xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38 
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59 
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62 
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64 		     START, LAST, static, amdgpu_vm_it)
65 
66 #undef START
67 #undef LAST
68 
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73 
74 	/**
75 	 * @adev: amdgpu device
76 	 */
77 	struct amdgpu_device *adev;
78 
79 	/**
80 	 * @cb: callback
81 	 */
82 	struct dma_fence_cb cb;
83 };
84 
85 /**
86  * amdgpu_vm_level_shift - return the addr shift for each level
87  *
88  * @adev: amdgpu_device pointer
89  * @level: VMPT level
90  *
91  * Returns:
92  * The number of bits the pfn needs to be right shifted for a level.
93  */
94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
95 				      unsigned level)
96 {
97 	unsigned shift = 0xff;
98 
99 	switch (level) {
100 	case AMDGPU_VM_PDB2:
101 	case AMDGPU_VM_PDB1:
102 	case AMDGPU_VM_PDB0:
103 		shift = 9 * (AMDGPU_VM_PDB0 - level) +
104 			adev->vm_manager.block_size;
105 		break;
106 	case AMDGPU_VM_PTB:
107 		shift = 0;
108 		break;
109 	default:
110 		dev_err(adev->dev, "the level%d isn't supported.\n", level);
111 	}
112 
113 	return shift;
114 }
115 
116 /**
117  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
118  *
119  * @adev: amdgpu_device pointer
120  * @level: VMPT level
121  *
122  * Returns:
123  * The number of entries in a page directory or page table.
124  */
125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
126 				      unsigned level)
127 {
128 	unsigned shift = amdgpu_vm_level_shift(adev,
129 					       adev->vm_manager.root_level);
130 
131 	if (level == adev->vm_manager.root_level)
132 		/* For the root directory */
133 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
134 			>> shift;
135 	else if (level != AMDGPU_VM_PTB)
136 		/* Everything in between */
137 		return 512;
138 	else
139 		/* For the page tables on the leaves */
140 		return AMDGPU_VM_PTE_COUNT(adev);
141 }
142 
143 /**
144  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
145  *
146  * @adev: amdgpu_device pointer
147  *
148  * Returns:
149  * The number of entries in the root page directory which needs the ATS setting.
150  */
151 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
152 {
153 	unsigned shift;
154 
155 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
156 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
157 }
158 
159 /**
160  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
161  *
162  * @adev: amdgpu_device pointer
163  * @level: VMPT level
164  *
165  * Returns:
166  * The mask to extract the entry number of a PD/PT from an address.
167  */
168 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
169 				       unsigned int level)
170 {
171 	if (level <= adev->vm_manager.root_level)
172 		return 0xffffffff;
173 	else if (level != AMDGPU_VM_PTB)
174 		return 0x1ff;
175 	else
176 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
177 }
178 
179 /**
180  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
181  *
182  * @adev: amdgpu_device pointer
183  * @level: VMPT level
184  *
185  * Returns:
186  * The size of the BO for a page directory or page table in bytes.
187  */
188 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
189 {
190 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
191 }
192 
193 /**
194  * amdgpu_vm_bo_evicted - vm_bo is evicted
195  *
196  * @vm_bo: vm_bo which is evicted
197  *
198  * State for PDs/PTs and per VM BOs which are not at the location they should
199  * be.
200  */
201 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
202 {
203 	struct amdgpu_vm *vm = vm_bo->vm;
204 	struct amdgpu_bo *bo = vm_bo->bo;
205 
206 	vm_bo->moved = true;
207 	if (bo->tbo.type == ttm_bo_type_kernel)
208 		list_move(&vm_bo->vm_status, &vm->evicted);
209 	else
210 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
211 }
212 
213 /**
214  * amdgpu_vm_bo_relocated - vm_bo is reloacted
215  *
216  * @vm_bo: vm_bo which is relocated
217  *
218  * State for PDs/PTs which needs to update their parent PD.
219  */
220 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
221 {
222 	list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
223 }
224 
225 /**
226  * amdgpu_vm_bo_moved - vm_bo is moved
227  *
228  * @vm_bo: vm_bo which is moved
229  *
230  * State for per VM BOs which are moved, but that change is not yet reflected
231  * in the page tables.
232  */
233 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
234 {
235 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
236 }
237 
238 /**
239  * amdgpu_vm_bo_idle - vm_bo is idle
240  *
241  * @vm_bo: vm_bo which is now idle
242  *
243  * State for PDs/PTs and per VM BOs which have gone through the state machine
244  * and are now idle.
245  */
246 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
249 	vm_bo->moved = false;
250 }
251 
252 /**
253  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
254  *
255  * @vm_bo: vm_bo which is now invalidated
256  *
257  * State for normal BOs which are invalidated and that change not yet reflected
258  * in the PTs.
259  */
260 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
261 {
262 	spin_lock(&vm_bo->vm->invalidated_lock);
263 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
264 	spin_unlock(&vm_bo->vm->invalidated_lock);
265 }
266 
267 /**
268  * amdgpu_vm_bo_done - vm_bo is done
269  *
270  * @vm_bo: vm_bo which is now done
271  *
272  * State for normal BOs which are invalidated and that change has been updated
273  * in the PTs.
274  */
275 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
276 {
277 	spin_lock(&vm_bo->vm->invalidated_lock);
278 	list_del_init(&vm_bo->vm_status);
279 	spin_unlock(&vm_bo->vm->invalidated_lock);
280 }
281 
282 /**
283  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
284  *
285  * @base: base structure for tracking BO usage in a VM
286  * @vm: vm to which bo is to be added
287  * @bo: amdgpu buffer object
288  *
289  * Initialize a bo_va_base structure and add it to the appropriate lists
290  *
291  */
292 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
293 				   struct amdgpu_vm *vm,
294 				   struct amdgpu_bo *bo)
295 {
296 	base->vm = vm;
297 	base->bo = bo;
298 	base->next = NULL;
299 	INIT_LIST_HEAD(&base->vm_status);
300 
301 	if (!bo)
302 		return;
303 	base->next = bo->vm_bo;
304 	bo->vm_bo = base;
305 
306 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
307 		return;
308 
309 	vm->bulk_moveable = false;
310 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
311 		amdgpu_vm_bo_relocated(base);
312 	else
313 		amdgpu_vm_bo_idle(base);
314 
315 	if (bo->preferred_domains &
316 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
317 		return;
318 
319 	/*
320 	 * we checked all the prerequisites, but it looks like this per vm bo
321 	 * is currently evicted. add the bo to the evicted list to make sure it
322 	 * is validated on next vm use to avoid fault.
323 	 * */
324 	amdgpu_vm_bo_evicted(base);
325 }
326 
327 /**
328  * amdgpu_vm_pt_parent - get the parent page directory
329  *
330  * @pt: child page table
331  *
332  * Helper to get the parent entry for the child page table. NULL if we are at
333  * the root page directory.
334  */
335 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
336 {
337 	struct amdgpu_bo *parent = pt->base.bo->parent;
338 
339 	if (!parent)
340 		return NULL;
341 
342 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
343 }
344 
345 /*
346  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
347  */
348 struct amdgpu_vm_pt_cursor {
349 	uint64_t pfn;
350 	struct amdgpu_vm_pt *parent;
351 	struct amdgpu_vm_pt *entry;
352 	unsigned level;
353 };
354 
355 /**
356  * amdgpu_vm_pt_start - start PD/PT walk
357  *
358  * @adev: amdgpu_device pointer
359  * @vm: amdgpu_vm structure
360  * @start: start address of the walk
361  * @cursor: state to initialize
362  *
363  * Initialize a amdgpu_vm_pt_cursor to start a walk.
364  */
365 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
366 			       struct amdgpu_vm *vm, uint64_t start,
367 			       struct amdgpu_vm_pt_cursor *cursor)
368 {
369 	cursor->pfn = start;
370 	cursor->parent = NULL;
371 	cursor->entry = &vm->root;
372 	cursor->level = adev->vm_manager.root_level;
373 }
374 
375 /**
376  * amdgpu_vm_pt_descendant - go to child node
377  *
378  * @adev: amdgpu_device pointer
379  * @cursor: current state
380  *
381  * Walk to the child node of the current node.
382  * Returns:
383  * True if the walk was possible, false otherwise.
384  */
385 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
386 				    struct amdgpu_vm_pt_cursor *cursor)
387 {
388 	unsigned mask, shift, idx;
389 
390 	if (!cursor->entry->entries)
391 		return false;
392 
393 	BUG_ON(!cursor->entry->base.bo);
394 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
395 	shift = amdgpu_vm_level_shift(adev, cursor->level);
396 
397 	++cursor->level;
398 	idx = (cursor->pfn >> shift) & mask;
399 	cursor->parent = cursor->entry;
400 	cursor->entry = &cursor->entry->entries[idx];
401 	return true;
402 }
403 
404 /**
405  * amdgpu_vm_pt_sibling - go to sibling node
406  *
407  * @adev: amdgpu_device pointer
408  * @cursor: current state
409  *
410  * Walk to the sibling node of the current node.
411  * Returns:
412  * True if the walk was possible, false otherwise.
413  */
414 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
415 				 struct amdgpu_vm_pt_cursor *cursor)
416 {
417 	unsigned shift, num_entries;
418 
419 	/* Root doesn't have a sibling */
420 	if (!cursor->parent)
421 		return false;
422 
423 	/* Go to our parents and see if we got a sibling */
424 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
425 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
426 
427 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
428 		return false;
429 
430 	cursor->pfn += 1ULL << shift;
431 	cursor->pfn &= ~((1ULL << shift) - 1);
432 	++cursor->entry;
433 	return true;
434 }
435 
436 /**
437  * amdgpu_vm_pt_ancestor - go to parent node
438  *
439  * @cursor: current state
440  *
441  * Walk to the parent node of the current node.
442  * Returns:
443  * True if the walk was possible, false otherwise.
444  */
445 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
446 {
447 	if (!cursor->parent)
448 		return false;
449 
450 	--cursor->level;
451 	cursor->entry = cursor->parent;
452 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
453 	return true;
454 }
455 
456 /**
457  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
458  *
459  * @adev: amdgpu_device pointer
460  * @cursor: current state
461  *
462  * Walk the PD/PT tree to the next node.
463  */
464 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
465 			      struct amdgpu_vm_pt_cursor *cursor)
466 {
467 	/* First try a newborn child */
468 	if (amdgpu_vm_pt_descendant(adev, cursor))
469 		return;
470 
471 	/* If that didn't worked try to find a sibling */
472 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
473 		/* No sibling, go to our parents and grandparents */
474 		if (!amdgpu_vm_pt_ancestor(cursor)) {
475 			cursor->pfn = ~0ll;
476 			return;
477 		}
478 	}
479 }
480 
481 /**
482  * amdgpu_vm_pt_first_dfs - start a deep first search
483  *
484  * @adev: amdgpu_device structure
485  * @vm: amdgpu_vm structure
486  * @start: optional cursor to start with
487  * @cursor: state to initialize
488  *
489  * Starts a deep first traversal of the PD/PT tree.
490  */
491 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
492 				   struct amdgpu_vm *vm,
493 				   struct amdgpu_vm_pt_cursor *start,
494 				   struct amdgpu_vm_pt_cursor *cursor)
495 {
496 	if (start)
497 		*cursor = *start;
498 	else
499 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
500 	while (amdgpu_vm_pt_descendant(adev, cursor));
501 }
502 
503 /**
504  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
505  *
506  * @start: starting point for the search
507  * @entry: current entry
508  *
509  * Returns:
510  * True when the search should continue, false otherwise.
511  */
512 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
513 				      struct amdgpu_vm_pt *entry)
514 {
515 	return entry && (!start || entry != start->entry);
516 }
517 
518 /**
519  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
520  *
521  * @adev: amdgpu_device structure
522  * @cursor: current state
523  *
524  * Move the cursor to the next node in a deep first search.
525  */
526 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
527 				  struct amdgpu_vm_pt_cursor *cursor)
528 {
529 	if (!cursor->entry)
530 		return;
531 
532 	if (!cursor->parent)
533 		cursor->entry = NULL;
534 	else if (amdgpu_vm_pt_sibling(adev, cursor))
535 		while (amdgpu_vm_pt_descendant(adev, cursor));
536 	else
537 		amdgpu_vm_pt_ancestor(cursor);
538 }
539 
540 /*
541  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
542  */
543 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
544 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
545 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
546 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
547 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
548 
549 /**
550  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
551  *
552  * @vm: vm providing the BOs
553  * @validated: head of validation list
554  * @entry: entry to add
555  *
556  * Add the page directory to the list of BOs to
557  * validate for command submission.
558  */
559 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
560 			 struct list_head *validated,
561 			 struct amdgpu_bo_list_entry *entry)
562 {
563 	entry->priority = 0;
564 	entry->tv.bo = &vm->root.base.bo->tbo;
565 	/* One for the VM updates, one for TTM and one for the CS job */
566 	entry->tv.num_shared = 3;
567 	entry->user_pages = NULL;
568 	list_add(&entry->tv.head, validated);
569 }
570 
571 /**
572  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
573  *
574  * @bo: BO which was removed from the LRU
575  *
576  * Make sure the bulk_moveable flag is updated when a BO is removed from the
577  * LRU.
578  */
579 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
580 {
581 	struct amdgpu_bo *abo;
582 	struct amdgpu_vm_bo_base *bo_base;
583 
584 	if (!amdgpu_bo_is_amdgpu_bo(bo))
585 		return;
586 
587 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
588 		return;
589 
590 	abo = ttm_to_amdgpu_bo(bo);
591 	if (!abo->parent)
592 		return;
593 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
594 		struct amdgpu_vm *vm = bo_base->vm;
595 
596 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
597 			vm->bulk_moveable = false;
598 	}
599 
600 }
601 /**
602  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
603  *
604  * @adev: amdgpu device pointer
605  * @vm: vm providing the BOs
606  *
607  * Move all BOs to the end of LRU and remember their positions to put them
608  * together.
609  */
610 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
611 				struct amdgpu_vm *vm)
612 {
613 	struct amdgpu_vm_bo_base *bo_base;
614 
615 	if (vm->bulk_moveable) {
616 		spin_lock(&ttm_bo_glob.lru_lock);
617 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
618 		spin_unlock(&ttm_bo_glob.lru_lock);
619 		return;
620 	}
621 
622 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
623 
624 	spin_lock(&ttm_bo_glob.lru_lock);
625 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
626 		struct amdgpu_bo *bo = bo_base->bo;
627 
628 		if (!bo->parent)
629 			continue;
630 
631 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
632 		if (bo->shadow)
633 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
634 						&vm->lru_bulk_move);
635 	}
636 	spin_unlock(&ttm_bo_glob.lru_lock);
637 
638 	vm->bulk_moveable = true;
639 }
640 
641 /**
642  * amdgpu_vm_validate_pt_bos - validate the page table BOs
643  *
644  * @adev: amdgpu device pointer
645  * @vm: vm providing the BOs
646  * @validate: callback to do the validation
647  * @param: parameter for the validation callback
648  *
649  * Validate the page table BOs on command submission if neccessary.
650  *
651  * Returns:
652  * Validation result.
653  */
654 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
655 			      int (*validate)(void *p, struct amdgpu_bo *bo),
656 			      void *param)
657 {
658 	struct amdgpu_vm_bo_base *bo_base, *tmp;
659 	int r = 0;
660 
661 	vm->bulk_moveable &= list_empty(&vm->evicted);
662 
663 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
664 		struct amdgpu_bo *bo = bo_base->bo;
665 
666 		r = validate(param, bo);
667 		if (r)
668 			break;
669 
670 		if (bo->tbo.type != ttm_bo_type_kernel) {
671 			amdgpu_vm_bo_moved(bo_base);
672 		} else {
673 			vm->update_funcs->map_table(bo);
674 			if (bo->parent)
675 				amdgpu_vm_bo_relocated(bo_base);
676 			else
677 				amdgpu_vm_bo_idle(bo_base);
678 		}
679 	}
680 
681 	return r;
682 }
683 
684 /**
685  * amdgpu_vm_ready - check VM is ready for updates
686  *
687  * @vm: VM to check
688  *
689  * Check if all VM PDs/PTs are ready for updates
690  *
691  * Returns:
692  * True if eviction list is empty.
693  */
694 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
695 {
696 	return list_empty(&vm->evicted);
697 }
698 
699 /**
700  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
701  *
702  * @adev: amdgpu_device pointer
703  * @vm: VM to clear BO from
704  * @bo: BO to clear
705  * @direct: use a direct update
706  *
707  * Root PD needs to be reserved when calling this.
708  *
709  * Returns:
710  * 0 on success, errno otherwise.
711  */
712 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
713 			      struct amdgpu_vm *vm,
714 			      struct amdgpu_bo *bo,
715 			      bool direct)
716 {
717 	struct ttm_operation_ctx ctx = { true, false };
718 	unsigned level = adev->vm_manager.root_level;
719 	struct amdgpu_vm_update_params params;
720 	struct amdgpu_bo *ancestor = bo;
721 	unsigned entries, ats_entries;
722 	uint64_t addr;
723 	int r;
724 
725 	/* Figure out our place in the hierarchy */
726 	if (ancestor->parent) {
727 		++level;
728 		while (ancestor->parent->parent) {
729 			++level;
730 			ancestor = ancestor->parent;
731 		}
732 	}
733 
734 	entries = amdgpu_bo_size(bo) / 8;
735 	if (!vm->pte_support_ats) {
736 		ats_entries = 0;
737 
738 	} else if (!bo->parent) {
739 		ats_entries = amdgpu_vm_num_ats_entries(adev);
740 		ats_entries = min(ats_entries, entries);
741 		entries -= ats_entries;
742 
743 	} else {
744 		struct amdgpu_vm_pt *pt;
745 
746 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
747 		ats_entries = amdgpu_vm_num_ats_entries(adev);
748 		if ((pt - vm->root.entries) >= ats_entries) {
749 			ats_entries = 0;
750 		} else {
751 			ats_entries = entries;
752 			entries = 0;
753 		}
754 	}
755 
756 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
757 	if (r)
758 		return r;
759 
760 	if (bo->shadow) {
761 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
762 				    &ctx);
763 		if (r)
764 			return r;
765 	}
766 
767 	r = vm->update_funcs->map_table(bo);
768 	if (r)
769 		return r;
770 
771 	memset(&params, 0, sizeof(params));
772 	params.adev = adev;
773 	params.vm = vm;
774 	params.direct = direct;
775 
776 	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_KFD, NULL);
777 	if (r)
778 		return r;
779 
780 	addr = 0;
781 	if (ats_entries) {
782 		uint64_t value = 0, flags;
783 
784 		flags = AMDGPU_PTE_DEFAULT_ATC;
785 		if (level != AMDGPU_VM_PTB) {
786 			/* Handle leaf PDEs as PTEs */
787 			flags |= AMDGPU_PDE_PTE;
788 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
789 		}
790 
791 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
792 					     value, flags);
793 		if (r)
794 			return r;
795 
796 		addr += ats_entries * 8;
797 	}
798 
799 	if (entries) {
800 		uint64_t value = 0, flags = 0;
801 
802 		if (adev->asic_type >= CHIP_VEGA10) {
803 			if (level != AMDGPU_VM_PTB) {
804 				/* Handle leaf PDEs as PTEs */
805 				flags |= AMDGPU_PDE_PTE;
806 				amdgpu_gmc_get_vm_pde(adev, level,
807 						      &value, &flags);
808 			} else {
809 				/* Workaround for fault priority problem on GMC9 */
810 				flags = AMDGPU_PTE_EXECUTABLE;
811 			}
812 		}
813 
814 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
815 					     value, flags);
816 		if (r)
817 			return r;
818 	}
819 
820 	return vm->update_funcs->commit(&params, NULL);
821 }
822 
823 /**
824  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
825  *
826  * @adev: amdgpu_device pointer
827  * @vm: requesting vm
828  * @level: the page table level
829  * @direct: use a direct update
830  * @bp: resulting BO allocation parameters
831  */
832 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
833 			       int level, bool direct,
834 			       struct amdgpu_bo_param *bp)
835 {
836 	memset(bp, 0, sizeof(*bp));
837 
838 	bp->size = amdgpu_vm_bo_size(adev, level);
839 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
840 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
841 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
842 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
843 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
844 	if (vm->use_cpu_for_update)
845 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
846 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
847 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
848 	bp->type = ttm_bo_type_kernel;
849 	bp->no_wait_gpu = direct;
850 	if (vm->root.base.bo)
851 		bp->resv = vm->root.base.bo->tbo.base.resv;
852 }
853 
854 /**
855  * amdgpu_vm_alloc_pts - Allocate a specific page table
856  *
857  * @adev: amdgpu_device pointer
858  * @vm: VM to allocate page tables for
859  * @cursor: Which page table to allocate
860  * @direct: use a direct update
861  *
862  * Make sure a specific page table or directory is allocated.
863  *
864  * Returns:
865  * 1 if page table needed to be allocated, 0 if page table was already
866  * allocated, negative errno if an error occurred.
867  */
868 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
869 			       struct amdgpu_vm *vm,
870 			       struct amdgpu_vm_pt_cursor *cursor,
871 			       bool direct)
872 {
873 	struct amdgpu_vm_pt *entry = cursor->entry;
874 	struct amdgpu_bo_param bp;
875 	struct amdgpu_bo *pt;
876 	int r;
877 
878 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
879 		unsigned num_entries;
880 
881 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
882 		entry->entries = kvmalloc_array(num_entries,
883 						sizeof(*entry->entries),
884 						GFP_KERNEL | __GFP_ZERO);
885 		if (!entry->entries)
886 			return -ENOMEM;
887 	}
888 
889 	if (entry->base.bo)
890 		return 0;
891 
892 	amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp);
893 
894 	r = amdgpu_bo_create(adev, &bp, &pt);
895 	if (r)
896 		return r;
897 
898 	/* Keep a reference to the root directory to avoid
899 	 * freeing them up in the wrong order.
900 	 */
901 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
902 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
903 
904 	r = amdgpu_vm_clear_bo(adev, vm, pt, direct);
905 	if (r)
906 		goto error_free_pt;
907 
908 	return 0;
909 
910 error_free_pt:
911 	amdgpu_bo_unref(&pt->shadow);
912 	amdgpu_bo_unref(&pt);
913 	return r;
914 }
915 
916 /**
917  * amdgpu_vm_free_table - fre one PD/PT
918  *
919  * @entry: PDE to free
920  */
921 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
922 {
923 	if (entry->base.bo) {
924 		entry->base.bo->vm_bo = NULL;
925 		list_del(&entry->base.vm_status);
926 		amdgpu_bo_unref(&entry->base.bo->shadow);
927 		amdgpu_bo_unref(&entry->base.bo);
928 	}
929 	kvfree(entry->entries);
930 	entry->entries = NULL;
931 }
932 
933 /**
934  * amdgpu_vm_free_pts - free PD/PT levels
935  *
936  * @adev: amdgpu device structure
937  * @vm: amdgpu vm structure
938  * @start: optional cursor where to start freeing PDs/PTs
939  *
940  * Free the page directory or page table level and all sub levels.
941  */
942 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
943 			       struct amdgpu_vm *vm,
944 			       struct amdgpu_vm_pt_cursor *start)
945 {
946 	struct amdgpu_vm_pt_cursor cursor;
947 	struct amdgpu_vm_pt *entry;
948 
949 	vm->bulk_moveable = false;
950 
951 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
952 		amdgpu_vm_free_table(entry);
953 
954 	if (start)
955 		amdgpu_vm_free_table(start->entry);
956 }
957 
958 /**
959  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
960  *
961  * @adev: amdgpu_device pointer
962  */
963 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
964 {
965 	const struct amdgpu_ip_block *ip_block;
966 	bool has_compute_vm_bug;
967 	struct amdgpu_ring *ring;
968 	int i;
969 
970 	has_compute_vm_bug = false;
971 
972 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
973 	if (ip_block) {
974 		/* Compute has a VM bug for GFX version < 7.
975 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
976 		if (ip_block->version->major <= 7)
977 			has_compute_vm_bug = true;
978 		else if (ip_block->version->major == 8)
979 			if (adev->gfx.mec_fw_version < 673)
980 				has_compute_vm_bug = true;
981 	}
982 
983 	for (i = 0; i < adev->num_rings; i++) {
984 		ring = adev->rings[i];
985 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
986 			/* only compute rings */
987 			ring->has_compute_vm_bug = has_compute_vm_bug;
988 		else
989 			ring->has_compute_vm_bug = false;
990 	}
991 }
992 
993 /**
994  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
995  *
996  * @ring: ring on which the job will be submitted
997  * @job: job to submit
998  *
999  * Returns:
1000  * True if sync is needed.
1001  */
1002 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1003 				  struct amdgpu_job *job)
1004 {
1005 	struct amdgpu_device *adev = ring->adev;
1006 	unsigned vmhub = ring->funcs->vmhub;
1007 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1008 	struct amdgpu_vmid *id;
1009 	bool gds_switch_needed;
1010 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1011 
1012 	if (job->vmid == 0)
1013 		return false;
1014 	id = &id_mgr->ids[job->vmid];
1015 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1016 		id->gds_base != job->gds_base ||
1017 		id->gds_size != job->gds_size ||
1018 		id->gws_base != job->gws_base ||
1019 		id->gws_size != job->gws_size ||
1020 		id->oa_base != job->oa_base ||
1021 		id->oa_size != job->oa_size);
1022 
1023 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1024 		return true;
1025 
1026 	return vm_flush_needed || gds_switch_needed;
1027 }
1028 
1029 /**
1030  * amdgpu_vm_flush - hardware flush the vm
1031  *
1032  * @ring: ring to use for flush
1033  * @job:  related job
1034  * @need_pipe_sync: is pipe sync needed
1035  *
1036  * Emit a VM flush when it is necessary.
1037  *
1038  * Returns:
1039  * 0 on success, errno otherwise.
1040  */
1041 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1042 		    bool need_pipe_sync)
1043 {
1044 	struct amdgpu_device *adev = ring->adev;
1045 	unsigned vmhub = ring->funcs->vmhub;
1046 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1047 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1048 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1049 		id->gds_base != job->gds_base ||
1050 		id->gds_size != job->gds_size ||
1051 		id->gws_base != job->gws_base ||
1052 		id->gws_size != job->gws_size ||
1053 		id->oa_base != job->oa_base ||
1054 		id->oa_size != job->oa_size);
1055 	bool vm_flush_needed = job->vm_needs_flush;
1056 	struct dma_fence *fence = NULL;
1057 	bool pasid_mapping_needed = false;
1058 	unsigned patch_offset = 0;
1059 	int r;
1060 
1061 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1062 		gds_switch_needed = true;
1063 		vm_flush_needed = true;
1064 		pasid_mapping_needed = true;
1065 	}
1066 
1067 	mutex_lock(&id_mgr->lock);
1068 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1069 	    !dma_fence_is_signaled(id->pasid_mapping))
1070 		pasid_mapping_needed = true;
1071 	mutex_unlock(&id_mgr->lock);
1072 
1073 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1074 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1075 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1076 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1077 		ring->funcs->emit_wreg;
1078 
1079 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1080 		return 0;
1081 
1082 	if (ring->funcs->init_cond_exec)
1083 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1084 
1085 	if (need_pipe_sync)
1086 		amdgpu_ring_emit_pipeline_sync(ring);
1087 
1088 	if (vm_flush_needed) {
1089 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1090 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1091 	}
1092 
1093 	if (pasid_mapping_needed)
1094 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1095 
1096 	if (vm_flush_needed || pasid_mapping_needed) {
1097 		r = amdgpu_fence_emit(ring, &fence, 0);
1098 		if (r)
1099 			return r;
1100 	}
1101 
1102 	if (vm_flush_needed) {
1103 		mutex_lock(&id_mgr->lock);
1104 		dma_fence_put(id->last_flush);
1105 		id->last_flush = dma_fence_get(fence);
1106 		id->current_gpu_reset_count =
1107 			atomic_read(&adev->gpu_reset_counter);
1108 		mutex_unlock(&id_mgr->lock);
1109 	}
1110 
1111 	if (pasid_mapping_needed) {
1112 		mutex_lock(&id_mgr->lock);
1113 		id->pasid = job->pasid;
1114 		dma_fence_put(id->pasid_mapping);
1115 		id->pasid_mapping = dma_fence_get(fence);
1116 		mutex_unlock(&id_mgr->lock);
1117 	}
1118 	dma_fence_put(fence);
1119 
1120 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1121 		id->gds_base = job->gds_base;
1122 		id->gds_size = job->gds_size;
1123 		id->gws_base = job->gws_base;
1124 		id->gws_size = job->gws_size;
1125 		id->oa_base = job->oa_base;
1126 		id->oa_size = job->oa_size;
1127 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1128 					    job->gds_size, job->gws_base,
1129 					    job->gws_size, job->oa_base,
1130 					    job->oa_size);
1131 	}
1132 
1133 	if (ring->funcs->patch_cond_exec)
1134 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1135 
1136 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1137 	if (ring->funcs->emit_switch_buffer) {
1138 		amdgpu_ring_emit_switch_buffer(ring);
1139 		amdgpu_ring_emit_switch_buffer(ring);
1140 	}
1141 	return 0;
1142 }
1143 
1144 /**
1145  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1146  *
1147  * @vm: requested vm
1148  * @bo: requested buffer object
1149  *
1150  * Find @bo inside the requested vm.
1151  * Search inside the @bos vm list for the requested vm
1152  * Returns the found bo_va or NULL if none is found
1153  *
1154  * Object has to be reserved!
1155  *
1156  * Returns:
1157  * Found bo_va or NULL.
1158  */
1159 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1160 				       struct amdgpu_bo *bo)
1161 {
1162 	struct amdgpu_vm_bo_base *base;
1163 
1164 	for (base = bo->vm_bo; base; base = base->next) {
1165 		if (base->vm != vm)
1166 			continue;
1167 
1168 		return container_of(base, struct amdgpu_bo_va, base);
1169 	}
1170 	return NULL;
1171 }
1172 
1173 /**
1174  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1175  *
1176  * @pages_addr: optional DMA address to use for lookup
1177  * @addr: the unmapped addr
1178  *
1179  * Look up the physical address of the page that the pte resolves
1180  * to.
1181  *
1182  * Returns:
1183  * The pointer for the page table entry.
1184  */
1185 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1186 {
1187 	uint64_t result;
1188 
1189 	/* page table offset */
1190 	result = pages_addr[addr >> PAGE_SHIFT];
1191 
1192 	/* in case cpu page size != gpu page size*/
1193 	result |= addr & (~PAGE_MASK);
1194 
1195 	result &= 0xFFFFFFFFFFFFF000ULL;
1196 
1197 	return result;
1198 }
1199 
1200 /**
1201  * amdgpu_vm_update_pde - update a single level in the hierarchy
1202  *
1203  * @params: parameters for the update
1204  * @vm: requested vm
1205  * @entry: entry to update
1206  *
1207  * Makes sure the requested entry in parent is up to date.
1208  */
1209 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1210 				struct amdgpu_vm *vm,
1211 				struct amdgpu_vm_pt *entry)
1212 {
1213 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1214 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1215 	uint64_t pde, pt, flags;
1216 	unsigned level;
1217 
1218 	for (level = 0, pbo = bo->parent; pbo; ++level)
1219 		pbo = pbo->parent;
1220 
1221 	level += params->adev->vm_manager.root_level;
1222 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1223 	pde = (entry - parent->entries) * 8;
1224 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1225 }
1226 
1227 /**
1228  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1229  *
1230  * @adev: amdgpu_device pointer
1231  * @vm: related vm
1232  *
1233  * Mark all PD level as invalid after an error.
1234  */
1235 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1236 				     struct amdgpu_vm *vm)
1237 {
1238 	struct amdgpu_vm_pt_cursor cursor;
1239 	struct amdgpu_vm_pt *entry;
1240 
1241 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1242 		if (entry->base.bo && !entry->base.moved)
1243 			amdgpu_vm_bo_relocated(&entry->base);
1244 }
1245 
1246 /**
1247  * amdgpu_vm_update_pdes - make sure that all directories are valid
1248  *
1249  * @adev: amdgpu_device pointer
1250  * @vm: requested vm
1251  * @direct: submit directly to the paging queue
1252  *
1253  * Makes sure all directories are up to date.
1254  *
1255  * Returns:
1256  * 0 for success, error for failure.
1257  */
1258 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1259 			  struct amdgpu_vm *vm, bool direct)
1260 {
1261 	struct amdgpu_vm_update_params params;
1262 	int r;
1263 
1264 	if (list_empty(&vm->relocated))
1265 		return 0;
1266 
1267 	memset(&params, 0, sizeof(params));
1268 	params.adev = adev;
1269 	params.vm = vm;
1270 	params.direct = direct;
1271 
1272 	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_VM, NULL);
1273 	if (r)
1274 		return r;
1275 
1276 	while (!list_empty(&vm->relocated)) {
1277 		struct amdgpu_vm_pt *entry;
1278 
1279 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1280 					 base.vm_status);
1281 		amdgpu_vm_bo_idle(&entry->base);
1282 
1283 		r = amdgpu_vm_update_pde(&params, vm, entry);
1284 		if (r)
1285 			goto error;
1286 	}
1287 
1288 	r = vm->update_funcs->commit(&params, &vm->last_update);
1289 	if (r)
1290 		goto error;
1291 	return 0;
1292 
1293 error:
1294 	amdgpu_vm_invalidate_pds(adev, vm);
1295 	return r;
1296 }
1297 
1298 /*
1299  * amdgpu_vm_update_flags - figure out flags for PTE updates
1300  *
1301  * Make sure to set the right flags for the PTEs at the desired level.
1302  */
1303 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1304 				   struct amdgpu_bo *bo, unsigned level,
1305 				   uint64_t pe, uint64_t addr,
1306 				   unsigned count, uint32_t incr,
1307 				   uint64_t flags)
1308 
1309 {
1310 	if (level != AMDGPU_VM_PTB) {
1311 		flags |= AMDGPU_PDE_PTE;
1312 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1313 
1314 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1315 		   !(flags & AMDGPU_PTE_VALID) &&
1316 		   !(flags & AMDGPU_PTE_PRT)) {
1317 
1318 		/* Workaround for fault priority problem on GMC9 */
1319 		flags |= AMDGPU_PTE_EXECUTABLE;
1320 	}
1321 
1322 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1323 					 flags);
1324 }
1325 
1326 /**
1327  * amdgpu_vm_fragment - get fragment for PTEs
1328  *
1329  * @params: see amdgpu_vm_update_params definition
1330  * @start: first PTE to handle
1331  * @end: last PTE to handle
1332  * @flags: hw mapping flags
1333  * @frag: resulting fragment size
1334  * @frag_end: end of this fragment
1335  *
1336  * Returns the first possible fragment for the start and end address.
1337  */
1338 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1339 			       uint64_t start, uint64_t end, uint64_t flags,
1340 			       unsigned int *frag, uint64_t *frag_end)
1341 {
1342 	/**
1343 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1344 	 * field in the PTE. When this field is set to a non-zero value, page
1345 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1346 	 * flags are considered valid for all PTEs within the fragment range
1347 	 * and corresponding mappings are assumed to be physically contiguous.
1348 	 *
1349 	 * The L1 TLB can store a single PTE for the whole fragment,
1350 	 * significantly increasing the space available for translation
1351 	 * caching. This leads to large improvements in throughput when the
1352 	 * TLB is under pressure.
1353 	 *
1354 	 * The L2 TLB distributes small and large fragments into two
1355 	 * asymmetric partitions. The large fragment cache is significantly
1356 	 * larger. Thus, we try to use large fragments wherever possible.
1357 	 * Userspace can support this by aligning virtual base address and
1358 	 * allocation size to the fragment size.
1359 	 *
1360 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1361 	 * is now directly feed with small/huge/giant pages from the walker.
1362 	 */
1363 	unsigned max_frag;
1364 
1365 	if (params->adev->asic_type < CHIP_VEGA10)
1366 		max_frag = params->adev->vm_manager.fragment_size;
1367 	else
1368 		max_frag = 31;
1369 
1370 	/* system pages are non continuously */
1371 	if (params->pages_addr) {
1372 		*frag = 0;
1373 		*frag_end = end;
1374 		return;
1375 	}
1376 
1377 	/* This intentionally wraps around if no bit is set */
1378 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1379 	if (*frag >= max_frag) {
1380 		*frag = max_frag;
1381 		*frag_end = end & ~((1ULL << max_frag) - 1);
1382 	} else {
1383 		*frag_end = start + (1 << *frag);
1384 	}
1385 }
1386 
1387 /**
1388  * amdgpu_vm_update_ptes - make sure that page tables are valid
1389  *
1390  * @params: see amdgpu_vm_update_params definition
1391  * @start: start of GPU address range
1392  * @end: end of GPU address range
1393  * @dst: destination address to map to, the next dst inside the function
1394  * @flags: mapping flags
1395  *
1396  * Update the page tables in the range @start - @end.
1397  *
1398  * Returns:
1399  * 0 for success, -EINVAL for failure.
1400  */
1401 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1402 				 uint64_t start, uint64_t end,
1403 				 uint64_t dst, uint64_t flags)
1404 {
1405 	struct amdgpu_device *adev = params->adev;
1406 	struct amdgpu_vm_pt_cursor cursor;
1407 	uint64_t frag_start = start, frag_end;
1408 	unsigned int frag;
1409 	int r;
1410 
1411 	/* figure out the initial fragment */
1412 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1413 
1414 	/* walk over the address space and update the PTs */
1415 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1416 	while (cursor.pfn < end) {
1417 		unsigned shift, parent_shift, mask;
1418 		uint64_t incr, entry_end, pe_start;
1419 		struct amdgpu_bo *pt;
1420 
1421 		/* make sure that the page tables covering the address range are
1422 		 * actually allocated
1423 		 */
1424 		r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor,
1425 					params->direct);
1426 		if (r)
1427 			return r;
1428 
1429 		pt = cursor.entry->base.bo;
1430 
1431 		/* The root level can't be a huge page */
1432 		if (cursor.level == adev->vm_manager.root_level) {
1433 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1434 				return -ENOENT;
1435 			continue;
1436 		}
1437 
1438 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1439 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1440 		if (adev->asic_type < CHIP_VEGA10 &&
1441 		    (flags & AMDGPU_PTE_VALID)) {
1442 			/* No huge page support before GMC v9 */
1443 			if (cursor.level != AMDGPU_VM_PTB) {
1444 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1445 					return -ENOENT;
1446 				continue;
1447 			}
1448 		} else if (frag < shift) {
1449 			/* We can't use this level when the fragment size is
1450 			 * smaller than the address shift. Go to the next
1451 			 * child entry and try again.
1452 			 */
1453 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1454 				return -ENOENT;
1455 			continue;
1456 		} else if (frag >= parent_shift &&
1457 			   cursor.level - 1 != adev->vm_manager.root_level) {
1458 			/* If the fragment size is even larger than the parent
1459 			 * shift we should go up one level and check it again
1460 			 * unless one level up is the root level.
1461 			 */
1462 			if (!amdgpu_vm_pt_ancestor(&cursor))
1463 				return -ENOENT;
1464 			continue;
1465 		}
1466 
1467 		/* Looks good so far, calculate parameters for the update */
1468 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1469 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1470 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1471 		entry_end = (uint64_t)(mask + 1) << shift;
1472 		entry_end += cursor.pfn & ~(entry_end - 1);
1473 		entry_end = min(entry_end, end);
1474 
1475 		do {
1476 			uint64_t upd_end = min(entry_end, frag_end);
1477 			unsigned nptes = (upd_end - frag_start) >> shift;
1478 
1479 			amdgpu_vm_update_flags(params, pt, cursor.level,
1480 					       pe_start, dst, nptes, incr,
1481 					       flags | AMDGPU_PTE_FRAG(frag));
1482 
1483 			pe_start += nptes * 8;
1484 			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1485 
1486 			frag_start = upd_end;
1487 			if (frag_start >= frag_end) {
1488 				/* figure out the next fragment */
1489 				amdgpu_vm_fragment(params, frag_start, end,
1490 						   flags, &frag, &frag_end);
1491 				if (frag < shift)
1492 					break;
1493 			}
1494 		} while (frag_start < entry_end);
1495 
1496 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1497 			/* Free all child entries.
1498 			 * Update the tables with the flags and addresses and free up subsequent
1499 			 * tables in the case of huge pages or freed up areas.
1500 			 * This is the maximum you can free, because all other page tables are not
1501 			 * completely covered by the range and so potentially still in use.
1502 			 */
1503 			while (cursor.pfn < frag_start) {
1504 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1505 				amdgpu_vm_pt_next(adev, &cursor);
1506 			}
1507 
1508 		} else if (frag >= shift) {
1509 			/* or just move on to the next on the same level. */
1510 			amdgpu_vm_pt_next(adev, &cursor);
1511 		}
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 /**
1518  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1519  *
1520  * @adev: amdgpu_device pointer
1521  * @vm: requested vm
1522  * @direct: direct submission in a page fault
1523  * @exclusive: fence we need to sync to
1524  * @start: start of mapped range
1525  * @last: last mapped entry
1526  * @flags: flags for the entries
1527  * @addr: addr to set the area to
1528  * @pages_addr: DMA addresses to use for mapping
1529  * @fence: optional resulting fence
1530  *
1531  * Fill in the page table entries between @start and @last.
1532  *
1533  * Returns:
1534  * 0 for success, -EINVAL for failure.
1535  */
1536 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1537 				       struct amdgpu_vm *vm, bool direct,
1538 				       struct dma_fence *exclusive,
1539 				       uint64_t start, uint64_t last,
1540 				       uint64_t flags, uint64_t addr,
1541 				       dma_addr_t *pages_addr,
1542 				       struct dma_fence **fence)
1543 {
1544 	struct amdgpu_vm_update_params params;
1545 	void *owner = AMDGPU_FENCE_OWNER_VM;
1546 	int r;
1547 
1548 	memset(&params, 0, sizeof(params));
1549 	params.adev = adev;
1550 	params.vm = vm;
1551 	params.direct = direct;
1552 	params.pages_addr = pages_addr;
1553 
1554 	/* sync to everything except eviction fences on unmapping */
1555 	if (!(flags & AMDGPU_PTE_VALID))
1556 		owner = AMDGPU_FENCE_OWNER_KFD;
1557 
1558 	r = vm->update_funcs->prepare(&params, owner, exclusive);
1559 	if (r)
1560 		return r;
1561 
1562 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1563 	if (r)
1564 		return r;
1565 
1566 	return vm->update_funcs->commit(&params, fence);
1567 }
1568 
1569 /**
1570  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1571  *
1572  * @adev: amdgpu_device pointer
1573  * @exclusive: fence we need to sync to
1574  * @pages_addr: DMA addresses to use for mapping
1575  * @vm: requested vm
1576  * @mapping: mapped range and flags to use for the update
1577  * @flags: HW flags for the mapping
1578  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1579  * @nodes: array of drm_mm_nodes with the MC addresses
1580  * @fence: optional resulting fence
1581  *
1582  * Split the mapping into smaller chunks so that each update fits
1583  * into a SDMA IB.
1584  *
1585  * Returns:
1586  * 0 for success, -EINVAL for failure.
1587  */
1588 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1589 				      struct dma_fence *exclusive,
1590 				      dma_addr_t *pages_addr,
1591 				      struct amdgpu_vm *vm,
1592 				      struct amdgpu_bo_va_mapping *mapping,
1593 				      uint64_t flags,
1594 				      struct amdgpu_device *bo_adev,
1595 				      struct drm_mm_node *nodes,
1596 				      struct dma_fence **fence)
1597 {
1598 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1599 	uint64_t pfn, start = mapping->start;
1600 	int r;
1601 
1602 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1603 	 * but in case of something, we filter the flags in first place
1604 	 */
1605 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1606 		flags &= ~AMDGPU_PTE_READABLE;
1607 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1608 		flags &= ~AMDGPU_PTE_WRITEABLE;
1609 
1610 	/* Apply ASIC specific mapping flags */
1611 	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1612 
1613 	trace_amdgpu_vm_bo_update(mapping);
1614 
1615 	pfn = mapping->offset >> PAGE_SHIFT;
1616 	if (nodes) {
1617 		while (pfn >= nodes->size) {
1618 			pfn -= nodes->size;
1619 			++nodes;
1620 		}
1621 	}
1622 
1623 	do {
1624 		dma_addr_t *dma_addr = NULL;
1625 		uint64_t max_entries;
1626 		uint64_t addr, last;
1627 
1628 		if (nodes) {
1629 			addr = nodes->start << PAGE_SHIFT;
1630 			max_entries = (nodes->size - pfn) *
1631 				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1632 		} else {
1633 			addr = 0;
1634 			max_entries = S64_MAX;
1635 		}
1636 
1637 		if (pages_addr) {
1638 			uint64_t count;
1639 
1640 			for (count = 1;
1641 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1642 			     ++count) {
1643 				uint64_t idx = pfn + count;
1644 
1645 				if (pages_addr[idx] !=
1646 				    (pages_addr[idx - 1] + PAGE_SIZE))
1647 					break;
1648 			}
1649 
1650 			if (count < min_linear_pages) {
1651 				addr = pfn << PAGE_SHIFT;
1652 				dma_addr = pages_addr;
1653 			} else {
1654 				addr = pages_addr[pfn];
1655 				max_entries = count *
1656 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1657 			}
1658 
1659 		} else if (flags & AMDGPU_PTE_VALID) {
1660 			addr += bo_adev->vm_manager.vram_base_offset;
1661 			addr += pfn << PAGE_SHIFT;
1662 		}
1663 
1664 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1665 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, exclusive,
1666 						start, last, flags, addr,
1667 						dma_addr, fence);
1668 		if (r)
1669 			return r;
1670 
1671 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1672 		if (nodes && nodes->size == pfn) {
1673 			pfn = 0;
1674 			++nodes;
1675 		}
1676 		start = last + 1;
1677 
1678 	} while (unlikely(start != mapping->last + 1));
1679 
1680 	return 0;
1681 }
1682 
1683 /**
1684  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1685  *
1686  * @adev: amdgpu_device pointer
1687  * @bo_va: requested BO and VM object
1688  * @clear: if true clear the entries
1689  *
1690  * Fill in the page table entries for @bo_va.
1691  *
1692  * Returns:
1693  * 0 for success, -EINVAL for failure.
1694  */
1695 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1696 			bool clear)
1697 {
1698 	struct amdgpu_bo *bo = bo_va->base.bo;
1699 	struct amdgpu_vm *vm = bo_va->base.vm;
1700 	struct amdgpu_bo_va_mapping *mapping;
1701 	dma_addr_t *pages_addr = NULL;
1702 	struct ttm_mem_reg *mem;
1703 	struct drm_mm_node *nodes;
1704 	struct dma_fence *exclusive, **last_update;
1705 	uint64_t flags;
1706 	struct amdgpu_device *bo_adev = adev;
1707 	int r;
1708 
1709 	if (clear || !bo) {
1710 		mem = NULL;
1711 		nodes = NULL;
1712 		exclusive = NULL;
1713 	} else {
1714 		struct ttm_dma_tt *ttm;
1715 
1716 		mem = &bo->tbo.mem;
1717 		nodes = mem->mm_node;
1718 		if (mem->mem_type == TTM_PL_TT) {
1719 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1720 			pages_addr = ttm->dma_address;
1721 		}
1722 		exclusive = bo->tbo.moving;
1723 	}
1724 
1725 	if (bo) {
1726 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1727 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1728 	} else {
1729 		flags = 0x0;
1730 	}
1731 
1732 	if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv))
1733 		last_update = &vm->last_update;
1734 	else
1735 		last_update = &bo_va->last_pt_update;
1736 
1737 	if (!clear && bo_va->base.moved) {
1738 		bo_va->base.moved = false;
1739 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1740 
1741 	} else if (bo_va->cleared != clear) {
1742 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1743 	}
1744 
1745 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1746 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1747 					       mapping, flags, bo_adev, nodes,
1748 					       last_update);
1749 		if (r)
1750 			return r;
1751 	}
1752 
1753 	/* If the BO is not in its preferred location add it back to
1754 	 * the evicted list so that it gets validated again on the
1755 	 * next command submission.
1756 	 */
1757 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1758 		uint32_t mem_type = bo->tbo.mem.mem_type;
1759 
1760 		if (!(bo->preferred_domains &
1761 		      amdgpu_mem_type_to_domain(mem_type)))
1762 			amdgpu_vm_bo_evicted(&bo_va->base);
1763 		else
1764 			amdgpu_vm_bo_idle(&bo_va->base);
1765 	} else {
1766 		amdgpu_vm_bo_done(&bo_va->base);
1767 	}
1768 
1769 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1770 	bo_va->cleared = clear;
1771 
1772 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1773 		list_for_each_entry(mapping, &bo_va->valids, list)
1774 			trace_amdgpu_vm_bo_mapping(mapping);
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 /**
1781  * amdgpu_vm_update_prt_state - update the global PRT state
1782  *
1783  * @adev: amdgpu_device pointer
1784  */
1785 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1786 {
1787 	unsigned long flags;
1788 	bool enable;
1789 
1790 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1791 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1792 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1793 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1794 }
1795 
1796 /**
1797  * amdgpu_vm_prt_get - add a PRT user
1798  *
1799  * @adev: amdgpu_device pointer
1800  */
1801 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1802 {
1803 	if (!adev->gmc.gmc_funcs->set_prt)
1804 		return;
1805 
1806 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1807 		amdgpu_vm_update_prt_state(adev);
1808 }
1809 
1810 /**
1811  * amdgpu_vm_prt_put - drop a PRT user
1812  *
1813  * @adev: amdgpu_device pointer
1814  */
1815 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1816 {
1817 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1818 		amdgpu_vm_update_prt_state(adev);
1819 }
1820 
1821 /**
1822  * amdgpu_vm_prt_cb - callback for updating the PRT status
1823  *
1824  * @fence: fence for the callback
1825  * @_cb: the callback function
1826  */
1827 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1828 {
1829 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1830 
1831 	amdgpu_vm_prt_put(cb->adev);
1832 	kfree(cb);
1833 }
1834 
1835 /**
1836  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1837  *
1838  * @adev: amdgpu_device pointer
1839  * @fence: fence for the callback
1840  */
1841 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1842 				 struct dma_fence *fence)
1843 {
1844 	struct amdgpu_prt_cb *cb;
1845 
1846 	if (!adev->gmc.gmc_funcs->set_prt)
1847 		return;
1848 
1849 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1850 	if (!cb) {
1851 		/* Last resort when we are OOM */
1852 		if (fence)
1853 			dma_fence_wait(fence, false);
1854 
1855 		amdgpu_vm_prt_put(adev);
1856 	} else {
1857 		cb->adev = adev;
1858 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1859 						     amdgpu_vm_prt_cb))
1860 			amdgpu_vm_prt_cb(fence, &cb->cb);
1861 	}
1862 }
1863 
1864 /**
1865  * amdgpu_vm_free_mapping - free a mapping
1866  *
1867  * @adev: amdgpu_device pointer
1868  * @vm: requested vm
1869  * @mapping: mapping to be freed
1870  * @fence: fence of the unmap operation
1871  *
1872  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1873  */
1874 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1875 				   struct amdgpu_vm *vm,
1876 				   struct amdgpu_bo_va_mapping *mapping,
1877 				   struct dma_fence *fence)
1878 {
1879 	if (mapping->flags & AMDGPU_PTE_PRT)
1880 		amdgpu_vm_add_prt_cb(adev, fence);
1881 	kfree(mapping);
1882 }
1883 
1884 /**
1885  * amdgpu_vm_prt_fini - finish all prt mappings
1886  *
1887  * @adev: amdgpu_device pointer
1888  * @vm: requested vm
1889  *
1890  * Register a cleanup callback to disable PRT support after VM dies.
1891  */
1892 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1893 {
1894 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1895 	struct dma_fence *excl, **shared;
1896 	unsigned i, shared_count;
1897 	int r;
1898 
1899 	r = dma_resv_get_fences_rcu(resv, &excl,
1900 					      &shared_count, &shared);
1901 	if (r) {
1902 		/* Not enough memory to grab the fence list, as last resort
1903 		 * block for all the fences to complete.
1904 		 */
1905 		dma_resv_wait_timeout_rcu(resv, true, false,
1906 						    MAX_SCHEDULE_TIMEOUT);
1907 		return;
1908 	}
1909 
1910 	/* Add a callback for each fence in the reservation object */
1911 	amdgpu_vm_prt_get(adev);
1912 	amdgpu_vm_add_prt_cb(adev, excl);
1913 
1914 	for (i = 0; i < shared_count; ++i) {
1915 		amdgpu_vm_prt_get(adev);
1916 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1917 	}
1918 
1919 	kfree(shared);
1920 }
1921 
1922 /**
1923  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1924  *
1925  * @adev: amdgpu_device pointer
1926  * @vm: requested vm
1927  * @fence: optional resulting fence (unchanged if no work needed to be done
1928  * or if an error occurred)
1929  *
1930  * Make sure all freed BOs are cleared in the PT.
1931  * PTs have to be reserved and mutex must be locked!
1932  *
1933  * Returns:
1934  * 0 for success.
1935  *
1936  */
1937 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1938 			  struct amdgpu_vm *vm,
1939 			  struct dma_fence **fence)
1940 {
1941 	struct amdgpu_bo_va_mapping *mapping;
1942 	uint64_t init_pte_value = 0;
1943 	struct dma_fence *f = NULL;
1944 	int r;
1945 
1946 	while (!list_empty(&vm->freed)) {
1947 		mapping = list_first_entry(&vm->freed,
1948 			struct amdgpu_bo_va_mapping, list);
1949 		list_del(&mapping->list);
1950 
1951 		if (vm->pte_support_ats &&
1952 		    mapping->start < AMDGPU_GMC_HOLE_START)
1953 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1954 
1955 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, NULL,
1956 						mapping->start, mapping->last,
1957 						init_pte_value, 0, NULL, &f);
1958 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1959 		if (r) {
1960 			dma_fence_put(f);
1961 			return r;
1962 		}
1963 	}
1964 
1965 	if (fence && f) {
1966 		dma_fence_put(*fence);
1967 		*fence = f;
1968 	} else {
1969 		dma_fence_put(f);
1970 	}
1971 
1972 	return 0;
1973 
1974 }
1975 
1976 /**
1977  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1978  *
1979  * @adev: amdgpu_device pointer
1980  * @vm: requested vm
1981  *
1982  * Make sure all BOs which are moved are updated in the PTs.
1983  *
1984  * Returns:
1985  * 0 for success.
1986  *
1987  * PTs have to be reserved!
1988  */
1989 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1990 			   struct amdgpu_vm *vm)
1991 {
1992 	struct amdgpu_bo_va *bo_va, *tmp;
1993 	struct dma_resv *resv;
1994 	bool clear;
1995 	int r;
1996 
1997 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1998 		/* Per VM BOs never need to bo cleared in the page tables */
1999 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2000 		if (r)
2001 			return r;
2002 	}
2003 
2004 	spin_lock(&vm->invalidated_lock);
2005 	while (!list_empty(&vm->invalidated)) {
2006 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2007 					 base.vm_status);
2008 		resv = bo_va->base.bo->tbo.base.resv;
2009 		spin_unlock(&vm->invalidated_lock);
2010 
2011 		/* Try to reserve the BO to avoid clearing its ptes */
2012 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2013 			clear = false;
2014 		/* Somebody else is using the BO right now */
2015 		else
2016 			clear = true;
2017 
2018 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2019 		if (r)
2020 			return r;
2021 
2022 		if (!clear)
2023 			dma_resv_unlock(resv);
2024 		spin_lock(&vm->invalidated_lock);
2025 	}
2026 	spin_unlock(&vm->invalidated_lock);
2027 
2028 	return 0;
2029 }
2030 
2031 /**
2032  * amdgpu_vm_bo_add - add a bo to a specific vm
2033  *
2034  * @adev: amdgpu_device pointer
2035  * @vm: requested vm
2036  * @bo: amdgpu buffer object
2037  *
2038  * Add @bo into the requested vm.
2039  * Add @bo to the list of bos associated with the vm
2040  *
2041  * Returns:
2042  * Newly added bo_va or NULL for failure
2043  *
2044  * Object has to be reserved!
2045  */
2046 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2047 				      struct amdgpu_vm *vm,
2048 				      struct amdgpu_bo *bo)
2049 {
2050 	struct amdgpu_bo_va *bo_va;
2051 
2052 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2053 	if (bo_va == NULL) {
2054 		return NULL;
2055 	}
2056 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2057 
2058 	bo_va->ref_count = 1;
2059 	INIT_LIST_HEAD(&bo_va->valids);
2060 	INIT_LIST_HEAD(&bo_va->invalids);
2061 
2062 	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2063 	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2064 		bo_va->is_xgmi = true;
2065 		mutex_lock(&adev->vm_manager.lock_pstate);
2066 		/* Power up XGMI if it can be potentially used */
2067 		if (++adev->vm_manager.xgmi_map_counter == 1)
2068 			amdgpu_xgmi_set_pstate(adev, 1);
2069 		mutex_unlock(&adev->vm_manager.lock_pstate);
2070 	}
2071 
2072 	return bo_va;
2073 }
2074 
2075 
2076 /**
2077  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2078  *
2079  * @adev: amdgpu_device pointer
2080  * @bo_va: bo_va to store the address
2081  * @mapping: the mapping to insert
2082  *
2083  * Insert a new mapping into all structures.
2084  */
2085 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2086 				    struct amdgpu_bo_va *bo_va,
2087 				    struct amdgpu_bo_va_mapping *mapping)
2088 {
2089 	struct amdgpu_vm *vm = bo_va->base.vm;
2090 	struct amdgpu_bo *bo = bo_va->base.bo;
2091 
2092 	mapping->bo_va = bo_va;
2093 	list_add(&mapping->list, &bo_va->invalids);
2094 	amdgpu_vm_it_insert(mapping, &vm->va);
2095 
2096 	if (mapping->flags & AMDGPU_PTE_PRT)
2097 		amdgpu_vm_prt_get(adev);
2098 
2099 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2100 	    !bo_va->base.moved) {
2101 		list_move(&bo_va->base.vm_status, &vm->moved);
2102 	}
2103 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2104 }
2105 
2106 /**
2107  * amdgpu_vm_bo_map - map bo inside a vm
2108  *
2109  * @adev: amdgpu_device pointer
2110  * @bo_va: bo_va to store the address
2111  * @saddr: where to map the BO
2112  * @offset: requested offset in the BO
2113  * @size: BO size in bytes
2114  * @flags: attributes of pages (read/write/valid/etc.)
2115  *
2116  * Add a mapping of the BO at the specefied addr into the VM.
2117  *
2118  * Returns:
2119  * 0 for success, error for failure.
2120  *
2121  * Object has to be reserved and unreserved outside!
2122  */
2123 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2124 		     struct amdgpu_bo_va *bo_va,
2125 		     uint64_t saddr, uint64_t offset,
2126 		     uint64_t size, uint64_t flags)
2127 {
2128 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2129 	struct amdgpu_bo *bo = bo_va->base.bo;
2130 	struct amdgpu_vm *vm = bo_va->base.vm;
2131 	uint64_t eaddr;
2132 
2133 	/* validate the parameters */
2134 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2135 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2136 		return -EINVAL;
2137 
2138 	/* make sure object fit at this offset */
2139 	eaddr = saddr + size - 1;
2140 	if (saddr >= eaddr ||
2141 	    (bo && offset + size > amdgpu_bo_size(bo)))
2142 		return -EINVAL;
2143 
2144 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2145 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2146 
2147 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2148 	if (tmp) {
2149 		/* bo and tmp overlap, invalid addr */
2150 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2151 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2152 			tmp->start, tmp->last + 1);
2153 		return -EINVAL;
2154 	}
2155 
2156 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2157 	if (!mapping)
2158 		return -ENOMEM;
2159 
2160 	mapping->start = saddr;
2161 	mapping->last = eaddr;
2162 	mapping->offset = offset;
2163 	mapping->flags = flags;
2164 
2165 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2166 
2167 	return 0;
2168 }
2169 
2170 /**
2171  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2172  *
2173  * @adev: amdgpu_device pointer
2174  * @bo_va: bo_va to store the address
2175  * @saddr: where to map the BO
2176  * @offset: requested offset in the BO
2177  * @size: BO size in bytes
2178  * @flags: attributes of pages (read/write/valid/etc.)
2179  *
2180  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2181  * mappings as we do so.
2182  *
2183  * Returns:
2184  * 0 for success, error for failure.
2185  *
2186  * Object has to be reserved and unreserved outside!
2187  */
2188 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2189 			     struct amdgpu_bo_va *bo_va,
2190 			     uint64_t saddr, uint64_t offset,
2191 			     uint64_t size, uint64_t flags)
2192 {
2193 	struct amdgpu_bo_va_mapping *mapping;
2194 	struct amdgpu_bo *bo = bo_va->base.bo;
2195 	uint64_t eaddr;
2196 	int r;
2197 
2198 	/* validate the parameters */
2199 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2200 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2201 		return -EINVAL;
2202 
2203 	/* make sure object fit at this offset */
2204 	eaddr = saddr + size - 1;
2205 	if (saddr >= eaddr ||
2206 	    (bo && offset + size > amdgpu_bo_size(bo)))
2207 		return -EINVAL;
2208 
2209 	/* Allocate all the needed memory */
2210 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2211 	if (!mapping)
2212 		return -ENOMEM;
2213 
2214 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2215 	if (r) {
2216 		kfree(mapping);
2217 		return r;
2218 	}
2219 
2220 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2221 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2222 
2223 	mapping->start = saddr;
2224 	mapping->last = eaddr;
2225 	mapping->offset = offset;
2226 	mapping->flags = flags;
2227 
2228 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2229 
2230 	return 0;
2231 }
2232 
2233 /**
2234  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2235  *
2236  * @adev: amdgpu_device pointer
2237  * @bo_va: bo_va to remove the address from
2238  * @saddr: where to the BO is mapped
2239  *
2240  * Remove a mapping of the BO at the specefied addr from the VM.
2241  *
2242  * Returns:
2243  * 0 for success, error for failure.
2244  *
2245  * Object has to be reserved and unreserved outside!
2246  */
2247 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2248 		       struct amdgpu_bo_va *bo_va,
2249 		       uint64_t saddr)
2250 {
2251 	struct amdgpu_bo_va_mapping *mapping;
2252 	struct amdgpu_vm *vm = bo_va->base.vm;
2253 	bool valid = true;
2254 
2255 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2256 
2257 	list_for_each_entry(mapping, &bo_va->valids, list) {
2258 		if (mapping->start == saddr)
2259 			break;
2260 	}
2261 
2262 	if (&mapping->list == &bo_va->valids) {
2263 		valid = false;
2264 
2265 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2266 			if (mapping->start == saddr)
2267 				break;
2268 		}
2269 
2270 		if (&mapping->list == &bo_va->invalids)
2271 			return -ENOENT;
2272 	}
2273 
2274 	list_del(&mapping->list);
2275 	amdgpu_vm_it_remove(mapping, &vm->va);
2276 	mapping->bo_va = NULL;
2277 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2278 
2279 	if (valid)
2280 		list_add(&mapping->list, &vm->freed);
2281 	else
2282 		amdgpu_vm_free_mapping(adev, vm, mapping,
2283 				       bo_va->last_pt_update);
2284 
2285 	return 0;
2286 }
2287 
2288 /**
2289  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2290  *
2291  * @adev: amdgpu_device pointer
2292  * @vm: VM structure to use
2293  * @saddr: start of the range
2294  * @size: size of the range
2295  *
2296  * Remove all mappings in a range, split them as appropriate.
2297  *
2298  * Returns:
2299  * 0 for success, error for failure.
2300  */
2301 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2302 				struct amdgpu_vm *vm,
2303 				uint64_t saddr, uint64_t size)
2304 {
2305 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2306 	LIST_HEAD(removed);
2307 	uint64_t eaddr;
2308 
2309 	eaddr = saddr + size - 1;
2310 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2311 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2312 
2313 	/* Allocate all the needed memory */
2314 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2315 	if (!before)
2316 		return -ENOMEM;
2317 	INIT_LIST_HEAD(&before->list);
2318 
2319 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2320 	if (!after) {
2321 		kfree(before);
2322 		return -ENOMEM;
2323 	}
2324 	INIT_LIST_HEAD(&after->list);
2325 
2326 	/* Now gather all removed mappings */
2327 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2328 	while (tmp) {
2329 		/* Remember mapping split at the start */
2330 		if (tmp->start < saddr) {
2331 			before->start = tmp->start;
2332 			before->last = saddr - 1;
2333 			before->offset = tmp->offset;
2334 			before->flags = tmp->flags;
2335 			before->bo_va = tmp->bo_va;
2336 			list_add(&before->list, &tmp->bo_va->invalids);
2337 		}
2338 
2339 		/* Remember mapping split at the end */
2340 		if (tmp->last > eaddr) {
2341 			after->start = eaddr + 1;
2342 			after->last = tmp->last;
2343 			after->offset = tmp->offset;
2344 			after->offset += after->start - tmp->start;
2345 			after->flags = tmp->flags;
2346 			after->bo_va = tmp->bo_va;
2347 			list_add(&after->list, &tmp->bo_va->invalids);
2348 		}
2349 
2350 		list_del(&tmp->list);
2351 		list_add(&tmp->list, &removed);
2352 
2353 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2354 	}
2355 
2356 	/* And free them up */
2357 	list_for_each_entry_safe(tmp, next, &removed, list) {
2358 		amdgpu_vm_it_remove(tmp, &vm->va);
2359 		list_del(&tmp->list);
2360 
2361 		if (tmp->start < saddr)
2362 		    tmp->start = saddr;
2363 		if (tmp->last > eaddr)
2364 		    tmp->last = eaddr;
2365 
2366 		tmp->bo_va = NULL;
2367 		list_add(&tmp->list, &vm->freed);
2368 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2369 	}
2370 
2371 	/* Insert partial mapping before the range */
2372 	if (!list_empty(&before->list)) {
2373 		amdgpu_vm_it_insert(before, &vm->va);
2374 		if (before->flags & AMDGPU_PTE_PRT)
2375 			amdgpu_vm_prt_get(adev);
2376 	} else {
2377 		kfree(before);
2378 	}
2379 
2380 	/* Insert partial mapping after the range */
2381 	if (!list_empty(&after->list)) {
2382 		amdgpu_vm_it_insert(after, &vm->va);
2383 		if (after->flags & AMDGPU_PTE_PRT)
2384 			amdgpu_vm_prt_get(adev);
2385 	} else {
2386 		kfree(after);
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 /**
2393  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2394  *
2395  * @vm: the requested VM
2396  * @addr: the address
2397  *
2398  * Find a mapping by it's address.
2399  *
2400  * Returns:
2401  * The amdgpu_bo_va_mapping matching for addr or NULL
2402  *
2403  */
2404 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2405 							 uint64_t addr)
2406 {
2407 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2408 }
2409 
2410 /**
2411  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2412  *
2413  * @vm: the requested vm
2414  * @ticket: CS ticket
2415  *
2416  * Trace all mappings of BOs reserved during a command submission.
2417  */
2418 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2419 {
2420 	struct amdgpu_bo_va_mapping *mapping;
2421 
2422 	if (!trace_amdgpu_vm_bo_cs_enabled())
2423 		return;
2424 
2425 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2426 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2427 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2428 			struct amdgpu_bo *bo;
2429 
2430 			bo = mapping->bo_va->base.bo;
2431 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2432 			    ticket)
2433 				continue;
2434 		}
2435 
2436 		trace_amdgpu_vm_bo_cs(mapping);
2437 	}
2438 }
2439 
2440 /**
2441  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2442  *
2443  * @adev: amdgpu_device pointer
2444  * @bo_va: requested bo_va
2445  *
2446  * Remove @bo_va->bo from the requested vm.
2447  *
2448  * Object have to be reserved!
2449  */
2450 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2451 		      struct amdgpu_bo_va *bo_va)
2452 {
2453 	struct amdgpu_bo_va_mapping *mapping, *next;
2454 	struct amdgpu_bo *bo = bo_va->base.bo;
2455 	struct amdgpu_vm *vm = bo_va->base.vm;
2456 	struct amdgpu_vm_bo_base **base;
2457 
2458 	if (bo) {
2459 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2460 			vm->bulk_moveable = false;
2461 
2462 		for (base = &bo_va->base.bo->vm_bo; *base;
2463 		     base = &(*base)->next) {
2464 			if (*base != &bo_va->base)
2465 				continue;
2466 
2467 			*base = bo_va->base.next;
2468 			break;
2469 		}
2470 	}
2471 
2472 	spin_lock(&vm->invalidated_lock);
2473 	list_del(&bo_va->base.vm_status);
2474 	spin_unlock(&vm->invalidated_lock);
2475 
2476 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2477 		list_del(&mapping->list);
2478 		amdgpu_vm_it_remove(mapping, &vm->va);
2479 		mapping->bo_va = NULL;
2480 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2481 		list_add(&mapping->list, &vm->freed);
2482 	}
2483 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2484 		list_del(&mapping->list);
2485 		amdgpu_vm_it_remove(mapping, &vm->va);
2486 		amdgpu_vm_free_mapping(adev, vm, mapping,
2487 				       bo_va->last_pt_update);
2488 	}
2489 
2490 	dma_fence_put(bo_va->last_pt_update);
2491 
2492 	if (bo && bo_va->is_xgmi) {
2493 		mutex_lock(&adev->vm_manager.lock_pstate);
2494 		if (--adev->vm_manager.xgmi_map_counter == 0)
2495 			amdgpu_xgmi_set_pstate(adev, 0);
2496 		mutex_unlock(&adev->vm_manager.lock_pstate);
2497 	}
2498 
2499 	kfree(bo_va);
2500 }
2501 
2502 /**
2503  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2504  *
2505  * @adev: amdgpu_device pointer
2506  * @bo: amdgpu buffer object
2507  * @evicted: is the BO evicted
2508  *
2509  * Mark @bo as invalid.
2510  */
2511 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2512 			     struct amdgpu_bo *bo, bool evicted)
2513 {
2514 	struct amdgpu_vm_bo_base *bo_base;
2515 
2516 	/* shadow bo doesn't have bo base, its validation needs its parent */
2517 	if (bo->parent && bo->parent->shadow == bo)
2518 		bo = bo->parent;
2519 
2520 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2521 		struct amdgpu_vm *vm = bo_base->vm;
2522 
2523 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2524 			amdgpu_vm_bo_evicted(bo_base);
2525 			continue;
2526 		}
2527 
2528 		if (bo_base->moved)
2529 			continue;
2530 		bo_base->moved = true;
2531 
2532 		if (bo->tbo.type == ttm_bo_type_kernel)
2533 			amdgpu_vm_bo_relocated(bo_base);
2534 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2535 			amdgpu_vm_bo_moved(bo_base);
2536 		else
2537 			amdgpu_vm_bo_invalidated(bo_base);
2538 	}
2539 }
2540 
2541 /**
2542  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2543  *
2544  * @vm_size: VM size
2545  *
2546  * Returns:
2547  * VM page table as power of two
2548  */
2549 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2550 {
2551 	/* Total bits covered by PD + PTs */
2552 	unsigned bits = ilog2(vm_size) + 18;
2553 
2554 	/* Make sure the PD is 4K in size up to 8GB address space.
2555 	   Above that split equal between PD and PTs */
2556 	if (vm_size <= 8)
2557 		return (bits - 9);
2558 	else
2559 		return ((bits + 3) / 2);
2560 }
2561 
2562 /**
2563  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2564  *
2565  * @adev: amdgpu_device pointer
2566  * @min_vm_size: the minimum vm size in GB if it's set auto
2567  * @fragment_size_default: Default PTE fragment size
2568  * @max_level: max VMPT level
2569  * @max_bits: max address space size in bits
2570  *
2571  */
2572 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2573 			   uint32_t fragment_size_default, unsigned max_level,
2574 			   unsigned max_bits)
2575 {
2576 	unsigned int max_size = 1 << (max_bits - 30);
2577 	unsigned int vm_size;
2578 	uint64_t tmp;
2579 
2580 	/* adjust vm size first */
2581 	if (amdgpu_vm_size != -1) {
2582 		vm_size = amdgpu_vm_size;
2583 		if (vm_size > max_size) {
2584 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2585 				 amdgpu_vm_size, max_size);
2586 			vm_size = max_size;
2587 		}
2588 	} else {
2589 		struct sysinfo si;
2590 		unsigned int phys_ram_gb;
2591 
2592 		/* Optimal VM size depends on the amount of physical
2593 		 * RAM available. Underlying requirements and
2594 		 * assumptions:
2595 		 *
2596 		 *  - Need to map system memory and VRAM from all GPUs
2597 		 *     - VRAM from other GPUs not known here
2598 		 *     - Assume VRAM <= system memory
2599 		 *  - On GFX8 and older, VM space can be segmented for
2600 		 *    different MTYPEs
2601 		 *  - Need to allow room for fragmentation, guard pages etc.
2602 		 *
2603 		 * This adds up to a rough guess of system memory x3.
2604 		 * Round up to power of two to maximize the available
2605 		 * VM size with the given page table size.
2606 		 */
2607 		si_meminfo(&si);
2608 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2609 			       (1 << 30) - 1) >> 30;
2610 		vm_size = roundup_pow_of_two(
2611 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2612 	}
2613 
2614 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2615 
2616 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2617 	if (amdgpu_vm_block_size != -1)
2618 		tmp >>= amdgpu_vm_block_size - 9;
2619 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2620 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2621 	switch (adev->vm_manager.num_level) {
2622 	case 3:
2623 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2624 		break;
2625 	case 2:
2626 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2627 		break;
2628 	case 1:
2629 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2630 		break;
2631 	default:
2632 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2633 	}
2634 	/* block size depends on vm size and hw setup*/
2635 	if (amdgpu_vm_block_size != -1)
2636 		adev->vm_manager.block_size =
2637 			min((unsigned)amdgpu_vm_block_size, max_bits
2638 			    - AMDGPU_GPU_PAGE_SHIFT
2639 			    - 9 * adev->vm_manager.num_level);
2640 	else if (adev->vm_manager.num_level > 1)
2641 		adev->vm_manager.block_size = 9;
2642 	else
2643 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2644 
2645 	if (amdgpu_vm_fragment_size == -1)
2646 		adev->vm_manager.fragment_size = fragment_size_default;
2647 	else
2648 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2649 
2650 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2651 		 vm_size, adev->vm_manager.num_level + 1,
2652 		 adev->vm_manager.block_size,
2653 		 adev->vm_manager.fragment_size);
2654 }
2655 
2656 /**
2657  * amdgpu_vm_wait_idle - wait for the VM to become idle
2658  *
2659  * @vm: VM object to wait for
2660  * @timeout: timeout to wait for VM to become idle
2661  */
2662 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2663 {
2664 	return dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2665 						   true, true, timeout);
2666 }
2667 
2668 /**
2669  * amdgpu_vm_init - initialize a vm instance
2670  *
2671  * @adev: amdgpu_device pointer
2672  * @vm: requested vm
2673  * @vm_context: Indicates if it GFX or Compute context
2674  * @pasid: Process address space identifier
2675  *
2676  * Init @vm fields.
2677  *
2678  * Returns:
2679  * 0 for success, error for failure.
2680  */
2681 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2682 		   int vm_context, unsigned int pasid)
2683 {
2684 	struct amdgpu_bo_param bp;
2685 	struct amdgpu_bo *root;
2686 	int r, i;
2687 
2688 	vm->va = RB_ROOT_CACHED;
2689 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2690 		vm->reserved_vmid[i] = NULL;
2691 	INIT_LIST_HEAD(&vm->evicted);
2692 	INIT_LIST_HEAD(&vm->relocated);
2693 	INIT_LIST_HEAD(&vm->moved);
2694 	INIT_LIST_HEAD(&vm->idle);
2695 	INIT_LIST_HEAD(&vm->invalidated);
2696 	spin_lock_init(&vm->invalidated_lock);
2697 	INIT_LIST_HEAD(&vm->freed);
2698 
2699 	/* create scheduler entities for page table updates */
2700 	r = drm_sched_entity_init(&vm->direct, adev->vm_manager.vm_pte_rqs,
2701 				  adev->vm_manager.vm_pte_num_rqs, NULL);
2702 	if (r)
2703 		return r;
2704 
2705 	r = drm_sched_entity_init(&vm->delayed, adev->vm_manager.vm_pte_rqs,
2706 				  adev->vm_manager.vm_pte_num_rqs, NULL);
2707 	if (r)
2708 		goto error_free_direct;
2709 
2710 	vm->pte_support_ats = false;
2711 
2712 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2713 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2714 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2715 
2716 		if (adev->asic_type == CHIP_RAVEN)
2717 			vm->pte_support_ats = true;
2718 	} else {
2719 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2720 						AMDGPU_VM_USE_CPU_FOR_GFX);
2721 	}
2722 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2723 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2724 	WARN_ONCE((vm->use_cpu_for_update &&
2725 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2726 		  "CPU update of VM recommended only for large BAR system\n");
2727 
2728 	if (vm->use_cpu_for_update)
2729 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2730 	else
2731 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2732 	vm->last_update = NULL;
2733 
2734 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2735 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2736 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2737 	r = amdgpu_bo_create(adev, &bp, &root);
2738 	if (r)
2739 		goto error_free_delayed;
2740 
2741 	r = amdgpu_bo_reserve(root, true);
2742 	if (r)
2743 		goto error_free_root;
2744 
2745 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2746 	if (r)
2747 		goto error_unreserve;
2748 
2749 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2750 
2751 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2752 	if (r)
2753 		goto error_unreserve;
2754 
2755 	amdgpu_bo_unreserve(vm->root.base.bo);
2756 
2757 	if (pasid) {
2758 		unsigned long flags;
2759 
2760 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2761 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2762 			      GFP_ATOMIC);
2763 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2764 		if (r < 0)
2765 			goto error_free_root;
2766 
2767 		vm->pasid = pasid;
2768 	}
2769 
2770 	INIT_KFIFO(vm->faults);
2771 
2772 	return 0;
2773 
2774 error_unreserve:
2775 	amdgpu_bo_unreserve(vm->root.base.bo);
2776 
2777 error_free_root:
2778 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2779 	amdgpu_bo_unref(&vm->root.base.bo);
2780 	vm->root.base.bo = NULL;
2781 
2782 error_free_delayed:
2783 	drm_sched_entity_destroy(&vm->delayed);
2784 
2785 error_free_direct:
2786 	drm_sched_entity_destroy(&vm->direct);
2787 
2788 	return r;
2789 }
2790 
2791 /**
2792  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2793  *
2794  * @adev: amdgpu_device pointer
2795  * @vm: the VM to check
2796  *
2797  * check all entries of the root PD, if any subsequent PDs are allocated,
2798  * it means there are page table creating and filling, and is no a clean
2799  * VM
2800  *
2801  * Returns:
2802  *	0 if this VM is clean
2803  */
2804 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2805 	struct amdgpu_vm *vm)
2806 {
2807 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2808 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2809 	unsigned int i = 0;
2810 
2811 	if (!(vm->root.entries))
2812 		return 0;
2813 
2814 	for (i = 0; i < entries; i++) {
2815 		if (vm->root.entries[i].base.bo)
2816 			return -EINVAL;
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 /**
2823  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2824  *
2825  * @adev: amdgpu_device pointer
2826  * @vm: requested vm
2827  * @pasid: pasid to use
2828  *
2829  * This only works on GFX VMs that don't have any BOs added and no
2830  * page tables allocated yet.
2831  *
2832  * Changes the following VM parameters:
2833  * - use_cpu_for_update
2834  * - pte_supports_ats
2835  * - pasid (old PASID is released, because compute manages its own PASIDs)
2836  *
2837  * Reinitializes the page directory to reflect the changed ATS
2838  * setting.
2839  *
2840  * Returns:
2841  * 0 for success, -errno for errors.
2842  */
2843 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2844 			   unsigned int pasid)
2845 {
2846 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2847 	int r;
2848 
2849 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2850 	if (r)
2851 		return r;
2852 
2853 	/* Sanity checks */
2854 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2855 	if (r)
2856 		goto unreserve_bo;
2857 
2858 	if (pasid) {
2859 		unsigned long flags;
2860 
2861 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2862 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2863 			      GFP_ATOMIC);
2864 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2865 
2866 		if (r == -ENOSPC)
2867 			goto unreserve_bo;
2868 		r = 0;
2869 	}
2870 
2871 	/* Check if PD needs to be reinitialized and do it before
2872 	 * changing any other state, in case it fails.
2873 	 */
2874 	if (pte_support_ats != vm->pte_support_ats) {
2875 		vm->pte_support_ats = pte_support_ats;
2876 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2877 		if (r)
2878 			goto free_idr;
2879 	}
2880 
2881 	/* Update VM state */
2882 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2883 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2884 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2885 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2886 	WARN_ONCE((vm->use_cpu_for_update &&
2887 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2888 		  "CPU update of VM recommended only for large BAR system\n");
2889 
2890 	if (vm->use_cpu_for_update)
2891 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2892 	else
2893 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2894 	dma_fence_put(vm->last_update);
2895 	vm->last_update = NULL;
2896 
2897 	if (vm->pasid) {
2898 		unsigned long flags;
2899 
2900 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2901 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2902 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2903 
2904 		/* Free the original amdgpu allocated pasid
2905 		 * Will be replaced with kfd allocated pasid
2906 		 */
2907 		amdgpu_pasid_free(vm->pasid);
2908 		vm->pasid = 0;
2909 	}
2910 
2911 	/* Free the shadow bo for compute VM */
2912 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2913 
2914 	if (pasid)
2915 		vm->pasid = pasid;
2916 
2917 	goto unreserve_bo;
2918 
2919 free_idr:
2920 	if (pasid) {
2921 		unsigned long flags;
2922 
2923 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2924 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
2925 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2926 	}
2927 unreserve_bo:
2928 	amdgpu_bo_unreserve(vm->root.base.bo);
2929 	return r;
2930 }
2931 
2932 /**
2933  * amdgpu_vm_release_compute - release a compute vm
2934  * @adev: amdgpu_device pointer
2935  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2936  *
2937  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2938  * pasid from vm. Compute should stop use of vm after this call.
2939  */
2940 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2941 {
2942 	if (vm->pasid) {
2943 		unsigned long flags;
2944 
2945 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2946 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2947 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2948 	}
2949 	vm->pasid = 0;
2950 }
2951 
2952 /**
2953  * amdgpu_vm_fini - tear down a vm instance
2954  *
2955  * @adev: amdgpu_device pointer
2956  * @vm: requested vm
2957  *
2958  * Tear down @vm.
2959  * Unbind the VM and remove all bos from the vm bo list
2960  */
2961 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2962 {
2963 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2964 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2965 	struct amdgpu_bo *root;
2966 	int i;
2967 
2968 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2969 
2970 	root = amdgpu_bo_ref(vm->root.base.bo);
2971 	amdgpu_bo_reserve(root, true);
2972 	if (vm->pasid) {
2973 		unsigned long flags;
2974 
2975 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2976 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2977 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2978 		vm->pasid = 0;
2979 	}
2980 
2981 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2982 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2983 			amdgpu_vm_prt_fini(adev, vm);
2984 			prt_fini_needed = false;
2985 		}
2986 
2987 		list_del(&mapping->list);
2988 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2989 	}
2990 
2991 	amdgpu_vm_free_pts(adev, vm, NULL);
2992 	amdgpu_bo_unreserve(root);
2993 	amdgpu_bo_unref(&root);
2994 	WARN_ON(vm->root.base.bo);
2995 
2996 	drm_sched_entity_destroy(&vm->direct);
2997 	drm_sched_entity_destroy(&vm->delayed);
2998 
2999 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3000 		dev_err(adev->dev, "still active bo inside vm\n");
3001 	}
3002 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3003 					     &vm->va.rb_root, rb) {
3004 		/* Don't remove the mapping here, we don't want to trigger a
3005 		 * rebalance and the tree is about to be destroyed anyway.
3006 		 */
3007 		list_del(&mapping->list);
3008 		kfree(mapping);
3009 	}
3010 
3011 	dma_fence_put(vm->last_update);
3012 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3013 		amdgpu_vmid_free_reserved(adev, vm, i);
3014 }
3015 
3016 /**
3017  * amdgpu_vm_manager_init - init the VM manager
3018  *
3019  * @adev: amdgpu_device pointer
3020  *
3021  * Initialize the VM manager structures
3022  */
3023 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3024 {
3025 	unsigned i;
3026 
3027 	amdgpu_vmid_mgr_init(adev);
3028 
3029 	adev->vm_manager.fence_context =
3030 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3031 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3032 		adev->vm_manager.seqno[i] = 0;
3033 
3034 	spin_lock_init(&adev->vm_manager.prt_lock);
3035 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3036 
3037 	/* If not overridden by the user, by default, only in large BAR systems
3038 	 * Compute VM tables will be updated by CPU
3039 	 */
3040 #ifdef CONFIG_X86_64
3041 	if (amdgpu_vm_update_mode == -1) {
3042 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3043 			adev->vm_manager.vm_update_mode =
3044 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3045 		else
3046 			adev->vm_manager.vm_update_mode = 0;
3047 	} else
3048 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3049 #else
3050 	adev->vm_manager.vm_update_mode = 0;
3051 #endif
3052 
3053 	idr_init(&adev->vm_manager.pasid_idr);
3054 	spin_lock_init(&adev->vm_manager.pasid_lock);
3055 
3056 	adev->vm_manager.xgmi_map_counter = 0;
3057 	mutex_init(&adev->vm_manager.lock_pstate);
3058 }
3059 
3060 /**
3061  * amdgpu_vm_manager_fini - cleanup VM manager
3062  *
3063  * @adev: amdgpu_device pointer
3064  *
3065  * Cleanup the VM manager and free resources.
3066  */
3067 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3068 {
3069 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3070 	idr_destroy(&adev->vm_manager.pasid_idr);
3071 
3072 	amdgpu_vmid_mgr_fini(adev);
3073 }
3074 
3075 /**
3076  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3077  *
3078  * @dev: drm device pointer
3079  * @data: drm_amdgpu_vm
3080  * @filp: drm file pointer
3081  *
3082  * Returns:
3083  * 0 for success, -errno for errors.
3084  */
3085 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3086 {
3087 	union drm_amdgpu_vm *args = data;
3088 	struct amdgpu_device *adev = dev->dev_private;
3089 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3090 	int r;
3091 
3092 	switch (args->in.op) {
3093 	case AMDGPU_VM_OP_RESERVE_VMID:
3094 		/* We only have requirement to reserve vmid from gfxhub */
3095 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3096 					       AMDGPU_GFXHUB_0);
3097 		if (r)
3098 			return r;
3099 		break;
3100 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3101 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3102 		break;
3103 	default:
3104 		return -EINVAL;
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 /**
3111  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3112  *
3113  * @adev: drm device pointer
3114  * @pasid: PASID identifier for VM
3115  * @task_info: task_info to fill.
3116  */
3117 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3118 			 struct amdgpu_task_info *task_info)
3119 {
3120 	struct amdgpu_vm *vm;
3121 	unsigned long flags;
3122 
3123 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3124 
3125 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3126 	if (vm)
3127 		*task_info = vm->task_info;
3128 
3129 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3130 }
3131 
3132 /**
3133  * amdgpu_vm_set_task_info - Sets VMs task info.
3134  *
3135  * @vm: vm for which to set the info
3136  */
3137 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3138 {
3139 	if (vm->task_info.pid)
3140 		return;
3141 
3142 	vm->task_info.pid = current->pid;
3143 	get_task_comm(vm->task_info.task_name, current);
3144 
3145 	if (current->group_leader->mm != current->mm)
3146 		return;
3147 
3148 	vm->task_info.tgid = current->group_leader->pid;
3149 	get_task_comm(vm->task_info.process_name, current->group_leader);
3150 }
3151 
3152 /**
3153  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3154  * @adev: amdgpu device pointer
3155  * @pasid: PASID of the VM
3156  * @addr: Address of the fault
3157  *
3158  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3159  * shouldn't be reported any more.
3160  */
3161 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3162 			    uint64_t addr)
3163 {
3164 	struct amdgpu_bo *root;
3165 	uint64_t value, flags;
3166 	struct amdgpu_vm *vm;
3167 	long r;
3168 
3169 	spin_lock(&adev->vm_manager.pasid_lock);
3170 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3171 	if (vm)
3172 		root = amdgpu_bo_ref(vm->root.base.bo);
3173 	else
3174 		root = NULL;
3175 	spin_unlock(&adev->vm_manager.pasid_lock);
3176 
3177 	if (!root)
3178 		return false;
3179 
3180 	r = amdgpu_bo_reserve(root, true);
3181 	if (r)
3182 		goto error_unref;
3183 
3184 	/* Double check that the VM still exists */
3185 	spin_lock(&adev->vm_manager.pasid_lock);
3186 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3187 	if (vm && vm->root.base.bo != root)
3188 		vm = NULL;
3189 	spin_unlock(&adev->vm_manager.pasid_lock);
3190 	if (!vm)
3191 		goto error_unlock;
3192 
3193 	addr /= AMDGPU_GPU_PAGE_SIZE;
3194 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3195 		AMDGPU_PTE_SYSTEM;
3196 
3197 	if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3198 		/* Redirect the access to the dummy page */
3199 		value = adev->dummy_page_addr;
3200 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3201 			AMDGPU_PTE_WRITEABLE;
3202 	} else {
3203 		/* Let the hw retry silently on the PTE */
3204 		value = 0;
3205 	}
3206 
3207 	r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1,
3208 					flags, value, NULL, NULL);
3209 	if (r)
3210 		goto error_unlock;
3211 
3212 	r = amdgpu_vm_update_pdes(adev, vm, true);
3213 
3214 error_unlock:
3215 	amdgpu_bo_unreserve(root);
3216 	if (r < 0)
3217 		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3218 
3219 error_unref:
3220 	amdgpu_bo_unref(&root);
3221 
3222 	return false;
3223 }
3224