1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When execting a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /*
92  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
93  * happens while holding this lock anywhere to prevent deadlocks when
94  * an MMU notifier runs in reclaim-FS context.
95  */
96 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
97 {
98 	mutex_lock(&vm->eviction_lock);
99 	vm->saved_flags = memalloc_noreclaim_save();
100 }
101 
102 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
103 {
104 	if (mutex_trylock(&vm->eviction_lock)) {
105 		vm->saved_flags = memalloc_noreclaim_save();
106 		return 1;
107 	}
108 	return 0;
109 }
110 
111 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
112 {
113 	memalloc_noreclaim_restore(vm->saved_flags);
114 	mutex_unlock(&vm->eviction_lock);
115 }
116 
117 /**
118  * amdgpu_vm_level_shift - return the addr shift for each level
119  *
120  * @adev: amdgpu_device pointer
121  * @level: VMPT level
122  *
123  * Returns:
124  * The number of bits the pfn needs to be right shifted for a level.
125  */
126 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
127 				      unsigned level)
128 {
129 	switch (level) {
130 	case AMDGPU_VM_PDB2:
131 	case AMDGPU_VM_PDB1:
132 	case AMDGPU_VM_PDB0:
133 		return 9 * (AMDGPU_VM_PDB0 - level) +
134 			adev->vm_manager.block_size;
135 	case AMDGPU_VM_PTB:
136 		return 0;
137 	default:
138 		return ~0;
139 	}
140 }
141 
142 /**
143  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
144  *
145  * @adev: amdgpu_device pointer
146  * @level: VMPT level
147  *
148  * Returns:
149  * The number of entries in a page directory or page table.
150  */
151 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
152 				      unsigned level)
153 {
154 	unsigned shift = amdgpu_vm_level_shift(adev,
155 					       adev->vm_manager.root_level);
156 
157 	if (level == adev->vm_manager.root_level)
158 		/* For the root directory */
159 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
160 			>> shift;
161 	else if (level != AMDGPU_VM_PTB)
162 		/* Everything in between */
163 		return 512;
164 	else
165 		/* For the page tables on the leaves */
166 		return AMDGPU_VM_PTE_COUNT(adev);
167 }
168 
169 /**
170  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
171  *
172  * @adev: amdgpu_device pointer
173  *
174  * Returns:
175  * The number of entries in the root page directory which needs the ATS setting.
176  */
177 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
178 {
179 	unsigned shift;
180 
181 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
182 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
183 }
184 
185 /**
186  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
187  *
188  * @adev: amdgpu_device pointer
189  * @level: VMPT level
190  *
191  * Returns:
192  * The mask to extract the entry number of a PD/PT from an address.
193  */
194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
195 				       unsigned int level)
196 {
197 	if (level <= adev->vm_manager.root_level)
198 		return 0xffffffff;
199 	else if (level != AMDGPU_VM_PTB)
200 		return 0x1ff;
201 	else
202 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
203 }
204 
205 /**
206  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
207  *
208  * @adev: amdgpu_device pointer
209  * @level: VMPT level
210  *
211  * Returns:
212  * The size of the BO for a page directory or page table in bytes.
213  */
214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
215 {
216 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
217 }
218 
219 /**
220  * amdgpu_vm_bo_evicted - vm_bo is evicted
221  *
222  * @vm_bo: vm_bo which is evicted
223  *
224  * State for PDs/PTs and per VM BOs which are not at the location they should
225  * be.
226  */
227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 	struct amdgpu_vm *vm = vm_bo->vm;
230 	struct amdgpu_bo *bo = vm_bo->bo;
231 
232 	vm_bo->moved = true;
233 	if (bo->tbo.type == ttm_bo_type_kernel)
234 		list_move(&vm_bo->vm_status, &vm->evicted);
235 	else
236 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
237 }
238 /**
239  * amdgpu_vm_bo_moved - vm_bo is moved
240  *
241  * @vm_bo: vm_bo which is moved
242  *
243  * State for per VM BOs which are moved, but that change is not yet reflected
244  * in the page tables.
245  */
246 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
249 }
250 
251 /**
252  * amdgpu_vm_bo_idle - vm_bo is idle
253  *
254  * @vm_bo: vm_bo which is now idle
255  *
256  * State for PDs/PTs and per VM BOs which have gone through the state machine
257  * and are now idle.
258  */
259 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
262 	vm_bo->moved = false;
263 }
264 
265 /**
266  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
267  *
268  * @vm_bo: vm_bo which is now invalidated
269  *
270  * State for normal BOs which are invalidated and that change not yet reflected
271  * in the PTs.
272  */
273 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
274 {
275 	spin_lock(&vm_bo->vm->invalidated_lock);
276 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
277 	spin_unlock(&vm_bo->vm->invalidated_lock);
278 }
279 
280 /**
281  * amdgpu_vm_bo_relocated - vm_bo is reloacted
282  *
283  * @vm_bo: vm_bo which is relocated
284  *
285  * State for PDs/PTs which needs to update their parent PD.
286  * For the root PD, just move to idle state.
287  */
288 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
289 {
290 	if (vm_bo->bo->parent)
291 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
292 	else
293 		amdgpu_vm_bo_idle(vm_bo);
294 }
295 
296 /**
297  * amdgpu_vm_bo_done - vm_bo is done
298  *
299  * @vm_bo: vm_bo which is now done
300  *
301  * State for normal BOs which are invalidated and that change has been updated
302  * in the PTs.
303  */
304 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
305 {
306 	spin_lock(&vm_bo->vm->invalidated_lock);
307 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
308 	spin_unlock(&vm_bo->vm->invalidated_lock);
309 }
310 
311 /**
312  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
313  *
314  * @base: base structure for tracking BO usage in a VM
315  * @vm: vm to which bo is to be added
316  * @bo: amdgpu buffer object
317  *
318  * Initialize a bo_va_base structure and add it to the appropriate lists
319  *
320  */
321 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
322 				   struct amdgpu_vm *vm,
323 				   struct amdgpu_bo *bo)
324 {
325 	base->vm = vm;
326 	base->bo = bo;
327 	base->next = NULL;
328 	INIT_LIST_HEAD(&base->vm_status);
329 
330 	if (!bo)
331 		return;
332 	base->next = bo->vm_bo;
333 	bo->vm_bo = base;
334 
335 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
336 		return;
337 
338 	vm->bulk_moveable = false;
339 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
340 		amdgpu_vm_bo_relocated(base);
341 	else
342 		amdgpu_vm_bo_idle(base);
343 
344 	if (bo->preferred_domains &
345 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
346 		return;
347 
348 	/*
349 	 * we checked all the prerequisites, but it looks like this per vm bo
350 	 * is currently evicted. add the bo to the evicted list to make sure it
351 	 * is validated on next vm use to avoid fault.
352 	 * */
353 	amdgpu_vm_bo_evicted(base);
354 }
355 
356 /**
357  * amdgpu_vm_pt_parent - get the parent page directory
358  *
359  * @pt: child page table
360  *
361  * Helper to get the parent entry for the child page table. NULL if we are at
362  * the root page directory.
363  */
364 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
365 {
366 	struct amdgpu_bo *parent = pt->base.bo->parent;
367 
368 	if (!parent)
369 		return NULL;
370 
371 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
372 }
373 
374 /*
375  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
376  */
377 struct amdgpu_vm_pt_cursor {
378 	uint64_t pfn;
379 	struct amdgpu_vm_pt *parent;
380 	struct amdgpu_vm_pt *entry;
381 	unsigned level;
382 };
383 
384 /**
385  * amdgpu_vm_pt_start - start PD/PT walk
386  *
387  * @adev: amdgpu_device pointer
388  * @vm: amdgpu_vm structure
389  * @start: start address of the walk
390  * @cursor: state to initialize
391  *
392  * Initialize a amdgpu_vm_pt_cursor to start a walk.
393  */
394 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
395 			       struct amdgpu_vm *vm, uint64_t start,
396 			       struct amdgpu_vm_pt_cursor *cursor)
397 {
398 	cursor->pfn = start;
399 	cursor->parent = NULL;
400 	cursor->entry = &vm->root;
401 	cursor->level = adev->vm_manager.root_level;
402 }
403 
404 /**
405  * amdgpu_vm_pt_descendant - go to child node
406  *
407  * @adev: amdgpu_device pointer
408  * @cursor: current state
409  *
410  * Walk to the child node of the current node.
411  * Returns:
412  * True if the walk was possible, false otherwise.
413  */
414 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
415 				    struct amdgpu_vm_pt_cursor *cursor)
416 {
417 	unsigned mask, shift, idx;
418 
419 	if (!cursor->entry->entries)
420 		return false;
421 
422 	BUG_ON(!cursor->entry->base.bo);
423 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
424 	shift = amdgpu_vm_level_shift(adev, cursor->level);
425 
426 	++cursor->level;
427 	idx = (cursor->pfn >> shift) & mask;
428 	cursor->parent = cursor->entry;
429 	cursor->entry = &cursor->entry->entries[idx];
430 	return true;
431 }
432 
433 /**
434  * amdgpu_vm_pt_sibling - go to sibling node
435  *
436  * @adev: amdgpu_device pointer
437  * @cursor: current state
438  *
439  * Walk to the sibling node of the current node.
440  * Returns:
441  * True if the walk was possible, false otherwise.
442  */
443 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
444 				 struct amdgpu_vm_pt_cursor *cursor)
445 {
446 	unsigned shift, num_entries;
447 
448 	/* Root doesn't have a sibling */
449 	if (!cursor->parent)
450 		return false;
451 
452 	/* Go to our parents and see if we got a sibling */
453 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
454 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
455 
456 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
457 		return false;
458 
459 	cursor->pfn += 1ULL << shift;
460 	cursor->pfn &= ~((1ULL << shift) - 1);
461 	++cursor->entry;
462 	return true;
463 }
464 
465 /**
466  * amdgpu_vm_pt_ancestor - go to parent node
467  *
468  * @cursor: current state
469  *
470  * Walk to the parent node of the current node.
471  * Returns:
472  * True if the walk was possible, false otherwise.
473  */
474 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
475 {
476 	if (!cursor->parent)
477 		return false;
478 
479 	--cursor->level;
480 	cursor->entry = cursor->parent;
481 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
482 	return true;
483 }
484 
485 /**
486  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
487  *
488  * @adev: amdgpu_device pointer
489  * @cursor: current state
490  *
491  * Walk the PD/PT tree to the next node.
492  */
493 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
494 			      struct amdgpu_vm_pt_cursor *cursor)
495 {
496 	/* First try a newborn child */
497 	if (amdgpu_vm_pt_descendant(adev, cursor))
498 		return;
499 
500 	/* If that didn't worked try to find a sibling */
501 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
502 		/* No sibling, go to our parents and grandparents */
503 		if (!amdgpu_vm_pt_ancestor(cursor)) {
504 			cursor->pfn = ~0ll;
505 			return;
506 		}
507 	}
508 }
509 
510 /**
511  * amdgpu_vm_pt_first_dfs - start a deep first search
512  *
513  * @adev: amdgpu_device structure
514  * @vm: amdgpu_vm structure
515  * @start: optional cursor to start with
516  * @cursor: state to initialize
517  *
518  * Starts a deep first traversal of the PD/PT tree.
519  */
520 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
521 				   struct amdgpu_vm *vm,
522 				   struct amdgpu_vm_pt_cursor *start,
523 				   struct amdgpu_vm_pt_cursor *cursor)
524 {
525 	if (start)
526 		*cursor = *start;
527 	else
528 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
529 	while (amdgpu_vm_pt_descendant(adev, cursor));
530 }
531 
532 /**
533  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
534  *
535  * @start: starting point for the search
536  * @entry: current entry
537  *
538  * Returns:
539  * True when the search should continue, false otherwise.
540  */
541 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
542 				      struct amdgpu_vm_pt *entry)
543 {
544 	return entry && (!start || entry != start->entry);
545 }
546 
547 /**
548  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
549  *
550  * @adev: amdgpu_device structure
551  * @cursor: current state
552  *
553  * Move the cursor to the next node in a deep first search.
554  */
555 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
556 				  struct amdgpu_vm_pt_cursor *cursor)
557 {
558 	if (!cursor->entry)
559 		return;
560 
561 	if (!cursor->parent)
562 		cursor->entry = NULL;
563 	else if (amdgpu_vm_pt_sibling(adev, cursor))
564 		while (amdgpu_vm_pt_descendant(adev, cursor));
565 	else
566 		amdgpu_vm_pt_ancestor(cursor);
567 }
568 
569 /*
570  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
571  */
572 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
573 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
574 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
575 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
576 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
577 
578 /**
579  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
580  *
581  * @vm: vm providing the BOs
582  * @validated: head of validation list
583  * @entry: entry to add
584  *
585  * Add the page directory to the list of BOs to
586  * validate for command submission.
587  */
588 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
589 			 struct list_head *validated,
590 			 struct amdgpu_bo_list_entry *entry)
591 {
592 	entry->priority = 0;
593 	entry->tv.bo = &vm->root.base.bo->tbo;
594 	/* Two for VM updates, one for TTM and one for the CS job */
595 	entry->tv.num_shared = 4;
596 	entry->user_pages = NULL;
597 	list_add(&entry->tv.head, validated);
598 }
599 
600 /**
601  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
602  *
603  * @bo: BO which was removed from the LRU
604  *
605  * Make sure the bulk_moveable flag is updated when a BO is removed from the
606  * LRU.
607  */
608 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
609 {
610 	struct amdgpu_bo *abo;
611 	struct amdgpu_vm_bo_base *bo_base;
612 
613 	if (!amdgpu_bo_is_amdgpu_bo(bo))
614 		return;
615 
616 	if (bo->pin_count)
617 		return;
618 
619 	abo = ttm_to_amdgpu_bo(bo);
620 	if (!abo->parent)
621 		return;
622 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
623 		struct amdgpu_vm *vm = bo_base->vm;
624 
625 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
626 			vm->bulk_moveable = false;
627 	}
628 
629 }
630 /**
631  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
632  *
633  * @adev: amdgpu device pointer
634  * @vm: vm providing the BOs
635  *
636  * Move all BOs to the end of LRU and remember their positions to put them
637  * together.
638  */
639 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
640 				struct amdgpu_vm *vm)
641 {
642 	struct amdgpu_vm_bo_base *bo_base;
643 
644 	if (vm->bulk_moveable) {
645 		spin_lock(&adev->mman.bdev.lru_lock);
646 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
647 		spin_unlock(&adev->mman.bdev.lru_lock);
648 		return;
649 	}
650 
651 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
652 
653 	spin_lock(&adev->mman.bdev.lru_lock);
654 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
655 		struct amdgpu_bo *bo = bo_base->bo;
656 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
657 
658 		if (!bo->parent)
659 			continue;
660 
661 		ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem,
662 					&vm->lru_bulk_move);
663 		if (shadow)
664 			ttm_bo_move_to_lru_tail(&shadow->tbo, &shadow->tbo.mem,
665 						&vm->lru_bulk_move);
666 	}
667 	spin_unlock(&adev->mman.bdev.lru_lock);
668 
669 	vm->bulk_moveable = true;
670 }
671 
672 /**
673  * amdgpu_vm_validate_pt_bos - validate the page table BOs
674  *
675  * @adev: amdgpu device pointer
676  * @vm: vm providing the BOs
677  * @validate: callback to do the validation
678  * @param: parameter for the validation callback
679  *
680  * Validate the page table BOs on command submission if neccessary.
681  *
682  * Returns:
683  * Validation result.
684  */
685 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
686 			      int (*validate)(void *p, struct amdgpu_bo *bo),
687 			      void *param)
688 {
689 	struct amdgpu_vm_bo_base *bo_base, *tmp;
690 	int r;
691 
692 	vm->bulk_moveable &= list_empty(&vm->evicted);
693 
694 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
695 		struct amdgpu_bo *bo = bo_base->bo;
696 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697 
698 		r = validate(param, bo);
699 		if (r)
700 			return r;
701 		if (shadow) {
702 			r = validate(param, shadow);
703 			if (r)
704 				return r;
705 		}
706 
707 		if (bo->tbo.type != ttm_bo_type_kernel) {
708 			amdgpu_vm_bo_moved(bo_base);
709 		} else {
710 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
711 			amdgpu_vm_bo_relocated(bo_base);
712 		}
713 	}
714 
715 	amdgpu_vm_eviction_lock(vm);
716 	vm->evicting = false;
717 	amdgpu_vm_eviction_unlock(vm);
718 
719 	return 0;
720 }
721 
722 /**
723  * amdgpu_vm_ready - check VM is ready for updates
724  *
725  * @vm: VM to check
726  *
727  * Check if all VM PDs/PTs are ready for updates
728  *
729  * Returns:
730  * True if eviction list is empty.
731  */
732 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
733 {
734 	return list_empty(&vm->evicted);
735 }
736 
737 /**
738  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
739  *
740  * @adev: amdgpu_device pointer
741  * @vm: VM to clear BO from
742  * @vmbo: BO to clear
743  * @immediate: use an immediate update
744  *
745  * Root PD needs to be reserved when calling this.
746  *
747  * Returns:
748  * 0 on success, errno otherwise.
749  */
750 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
751 			      struct amdgpu_vm *vm,
752 			      struct amdgpu_bo_vm *vmbo,
753 			      bool immediate)
754 {
755 	struct ttm_operation_ctx ctx = { true, false };
756 	unsigned level = adev->vm_manager.root_level;
757 	struct amdgpu_vm_update_params params;
758 	struct amdgpu_bo *ancestor = &vmbo->bo;
759 	struct amdgpu_bo *bo = &vmbo->bo;
760 	unsigned entries, ats_entries;
761 	uint64_t addr;
762 	int r;
763 
764 	/* Figure out our place in the hierarchy */
765 	if (ancestor->parent) {
766 		++level;
767 		while (ancestor->parent->parent) {
768 			++level;
769 			ancestor = ancestor->parent;
770 		}
771 	}
772 
773 	entries = amdgpu_bo_size(bo) / 8;
774 	if (!vm->pte_support_ats) {
775 		ats_entries = 0;
776 
777 	} else if (!bo->parent) {
778 		ats_entries = amdgpu_vm_num_ats_entries(adev);
779 		ats_entries = min(ats_entries, entries);
780 		entries -= ats_entries;
781 
782 	} else {
783 		struct amdgpu_vm_pt *pt;
784 
785 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
786 		ats_entries = amdgpu_vm_num_ats_entries(adev);
787 		if ((pt - vm->root.entries) >= ats_entries) {
788 			ats_entries = 0;
789 		} else {
790 			ats_entries = entries;
791 			entries = 0;
792 		}
793 	}
794 
795 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
796 	if (r)
797 		return r;
798 
799 	if (vmbo->shadow) {
800 		struct amdgpu_bo *shadow = vmbo->shadow;
801 
802 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
803 		if (r)
804 			return r;
805 	}
806 
807 	r = vm->update_funcs->map_table(vmbo);
808 	if (r)
809 		return r;
810 
811 	memset(&params, 0, sizeof(params));
812 	params.adev = adev;
813 	params.vm = vm;
814 	params.immediate = immediate;
815 
816 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
817 	if (r)
818 		return r;
819 
820 	addr = 0;
821 	if (ats_entries) {
822 		uint64_t value = 0, flags;
823 
824 		flags = AMDGPU_PTE_DEFAULT_ATC;
825 		if (level != AMDGPU_VM_PTB) {
826 			/* Handle leaf PDEs as PTEs */
827 			flags |= AMDGPU_PDE_PTE;
828 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
829 		}
830 
831 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
832 					     value, flags);
833 		if (r)
834 			return r;
835 
836 		addr += ats_entries * 8;
837 	}
838 
839 	if (entries) {
840 		uint64_t value = 0, flags = 0;
841 
842 		if (adev->asic_type >= CHIP_VEGA10) {
843 			if (level != AMDGPU_VM_PTB) {
844 				/* Handle leaf PDEs as PTEs */
845 				flags |= AMDGPU_PDE_PTE;
846 				amdgpu_gmc_get_vm_pde(adev, level,
847 						      &value, &flags);
848 			} else {
849 				/* Workaround for fault priority problem on GMC9 */
850 				flags = AMDGPU_PTE_EXECUTABLE;
851 			}
852 		}
853 
854 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
855 					     value, flags);
856 		if (r)
857 			return r;
858 	}
859 
860 	return vm->update_funcs->commit(&params, NULL);
861 }
862 
863 /**
864  * amdgpu_vm_pt_create - create bo for PD/PT
865  *
866  * @adev: amdgpu_device pointer
867  * @vm: requesting vm
868  * @level: the page table level
869  * @immediate: use a immediate update
870  * @vmbo: pointer to the buffer object pointer
871  */
872 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
873 			       struct amdgpu_vm *vm,
874 			       int level, bool immediate,
875 			       struct amdgpu_bo_vm **vmbo)
876 {
877 	struct amdgpu_bo_param bp;
878 	struct amdgpu_bo *bo;
879 	struct dma_resv *resv;
880 	unsigned int num_entries;
881 	int r;
882 
883 	memset(&bp, 0, sizeof(bp));
884 
885 	bp.size = amdgpu_vm_bo_size(adev, level);
886 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
887 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
888 	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
889 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
890 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
891 
892 	if (level < AMDGPU_VM_PTB)
893 		num_entries = amdgpu_vm_num_entries(adev, level);
894 	else
895 		num_entries = 0;
896 
897 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
898 
899 	if (vm->use_cpu_for_update)
900 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
901 
902 	bp.type = ttm_bo_type_kernel;
903 	bp.no_wait_gpu = immediate;
904 	if (vm->root.base.bo)
905 		bp.resv = vm->root.base.bo->tbo.base.resv;
906 
907 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
908 	if (r)
909 		return r;
910 
911 	bo = &(*vmbo)->bo;
912 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
913 		(*vmbo)->shadow = NULL;
914 		return 0;
915 	}
916 
917 	if (!bp.resv)
918 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
919 				      NULL));
920 	resv = bp.resv;
921 	memset(&bp, 0, sizeof(bp));
922 	bp.size = amdgpu_vm_bo_size(adev, level);
923 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
924 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
925 	bp.type = ttm_bo_type_kernel;
926 	bp.resv = bo->tbo.base.resv;
927 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
928 
929 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
930 
931 	if (!resv)
932 		dma_resv_unlock(bo->tbo.base.resv);
933 
934 	if (r) {
935 		amdgpu_bo_unref(&bo);
936 		return r;
937 	}
938 
939 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
940 	amdgpu_bo_add_to_shadow_list((*vmbo)->shadow);
941 
942 	return 0;
943 }
944 
945 /**
946  * amdgpu_vm_alloc_pts - Allocate a specific page table
947  *
948  * @adev: amdgpu_device pointer
949  * @vm: VM to allocate page tables for
950  * @cursor: Which page table to allocate
951  * @immediate: use an immediate update
952  *
953  * Make sure a specific page table or directory is allocated.
954  *
955  * Returns:
956  * 1 if page table needed to be allocated, 0 if page table was already
957  * allocated, negative errno if an error occurred.
958  */
959 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
960 			       struct amdgpu_vm *vm,
961 			       struct amdgpu_vm_pt_cursor *cursor,
962 			       bool immediate)
963 {
964 	struct amdgpu_vm_pt *entry = cursor->entry;
965 	struct amdgpu_bo *pt_bo;
966 	struct amdgpu_bo_vm *pt;
967 	int r;
968 
969 	if (entry->base.bo) {
970 		if (cursor->level < AMDGPU_VM_PTB)
971 			entry->entries =
972 				to_amdgpu_bo_vm(entry->base.bo)->entries;
973 		else
974 			entry->entries = NULL;
975 		return 0;
976 	}
977 
978 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
979 	if (r)
980 		return r;
981 
982 	/* Keep a reference to the root directory to avoid
983 	 * freeing them up in the wrong order.
984 	 */
985 	pt_bo = &pt->bo;
986 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->base.bo);
987 	amdgpu_vm_bo_base_init(&entry->base, vm, pt_bo);
988 	if (cursor->level < AMDGPU_VM_PTB)
989 		entry->entries = pt->entries;
990 	else
991 		entry->entries = NULL;
992 
993 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
994 	if (r)
995 		goto error_free_pt;
996 
997 	return 0;
998 
999 error_free_pt:
1000 	amdgpu_bo_unref(&pt->shadow);
1001 	amdgpu_bo_unref(&pt_bo);
1002 	return r;
1003 }
1004 
1005 /**
1006  * amdgpu_vm_free_table - fre one PD/PT
1007  *
1008  * @entry: PDE to free
1009  */
1010 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
1011 {
1012 	struct amdgpu_bo *shadow;
1013 
1014 	if (entry->base.bo) {
1015 		shadow = amdgpu_bo_shadowed(entry->base.bo);
1016 		entry->base.bo->vm_bo = NULL;
1017 		list_del(&entry->base.vm_status);
1018 		amdgpu_bo_unref(&shadow);
1019 		amdgpu_bo_unref(&entry->base.bo);
1020 	}
1021 	entry->entries = NULL;
1022 }
1023 
1024 /**
1025  * amdgpu_vm_free_pts - free PD/PT levels
1026  *
1027  * @adev: amdgpu device structure
1028  * @vm: amdgpu vm structure
1029  * @start: optional cursor where to start freeing PDs/PTs
1030  *
1031  * Free the page directory or page table level and all sub levels.
1032  */
1033 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1034 			       struct amdgpu_vm *vm,
1035 			       struct amdgpu_vm_pt_cursor *start)
1036 {
1037 	struct amdgpu_vm_pt_cursor cursor;
1038 	struct amdgpu_vm_pt *entry;
1039 
1040 	vm->bulk_moveable = false;
1041 
1042 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1043 		amdgpu_vm_free_table(entry);
1044 
1045 	if (start)
1046 		amdgpu_vm_free_table(start->entry);
1047 }
1048 
1049 /**
1050  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1051  *
1052  * @adev: amdgpu_device pointer
1053  */
1054 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1055 {
1056 	const struct amdgpu_ip_block *ip_block;
1057 	bool has_compute_vm_bug;
1058 	struct amdgpu_ring *ring;
1059 	int i;
1060 
1061 	has_compute_vm_bug = false;
1062 
1063 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1064 	if (ip_block) {
1065 		/* Compute has a VM bug for GFX version < 7.
1066 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1067 		if (ip_block->version->major <= 7)
1068 			has_compute_vm_bug = true;
1069 		else if (ip_block->version->major == 8)
1070 			if (adev->gfx.mec_fw_version < 673)
1071 				has_compute_vm_bug = true;
1072 	}
1073 
1074 	for (i = 0; i < adev->num_rings; i++) {
1075 		ring = adev->rings[i];
1076 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1077 			/* only compute rings */
1078 			ring->has_compute_vm_bug = has_compute_vm_bug;
1079 		else
1080 			ring->has_compute_vm_bug = false;
1081 	}
1082 }
1083 
1084 /**
1085  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1086  *
1087  * @ring: ring on which the job will be submitted
1088  * @job: job to submit
1089  *
1090  * Returns:
1091  * True if sync is needed.
1092  */
1093 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1094 				  struct amdgpu_job *job)
1095 {
1096 	struct amdgpu_device *adev = ring->adev;
1097 	unsigned vmhub = ring->funcs->vmhub;
1098 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1099 	struct amdgpu_vmid *id;
1100 	bool gds_switch_needed;
1101 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1102 
1103 	if (job->vmid == 0)
1104 		return false;
1105 	id = &id_mgr->ids[job->vmid];
1106 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1107 		id->gds_base != job->gds_base ||
1108 		id->gds_size != job->gds_size ||
1109 		id->gws_base != job->gws_base ||
1110 		id->gws_size != job->gws_size ||
1111 		id->oa_base != job->oa_base ||
1112 		id->oa_size != job->oa_size);
1113 
1114 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1115 		return true;
1116 
1117 	return vm_flush_needed || gds_switch_needed;
1118 }
1119 
1120 /**
1121  * amdgpu_vm_flush - hardware flush the vm
1122  *
1123  * @ring: ring to use for flush
1124  * @job:  related job
1125  * @need_pipe_sync: is pipe sync needed
1126  *
1127  * Emit a VM flush when it is necessary.
1128  *
1129  * Returns:
1130  * 0 on success, errno otherwise.
1131  */
1132 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1133 		    bool need_pipe_sync)
1134 {
1135 	struct amdgpu_device *adev = ring->adev;
1136 	unsigned vmhub = ring->funcs->vmhub;
1137 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1138 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1139 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1140 		id->gds_base != job->gds_base ||
1141 		id->gds_size != job->gds_size ||
1142 		id->gws_base != job->gws_base ||
1143 		id->gws_size != job->gws_size ||
1144 		id->oa_base != job->oa_base ||
1145 		id->oa_size != job->oa_size);
1146 	bool vm_flush_needed = job->vm_needs_flush;
1147 	struct dma_fence *fence = NULL;
1148 	bool pasid_mapping_needed = false;
1149 	unsigned patch_offset = 0;
1150 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1151 	int r;
1152 
1153 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1154 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1155 
1156 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1157 		gds_switch_needed = true;
1158 		vm_flush_needed = true;
1159 		pasid_mapping_needed = true;
1160 	}
1161 
1162 	mutex_lock(&id_mgr->lock);
1163 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1164 	    !dma_fence_is_signaled(id->pasid_mapping))
1165 		pasid_mapping_needed = true;
1166 	mutex_unlock(&id_mgr->lock);
1167 
1168 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1169 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1170 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1171 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1172 		ring->funcs->emit_wreg;
1173 
1174 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1175 		return 0;
1176 
1177 	if (ring->funcs->init_cond_exec)
1178 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1179 
1180 	if (need_pipe_sync)
1181 		amdgpu_ring_emit_pipeline_sync(ring);
1182 
1183 	if (vm_flush_needed) {
1184 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1185 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1186 	}
1187 
1188 	if (pasid_mapping_needed)
1189 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1190 
1191 	if (vm_flush_needed || pasid_mapping_needed) {
1192 		r = amdgpu_fence_emit(ring, &fence, 0);
1193 		if (r)
1194 			return r;
1195 	}
1196 
1197 	if (vm_flush_needed) {
1198 		mutex_lock(&id_mgr->lock);
1199 		dma_fence_put(id->last_flush);
1200 		id->last_flush = dma_fence_get(fence);
1201 		id->current_gpu_reset_count =
1202 			atomic_read(&adev->gpu_reset_counter);
1203 		mutex_unlock(&id_mgr->lock);
1204 	}
1205 
1206 	if (pasid_mapping_needed) {
1207 		mutex_lock(&id_mgr->lock);
1208 		id->pasid = job->pasid;
1209 		dma_fence_put(id->pasid_mapping);
1210 		id->pasid_mapping = dma_fence_get(fence);
1211 		mutex_unlock(&id_mgr->lock);
1212 	}
1213 	dma_fence_put(fence);
1214 
1215 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1216 		id->gds_base = job->gds_base;
1217 		id->gds_size = job->gds_size;
1218 		id->gws_base = job->gws_base;
1219 		id->gws_size = job->gws_size;
1220 		id->oa_base = job->oa_base;
1221 		id->oa_size = job->oa_size;
1222 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1223 					    job->gds_size, job->gws_base,
1224 					    job->gws_size, job->oa_base,
1225 					    job->oa_size);
1226 	}
1227 
1228 	if (ring->funcs->patch_cond_exec)
1229 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1230 
1231 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1232 	if (ring->funcs->emit_switch_buffer) {
1233 		amdgpu_ring_emit_switch_buffer(ring);
1234 		amdgpu_ring_emit_switch_buffer(ring);
1235 	}
1236 	return 0;
1237 }
1238 
1239 /**
1240  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1241  *
1242  * @vm: requested vm
1243  * @bo: requested buffer object
1244  *
1245  * Find @bo inside the requested vm.
1246  * Search inside the @bos vm list for the requested vm
1247  * Returns the found bo_va or NULL if none is found
1248  *
1249  * Object has to be reserved!
1250  *
1251  * Returns:
1252  * Found bo_va or NULL.
1253  */
1254 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1255 				       struct amdgpu_bo *bo)
1256 {
1257 	struct amdgpu_vm_bo_base *base;
1258 
1259 	for (base = bo->vm_bo; base; base = base->next) {
1260 		if (base->vm != vm)
1261 			continue;
1262 
1263 		return container_of(base, struct amdgpu_bo_va, base);
1264 	}
1265 	return NULL;
1266 }
1267 
1268 /**
1269  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1270  *
1271  * @pages_addr: optional DMA address to use for lookup
1272  * @addr: the unmapped addr
1273  *
1274  * Look up the physical address of the page that the pte resolves
1275  * to.
1276  *
1277  * Returns:
1278  * The pointer for the page table entry.
1279  */
1280 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1281 {
1282 	uint64_t result;
1283 
1284 	/* page table offset */
1285 	result = pages_addr[addr >> PAGE_SHIFT];
1286 
1287 	/* in case cpu page size != gpu page size*/
1288 	result |= addr & (~PAGE_MASK);
1289 
1290 	result &= 0xFFFFFFFFFFFFF000ULL;
1291 
1292 	return result;
1293 }
1294 
1295 /**
1296  * amdgpu_vm_update_pde - update a single level in the hierarchy
1297  *
1298  * @params: parameters for the update
1299  * @vm: requested vm
1300  * @entry: entry to update
1301  *
1302  * Makes sure the requested entry in parent is up to date.
1303  */
1304 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1305 				struct amdgpu_vm *vm,
1306 				struct amdgpu_vm_pt *entry)
1307 {
1308 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1309 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1310 	uint64_t pde, pt, flags;
1311 	unsigned level;
1312 
1313 	for (level = 0, pbo = bo->parent; pbo; ++level)
1314 		pbo = pbo->parent;
1315 
1316 	level += params->adev->vm_manager.root_level;
1317 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1318 	pde = (entry - parent->entries) * 8;
1319 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1320 					1, 0, flags);
1321 }
1322 
1323 /**
1324  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1325  *
1326  * @adev: amdgpu_device pointer
1327  * @vm: related vm
1328  *
1329  * Mark all PD level as invalid after an error.
1330  */
1331 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1332 				     struct amdgpu_vm *vm)
1333 {
1334 	struct amdgpu_vm_pt_cursor cursor;
1335 	struct amdgpu_vm_pt *entry;
1336 
1337 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1338 		if (entry->base.bo && !entry->base.moved)
1339 			amdgpu_vm_bo_relocated(&entry->base);
1340 }
1341 
1342 /**
1343  * amdgpu_vm_update_pdes - make sure that all directories are valid
1344  *
1345  * @adev: amdgpu_device pointer
1346  * @vm: requested vm
1347  * @immediate: submit immediately to the paging queue
1348  *
1349  * Makes sure all directories are up to date.
1350  *
1351  * Returns:
1352  * 0 for success, error for failure.
1353  */
1354 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1355 			  struct amdgpu_vm *vm, bool immediate)
1356 {
1357 	struct amdgpu_vm_update_params params;
1358 	int r;
1359 
1360 	if (list_empty(&vm->relocated))
1361 		return 0;
1362 
1363 	memset(&params, 0, sizeof(params));
1364 	params.adev = adev;
1365 	params.vm = vm;
1366 	params.immediate = immediate;
1367 
1368 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1369 	if (r)
1370 		return r;
1371 
1372 	while (!list_empty(&vm->relocated)) {
1373 		struct amdgpu_vm_pt *entry;
1374 
1375 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1376 					 base.vm_status);
1377 		amdgpu_vm_bo_idle(&entry->base);
1378 
1379 		r = amdgpu_vm_update_pde(&params, vm, entry);
1380 		if (r)
1381 			goto error;
1382 	}
1383 
1384 	r = vm->update_funcs->commit(&params, &vm->last_update);
1385 	if (r)
1386 		goto error;
1387 	return 0;
1388 
1389 error:
1390 	amdgpu_vm_invalidate_pds(adev, vm);
1391 	return r;
1392 }
1393 
1394 /*
1395  * amdgpu_vm_update_flags - figure out flags for PTE updates
1396  *
1397  * Make sure to set the right flags for the PTEs at the desired level.
1398  */
1399 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1400 				   struct amdgpu_bo_vm *pt, unsigned int level,
1401 				   uint64_t pe, uint64_t addr,
1402 				   unsigned int count, uint32_t incr,
1403 				   uint64_t flags)
1404 
1405 {
1406 	if (level != AMDGPU_VM_PTB) {
1407 		flags |= AMDGPU_PDE_PTE;
1408 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1409 
1410 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1411 		   !(flags & AMDGPU_PTE_VALID) &&
1412 		   !(flags & AMDGPU_PTE_PRT)) {
1413 
1414 		/* Workaround for fault priority problem on GMC9 */
1415 		flags |= AMDGPU_PTE_EXECUTABLE;
1416 	}
1417 
1418 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1419 					 flags);
1420 }
1421 
1422 /**
1423  * amdgpu_vm_fragment - get fragment for PTEs
1424  *
1425  * @params: see amdgpu_vm_update_params definition
1426  * @start: first PTE to handle
1427  * @end: last PTE to handle
1428  * @flags: hw mapping flags
1429  * @frag: resulting fragment size
1430  * @frag_end: end of this fragment
1431  *
1432  * Returns the first possible fragment for the start and end address.
1433  */
1434 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1435 			       uint64_t start, uint64_t end, uint64_t flags,
1436 			       unsigned int *frag, uint64_t *frag_end)
1437 {
1438 	/**
1439 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1440 	 * field in the PTE. When this field is set to a non-zero value, page
1441 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1442 	 * flags are considered valid for all PTEs within the fragment range
1443 	 * and corresponding mappings are assumed to be physically contiguous.
1444 	 *
1445 	 * The L1 TLB can store a single PTE for the whole fragment,
1446 	 * significantly increasing the space available for translation
1447 	 * caching. This leads to large improvements in throughput when the
1448 	 * TLB is under pressure.
1449 	 *
1450 	 * The L2 TLB distributes small and large fragments into two
1451 	 * asymmetric partitions. The large fragment cache is significantly
1452 	 * larger. Thus, we try to use large fragments wherever possible.
1453 	 * Userspace can support this by aligning virtual base address and
1454 	 * allocation size to the fragment size.
1455 	 *
1456 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1457 	 * is now directly feed with small/huge/giant pages from the walker.
1458 	 */
1459 	unsigned max_frag;
1460 
1461 	if (params->adev->asic_type < CHIP_VEGA10)
1462 		max_frag = params->adev->vm_manager.fragment_size;
1463 	else
1464 		max_frag = 31;
1465 
1466 	/* system pages are non continuously */
1467 	if (params->pages_addr) {
1468 		*frag = 0;
1469 		*frag_end = end;
1470 		return;
1471 	}
1472 
1473 	/* This intentionally wraps around if no bit is set */
1474 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1475 	if (*frag >= max_frag) {
1476 		*frag = max_frag;
1477 		*frag_end = end & ~((1ULL << max_frag) - 1);
1478 	} else {
1479 		*frag_end = start + (1 << *frag);
1480 	}
1481 }
1482 
1483 /**
1484  * amdgpu_vm_update_ptes - make sure that page tables are valid
1485  *
1486  * @params: see amdgpu_vm_update_params definition
1487  * @start: start of GPU address range
1488  * @end: end of GPU address range
1489  * @dst: destination address to map to, the next dst inside the function
1490  * @flags: mapping flags
1491  *
1492  * Update the page tables in the range @start - @end.
1493  *
1494  * Returns:
1495  * 0 for success, -EINVAL for failure.
1496  */
1497 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1498 				 uint64_t start, uint64_t end,
1499 				 uint64_t dst, uint64_t flags)
1500 {
1501 	struct amdgpu_device *adev = params->adev;
1502 	struct amdgpu_vm_pt_cursor cursor;
1503 	uint64_t frag_start = start, frag_end;
1504 	unsigned int frag;
1505 	int r;
1506 
1507 	/* figure out the initial fragment */
1508 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1509 
1510 	/* walk over the address space and update the PTs */
1511 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1512 	while (cursor.pfn < end) {
1513 		unsigned shift, parent_shift, mask;
1514 		uint64_t incr, entry_end, pe_start;
1515 		struct amdgpu_bo *pt;
1516 
1517 		if (!params->unlocked) {
1518 			/* make sure that the page tables covering the
1519 			 * address range are actually allocated
1520 			 */
1521 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1522 						&cursor, params->immediate);
1523 			if (r)
1524 				return r;
1525 		}
1526 
1527 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1528 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1529 		if (params->unlocked) {
1530 			/* Unlocked updates are only allowed on the leaves */
1531 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1532 				continue;
1533 		} else if (adev->asic_type < CHIP_VEGA10 &&
1534 			   (flags & AMDGPU_PTE_VALID)) {
1535 			/* No huge page support before GMC v9 */
1536 			if (cursor.level != AMDGPU_VM_PTB) {
1537 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1538 					return -ENOENT;
1539 				continue;
1540 			}
1541 		} else if (frag < shift) {
1542 			/* We can't use this level when the fragment size is
1543 			 * smaller than the address shift. Go to the next
1544 			 * child entry and try again.
1545 			 */
1546 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1547 				continue;
1548 		} else if (frag >= parent_shift) {
1549 			/* If the fragment size is even larger than the parent
1550 			 * shift we should go up one level and check it again.
1551 			 */
1552 			if (!amdgpu_vm_pt_ancestor(&cursor))
1553 				return -EINVAL;
1554 			continue;
1555 		}
1556 
1557 		pt = cursor.entry->base.bo;
1558 		if (!pt) {
1559 			/* We need all PDs and PTs for mapping something, */
1560 			if (flags & AMDGPU_PTE_VALID)
1561 				return -ENOENT;
1562 
1563 			/* but unmapping something can happen at a higher
1564 			 * level.
1565 			 */
1566 			if (!amdgpu_vm_pt_ancestor(&cursor))
1567 				return -EINVAL;
1568 
1569 			pt = cursor.entry->base.bo;
1570 			shift = parent_shift;
1571 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1572 				   1ULL << shift));
1573 		}
1574 
1575 		/* Looks good so far, calculate parameters for the update */
1576 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1577 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1578 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1579 		entry_end = ((uint64_t)mask + 1) << shift;
1580 		entry_end += cursor.pfn & ~(entry_end - 1);
1581 		entry_end = min(entry_end, end);
1582 
1583 		do {
1584 			struct amdgpu_vm *vm = params->vm;
1585 			uint64_t upd_end = min(entry_end, frag_end);
1586 			unsigned nptes = (upd_end - frag_start) >> shift;
1587 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1588 
1589 			/* This can happen when we set higher level PDs to
1590 			 * silent to stop fault floods.
1591 			 */
1592 			nptes = max(nptes, 1u);
1593 
1594 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1595 						    nptes, dst, incr, upd_flags,
1596 						    vm->task_info.pid,
1597 						    vm->immediate.fence_context);
1598 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1599 					       cursor.level, pe_start, dst,
1600 					       nptes, incr, upd_flags);
1601 
1602 			pe_start += nptes * 8;
1603 			dst += nptes * incr;
1604 
1605 			frag_start = upd_end;
1606 			if (frag_start >= frag_end) {
1607 				/* figure out the next fragment */
1608 				amdgpu_vm_fragment(params, frag_start, end,
1609 						   flags, &frag, &frag_end);
1610 				if (frag < shift)
1611 					break;
1612 			}
1613 		} while (frag_start < entry_end);
1614 
1615 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1616 			/* Free all child entries.
1617 			 * Update the tables with the flags and addresses and free up subsequent
1618 			 * tables in the case of huge pages or freed up areas.
1619 			 * This is the maximum you can free, because all other page tables are not
1620 			 * completely covered by the range and so potentially still in use.
1621 			 */
1622 			while (cursor.pfn < frag_start) {
1623 				/* Make sure previous mapping is freed */
1624 				if (cursor.entry->base.bo) {
1625 					params->table_freed = true;
1626 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1627 				}
1628 				amdgpu_vm_pt_next(adev, &cursor);
1629 			}
1630 
1631 		} else if (frag >= shift) {
1632 			/* or just move on to the next on the same level. */
1633 			amdgpu_vm_pt_next(adev, &cursor);
1634 		}
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 /**
1641  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1642  *
1643  * @adev: amdgpu_device pointer of the VM
1644  * @bo_adev: amdgpu_device pointer of the mapped BO
1645  * @vm: requested vm
1646  * @immediate: immediate submission in a page fault
1647  * @unlocked: unlocked invalidation during MM callback
1648  * @resv: fences we need to sync to
1649  * @start: start of mapped range
1650  * @last: last mapped entry
1651  * @flags: flags for the entries
1652  * @offset: offset into nodes and pages_addr
1653  * @res: ttm_resource to map
1654  * @pages_addr: DMA addresses to use for mapping
1655  * @fence: optional resulting fence
1656  * @table_freed: return true if page table is freed
1657  *
1658  * Fill in the page table entries between @start and @last.
1659  *
1660  * Returns:
1661  * 0 for success, -EINVAL for failure.
1662  */
1663 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1664 				struct amdgpu_device *bo_adev,
1665 				struct amdgpu_vm *vm, bool immediate,
1666 				bool unlocked, struct dma_resv *resv,
1667 				uint64_t start, uint64_t last,
1668 				uint64_t flags, uint64_t offset,
1669 				struct ttm_resource *res,
1670 				dma_addr_t *pages_addr,
1671 				struct dma_fence **fence,
1672 				bool *table_freed)
1673 {
1674 	struct amdgpu_vm_update_params params;
1675 	struct amdgpu_res_cursor cursor;
1676 	enum amdgpu_sync_mode sync_mode;
1677 	int r, idx;
1678 
1679 	if (!drm_dev_enter(&adev->ddev, &idx))
1680 		return -ENODEV;
1681 
1682 	memset(&params, 0, sizeof(params));
1683 	params.adev = adev;
1684 	params.vm = vm;
1685 	params.immediate = immediate;
1686 	params.pages_addr = pages_addr;
1687 	params.unlocked = unlocked;
1688 
1689 	/* Implicitly sync to command submissions in the same VM before
1690 	 * unmapping. Sync to moving fences before mapping.
1691 	 */
1692 	if (!(flags & AMDGPU_PTE_VALID))
1693 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1694 	else
1695 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1696 
1697 	amdgpu_vm_eviction_lock(vm);
1698 	if (vm->evicting) {
1699 		r = -EBUSY;
1700 		goto error_unlock;
1701 	}
1702 
1703 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1704 		struct dma_fence *tmp = dma_fence_get_stub();
1705 
1706 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1707 		swap(vm->last_unlocked, tmp);
1708 		dma_fence_put(tmp);
1709 	}
1710 
1711 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1712 	if (r)
1713 		goto error_unlock;
1714 
1715 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1716 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1717 	while (cursor.remaining) {
1718 		uint64_t tmp, num_entries, addr;
1719 
1720 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1721 		if (pages_addr) {
1722 			bool contiguous = true;
1723 
1724 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1725 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1726 				uint64_t count;
1727 
1728 				contiguous = pages_addr[pfn + 1] ==
1729 					pages_addr[pfn] + PAGE_SIZE;
1730 
1731 				tmp = num_entries /
1732 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1733 				for (count = 2; count < tmp; ++count) {
1734 					uint64_t idx = pfn + count;
1735 
1736 					if (contiguous != (pages_addr[idx] ==
1737 					    pages_addr[idx - 1] + PAGE_SIZE))
1738 						break;
1739 				}
1740 				num_entries = count *
1741 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1742 			}
1743 
1744 			if (!contiguous) {
1745 				addr = cursor.start;
1746 				params.pages_addr = pages_addr;
1747 			} else {
1748 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1749 				params.pages_addr = NULL;
1750 			}
1751 
1752 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1753 			addr = bo_adev->vm_manager.vram_base_offset +
1754 				cursor.start;
1755 		} else {
1756 			addr = 0;
1757 		}
1758 
1759 		tmp = start + num_entries;
1760 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1761 		if (r)
1762 			goto error_unlock;
1763 
1764 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1765 		start = tmp;
1766 	}
1767 
1768 	r = vm->update_funcs->commit(&params, fence);
1769 
1770 	if (table_freed)
1771 		*table_freed = *table_freed || params.table_freed;
1772 
1773 error_unlock:
1774 	amdgpu_vm_eviction_unlock(vm);
1775 	drm_dev_exit(idx);
1776 	return r;
1777 }
1778 
1779 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1780 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1781 {
1782 	struct amdgpu_bo_va *bo_va, *tmp;
1783 
1784 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1785 		if (!bo_va->base.bo)
1786 			continue;
1787 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1788 				gtt_mem, cpu_mem);
1789 	}
1790 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1791 		if (!bo_va->base.bo)
1792 			continue;
1793 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1794 				gtt_mem, cpu_mem);
1795 	}
1796 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1797 		if (!bo_va->base.bo)
1798 			continue;
1799 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1800 				gtt_mem, cpu_mem);
1801 	}
1802 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1803 		if (!bo_va->base.bo)
1804 			continue;
1805 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1806 				gtt_mem, cpu_mem);
1807 	}
1808 	spin_lock(&vm->invalidated_lock);
1809 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1810 		if (!bo_va->base.bo)
1811 			continue;
1812 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1813 				gtt_mem, cpu_mem);
1814 	}
1815 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1816 		if (!bo_va->base.bo)
1817 			continue;
1818 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1819 				gtt_mem, cpu_mem);
1820 	}
1821 	spin_unlock(&vm->invalidated_lock);
1822 }
1823 /**
1824  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1825  *
1826  * @adev: amdgpu_device pointer
1827  * @bo_va: requested BO and VM object
1828  * @clear: if true clear the entries
1829  * @table_freed: return true if page table is freed
1830  *
1831  * Fill in the page table entries for @bo_va.
1832  *
1833  * Returns:
1834  * 0 for success, -EINVAL for failure.
1835  */
1836 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1837 			bool clear, bool *table_freed)
1838 {
1839 	struct amdgpu_bo *bo = bo_va->base.bo;
1840 	struct amdgpu_vm *vm = bo_va->base.vm;
1841 	struct amdgpu_bo_va_mapping *mapping;
1842 	dma_addr_t *pages_addr = NULL;
1843 	struct ttm_resource *mem;
1844 	struct dma_fence **last_update;
1845 	struct dma_resv *resv;
1846 	uint64_t flags;
1847 	struct amdgpu_device *bo_adev = adev;
1848 	int r;
1849 
1850 	if (clear || !bo) {
1851 		mem = NULL;
1852 		resv = vm->root.base.bo->tbo.base.resv;
1853 	} else {
1854 		struct drm_gem_object *obj = &bo->tbo.base;
1855 
1856 		resv = bo->tbo.base.resv;
1857 		if (obj->import_attach && bo_va->is_xgmi) {
1858 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1859 			struct drm_gem_object *gobj = dma_buf->priv;
1860 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1861 
1862 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1863 				bo = gem_to_amdgpu_bo(gobj);
1864 		}
1865 		mem = &bo->tbo.mem;
1866 		if (mem->mem_type == TTM_PL_TT ||
1867 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1868 			pages_addr = bo->tbo.ttm->dma_address;
1869 	}
1870 
1871 	if (bo) {
1872 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1873 
1874 		if (amdgpu_bo_encrypted(bo))
1875 			flags |= AMDGPU_PTE_TMZ;
1876 
1877 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1878 	} else {
1879 		flags = 0x0;
1880 	}
1881 
1882 	if (clear || (bo && bo->tbo.base.resv ==
1883 		      vm->root.base.bo->tbo.base.resv))
1884 		last_update = &vm->last_update;
1885 	else
1886 		last_update = &bo_va->last_pt_update;
1887 
1888 	if (!clear && bo_va->base.moved) {
1889 		bo_va->base.moved = false;
1890 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1891 
1892 	} else if (bo_va->cleared != clear) {
1893 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1894 	}
1895 
1896 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1897 		uint64_t update_flags = flags;
1898 
1899 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1900 		 * but in case of something, we filter the flags in first place
1901 		 */
1902 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1903 			update_flags &= ~AMDGPU_PTE_READABLE;
1904 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1905 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1906 
1907 		/* Apply ASIC specific mapping flags */
1908 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1909 
1910 		trace_amdgpu_vm_bo_update(mapping);
1911 
1912 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1913 						resv, mapping->start,
1914 						mapping->last, update_flags,
1915 						mapping->offset, mem,
1916 						pages_addr, last_update, table_freed);
1917 		if (r)
1918 			return r;
1919 	}
1920 
1921 	/* If the BO is not in its preferred location add it back to
1922 	 * the evicted list so that it gets validated again on the
1923 	 * next command submission.
1924 	 */
1925 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1926 		uint32_t mem_type = bo->tbo.mem.mem_type;
1927 
1928 		if (!(bo->preferred_domains &
1929 		      amdgpu_mem_type_to_domain(mem_type)))
1930 			amdgpu_vm_bo_evicted(&bo_va->base);
1931 		else
1932 			amdgpu_vm_bo_idle(&bo_va->base);
1933 	} else {
1934 		amdgpu_vm_bo_done(&bo_va->base);
1935 	}
1936 
1937 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1938 	bo_va->cleared = clear;
1939 
1940 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1941 		list_for_each_entry(mapping, &bo_va->valids, list)
1942 			trace_amdgpu_vm_bo_mapping(mapping);
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 /**
1949  * amdgpu_vm_update_prt_state - update the global PRT state
1950  *
1951  * @adev: amdgpu_device pointer
1952  */
1953 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1954 {
1955 	unsigned long flags;
1956 	bool enable;
1957 
1958 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1959 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1960 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1961 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1962 }
1963 
1964 /**
1965  * amdgpu_vm_prt_get - add a PRT user
1966  *
1967  * @adev: amdgpu_device pointer
1968  */
1969 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1970 {
1971 	if (!adev->gmc.gmc_funcs->set_prt)
1972 		return;
1973 
1974 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1975 		amdgpu_vm_update_prt_state(adev);
1976 }
1977 
1978 /**
1979  * amdgpu_vm_prt_put - drop a PRT user
1980  *
1981  * @adev: amdgpu_device pointer
1982  */
1983 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1984 {
1985 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1986 		amdgpu_vm_update_prt_state(adev);
1987 }
1988 
1989 /**
1990  * amdgpu_vm_prt_cb - callback for updating the PRT status
1991  *
1992  * @fence: fence for the callback
1993  * @_cb: the callback function
1994  */
1995 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1996 {
1997 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1998 
1999 	amdgpu_vm_prt_put(cb->adev);
2000 	kfree(cb);
2001 }
2002 
2003 /**
2004  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2005  *
2006  * @adev: amdgpu_device pointer
2007  * @fence: fence for the callback
2008  */
2009 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2010 				 struct dma_fence *fence)
2011 {
2012 	struct amdgpu_prt_cb *cb;
2013 
2014 	if (!adev->gmc.gmc_funcs->set_prt)
2015 		return;
2016 
2017 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2018 	if (!cb) {
2019 		/* Last resort when we are OOM */
2020 		if (fence)
2021 			dma_fence_wait(fence, false);
2022 
2023 		amdgpu_vm_prt_put(adev);
2024 	} else {
2025 		cb->adev = adev;
2026 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2027 						     amdgpu_vm_prt_cb))
2028 			amdgpu_vm_prt_cb(fence, &cb->cb);
2029 	}
2030 }
2031 
2032 /**
2033  * amdgpu_vm_free_mapping - free a mapping
2034  *
2035  * @adev: amdgpu_device pointer
2036  * @vm: requested vm
2037  * @mapping: mapping to be freed
2038  * @fence: fence of the unmap operation
2039  *
2040  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2041  */
2042 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2043 				   struct amdgpu_vm *vm,
2044 				   struct amdgpu_bo_va_mapping *mapping,
2045 				   struct dma_fence *fence)
2046 {
2047 	if (mapping->flags & AMDGPU_PTE_PRT)
2048 		amdgpu_vm_add_prt_cb(adev, fence);
2049 	kfree(mapping);
2050 }
2051 
2052 /**
2053  * amdgpu_vm_prt_fini - finish all prt mappings
2054  *
2055  * @adev: amdgpu_device pointer
2056  * @vm: requested vm
2057  *
2058  * Register a cleanup callback to disable PRT support after VM dies.
2059  */
2060 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2061 {
2062 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2063 	struct dma_fence *excl, **shared;
2064 	unsigned i, shared_count;
2065 	int r;
2066 
2067 	r = dma_resv_get_fences_rcu(resv, &excl,
2068 					      &shared_count, &shared);
2069 	if (r) {
2070 		/* Not enough memory to grab the fence list, as last resort
2071 		 * block for all the fences to complete.
2072 		 */
2073 		dma_resv_wait_timeout_rcu(resv, true, false,
2074 						    MAX_SCHEDULE_TIMEOUT);
2075 		return;
2076 	}
2077 
2078 	/* Add a callback for each fence in the reservation object */
2079 	amdgpu_vm_prt_get(adev);
2080 	amdgpu_vm_add_prt_cb(adev, excl);
2081 
2082 	for (i = 0; i < shared_count; ++i) {
2083 		amdgpu_vm_prt_get(adev);
2084 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2085 	}
2086 
2087 	kfree(shared);
2088 }
2089 
2090 /**
2091  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2092  *
2093  * @adev: amdgpu_device pointer
2094  * @vm: requested vm
2095  * @fence: optional resulting fence (unchanged if no work needed to be done
2096  * or if an error occurred)
2097  *
2098  * Make sure all freed BOs are cleared in the PT.
2099  * PTs have to be reserved and mutex must be locked!
2100  *
2101  * Returns:
2102  * 0 for success.
2103  *
2104  */
2105 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2106 			  struct amdgpu_vm *vm,
2107 			  struct dma_fence **fence)
2108 {
2109 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2110 	struct amdgpu_bo_va_mapping *mapping;
2111 	uint64_t init_pte_value = 0;
2112 	struct dma_fence *f = NULL;
2113 	int r;
2114 
2115 	while (!list_empty(&vm->freed)) {
2116 		mapping = list_first_entry(&vm->freed,
2117 			struct amdgpu_bo_va_mapping, list);
2118 		list_del(&mapping->list);
2119 
2120 		if (vm->pte_support_ats &&
2121 		    mapping->start < AMDGPU_GMC_HOLE_START)
2122 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2123 
2124 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2125 						resv, mapping->start,
2126 						mapping->last, init_pte_value,
2127 						0, NULL, NULL, &f, NULL);
2128 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2129 		if (r) {
2130 			dma_fence_put(f);
2131 			return r;
2132 		}
2133 	}
2134 
2135 	if (fence && f) {
2136 		dma_fence_put(*fence);
2137 		*fence = f;
2138 	} else {
2139 		dma_fence_put(f);
2140 	}
2141 
2142 	return 0;
2143 
2144 }
2145 
2146 /**
2147  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2148  *
2149  * @adev: amdgpu_device pointer
2150  * @vm: requested vm
2151  *
2152  * Make sure all BOs which are moved are updated in the PTs.
2153  *
2154  * Returns:
2155  * 0 for success.
2156  *
2157  * PTs have to be reserved!
2158  */
2159 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2160 			   struct amdgpu_vm *vm)
2161 {
2162 	struct amdgpu_bo_va *bo_va, *tmp;
2163 	struct dma_resv *resv;
2164 	bool clear;
2165 	int r;
2166 
2167 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2168 		/* Per VM BOs never need to bo cleared in the page tables */
2169 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2170 		if (r)
2171 			return r;
2172 	}
2173 
2174 	spin_lock(&vm->invalidated_lock);
2175 	while (!list_empty(&vm->invalidated)) {
2176 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2177 					 base.vm_status);
2178 		resv = bo_va->base.bo->tbo.base.resv;
2179 		spin_unlock(&vm->invalidated_lock);
2180 
2181 		/* Try to reserve the BO to avoid clearing its ptes */
2182 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2183 			clear = false;
2184 		/* Somebody else is using the BO right now */
2185 		else
2186 			clear = true;
2187 
2188 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2189 		if (r)
2190 			return r;
2191 
2192 		if (!clear)
2193 			dma_resv_unlock(resv);
2194 		spin_lock(&vm->invalidated_lock);
2195 	}
2196 	spin_unlock(&vm->invalidated_lock);
2197 
2198 	return 0;
2199 }
2200 
2201 /**
2202  * amdgpu_vm_bo_add - add a bo to a specific vm
2203  *
2204  * @adev: amdgpu_device pointer
2205  * @vm: requested vm
2206  * @bo: amdgpu buffer object
2207  *
2208  * Add @bo into the requested vm.
2209  * Add @bo to the list of bos associated with the vm
2210  *
2211  * Returns:
2212  * Newly added bo_va or NULL for failure
2213  *
2214  * Object has to be reserved!
2215  */
2216 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2217 				      struct amdgpu_vm *vm,
2218 				      struct amdgpu_bo *bo)
2219 {
2220 	struct amdgpu_bo_va *bo_va;
2221 
2222 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2223 	if (bo_va == NULL) {
2224 		return NULL;
2225 	}
2226 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2227 
2228 	bo_va->ref_count = 1;
2229 	INIT_LIST_HEAD(&bo_va->valids);
2230 	INIT_LIST_HEAD(&bo_va->invalids);
2231 
2232 	if (!bo)
2233 		return bo_va;
2234 
2235 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2236 		bo_va->is_xgmi = true;
2237 		/* Power up XGMI if it can be potentially used */
2238 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2239 	}
2240 
2241 	return bo_va;
2242 }
2243 
2244 
2245 /**
2246  * amdgpu_vm_bo_insert_map - insert a new mapping
2247  *
2248  * @adev: amdgpu_device pointer
2249  * @bo_va: bo_va to store the address
2250  * @mapping: the mapping to insert
2251  *
2252  * Insert a new mapping into all structures.
2253  */
2254 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2255 				    struct amdgpu_bo_va *bo_va,
2256 				    struct amdgpu_bo_va_mapping *mapping)
2257 {
2258 	struct amdgpu_vm *vm = bo_va->base.vm;
2259 	struct amdgpu_bo *bo = bo_va->base.bo;
2260 
2261 	mapping->bo_va = bo_va;
2262 	list_add(&mapping->list, &bo_va->invalids);
2263 	amdgpu_vm_it_insert(mapping, &vm->va);
2264 
2265 	if (mapping->flags & AMDGPU_PTE_PRT)
2266 		amdgpu_vm_prt_get(adev);
2267 
2268 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2269 	    !bo_va->base.moved) {
2270 		list_move(&bo_va->base.vm_status, &vm->moved);
2271 	}
2272 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2273 }
2274 
2275 /**
2276  * amdgpu_vm_bo_map - map bo inside a vm
2277  *
2278  * @adev: amdgpu_device pointer
2279  * @bo_va: bo_va to store the address
2280  * @saddr: where to map the BO
2281  * @offset: requested offset in the BO
2282  * @size: BO size in bytes
2283  * @flags: attributes of pages (read/write/valid/etc.)
2284  *
2285  * Add a mapping of the BO at the specefied addr into the VM.
2286  *
2287  * Returns:
2288  * 0 for success, error for failure.
2289  *
2290  * Object has to be reserved and unreserved outside!
2291  */
2292 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2293 		     struct amdgpu_bo_va *bo_va,
2294 		     uint64_t saddr, uint64_t offset,
2295 		     uint64_t size, uint64_t flags)
2296 {
2297 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2298 	struct amdgpu_bo *bo = bo_va->base.bo;
2299 	struct amdgpu_vm *vm = bo_va->base.vm;
2300 	uint64_t eaddr;
2301 
2302 	/* validate the parameters */
2303 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2304 	    size == 0 || size & ~PAGE_MASK)
2305 		return -EINVAL;
2306 
2307 	/* make sure object fit at this offset */
2308 	eaddr = saddr + size - 1;
2309 	if (saddr >= eaddr ||
2310 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2311 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2312 		return -EINVAL;
2313 
2314 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2315 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2316 
2317 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2318 	if (tmp) {
2319 		/* bo and tmp overlap, invalid addr */
2320 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2321 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2322 			tmp->start, tmp->last + 1);
2323 		return -EINVAL;
2324 	}
2325 
2326 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2327 	if (!mapping)
2328 		return -ENOMEM;
2329 
2330 	mapping->start = saddr;
2331 	mapping->last = eaddr;
2332 	mapping->offset = offset;
2333 	mapping->flags = flags;
2334 
2335 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2336 
2337 	return 0;
2338 }
2339 
2340 /**
2341  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2342  *
2343  * @adev: amdgpu_device pointer
2344  * @bo_va: bo_va to store the address
2345  * @saddr: where to map the BO
2346  * @offset: requested offset in the BO
2347  * @size: BO size in bytes
2348  * @flags: attributes of pages (read/write/valid/etc.)
2349  *
2350  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2351  * mappings as we do so.
2352  *
2353  * Returns:
2354  * 0 for success, error for failure.
2355  *
2356  * Object has to be reserved and unreserved outside!
2357  */
2358 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2359 			     struct amdgpu_bo_va *bo_va,
2360 			     uint64_t saddr, uint64_t offset,
2361 			     uint64_t size, uint64_t flags)
2362 {
2363 	struct amdgpu_bo_va_mapping *mapping;
2364 	struct amdgpu_bo *bo = bo_va->base.bo;
2365 	uint64_t eaddr;
2366 	int r;
2367 
2368 	/* validate the parameters */
2369 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2370 	    size == 0 || size & ~PAGE_MASK)
2371 		return -EINVAL;
2372 
2373 	/* make sure object fit at this offset */
2374 	eaddr = saddr + size - 1;
2375 	if (saddr >= eaddr ||
2376 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2377 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2378 		return -EINVAL;
2379 
2380 	/* Allocate all the needed memory */
2381 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2382 	if (!mapping)
2383 		return -ENOMEM;
2384 
2385 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2386 	if (r) {
2387 		kfree(mapping);
2388 		return r;
2389 	}
2390 
2391 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2392 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2393 
2394 	mapping->start = saddr;
2395 	mapping->last = eaddr;
2396 	mapping->offset = offset;
2397 	mapping->flags = flags;
2398 
2399 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2400 
2401 	return 0;
2402 }
2403 
2404 /**
2405  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2406  *
2407  * @adev: amdgpu_device pointer
2408  * @bo_va: bo_va to remove the address from
2409  * @saddr: where to the BO is mapped
2410  *
2411  * Remove a mapping of the BO at the specefied addr from the VM.
2412  *
2413  * Returns:
2414  * 0 for success, error for failure.
2415  *
2416  * Object has to be reserved and unreserved outside!
2417  */
2418 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2419 		       struct amdgpu_bo_va *bo_va,
2420 		       uint64_t saddr)
2421 {
2422 	struct amdgpu_bo_va_mapping *mapping;
2423 	struct amdgpu_vm *vm = bo_va->base.vm;
2424 	bool valid = true;
2425 
2426 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2427 
2428 	list_for_each_entry(mapping, &bo_va->valids, list) {
2429 		if (mapping->start == saddr)
2430 			break;
2431 	}
2432 
2433 	if (&mapping->list == &bo_va->valids) {
2434 		valid = false;
2435 
2436 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2437 			if (mapping->start == saddr)
2438 				break;
2439 		}
2440 
2441 		if (&mapping->list == &bo_va->invalids)
2442 			return -ENOENT;
2443 	}
2444 
2445 	list_del(&mapping->list);
2446 	amdgpu_vm_it_remove(mapping, &vm->va);
2447 	mapping->bo_va = NULL;
2448 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2449 
2450 	if (valid)
2451 		list_add(&mapping->list, &vm->freed);
2452 	else
2453 		amdgpu_vm_free_mapping(adev, vm, mapping,
2454 				       bo_va->last_pt_update);
2455 
2456 	return 0;
2457 }
2458 
2459 /**
2460  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2461  *
2462  * @adev: amdgpu_device pointer
2463  * @vm: VM structure to use
2464  * @saddr: start of the range
2465  * @size: size of the range
2466  *
2467  * Remove all mappings in a range, split them as appropriate.
2468  *
2469  * Returns:
2470  * 0 for success, error for failure.
2471  */
2472 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2473 				struct amdgpu_vm *vm,
2474 				uint64_t saddr, uint64_t size)
2475 {
2476 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2477 	LIST_HEAD(removed);
2478 	uint64_t eaddr;
2479 
2480 	eaddr = saddr + size - 1;
2481 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2482 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2483 
2484 	/* Allocate all the needed memory */
2485 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2486 	if (!before)
2487 		return -ENOMEM;
2488 	INIT_LIST_HEAD(&before->list);
2489 
2490 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2491 	if (!after) {
2492 		kfree(before);
2493 		return -ENOMEM;
2494 	}
2495 	INIT_LIST_HEAD(&after->list);
2496 
2497 	/* Now gather all removed mappings */
2498 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2499 	while (tmp) {
2500 		/* Remember mapping split at the start */
2501 		if (tmp->start < saddr) {
2502 			before->start = tmp->start;
2503 			before->last = saddr - 1;
2504 			before->offset = tmp->offset;
2505 			before->flags = tmp->flags;
2506 			before->bo_va = tmp->bo_va;
2507 			list_add(&before->list, &tmp->bo_va->invalids);
2508 		}
2509 
2510 		/* Remember mapping split at the end */
2511 		if (tmp->last > eaddr) {
2512 			after->start = eaddr + 1;
2513 			after->last = tmp->last;
2514 			after->offset = tmp->offset;
2515 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2516 			after->flags = tmp->flags;
2517 			after->bo_va = tmp->bo_va;
2518 			list_add(&after->list, &tmp->bo_va->invalids);
2519 		}
2520 
2521 		list_del(&tmp->list);
2522 		list_add(&tmp->list, &removed);
2523 
2524 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2525 	}
2526 
2527 	/* And free them up */
2528 	list_for_each_entry_safe(tmp, next, &removed, list) {
2529 		amdgpu_vm_it_remove(tmp, &vm->va);
2530 		list_del(&tmp->list);
2531 
2532 		if (tmp->start < saddr)
2533 		    tmp->start = saddr;
2534 		if (tmp->last > eaddr)
2535 		    tmp->last = eaddr;
2536 
2537 		tmp->bo_va = NULL;
2538 		list_add(&tmp->list, &vm->freed);
2539 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2540 	}
2541 
2542 	/* Insert partial mapping before the range */
2543 	if (!list_empty(&before->list)) {
2544 		amdgpu_vm_it_insert(before, &vm->va);
2545 		if (before->flags & AMDGPU_PTE_PRT)
2546 			amdgpu_vm_prt_get(adev);
2547 	} else {
2548 		kfree(before);
2549 	}
2550 
2551 	/* Insert partial mapping after the range */
2552 	if (!list_empty(&after->list)) {
2553 		amdgpu_vm_it_insert(after, &vm->va);
2554 		if (after->flags & AMDGPU_PTE_PRT)
2555 			amdgpu_vm_prt_get(adev);
2556 	} else {
2557 		kfree(after);
2558 	}
2559 
2560 	return 0;
2561 }
2562 
2563 /**
2564  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2565  *
2566  * @vm: the requested VM
2567  * @addr: the address
2568  *
2569  * Find a mapping by it's address.
2570  *
2571  * Returns:
2572  * The amdgpu_bo_va_mapping matching for addr or NULL
2573  *
2574  */
2575 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2576 							 uint64_t addr)
2577 {
2578 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2579 }
2580 
2581 /**
2582  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2583  *
2584  * @vm: the requested vm
2585  * @ticket: CS ticket
2586  *
2587  * Trace all mappings of BOs reserved during a command submission.
2588  */
2589 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2590 {
2591 	struct amdgpu_bo_va_mapping *mapping;
2592 
2593 	if (!trace_amdgpu_vm_bo_cs_enabled())
2594 		return;
2595 
2596 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2597 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2598 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2599 			struct amdgpu_bo *bo;
2600 
2601 			bo = mapping->bo_va->base.bo;
2602 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2603 			    ticket)
2604 				continue;
2605 		}
2606 
2607 		trace_amdgpu_vm_bo_cs(mapping);
2608 	}
2609 }
2610 
2611 /**
2612  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2613  *
2614  * @adev: amdgpu_device pointer
2615  * @bo_va: requested bo_va
2616  *
2617  * Remove @bo_va->bo from the requested vm.
2618  *
2619  * Object have to be reserved!
2620  */
2621 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2622 		      struct amdgpu_bo_va *bo_va)
2623 {
2624 	struct amdgpu_bo_va_mapping *mapping, *next;
2625 	struct amdgpu_bo *bo = bo_va->base.bo;
2626 	struct amdgpu_vm *vm = bo_va->base.vm;
2627 	struct amdgpu_vm_bo_base **base;
2628 
2629 	if (bo) {
2630 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2631 			vm->bulk_moveable = false;
2632 
2633 		for (base = &bo_va->base.bo->vm_bo; *base;
2634 		     base = &(*base)->next) {
2635 			if (*base != &bo_va->base)
2636 				continue;
2637 
2638 			*base = bo_va->base.next;
2639 			break;
2640 		}
2641 	}
2642 
2643 	spin_lock(&vm->invalidated_lock);
2644 	list_del(&bo_va->base.vm_status);
2645 	spin_unlock(&vm->invalidated_lock);
2646 
2647 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2648 		list_del(&mapping->list);
2649 		amdgpu_vm_it_remove(mapping, &vm->va);
2650 		mapping->bo_va = NULL;
2651 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2652 		list_add(&mapping->list, &vm->freed);
2653 	}
2654 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2655 		list_del(&mapping->list);
2656 		amdgpu_vm_it_remove(mapping, &vm->va);
2657 		amdgpu_vm_free_mapping(adev, vm, mapping,
2658 				       bo_va->last_pt_update);
2659 	}
2660 
2661 	dma_fence_put(bo_va->last_pt_update);
2662 
2663 	if (bo && bo_va->is_xgmi)
2664 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2665 
2666 	kfree(bo_va);
2667 }
2668 
2669 /**
2670  * amdgpu_vm_evictable - check if we can evict a VM
2671  *
2672  * @bo: A page table of the VM.
2673  *
2674  * Check if it is possible to evict a VM.
2675  */
2676 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2677 {
2678 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2679 
2680 	/* Page tables of a destroyed VM can go away immediately */
2681 	if (!bo_base || !bo_base->vm)
2682 		return true;
2683 
2684 	/* Don't evict VM page tables while they are busy */
2685 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2686 		return false;
2687 
2688 	/* Try to block ongoing updates */
2689 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2690 		return false;
2691 
2692 	/* Don't evict VM page tables while they are updated */
2693 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2694 		amdgpu_vm_eviction_unlock(bo_base->vm);
2695 		return false;
2696 	}
2697 
2698 	bo_base->vm->evicting = true;
2699 	amdgpu_vm_eviction_unlock(bo_base->vm);
2700 	return true;
2701 }
2702 
2703 /**
2704  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2705  *
2706  * @adev: amdgpu_device pointer
2707  * @bo: amdgpu buffer object
2708  * @evicted: is the BO evicted
2709  *
2710  * Mark @bo as invalid.
2711  */
2712 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2713 			     struct amdgpu_bo *bo, bool evicted)
2714 {
2715 	struct amdgpu_vm_bo_base *bo_base;
2716 
2717 	/* shadow bo doesn't have bo base, its validation needs its parent */
2718 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2719 		bo = bo->parent;
2720 
2721 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2722 		struct amdgpu_vm *vm = bo_base->vm;
2723 
2724 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2725 			amdgpu_vm_bo_evicted(bo_base);
2726 			continue;
2727 		}
2728 
2729 		if (bo_base->moved)
2730 			continue;
2731 		bo_base->moved = true;
2732 
2733 		if (bo->tbo.type == ttm_bo_type_kernel)
2734 			amdgpu_vm_bo_relocated(bo_base);
2735 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2736 			amdgpu_vm_bo_moved(bo_base);
2737 		else
2738 			amdgpu_vm_bo_invalidated(bo_base);
2739 	}
2740 }
2741 
2742 /**
2743  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2744  *
2745  * @vm_size: VM size
2746  *
2747  * Returns:
2748  * VM page table as power of two
2749  */
2750 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2751 {
2752 	/* Total bits covered by PD + PTs */
2753 	unsigned bits = ilog2(vm_size) + 18;
2754 
2755 	/* Make sure the PD is 4K in size up to 8GB address space.
2756 	   Above that split equal between PD and PTs */
2757 	if (vm_size <= 8)
2758 		return (bits - 9);
2759 	else
2760 		return ((bits + 3) / 2);
2761 }
2762 
2763 /**
2764  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2765  *
2766  * @adev: amdgpu_device pointer
2767  * @min_vm_size: the minimum vm size in GB if it's set auto
2768  * @fragment_size_default: Default PTE fragment size
2769  * @max_level: max VMPT level
2770  * @max_bits: max address space size in bits
2771  *
2772  */
2773 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2774 			   uint32_t fragment_size_default, unsigned max_level,
2775 			   unsigned max_bits)
2776 {
2777 	unsigned int max_size = 1 << (max_bits - 30);
2778 	unsigned int vm_size;
2779 	uint64_t tmp;
2780 
2781 	/* adjust vm size first */
2782 	if (amdgpu_vm_size != -1) {
2783 		vm_size = amdgpu_vm_size;
2784 		if (vm_size > max_size) {
2785 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2786 				 amdgpu_vm_size, max_size);
2787 			vm_size = max_size;
2788 		}
2789 	} else {
2790 		struct sysinfo si;
2791 		unsigned int phys_ram_gb;
2792 
2793 		/* Optimal VM size depends on the amount of physical
2794 		 * RAM available. Underlying requirements and
2795 		 * assumptions:
2796 		 *
2797 		 *  - Need to map system memory and VRAM from all GPUs
2798 		 *     - VRAM from other GPUs not known here
2799 		 *     - Assume VRAM <= system memory
2800 		 *  - On GFX8 and older, VM space can be segmented for
2801 		 *    different MTYPEs
2802 		 *  - Need to allow room for fragmentation, guard pages etc.
2803 		 *
2804 		 * This adds up to a rough guess of system memory x3.
2805 		 * Round up to power of two to maximize the available
2806 		 * VM size with the given page table size.
2807 		 */
2808 		si_meminfo(&si);
2809 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2810 			       (1 << 30) - 1) >> 30;
2811 		vm_size = roundup_pow_of_two(
2812 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2813 	}
2814 
2815 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2816 
2817 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2818 	if (amdgpu_vm_block_size != -1)
2819 		tmp >>= amdgpu_vm_block_size - 9;
2820 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2821 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2822 	switch (adev->vm_manager.num_level) {
2823 	case 3:
2824 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2825 		break;
2826 	case 2:
2827 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2828 		break;
2829 	case 1:
2830 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2831 		break;
2832 	default:
2833 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2834 	}
2835 	/* block size depends on vm size and hw setup*/
2836 	if (amdgpu_vm_block_size != -1)
2837 		adev->vm_manager.block_size =
2838 			min((unsigned)amdgpu_vm_block_size, max_bits
2839 			    - AMDGPU_GPU_PAGE_SHIFT
2840 			    - 9 * adev->vm_manager.num_level);
2841 	else if (adev->vm_manager.num_level > 1)
2842 		adev->vm_manager.block_size = 9;
2843 	else
2844 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2845 
2846 	if (amdgpu_vm_fragment_size == -1)
2847 		adev->vm_manager.fragment_size = fragment_size_default;
2848 	else
2849 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2850 
2851 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2852 		 vm_size, adev->vm_manager.num_level + 1,
2853 		 adev->vm_manager.block_size,
2854 		 adev->vm_manager.fragment_size);
2855 }
2856 
2857 /**
2858  * amdgpu_vm_wait_idle - wait for the VM to become idle
2859  *
2860  * @vm: VM object to wait for
2861  * @timeout: timeout to wait for VM to become idle
2862  */
2863 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2864 {
2865 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2866 					    true, true, timeout);
2867 	if (timeout <= 0)
2868 		return timeout;
2869 
2870 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2871 }
2872 
2873 /**
2874  * amdgpu_vm_init - initialize a vm instance
2875  *
2876  * @adev: amdgpu_device pointer
2877  * @vm: requested vm
2878  * @pasid: Process address space identifier
2879  *
2880  * Init @vm fields.
2881  *
2882  * Returns:
2883  * 0 for success, error for failure.
2884  */
2885 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid)
2886 {
2887 	struct amdgpu_bo *root_bo;
2888 	struct amdgpu_bo_vm *root;
2889 	int r, i;
2890 
2891 	vm->va = RB_ROOT_CACHED;
2892 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2893 		vm->reserved_vmid[i] = NULL;
2894 	INIT_LIST_HEAD(&vm->evicted);
2895 	INIT_LIST_HEAD(&vm->relocated);
2896 	INIT_LIST_HEAD(&vm->moved);
2897 	INIT_LIST_HEAD(&vm->idle);
2898 	INIT_LIST_HEAD(&vm->invalidated);
2899 	spin_lock_init(&vm->invalidated_lock);
2900 	INIT_LIST_HEAD(&vm->freed);
2901 	INIT_LIST_HEAD(&vm->done);
2902 
2903 	/* create scheduler entities for page table updates */
2904 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2905 				  adev->vm_manager.vm_pte_scheds,
2906 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2907 	if (r)
2908 		return r;
2909 
2910 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2911 				  adev->vm_manager.vm_pte_scheds,
2912 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2913 	if (r)
2914 		goto error_free_immediate;
2915 
2916 	vm->pte_support_ats = false;
2917 	vm->is_compute_context = false;
2918 
2919 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2920 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2921 
2922 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2923 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2924 	WARN_ONCE((vm->use_cpu_for_update &&
2925 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2926 		  "CPU update of VM recommended only for large BAR system\n");
2927 
2928 	if (vm->use_cpu_for_update)
2929 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2930 	else
2931 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2932 	vm->last_update = NULL;
2933 	vm->last_unlocked = dma_fence_get_stub();
2934 
2935 	mutex_init(&vm->eviction_lock);
2936 	vm->evicting = false;
2937 
2938 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2939 				false, &root);
2940 	if (r)
2941 		goto error_free_delayed;
2942 	root_bo = &root->bo;
2943 	r = amdgpu_bo_reserve(root_bo, true);
2944 	if (r)
2945 		goto error_free_root;
2946 
2947 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2948 	if (r)
2949 		goto error_unreserve;
2950 
2951 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root_bo);
2952 
2953 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2954 	if (r)
2955 		goto error_unreserve;
2956 
2957 	amdgpu_bo_unreserve(vm->root.base.bo);
2958 
2959 	if (pasid) {
2960 		unsigned long flags;
2961 
2962 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2963 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2964 			      GFP_ATOMIC);
2965 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2966 		if (r < 0)
2967 			goto error_free_root;
2968 
2969 		vm->pasid = pasid;
2970 	}
2971 
2972 	INIT_KFIFO(vm->faults);
2973 
2974 	return 0;
2975 
2976 error_unreserve:
2977 	amdgpu_bo_unreserve(vm->root.base.bo);
2978 
2979 error_free_root:
2980 	amdgpu_bo_unref(&root->shadow);
2981 	amdgpu_bo_unref(&root_bo);
2982 	vm->root.base.bo = NULL;
2983 
2984 error_free_delayed:
2985 	dma_fence_put(vm->last_unlocked);
2986 	drm_sched_entity_destroy(&vm->delayed);
2987 
2988 error_free_immediate:
2989 	drm_sched_entity_destroy(&vm->immediate);
2990 
2991 	return r;
2992 }
2993 
2994 /**
2995  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2996  *
2997  * @adev: amdgpu_device pointer
2998  * @vm: the VM to check
2999  *
3000  * check all entries of the root PD, if any subsequent PDs are allocated,
3001  * it means there are page table creating and filling, and is no a clean
3002  * VM
3003  *
3004  * Returns:
3005  *	0 if this VM is clean
3006  */
3007 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3008 	struct amdgpu_vm *vm)
3009 {
3010 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3011 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3012 	unsigned int i = 0;
3013 
3014 	if (!(vm->root.entries))
3015 		return 0;
3016 
3017 	for (i = 0; i < entries; i++) {
3018 		if (vm->root.entries[i].base.bo)
3019 			return -EINVAL;
3020 	}
3021 
3022 	return 0;
3023 }
3024 
3025 /**
3026  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3027  *
3028  * @adev: amdgpu_device pointer
3029  * @vm: requested vm
3030  * @pasid: pasid to use
3031  *
3032  * This only works on GFX VMs that don't have any BOs added and no
3033  * page tables allocated yet.
3034  *
3035  * Changes the following VM parameters:
3036  * - use_cpu_for_update
3037  * - pte_supports_ats
3038  * - pasid (old PASID is released, because compute manages its own PASIDs)
3039  *
3040  * Reinitializes the page directory to reflect the changed ATS
3041  * setting.
3042  *
3043  * Returns:
3044  * 0 for success, -errno for errors.
3045  */
3046 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
3047 			   u32 pasid)
3048 {
3049 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3050 	int r;
3051 
3052 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
3053 	if (r)
3054 		return r;
3055 
3056 	/* Sanity checks */
3057 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3058 	if (r)
3059 		goto unreserve_bo;
3060 
3061 	if (pasid) {
3062 		unsigned long flags;
3063 
3064 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3065 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3066 			      GFP_ATOMIC);
3067 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3068 
3069 		if (r == -ENOSPC)
3070 			goto unreserve_bo;
3071 		r = 0;
3072 	}
3073 
3074 	/* Check if PD needs to be reinitialized and do it before
3075 	 * changing any other state, in case it fails.
3076 	 */
3077 	if (pte_support_ats != vm->pte_support_ats) {
3078 		vm->pte_support_ats = pte_support_ats;
3079 		r = amdgpu_vm_clear_bo(adev, vm,
3080 				       to_amdgpu_bo_vm(vm->root.base.bo),
3081 				       false);
3082 		if (r)
3083 			goto free_idr;
3084 	}
3085 
3086 	/* Update VM state */
3087 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3088 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3089 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3090 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3091 	WARN_ONCE((vm->use_cpu_for_update &&
3092 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3093 		  "CPU update of VM recommended only for large BAR system\n");
3094 
3095 	if (vm->use_cpu_for_update) {
3096 		/* Sync with last SDMA update/clear before switching to CPU */
3097 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3098 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3099 		if (r)
3100 			goto free_idr;
3101 
3102 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3103 	} else {
3104 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3105 	}
3106 	dma_fence_put(vm->last_update);
3107 	vm->last_update = NULL;
3108 	vm->is_compute_context = true;
3109 
3110 	if (vm->pasid) {
3111 		unsigned long flags;
3112 
3113 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3114 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3115 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3116 
3117 		/* Free the original amdgpu allocated pasid
3118 		 * Will be replaced with kfd allocated pasid
3119 		 */
3120 		amdgpu_pasid_free(vm->pasid);
3121 		vm->pasid = 0;
3122 	}
3123 
3124 	/* Free the shadow bo for compute VM */
3125 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.base.bo)->shadow);
3126 
3127 	if (pasid)
3128 		vm->pasid = pasid;
3129 
3130 	goto unreserve_bo;
3131 
3132 free_idr:
3133 	if (pasid) {
3134 		unsigned long flags;
3135 
3136 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3137 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3138 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3139 	}
3140 unreserve_bo:
3141 	amdgpu_bo_unreserve(vm->root.base.bo);
3142 	return r;
3143 }
3144 
3145 /**
3146  * amdgpu_vm_release_compute - release a compute vm
3147  * @adev: amdgpu_device pointer
3148  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3149  *
3150  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3151  * pasid from vm. Compute should stop use of vm after this call.
3152  */
3153 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3154 {
3155 	if (vm->pasid) {
3156 		unsigned long flags;
3157 
3158 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3159 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3160 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3161 	}
3162 	vm->pasid = 0;
3163 	vm->is_compute_context = false;
3164 }
3165 
3166 /**
3167  * amdgpu_vm_fini - tear down a vm instance
3168  *
3169  * @adev: amdgpu_device pointer
3170  * @vm: requested vm
3171  *
3172  * Tear down @vm.
3173  * Unbind the VM and remove all bos from the vm bo list
3174  */
3175 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3176 {
3177 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3178 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3179 	struct amdgpu_bo *root;
3180 	int i;
3181 
3182 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3183 
3184 	root = amdgpu_bo_ref(vm->root.base.bo);
3185 	amdgpu_bo_reserve(root, true);
3186 	if (vm->pasid) {
3187 		unsigned long flags;
3188 
3189 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3190 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3191 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3192 		vm->pasid = 0;
3193 	}
3194 
3195 	dma_fence_wait(vm->last_unlocked, false);
3196 	dma_fence_put(vm->last_unlocked);
3197 
3198 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3199 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3200 			amdgpu_vm_prt_fini(adev, vm);
3201 			prt_fini_needed = false;
3202 		}
3203 
3204 		list_del(&mapping->list);
3205 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3206 	}
3207 
3208 	amdgpu_vm_free_pts(adev, vm, NULL);
3209 	amdgpu_bo_unreserve(root);
3210 	amdgpu_bo_unref(&root);
3211 	WARN_ON(vm->root.base.bo);
3212 
3213 	drm_sched_entity_destroy(&vm->immediate);
3214 	drm_sched_entity_destroy(&vm->delayed);
3215 
3216 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3217 		dev_err(adev->dev, "still active bo inside vm\n");
3218 	}
3219 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3220 					     &vm->va.rb_root, rb) {
3221 		/* Don't remove the mapping here, we don't want to trigger a
3222 		 * rebalance and the tree is about to be destroyed anyway.
3223 		 */
3224 		list_del(&mapping->list);
3225 		kfree(mapping);
3226 	}
3227 
3228 	dma_fence_put(vm->last_update);
3229 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3230 		amdgpu_vmid_free_reserved(adev, vm, i);
3231 }
3232 
3233 /**
3234  * amdgpu_vm_manager_init - init the VM manager
3235  *
3236  * @adev: amdgpu_device pointer
3237  *
3238  * Initialize the VM manager structures
3239  */
3240 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3241 {
3242 	unsigned i;
3243 
3244 	/* Concurrent flushes are only possible starting with Vega10 and
3245 	 * are broken on Navi10 and Navi14.
3246 	 */
3247 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3248 					      adev->asic_type == CHIP_NAVI10 ||
3249 					      adev->asic_type == CHIP_NAVI14);
3250 	amdgpu_vmid_mgr_init(adev);
3251 
3252 	adev->vm_manager.fence_context =
3253 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3254 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3255 		adev->vm_manager.seqno[i] = 0;
3256 
3257 	spin_lock_init(&adev->vm_manager.prt_lock);
3258 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3259 
3260 	/* If not overridden by the user, by default, only in large BAR systems
3261 	 * Compute VM tables will be updated by CPU
3262 	 */
3263 #ifdef CONFIG_X86_64
3264 	if (amdgpu_vm_update_mode == -1) {
3265 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3266 			adev->vm_manager.vm_update_mode =
3267 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3268 		else
3269 			adev->vm_manager.vm_update_mode = 0;
3270 	} else
3271 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3272 #else
3273 	adev->vm_manager.vm_update_mode = 0;
3274 #endif
3275 
3276 	idr_init(&adev->vm_manager.pasid_idr);
3277 	spin_lock_init(&adev->vm_manager.pasid_lock);
3278 }
3279 
3280 /**
3281  * amdgpu_vm_manager_fini - cleanup VM manager
3282  *
3283  * @adev: amdgpu_device pointer
3284  *
3285  * Cleanup the VM manager and free resources.
3286  */
3287 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3288 {
3289 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3290 	idr_destroy(&adev->vm_manager.pasid_idr);
3291 
3292 	amdgpu_vmid_mgr_fini(adev);
3293 }
3294 
3295 /**
3296  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3297  *
3298  * @dev: drm device pointer
3299  * @data: drm_amdgpu_vm
3300  * @filp: drm file pointer
3301  *
3302  * Returns:
3303  * 0 for success, -errno for errors.
3304  */
3305 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3306 {
3307 	union drm_amdgpu_vm *args = data;
3308 	struct amdgpu_device *adev = drm_to_adev(dev);
3309 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3310 	long timeout = msecs_to_jiffies(2000);
3311 	int r;
3312 
3313 	switch (args->in.op) {
3314 	case AMDGPU_VM_OP_RESERVE_VMID:
3315 		/* We only have requirement to reserve vmid from gfxhub */
3316 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3317 					       AMDGPU_GFXHUB_0);
3318 		if (r)
3319 			return r;
3320 		break;
3321 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3322 		if (amdgpu_sriov_runtime(adev))
3323 			timeout = 8 * timeout;
3324 
3325 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3326 		 * not referenced anymore.
3327 		 */
3328 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3329 		if (r)
3330 			return r;
3331 
3332 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3333 		if (r < 0)
3334 			return r;
3335 
3336 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3337 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3338 		break;
3339 	default:
3340 		return -EINVAL;
3341 	}
3342 
3343 	return 0;
3344 }
3345 
3346 /**
3347  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3348  *
3349  * @adev: drm device pointer
3350  * @pasid: PASID identifier for VM
3351  * @task_info: task_info to fill.
3352  */
3353 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3354 			 struct amdgpu_task_info *task_info)
3355 {
3356 	struct amdgpu_vm *vm;
3357 	unsigned long flags;
3358 
3359 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3360 
3361 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3362 	if (vm)
3363 		*task_info = vm->task_info;
3364 
3365 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3366 }
3367 
3368 /**
3369  * amdgpu_vm_set_task_info - Sets VMs task info.
3370  *
3371  * @vm: vm for which to set the info
3372  */
3373 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3374 {
3375 	if (vm->task_info.pid)
3376 		return;
3377 
3378 	vm->task_info.pid = current->pid;
3379 	get_task_comm(vm->task_info.task_name, current);
3380 
3381 	if (current->group_leader->mm != current->mm)
3382 		return;
3383 
3384 	vm->task_info.tgid = current->group_leader->pid;
3385 	get_task_comm(vm->task_info.process_name, current->group_leader);
3386 }
3387 
3388 /**
3389  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3390  * @adev: amdgpu device pointer
3391  * @pasid: PASID of the VM
3392  * @addr: Address of the fault
3393  *
3394  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3395  * shouldn't be reported any more.
3396  */
3397 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3398 			    uint64_t addr)
3399 {
3400 	bool is_compute_context = false;
3401 	struct amdgpu_bo *root;
3402 	uint64_t value, flags;
3403 	struct amdgpu_vm *vm;
3404 	int r;
3405 
3406 	spin_lock(&adev->vm_manager.pasid_lock);
3407 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3408 	if (vm) {
3409 		root = amdgpu_bo_ref(vm->root.base.bo);
3410 		is_compute_context = vm->is_compute_context;
3411 	} else {
3412 		root = NULL;
3413 	}
3414 	spin_unlock(&adev->vm_manager.pasid_lock);
3415 
3416 	if (!root)
3417 		return false;
3418 
3419 	addr /= AMDGPU_GPU_PAGE_SIZE;
3420 
3421 	if (is_compute_context &&
3422 	    !svm_range_restore_pages(adev, pasid, addr)) {
3423 		amdgpu_bo_unref(&root);
3424 		return true;
3425 	}
3426 
3427 	r = amdgpu_bo_reserve(root, true);
3428 	if (r)
3429 		goto error_unref;
3430 
3431 	/* Double check that the VM still exists */
3432 	spin_lock(&adev->vm_manager.pasid_lock);
3433 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3434 	if (vm && vm->root.base.bo != root)
3435 		vm = NULL;
3436 	spin_unlock(&adev->vm_manager.pasid_lock);
3437 	if (!vm)
3438 		goto error_unlock;
3439 
3440 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3441 		AMDGPU_PTE_SYSTEM;
3442 
3443 	if (is_compute_context) {
3444 		/* Intentionally setting invalid PTE flag
3445 		 * combination to force a no-retry-fault
3446 		 */
3447 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3448 			AMDGPU_PTE_TF;
3449 		value = 0;
3450 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3451 		/* Redirect the access to the dummy page */
3452 		value = adev->dummy_page_addr;
3453 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3454 			AMDGPU_PTE_WRITEABLE;
3455 
3456 	} else {
3457 		/* Let the hw retry silently on the PTE */
3458 		value = 0;
3459 	}
3460 
3461 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3462 	if (r) {
3463 		pr_debug("failed %d to reserve fence slot\n", r);
3464 		goto error_unlock;
3465 	}
3466 
3467 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3468 					addr, flags, value, NULL, NULL, NULL,
3469 					NULL);
3470 	if (r)
3471 		goto error_unlock;
3472 
3473 	r = amdgpu_vm_update_pdes(adev, vm, true);
3474 
3475 error_unlock:
3476 	amdgpu_bo_unreserve(root);
3477 	if (r < 0)
3478 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3479 
3480 error_unref:
3481 	amdgpu_bo_unref(&root);
3482 
3483 	return false;
3484 }
3485 
3486 #if defined(CONFIG_DEBUG_FS)
3487 /**
3488  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3489  *
3490  * @vm: Requested VM for printing BO info
3491  * @m: debugfs file
3492  *
3493  * Print BO information in debugfs file for the VM
3494  */
3495 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3496 {
3497 	struct amdgpu_bo_va *bo_va, *tmp;
3498 	u64 total_idle = 0;
3499 	u64 total_evicted = 0;
3500 	u64 total_relocated = 0;
3501 	u64 total_moved = 0;
3502 	u64 total_invalidated = 0;
3503 	u64 total_done = 0;
3504 	unsigned int total_idle_objs = 0;
3505 	unsigned int total_evicted_objs = 0;
3506 	unsigned int total_relocated_objs = 0;
3507 	unsigned int total_moved_objs = 0;
3508 	unsigned int total_invalidated_objs = 0;
3509 	unsigned int total_done_objs = 0;
3510 	unsigned int id = 0;
3511 
3512 	seq_puts(m, "\tIdle BOs:\n");
3513 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3514 		if (!bo_va->base.bo)
3515 			continue;
3516 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3517 	}
3518 	total_idle_objs = id;
3519 	id = 0;
3520 
3521 	seq_puts(m, "\tEvicted BOs:\n");
3522 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3523 		if (!bo_va->base.bo)
3524 			continue;
3525 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3526 	}
3527 	total_evicted_objs = id;
3528 	id = 0;
3529 
3530 	seq_puts(m, "\tRelocated BOs:\n");
3531 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3532 		if (!bo_va->base.bo)
3533 			continue;
3534 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3535 	}
3536 	total_relocated_objs = id;
3537 	id = 0;
3538 
3539 	seq_puts(m, "\tMoved BOs:\n");
3540 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3541 		if (!bo_va->base.bo)
3542 			continue;
3543 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3544 	}
3545 	total_moved_objs = id;
3546 	id = 0;
3547 
3548 	seq_puts(m, "\tInvalidated BOs:\n");
3549 	spin_lock(&vm->invalidated_lock);
3550 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3551 		if (!bo_va->base.bo)
3552 			continue;
3553 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3554 	}
3555 	total_invalidated_objs = id;
3556 	id = 0;
3557 
3558 	seq_puts(m, "\tDone BOs:\n");
3559 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3560 		if (!bo_va->base.bo)
3561 			continue;
3562 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3563 	}
3564 	spin_unlock(&vm->invalidated_lock);
3565 	total_done_objs = id;
3566 
3567 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3568 		   total_idle_objs);
3569 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3570 		   total_evicted_objs);
3571 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3572 		   total_relocated_objs);
3573 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3574 		   total_moved_objs);
3575 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3576 		   total_invalidated_objs);
3577 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3578 		   total_done_objs);
3579 }
3580 #endif
3581