amdgpu_device pointer 2753 * @vm: requested vm 2754 * 2755 * Tear down @vm. 2756 * Unbind the VM and remove all bos from the vm bo list 2757 */ 2758 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2759 { 2760 struct amdgpu_bo_va_mapping *mapping, *tmp; 2761 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; 2762 struct amdgpu_bo *root; 2763 u64 fault; 2764 int i, r; 2765 2766 /* Clear pending page faults from IH when the VM is destroyed */ 2767 while (kfifo_get(&vm->faults, &fault)) 2768 amdgpu_ih_clear_fault(adev, fault); 2769 2770 if (vm->pasid) { 2771 unsigned long flags; 2772 2773 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2774 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2775 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2776 } 2777 2778 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 2779 2780 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2781 dev_err(adev->dev, "still active bo inside vm\n"); 2782 } 2783 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2784 &vm->va.rb_root, rb) { 2785 list_del(&mapping->list); 2786 amdgpu_vm_it_remove(mapping, &vm->va); 2787 kfree(mapping); 2788 } 2789 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2790 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2791 amdgpu_vm_prt_fini(adev, vm); 2792 prt_fini_needed = false; 2793 } 2794 2795 list_del(&mapping->list); 2796 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2797 } 2798 2799 root = amdgpu_bo_ref(vm->root.base.bo); 2800 r = amdgpu_bo_reserve(root, true); 2801 if (r) { 2802 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2803 } else { 2804 amdgpu_vm_free_levels(&vm->root); 2805 amdgpu_bo_unreserve(root); 2806 } 2807 amdgpu_bo_unref(&root); 2808 dma_fence_put(vm->last_update); 2809 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2810 amdgpu_vm_free_reserved_vmid(adev, vm, i); 2811 } 2812 2813 /** 2814 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2815 * 2816 * @adev: amdgpu_device pointer 2817 * @pasid: PASID do identify the VM 2818 * 2819 * This function is expected to be called in interrupt context. Returns 2820 * true if there was fault credit, false otherwise 2821 */ 2822 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2823 unsigned int pasid) 2824 { 2825 struct amdgpu_vm *vm; 2826 2827 spin_lock(&adev->vm_manager.pasid_lock); 2828 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2829 spin_unlock(&adev->vm_manager.pasid_lock); 2830 if (!vm) 2831 /* VM not found, can't track fault credit */ 2832 return true; 2833 2834 /* No lock needed. only accessed by IRQ handler */ 2835 if (!vm->fault_credit) 2836 /* Too many faults in this VM */ 2837 return false; 2838 2839 vm->fault_credit--; 2840 return true; 2841 } 2842 2843 /** 2844 * amdgpu_vm_manager_init - init the VM manager 2845 * 2846 * @adev: amdgpu_device pointer 2847 * 2848 * Initialize the VM manager structures 2849 */ 2850 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2851 { 2852 unsigned i, j; 2853 2854 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2855 struct amdgpu_vm_id_manager *id_mgr = 2856 &adev->vm_manager.id_mgr[i]; 2857 2858 mutex_init(&id_mgr->lock); 2859 INIT_LIST_HEAD(&id_mgr->ids_lru); 2860 atomic_set(&id_mgr->reserved_vmid_num, 0); 2861 2862 /* skip over VMID 0, since it is the system VM */ 2863 for (j = 1; j < id_mgr->num_ids; ++j) { 2864 amdgpu_vm_reset_id(adev, i, j); 2865 amdgpu_sync_create(&id_mgr->ids[i].active); 2866 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru); 2867 } 2868 } 2869 2870 adev->vm_manager.fence_context = 2871 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2872 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2873 adev->vm_manager.seqno[i] = 0; 2874 2875 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2876 atomic64_set(&adev->vm_manager.client_counter, 0); 2877 spin_lock_init(&adev->vm_manager.prt_lock); 2878 atomic_set(&adev->vm_manager.num_prt_users, 0); 2879 2880 /* If not overridden by the user, by default, only in large BAR systems 2881 * Compute VM tables will be updated by CPU 2882 */ 2883 #ifdef CONFIG_X86_64 2884 if (amdgpu_vm_update_mode == -1) { 2885 if (amdgpu_vm_is_large_bar(adev)) 2886 adev->vm_manager.vm_update_mode = 2887 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2888 else 2889 adev->vm_manager.vm_update_mode = 0; 2890 } else 2891 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2892 #else 2893 adev->vm_manager.vm_update_mode = 0; 2894 #endif 2895 2896 idr_init(&adev->vm_manager.pasid_idr); 2897 spin_lock_init(&adev->vm_manager.pasid_lock); 2898 } 2899 2900 /** 2901 * amdgpu_vm_manager_fini - cleanup VM manager 2902 * 2903 * @adev: amdgpu_device pointer 2904 * 2905 * Cleanup the VM manager and free resources. 2906 */ 2907 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2908 { 2909 unsigned i, j; 2910 2911 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 2912 idr_destroy(&adev->vm_manager.pasid_idr); 2913 2914 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2915 struct amdgpu_vm_id_manager *id_mgr = 2916 &adev->vm_manager.id_mgr[i]; 2917 2918 mutex_destroy(&id_mgr->lock); 2919 for (j = 0; j < AMDGPU_NUM_VM; ++j) { 2920 struct amdgpu_vm_id *id = &id_mgr->ids[j]; 2921 2922 amdgpu_sync_free(&id->active); 2923 dma_fence_put(id->flushed_updates); 2924 dma_fence_put(id->last_flush); 2925 } 2926 } 2927 } 2928 2929 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2930 { 2931 union drm_amdgpu_vm *args = data; 2932 struct amdgpu_device *adev = dev->dev_private; 2933 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2934 int r; 2935 2936 switch (args->in.op) { 2937 case AMDGPU_VM_OP_RESERVE_VMID: 2938 /* current, we only have requirement to reserve vmid from gfxhub */ 2939 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm, 2940 AMDGPU_GFXHUB); 2941 if (r) 2942 return r; 2943 break; 2944 case AMDGPU_VM_OP_UNRESERVE_VMID: 2945 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB); 2946 break; 2947 default: 2948 return -EINVAL; 2949 } 2950 2951 return 0; 2952 } 2953