1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 138 * 139 * @base: base structure for tracking BO usage in a VM 140 * @vm: vm to which bo is to be added 141 * @bo: amdgpu buffer object 142 * 143 * Initialize a bo_va_base structure and add it to the appropriate lists 144 * 145 */ 146 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 147 struct amdgpu_vm *vm, 148 struct amdgpu_bo *bo) 149 { 150 base->vm = vm; 151 base->bo = bo; 152 INIT_LIST_HEAD(&base->bo_list); 153 INIT_LIST_HEAD(&base->vm_status); 154 155 if (!bo) 156 return; 157 list_add_tail(&base->bo_list, &bo->va); 158 159 if (bo->tbo.type == ttm_bo_type_kernel) 160 list_move(&base->vm_status, &vm->relocated); 161 162 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 163 return; 164 165 if (bo->preferred_domains & 166 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 167 return; 168 169 /* 170 * we checked all the prerequisites, but it looks like this per vm bo 171 * is currently evicted. add the bo to the evicted list to make sure it 172 * is validated on next vm use to avoid fault. 173 * */ 174 list_move_tail(&base->vm_status, &vm->evicted); 175 } 176 177 /** 178 * amdgpu_vm_level_shift - return the addr shift for each level 179 * 180 * @adev: amdgpu_device pointer 181 * @level: VMPT level 182 * 183 * Returns: 184 * The number of bits the pfn needs to be right shifted for a level. 185 */ 186 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 187 unsigned level) 188 { 189 unsigned shift = 0xff; 190 191 switch (level) { 192 case AMDGPU_VM_PDB2: 193 case AMDGPU_VM_PDB1: 194 case AMDGPU_VM_PDB0: 195 shift = 9 * (AMDGPU_VM_PDB0 - level) + 196 adev->vm_manager.block_size; 197 break; 198 case AMDGPU_VM_PTB: 199 shift = 0; 200 break; 201 default: 202 dev_err(adev->dev, "the level%d isn't supported.\n", level); 203 } 204 205 return shift; 206 } 207 208 /** 209 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 210 * 211 * @adev: amdgpu_device pointer 212 * @level: VMPT level 213 * 214 * Returns: 215 * The number of entries in a page directory or page table. 216 */ 217 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 218 unsigned level) 219 { 220 unsigned shift = amdgpu_vm_level_shift(adev, 221 adev->vm_manager.root_level); 222 223 if (level == adev->vm_manager.root_level) 224 /* For the root directory */ 225 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 226 else if (level != AMDGPU_VM_PTB) 227 /* Everything in between */ 228 return 512; 229 else 230 /* For the page tables on the leaves */ 231 return AMDGPU_VM_PTE_COUNT(adev); 232 } 233 234 /** 235 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 236 * 237 * @adev: amdgpu_device pointer 238 * @level: VMPT level 239 * 240 * Returns: 241 * The size of the BO for a page directory or page table in bytes. 242 */ 243 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 244 { 245 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 246 } 247 248 /** 249 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 250 * 251 * @vm: vm providing the BOs 252 * @validated: head of validation list 253 * @entry: entry to add 254 * 255 * Add the page directory to the list of BOs to 256 * validate for command submission. 257 */ 258 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 259 struct list_head *validated, 260 struct amdgpu_bo_list_entry *entry) 261 { 262 entry->robj = vm->root.base.bo; 263 entry->priority = 0; 264 entry->tv.bo = &entry->robj->tbo; 265 entry->tv.shared = true; 266 entry->user_pages = NULL; 267 list_add(&entry->tv.head, validated); 268 } 269 270 /** 271 * amdgpu_vm_validate_pt_bos - validate the page table BOs 272 * 273 * @adev: amdgpu device pointer 274 * @vm: vm providing the BOs 275 * @validate: callback to do the validation 276 * @param: parameter for the validation callback 277 * 278 * Validate the page table BOs on command submission if neccessary. 279 * 280 * Returns: 281 * Validation result. 282 */ 283 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 284 int (*validate)(void *p, struct amdgpu_bo *bo), 285 void *param) 286 { 287 struct ttm_bo_global *glob = adev->mman.bdev.glob; 288 struct amdgpu_vm_bo_base *bo_base, *tmp; 289 int r = 0; 290 291 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 292 struct amdgpu_bo *bo = bo_base->bo; 293 294 if (bo->parent) { 295 r = validate(param, bo); 296 if (r) 297 break; 298 299 spin_lock(&glob->lru_lock); 300 ttm_bo_move_to_lru_tail(&bo->tbo); 301 if (bo->shadow) 302 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 303 spin_unlock(&glob->lru_lock); 304 } 305 306 if (bo->tbo.type != ttm_bo_type_kernel) { 307 spin_lock(&vm->moved_lock); 308 list_move(&bo_base->vm_status, &vm->moved); 309 spin_unlock(&vm->moved_lock); 310 } else { 311 list_move(&bo_base->vm_status, &vm->relocated); 312 } 313 } 314 315 spin_lock(&glob->lru_lock); 316 list_for_each_entry(bo_base, &vm->idle, vm_status) { 317 struct amdgpu_bo *bo = bo_base->bo; 318 319 if (!bo->parent) 320 continue; 321 322 ttm_bo_move_to_lru_tail(&bo->tbo); 323 if (bo->shadow) 324 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 325 } 326 spin_unlock(&glob->lru_lock); 327 328 return r; 329 } 330 331 /** 332 * amdgpu_vm_ready - check VM is ready for updates 333 * 334 * @vm: VM to check 335 * 336 * Check if all VM PDs/PTs are ready for updates 337 * 338 * Returns: 339 * True if eviction list is empty. 340 */ 341 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 342 { 343 return list_empty(&vm->evicted); 344 } 345 346 /** 347 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 348 * 349 * @adev: amdgpu_device pointer 350 * @vm: VM to clear BO from 351 * @bo: BO to clear 352 * @level: level this BO is at 353 * @pte_support_ats: indicate ATS support from PTE 354 * 355 * Root PD needs to be reserved when calling this. 356 * 357 * Returns: 358 * 0 on success, errno otherwise. 359 */ 360 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 361 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 362 unsigned level, bool pte_support_ats) 363 { 364 struct ttm_operation_ctx ctx = { true, false }; 365 struct dma_fence *fence = NULL; 366 unsigned entries, ats_entries; 367 struct amdgpu_ring *ring; 368 struct amdgpu_job *job; 369 uint64_t addr; 370 int r; 371 372 addr = amdgpu_bo_gpu_offset(bo); 373 entries = amdgpu_bo_size(bo) / 8; 374 375 if (pte_support_ats) { 376 if (level == adev->vm_manager.root_level) { 377 ats_entries = amdgpu_vm_level_shift(adev, level); 378 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 379 ats_entries = AMDGPU_VA_HOLE_START >> ats_entries; 380 ats_entries = min(ats_entries, entries); 381 entries -= ats_entries; 382 } else { 383 ats_entries = entries; 384 entries = 0; 385 } 386 } else { 387 ats_entries = 0; 388 } 389 390 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 391 392 r = reservation_object_reserve_shared(bo->tbo.resv); 393 if (r) 394 return r; 395 396 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 397 if (r) 398 goto error; 399 400 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 401 if (r) 402 goto error; 403 404 if (ats_entries) { 405 uint64_t ats_value; 406 407 ats_value = AMDGPU_PTE_DEFAULT_ATC; 408 if (level != AMDGPU_VM_PTB) 409 ats_value |= AMDGPU_PDE_PTE; 410 411 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 412 ats_entries, 0, ats_value); 413 addr += ats_entries * 8; 414 } 415 416 if (entries) 417 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 418 entries, 0, 0); 419 420 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 421 422 WARN_ON(job->ibs[0].length_dw > 64); 423 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 424 AMDGPU_FENCE_OWNER_UNDEFINED, false); 425 if (r) 426 goto error_free; 427 428 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 429 &fence); 430 if (r) 431 goto error_free; 432 433 amdgpu_bo_fence(bo, fence, true); 434 dma_fence_put(fence); 435 436 if (bo->shadow) 437 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 438 level, pte_support_ats); 439 440 return 0; 441 442 error_free: 443 amdgpu_job_free(job); 444 445 error: 446 return r; 447 } 448 449 /** 450 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 451 * 452 * @adev: amdgpu_device pointer 453 * @vm: requested vm 454 * @parent: parent PT 455 * @saddr: start of the address range 456 * @eaddr: end of the address range 457 * @level: VMPT level 458 * @ats: indicate ATS support from PTE 459 * 460 * Make sure the page directories and page tables are allocated 461 * 462 * Returns: 463 * 0 on success, errno otherwise. 464 */ 465 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 466 struct amdgpu_vm *vm, 467 struct amdgpu_vm_pt *parent, 468 uint64_t saddr, uint64_t eaddr, 469 unsigned level, bool ats) 470 { 471 unsigned shift = amdgpu_vm_level_shift(adev, level); 472 unsigned pt_idx, from, to; 473 u64 flags; 474 int r; 475 476 if (!parent->entries) { 477 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 478 479 parent->entries = kvmalloc_array(num_entries, 480 sizeof(struct amdgpu_vm_pt), 481 GFP_KERNEL | __GFP_ZERO); 482 if (!parent->entries) 483 return -ENOMEM; 484 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 485 } 486 487 from = saddr >> shift; 488 to = eaddr >> shift; 489 if (from >= amdgpu_vm_num_entries(adev, level) || 490 to >= amdgpu_vm_num_entries(adev, level)) 491 return -EINVAL; 492 493 ++level; 494 saddr = saddr & ((1 << shift) - 1); 495 eaddr = eaddr & ((1 << shift) - 1); 496 497 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 498 if (vm->root.base.bo->shadow) 499 flags |= AMDGPU_GEM_CREATE_SHADOW; 500 if (vm->use_cpu_for_update) 501 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 502 else 503 flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 504 505 /* walk over the address space and allocate the page tables */ 506 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 507 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 508 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 509 struct amdgpu_bo *pt; 510 511 if (!entry->base.bo) { 512 struct amdgpu_bo_param bp; 513 514 memset(&bp, 0, sizeof(bp)); 515 bp.size = amdgpu_vm_bo_size(adev, level); 516 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 517 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 518 bp.flags = flags; 519 bp.type = ttm_bo_type_kernel; 520 bp.resv = resv; 521 r = amdgpu_bo_create(adev, &bp, &pt); 522 if (r) 523 return r; 524 525 r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats); 526 if (r) { 527 amdgpu_bo_unref(&pt->shadow); 528 amdgpu_bo_unref(&pt); 529 return r; 530 } 531 532 if (vm->use_cpu_for_update) { 533 r = amdgpu_bo_kmap(pt, NULL); 534 if (r) { 535 amdgpu_bo_unref(&pt->shadow); 536 amdgpu_bo_unref(&pt); 537 return r; 538 } 539 } 540 541 /* Keep a reference to the root directory to avoid 542 * freeing them up in the wrong order. 543 */ 544 pt->parent = amdgpu_bo_ref(parent->base.bo); 545 546 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 547 } 548 549 if (level < AMDGPU_VM_PTB) { 550 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 551 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 552 ((1 << shift) - 1); 553 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 554 sub_eaddr, level, ats); 555 if (r) 556 return r; 557 } 558 } 559 560 return 0; 561 } 562 563 /** 564 * amdgpu_vm_alloc_pts - Allocate page tables. 565 * 566 * @adev: amdgpu_device pointer 567 * @vm: VM to allocate page tables for 568 * @saddr: Start address which needs to be allocated 569 * @size: Size from start address we need. 570 * 571 * Make sure the page tables are allocated. 572 * 573 * Returns: 574 * 0 on success, errno otherwise. 575 */ 576 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 577 struct amdgpu_vm *vm, 578 uint64_t saddr, uint64_t size) 579 { 580 uint64_t eaddr; 581 bool ats = false; 582 583 /* validate the parameters */ 584 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 585 return -EINVAL; 586 587 eaddr = saddr + size - 1; 588 589 if (vm->pte_support_ats) 590 ats = saddr < AMDGPU_VA_HOLE_START; 591 592 saddr /= AMDGPU_GPU_PAGE_SIZE; 593 eaddr /= AMDGPU_GPU_PAGE_SIZE; 594 595 if (eaddr >= adev->vm_manager.max_pfn) { 596 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 597 eaddr, adev->vm_manager.max_pfn); 598 return -EINVAL; 599 } 600 601 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 602 adev->vm_manager.root_level, ats); 603 } 604 605 /** 606 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 607 * 608 * @adev: amdgpu_device pointer 609 */ 610 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 611 { 612 const struct amdgpu_ip_block *ip_block; 613 bool has_compute_vm_bug; 614 struct amdgpu_ring *ring; 615 int i; 616 617 has_compute_vm_bug = false; 618 619 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 620 if (ip_block) { 621 /* Compute has a VM bug for GFX version < 7. 622 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 623 if (ip_block->version->major <= 7) 624 has_compute_vm_bug = true; 625 else if (ip_block->version->major == 8) 626 if (adev->gfx.mec_fw_version < 673) 627 has_compute_vm_bug = true; 628 } 629 630 for (i = 0; i < adev->num_rings; i++) { 631 ring = adev->rings[i]; 632 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 633 /* only compute rings */ 634 ring->has_compute_vm_bug = has_compute_vm_bug; 635 else 636 ring->has_compute_vm_bug = false; 637 } 638 } 639 640 /** 641 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 642 * 643 * @ring: ring on which the job will be submitted 644 * @job: job to submit 645 * 646 * Returns: 647 * True if sync is needed. 648 */ 649 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 650 struct amdgpu_job *job) 651 { 652 struct amdgpu_device *adev = ring->adev; 653 unsigned vmhub = ring->funcs->vmhub; 654 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 655 struct amdgpu_vmid *id; 656 bool gds_switch_needed; 657 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 658 659 if (job->vmid == 0) 660 return false; 661 id = &id_mgr->ids[job->vmid]; 662 gds_switch_needed = ring->funcs->emit_gds_switch && ( 663 id->gds_base != job->gds_base || 664 id->gds_size != job->gds_size || 665 id->gws_base != job->gws_base || 666 id->gws_size != job->gws_size || 667 id->oa_base != job->oa_base || 668 id->oa_size != job->oa_size); 669 670 if (amdgpu_vmid_had_gpu_reset(adev, id)) 671 return true; 672 673 return vm_flush_needed || gds_switch_needed; 674 } 675 676 /** 677 * amdgpu_vm_flush - hardware flush the vm 678 * 679 * @ring: ring to use for flush 680 * @job: related job 681 * @need_pipe_sync: is pipe sync needed 682 * 683 * Emit a VM flush when it is necessary. 684 * 685 * Returns: 686 * 0 on success, errno otherwise. 687 */ 688 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 689 { 690 struct amdgpu_device *adev = ring->adev; 691 unsigned vmhub = ring->funcs->vmhub; 692 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 693 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 694 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 695 id->gds_base != job->gds_base || 696 id->gds_size != job->gds_size || 697 id->gws_base != job->gws_base || 698 id->gws_size != job->gws_size || 699 id->oa_base != job->oa_base || 700 id->oa_size != job->oa_size); 701 bool vm_flush_needed = job->vm_needs_flush; 702 bool pasid_mapping_needed = id->pasid != job->pasid || 703 !id->pasid_mapping || 704 !dma_fence_is_signaled(id->pasid_mapping); 705 struct dma_fence *fence = NULL; 706 unsigned patch_offset = 0; 707 int r; 708 709 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 710 gds_switch_needed = true; 711 vm_flush_needed = true; 712 pasid_mapping_needed = true; 713 } 714 715 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 716 vm_flush_needed &= !!ring->funcs->emit_vm_flush; 717 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 718 ring->funcs->emit_wreg; 719 720 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 721 return 0; 722 723 if (ring->funcs->init_cond_exec) 724 patch_offset = amdgpu_ring_init_cond_exec(ring); 725 726 if (need_pipe_sync) 727 amdgpu_ring_emit_pipeline_sync(ring); 728 729 if (vm_flush_needed) { 730 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 731 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 732 } 733 734 if (pasid_mapping_needed) 735 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 736 737 if (vm_flush_needed || pasid_mapping_needed) { 738 r = amdgpu_fence_emit(ring, &fence, 0); 739 if (r) 740 return r; 741 } 742 743 if (vm_flush_needed) { 744 mutex_lock(&id_mgr->lock); 745 dma_fence_put(id->last_flush); 746 id->last_flush = dma_fence_get(fence); 747 id->current_gpu_reset_count = 748 atomic_read(&adev->gpu_reset_counter); 749 mutex_unlock(&id_mgr->lock); 750 } 751 752 if (pasid_mapping_needed) { 753 id->pasid = job->pasid; 754 dma_fence_put(id->pasid_mapping); 755 id->pasid_mapping = dma_fence_get(fence); 756 } 757 dma_fence_put(fence); 758 759 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 760 id->gds_base = job->gds_base; 761 id->gds_size = job->gds_size; 762 id->gws_base = job->gws_base; 763 id->gws_size = job->gws_size; 764 id->oa_base = job->oa_base; 765 id->oa_size = job->oa_size; 766 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 767 job->gds_size, job->gws_base, 768 job->gws_size, job->oa_base, 769 job->oa_size); 770 } 771 772 if (ring->funcs->patch_cond_exec) 773 amdgpu_ring_patch_cond_exec(ring, patch_offset); 774 775 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 776 if (ring->funcs->emit_switch_buffer) { 777 amdgpu_ring_emit_switch_buffer(ring); 778 amdgpu_ring_emit_switch_buffer(ring); 779 } 780 return 0; 781 } 782 783 /** 784 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 785 * 786 * @vm: requested vm 787 * @bo: requested buffer object 788 * 789 * Find @bo inside the requested vm. 790 * Search inside the @bos vm list for the requested vm 791 * Returns the found bo_va or NULL if none is found 792 * 793 * Object has to be reserved! 794 * 795 * Returns: 796 * Found bo_va or NULL. 797 */ 798 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 799 struct amdgpu_bo *bo) 800 { 801 struct amdgpu_bo_va *bo_va; 802 803 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 804 if (bo_va->base.vm == vm) { 805 return bo_va; 806 } 807 } 808 return NULL; 809 } 810 811 /** 812 * amdgpu_vm_do_set_ptes - helper to call the right asic function 813 * 814 * @params: see amdgpu_pte_update_params definition 815 * @bo: PD/PT to update 816 * @pe: addr of the page entry 817 * @addr: dst addr to write into pe 818 * @count: number of page entries to update 819 * @incr: increase next addr by incr bytes 820 * @flags: hw access flags 821 * 822 * Traces the parameters and calls the right asic functions 823 * to setup the page table using the DMA. 824 */ 825 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 826 struct amdgpu_bo *bo, 827 uint64_t pe, uint64_t addr, 828 unsigned count, uint32_t incr, 829 uint64_t flags) 830 { 831 pe += amdgpu_bo_gpu_offset(bo); 832 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 833 834 if (count < 3) { 835 amdgpu_vm_write_pte(params->adev, params->ib, pe, 836 addr | flags, count, incr); 837 838 } else { 839 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 840 count, incr, flags); 841 } 842 } 843 844 /** 845 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 846 * 847 * @params: see amdgpu_pte_update_params definition 848 * @bo: PD/PT to update 849 * @pe: addr of the page entry 850 * @addr: dst addr to write into pe 851 * @count: number of page entries to update 852 * @incr: increase next addr by incr bytes 853 * @flags: hw access flags 854 * 855 * Traces the parameters and calls the DMA function to copy the PTEs. 856 */ 857 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 858 struct amdgpu_bo *bo, 859 uint64_t pe, uint64_t addr, 860 unsigned count, uint32_t incr, 861 uint64_t flags) 862 { 863 uint64_t src = (params->src + (addr >> 12) * 8); 864 865 pe += amdgpu_bo_gpu_offset(bo); 866 trace_amdgpu_vm_copy_ptes(pe, src, count); 867 868 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 869 } 870 871 /** 872 * amdgpu_vm_map_gart - Resolve gart mapping of addr 873 * 874 * @pages_addr: optional DMA address to use for lookup 875 * @addr: the unmapped addr 876 * 877 * Look up the physical address of the page that the pte resolves 878 * to. 879 * 880 * Returns: 881 * The pointer for the page table entry. 882 */ 883 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 884 { 885 uint64_t result; 886 887 /* page table offset */ 888 result = pages_addr[addr >> PAGE_SHIFT]; 889 890 /* in case cpu page size != gpu page size*/ 891 result |= addr & (~PAGE_MASK); 892 893 result &= 0xFFFFFFFFFFFFF000ULL; 894 895 return result; 896 } 897 898 /** 899 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 900 * 901 * @params: see amdgpu_pte_update_params definition 902 * @bo: PD/PT to update 903 * @pe: kmap addr of the page entry 904 * @addr: dst addr to write into pe 905 * @count: number of page entries to update 906 * @incr: increase next addr by incr bytes 907 * @flags: hw access flags 908 * 909 * Write count number of PT/PD entries directly. 910 */ 911 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 912 struct amdgpu_bo *bo, 913 uint64_t pe, uint64_t addr, 914 unsigned count, uint32_t incr, 915 uint64_t flags) 916 { 917 unsigned int i; 918 uint64_t value; 919 920 pe += (unsigned long)amdgpu_bo_kptr(bo); 921 922 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 923 924 for (i = 0; i < count; i++) { 925 value = params->pages_addr ? 926 amdgpu_vm_map_gart(params->pages_addr, addr) : 927 addr; 928 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 929 i, value, flags); 930 addr += incr; 931 } 932 } 933 934 935 /** 936 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 937 * 938 * @adev: amdgpu_device pointer 939 * @vm: related vm 940 * @owner: fence owner 941 * 942 * Returns: 943 * 0 on success, errno otherwise. 944 */ 945 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 946 void *owner) 947 { 948 struct amdgpu_sync sync; 949 int r; 950 951 amdgpu_sync_create(&sync); 952 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 953 r = amdgpu_sync_wait(&sync, true); 954 amdgpu_sync_free(&sync); 955 956 return r; 957 } 958 959 /* 960 * amdgpu_vm_update_pde - update a single level in the hierarchy 961 * 962 * @param: parameters for the update 963 * @vm: requested vm 964 * @parent: parent directory 965 * @entry: entry to update 966 * 967 * Makes sure the requested entry in parent is up to date. 968 */ 969 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 970 struct amdgpu_vm *vm, 971 struct amdgpu_vm_pt *parent, 972 struct amdgpu_vm_pt *entry) 973 { 974 struct amdgpu_bo *bo = parent->base.bo, *pbo; 975 uint64_t pde, pt, flags; 976 unsigned level; 977 978 /* Don't update huge pages here */ 979 if (entry->huge) 980 return; 981 982 for (level = 0, pbo = bo->parent; pbo; ++level) 983 pbo = pbo->parent; 984 985 level += params->adev->vm_manager.root_level; 986 pt = amdgpu_bo_gpu_offset(entry->base.bo); 987 flags = AMDGPU_PTE_VALID; 988 amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags); 989 pde = (entry - parent->entries) * 8; 990 if (bo->shadow) 991 params->func(params, bo->shadow, pde, pt, 1, 0, flags); 992 params->func(params, bo, pde, pt, 1, 0, flags); 993 } 994 995 /* 996 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 997 * 998 * @adev: amdgpu_device pointer 999 * @vm: related vm 1000 * @parent: parent PD 1001 * @level: VMPT level 1002 * 1003 * Mark all PD level as invalid after an error. 1004 */ 1005 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev, 1006 struct amdgpu_vm *vm, 1007 struct amdgpu_vm_pt *parent, 1008 unsigned level) 1009 { 1010 unsigned pt_idx, num_entries; 1011 1012 /* 1013 * Recurse into the subdirectories. This recursion is harmless because 1014 * we only have a maximum of 5 layers. 1015 */ 1016 num_entries = amdgpu_vm_num_entries(adev, level); 1017 for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) { 1018 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1019 1020 if (!entry->base.bo) 1021 continue; 1022 1023 if (!entry->base.moved) 1024 list_move(&entry->base.vm_status, &vm->relocated); 1025 amdgpu_vm_invalidate_level(adev, vm, entry, level + 1); 1026 } 1027 } 1028 1029 /* 1030 * amdgpu_vm_update_directories - make sure that all directories are valid 1031 * 1032 * @adev: amdgpu_device pointer 1033 * @vm: requested vm 1034 * 1035 * Makes sure all directories are up to date. 1036 * 1037 * Returns: 1038 * 0 for success, error for failure. 1039 */ 1040 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1041 struct amdgpu_vm *vm) 1042 { 1043 struct amdgpu_pte_update_params params; 1044 struct amdgpu_job *job; 1045 unsigned ndw = 0; 1046 int r = 0; 1047 1048 if (list_empty(&vm->relocated)) 1049 return 0; 1050 1051 restart: 1052 memset(¶ms, 0, sizeof(params)); 1053 params.adev = adev; 1054 1055 if (vm->use_cpu_for_update) { 1056 struct amdgpu_vm_bo_base *bo_base; 1057 1058 list_for_each_entry(bo_base, &vm->relocated, vm_status) { 1059 r = amdgpu_bo_kmap(bo_base->bo, NULL); 1060 if (unlikely(r)) 1061 return r; 1062 } 1063 1064 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1065 if (unlikely(r)) 1066 return r; 1067 1068 params.func = amdgpu_vm_cpu_set_ptes; 1069 } else { 1070 ndw = 512 * 8; 1071 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1072 if (r) 1073 return r; 1074 1075 params.ib = &job->ibs[0]; 1076 params.func = amdgpu_vm_do_set_ptes; 1077 } 1078 1079 while (!list_empty(&vm->relocated)) { 1080 struct amdgpu_vm_bo_base *bo_base, *parent; 1081 struct amdgpu_vm_pt *pt, *entry; 1082 struct amdgpu_bo *bo; 1083 1084 bo_base = list_first_entry(&vm->relocated, 1085 struct amdgpu_vm_bo_base, 1086 vm_status); 1087 bo_base->moved = false; 1088 list_del_init(&bo_base->vm_status); 1089 1090 bo = bo_base->bo->parent; 1091 if (!bo) 1092 continue; 1093 1094 parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, 1095 bo_list); 1096 pt = container_of(parent, struct amdgpu_vm_pt, base); 1097 entry = container_of(bo_base, struct amdgpu_vm_pt, base); 1098 1099 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1100 1101 if (!vm->use_cpu_for_update && 1102 (ndw - params.ib->length_dw) < 32) 1103 break; 1104 } 1105 1106 if (vm->use_cpu_for_update) { 1107 /* Flush HDP */ 1108 mb(); 1109 amdgpu_asic_flush_hdp(adev, NULL); 1110 } else if (params.ib->length_dw == 0) { 1111 amdgpu_job_free(job); 1112 } else { 1113 struct amdgpu_bo *root = vm->root.base.bo; 1114 struct amdgpu_ring *ring; 1115 struct dma_fence *fence; 1116 1117 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1118 sched); 1119 1120 amdgpu_ring_pad_ib(ring, params.ib); 1121 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1122 AMDGPU_FENCE_OWNER_VM, false); 1123 WARN_ON(params.ib->length_dw > ndw); 1124 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1125 &fence); 1126 if (r) 1127 goto error; 1128 1129 amdgpu_bo_fence(root, fence, true); 1130 dma_fence_put(vm->last_update); 1131 vm->last_update = fence; 1132 } 1133 1134 if (!list_empty(&vm->relocated)) 1135 goto restart; 1136 1137 return 0; 1138 1139 error: 1140 amdgpu_vm_invalidate_level(adev, vm, &vm->root, 1141 adev->vm_manager.root_level); 1142 amdgpu_job_free(job); 1143 return r; 1144 } 1145 1146 /** 1147 * amdgpu_vm_find_entry - find the entry for an address 1148 * 1149 * @p: see amdgpu_pte_update_params definition 1150 * @addr: virtual address in question 1151 * @entry: resulting entry or NULL 1152 * @parent: parent entry 1153 * 1154 * Find the vm_pt entry and it's parent for the given address. 1155 */ 1156 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1157 struct amdgpu_vm_pt **entry, 1158 struct amdgpu_vm_pt **parent) 1159 { 1160 unsigned level = p->adev->vm_manager.root_level; 1161 1162 *parent = NULL; 1163 *entry = &p->vm->root; 1164 while ((*entry)->entries) { 1165 unsigned shift = amdgpu_vm_level_shift(p->adev, level++); 1166 1167 *parent = *entry; 1168 *entry = &(*entry)->entries[addr >> shift]; 1169 addr &= (1ULL << shift) - 1; 1170 } 1171 1172 if (level != AMDGPU_VM_PTB) 1173 *entry = NULL; 1174 } 1175 1176 /** 1177 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1178 * 1179 * @p: see amdgpu_pte_update_params definition 1180 * @entry: vm_pt entry to check 1181 * @parent: parent entry 1182 * @nptes: number of PTEs updated with this operation 1183 * @dst: destination address where the PTEs should point to 1184 * @flags: access flags fro the PTEs 1185 * 1186 * Check if we can update the PD with a huge page. 1187 */ 1188 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1189 struct amdgpu_vm_pt *entry, 1190 struct amdgpu_vm_pt *parent, 1191 unsigned nptes, uint64_t dst, 1192 uint64_t flags) 1193 { 1194 uint64_t pde; 1195 1196 /* In the case of a mixed PT the PDE must point to it*/ 1197 if (p->adev->asic_type >= CHIP_VEGA10 && !p->src && 1198 nptes == AMDGPU_VM_PTE_COUNT(p->adev)) { 1199 /* Set the huge page flag to stop scanning at this PDE */ 1200 flags |= AMDGPU_PDE_PTE; 1201 } 1202 1203 if (!(flags & AMDGPU_PDE_PTE)) { 1204 if (entry->huge) { 1205 /* Add the entry to the relocated list to update it. */ 1206 entry->huge = false; 1207 list_move(&entry->base.vm_status, &p->vm->relocated); 1208 } 1209 return; 1210 } 1211 1212 entry->huge = true; 1213 amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags); 1214 1215 pde = (entry - parent->entries) * 8; 1216 if (parent->base.bo->shadow) 1217 p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags); 1218 p->func(p, parent->base.bo, pde, dst, 1, 0, flags); 1219 } 1220 1221 /** 1222 * amdgpu_vm_update_ptes - make sure that page tables are valid 1223 * 1224 * @params: see amdgpu_pte_update_params definition 1225 * @start: start of GPU address range 1226 * @end: end of GPU address range 1227 * @dst: destination address to map to, the next dst inside the function 1228 * @flags: mapping flags 1229 * 1230 * Update the page tables in the range @start - @end. 1231 * 1232 * Returns: 1233 * 0 for success, -EINVAL for failure. 1234 */ 1235 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1236 uint64_t start, uint64_t end, 1237 uint64_t dst, uint64_t flags) 1238 { 1239 struct amdgpu_device *adev = params->adev; 1240 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1241 1242 uint64_t addr, pe_start; 1243 struct amdgpu_bo *pt; 1244 unsigned nptes; 1245 1246 /* walk over the address space and update the page tables */ 1247 for (addr = start; addr < end; addr += nptes, 1248 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1249 struct amdgpu_vm_pt *entry, *parent; 1250 1251 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1252 if (!entry) 1253 return -ENOENT; 1254 1255 if ((addr & ~mask) == (end & ~mask)) 1256 nptes = end - addr; 1257 else 1258 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1259 1260 amdgpu_vm_handle_huge_pages(params, entry, parent, 1261 nptes, dst, flags); 1262 /* We don't need to update PTEs for huge pages */ 1263 if (entry->huge) 1264 continue; 1265 1266 pt = entry->base.bo; 1267 pe_start = (addr & mask) * 8; 1268 if (pt->shadow) 1269 params->func(params, pt->shadow, pe_start, dst, nptes, 1270 AMDGPU_GPU_PAGE_SIZE, flags); 1271 params->func(params, pt, pe_start, dst, nptes, 1272 AMDGPU_GPU_PAGE_SIZE, flags); 1273 } 1274 1275 return 0; 1276 } 1277 1278 /* 1279 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1280 * 1281 * @params: see amdgpu_pte_update_params definition 1282 * @vm: requested vm 1283 * @start: first PTE to handle 1284 * @end: last PTE to handle 1285 * @dst: addr those PTEs should point to 1286 * @flags: hw mapping flags 1287 * 1288 * Returns: 1289 * 0 for success, -EINVAL for failure. 1290 */ 1291 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1292 uint64_t start, uint64_t end, 1293 uint64_t dst, uint64_t flags) 1294 { 1295 /** 1296 * The MC L1 TLB supports variable sized pages, based on a fragment 1297 * field in the PTE. When this field is set to a non-zero value, page 1298 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1299 * flags are considered valid for all PTEs within the fragment range 1300 * and corresponding mappings are assumed to be physically contiguous. 1301 * 1302 * The L1 TLB can store a single PTE for the whole fragment, 1303 * significantly increasing the space available for translation 1304 * caching. This leads to large improvements in throughput when the 1305 * TLB is under pressure. 1306 * 1307 * The L2 TLB distributes small and large fragments into two 1308 * asymmetric partitions. The large fragment cache is significantly 1309 * larger. Thus, we try to use large fragments wherever possible. 1310 * Userspace can support this by aligning virtual base address and 1311 * allocation size to the fragment size. 1312 */ 1313 unsigned max_frag = params->adev->vm_manager.fragment_size; 1314 int r; 1315 1316 /* system pages are non continuously */ 1317 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1318 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1319 1320 while (start != end) { 1321 uint64_t frag_flags, frag_end; 1322 unsigned frag; 1323 1324 /* This intentionally wraps around if no bit is set */ 1325 frag = min((unsigned)ffs(start) - 1, 1326 (unsigned)fls64(end - start) - 1); 1327 if (frag >= max_frag) { 1328 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1329 frag_end = end & ~((1ULL << max_frag) - 1); 1330 } else { 1331 frag_flags = AMDGPU_PTE_FRAG(frag); 1332 frag_end = start + (1 << frag); 1333 } 1334 1335 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1336 flags | frag_flags); 1337 if (r) 1338 return r; 1339 1340 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1341 start = frag_end; 1342 } 1343 1344 return 0; 1345 } 1346 1347 /** 1348 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1349 * 1350 * @adev: amdgpu_device pointer 1351 * @exclusive: fence we need to sync to 1352 * @pages_addr: DMA addresses to use for mapping 1353 * @vm: requested vm 1354 * @start: start of mapped range 1355 * @last: last mapped entry 1356 * @flags: flags for the entries 1357 * @addr: addr to set the area to 1358 * @fence: optional resulting fence 1359 * 1360 * Fill in the page table entries between @start and @last. 1361 * 1362 * Returns: 1363 * 0 for success, -EINVAL for failure. 1364 */ 1365 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1366 struct dma_fence *exclusive, 1367 dma_addr_t *pages_addr, 1368 struct amdgpu_vm *vm, 1369 uint64_t start, uint64_t last, 1370 uint64_t flags, uint64_t addr, 1371 struct dma_fence **fence) 1372 { 1373 struct amdgpu_ring *ring; 1374 void *owner = AMDGPU_FENCE_OWNER_VM; 1375 unsigned nptes, ncmds, ndw; 1376 struct amdgpu_job *job; 1377 struct amdgpu_pte_update_params params; 1378 struct dma_fence *f = NULL; 1379 int r; 1380 1381 memset(¶ms, 0, sizeof(params)); 1382 params.adev = adev; 1383 params.vm = vm; 1384 1385 /* sync to everything on unmapping */ 1386 if (!(flags & AMDGPU_PTE_VALID)) 1387 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1388 1389 if (vm->use_cpu_for_update) { 1390 /* params.src is used as flag to indicate system Memory */ 1391 if (pages_addr) 1392 params.src = ~0; 1393 1394 /* Wait for PT BOs to be free. PTs share the same resv. object 1395 * as the root PD BO 1396 */ 1397 r = amdgpu_vm_wait_pd(adev, vm, owner); 1398 if (unlikely(r)) 1399 return r; 1400 1401 params.func = amdgpu_vm_cpu_set_ptes; 1402 params.pages_addr = pages_addr; 1403 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1404 addr, flags); 1405 } 1406 1407 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1408 1409 nptes = last - start + 1; 1410 1411 /* 1412 * reserve space for two commands every (1 << BLOCK_SIZE) 1413 * entries or 2k dwords (whatever is smaller) 1414 * 1415 * The second command is for the shadow pagetables. 1416 */ 1417 if (vm->root.base.bo->shadow) 1418 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1419 else 1420 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1421 1422 /* padding, etc. */ 1423 ndw = 64; 1424 1425 if (pages_addr) { 1426 /* copy commands needed */ 1427 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1428 1429 /* and also PTEs */ 1430 ndw += nptes * 2; 1431 1432 params.func = amdgpu_vm_do_copy_ptes; 1433 1434 } else { 1435 /* set page commands needed */ 1436 ndw += ncmds * 10; 1437 1438 /* extra commands for begin/end fragments */ 1439 if (vm->root.base.bo->shadow) 1440 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1441 else 1442 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1443 1444 params.func = amdgpu_vm_do_set_ptes; 1445 } 1446 1447 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1448 if (r) 1449 return r; 1450 1451 params.ib = &job->ibs[0]; 1452 1453 if (pages_addr) { 1454 uint64_t *pte; 1455 unsigned i; 1456 1457 /* Put the PTEs at the end of the IB. */ 1458 i = ndw - nptes * 2; 1459 pte= (uint64_t *)&(job->ibs->ptr[i]); 1460 params.src = job->ibs->gpu_addr + i * 4; 1461 1462 for (i = 0; i < nptes; ++i) { 1463 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1464 AMDGPU_GPU_PAGE_SIZE); 1465 pte[i] |= flags; 1466 } 1467 addr = 0; 1468 } 1469 1470 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1471 if (r) 1472 goto error_free; 1473 1474 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1475 owner, false); 1476 if (r) 1477 goto error_free; 1478 1479 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1480 if (r) 1481 goto error_free; 1482 1483 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1484 if (r) 1485 goto error_free; 1486 1487 amdgpu_ring_pad_ib(ring, params.ib); 1488 WARN_ON(params.ib->length_dw > ndw); 1489 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1490 if (r) 1491 goto error_free; 1492 1493 amdgpu_bo_fence(vm->root.base.bo, f, true); 1494 dma_fence_put(*fence); 1495 *fence = f; 1496 return 0; 1497 1498 error_free: 1499 amdgpu_job_free(job); 1500 return r; 1501 } 1502 1503 /** 1504 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1505 * 1506 * @adev: amdgpu_device pointer 1507 * @exclusive: fence we need to sync to 1508 * @pages_addr: DMA addresses to use for mapping 1509 * @vm: requested vm 1510 * @mapping: mapped range and flags to use for the update 1511 * @flags: HW flags for the mapping 1512 * @nodes: array of drm_mm_nodes with the MC addresses 1513 * @fence: optional resulting fence 1514 * 1515 * Split the mapping into smaller chunks so that each update fits 1516 * into a SDMA IB. 1517 * 1518 * Returns: 1519 * 0 for success, -EINVAL for failure. 1520 */ 1521 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1522 struct dma_fence *exclusive, 1523 dma_addr_t *pages_addr, 1524 struct amdgpu_vm *vm, 1525 struct amdgpu_bo_va_mapping *mapping, 1526 uint64_t flags, 1527 struct drm_mm_node *nodes, 1528 struct dma_fence **fence) 1529 { 1530 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1531 uint64_t pfn, start = mapping->start; 1532 int r; 1533 1534 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1535 * but in case of something, we filter the flags in first place 1536 */ 1537 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1538 flags &= ~AMDGPU_PTE_READABLE; 1539 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1540 flags &= ~AMDGPU_PTE_WRITEABLE; 1541 1542 flags &= ~AMDGPU_PTE_EXECUTABLE; 1543 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1544 1545 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1546 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1547 1548 if ((mapping->flags & AMDGPU_PTE_PRT) && 1549 (adev->asic_type >= CHIP_VEGA10)) { 1550 flags |= AMDGPU_PTE_PRT; 1551 flags &= ~AMDGPU_PTE_VALID; 1552 } 1553 1554 trace_amdgpu_vm_bo_update(mapping); 1555 1556 pfn = mapping->offset >> PAGE_SHIFT; 1557 if (nodes) { 1558 while (pfn >= nodes->size) { 1559 pfn -= nodes->size; 1560 ++nodes; 1561 } 1562 } 1563 1564 do { 1565 dma_addr_t *dma_addr = NULL; 1566 uint64_t max_entries; 1567 uint64_t addr, last; 1568 1569 if (nodes) { 1570 addr = nodes->start << PAGE_SHIFT; 1571 max_entries = (nodes->size - pfn) * 1572 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1573 } else { 1574 addr = 0; 1575 max_entries = S64_MAX; 1576 } 1577 1578 if (pages_addr) { 1579 uint64_t count; 1580 1581 max_entries = min(max_entries, 16ull * 1024ull); 1582 for (count = 1; 1583 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1584 ++count) { 1585 uint64_t idx = pfn + count; 1586 1587 if (pages_addr[idx] != 1588 (pages_addr[idx - 1] + PAGE_SIZE)) 1589 break; 1590 } 1591 1592 if (count < min_linear_pages) { 1593 addr = pfn << PAGE_SHIFT; 1594 dma_addr = pages_addr; 1595 } else { 1596 addr = pages_addr[pfn]; 1597 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1598 } 1599 1600 } else if (flags & AMDGPU_PTE_VALID) { 1601 addr += adev->vm_manager.vram_base_offset; 1602 addr += pfn << PAGE_SHIFT; 1603 } 1604 1605 last = min((uint64_t)mapping->last, start + max_entries - 1); 1606 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1607 start, last, flags, addr, 1608 fence); 1609 if (r) 1610 return r; 1611 1612 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1613 if (nodes && nodes->size == pfn) { 1614 pfn = 0; 1615 ++nodes; 1616 } 1617 start = last + 1; 1618 1619 } while (unlikely(start != mapping->last + 1)); 1620 1621 return 0; 1622 } 1623 1624 /** 1625 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1626 * 1627 * @adev: amdgpu_device pointer 1628 * @bo_va: requested BO and VM object 1629 * @clear: if true clear the entries 1630 * 1631 * Fill in the page table entries for @bo_va. 1632 * 1633 * Returns: 1634 * 0 for success, -EINVAL for failure. 1635 */ 1636 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1637 struct amdgpu_bo_va *bo_va, 1638 bool clear) 1639 { 1640 struct amdgpu_bo *bo = bo_va->base.bo; 1641 struct amdgpu_vm *vm = bo_va->base.vm; 1642 struct amdgpu_bo_va_mapping *mapping; 1643 dma_addr_t *pages_addr = NULL; 1644 struct ttm_mem_reg *mem; 1645 struct drm_mm_node *nodes; 1646 struct dma_fence *exclusive, **last_update; 1647 uint64_t flags; 1648 int r; 1649 1650 if (clear || !bo) { 1651 mem = NULL; 1652 nodes = NULL; 1653 exclusive = NULL; 1654 } else { 1655 struct ttm_dma_tt *ttm; 1656 1657 mem = &bo->tbo.mem; 1658 nodes = mem->mm_node; 1659 if (mem->mem_type == TTM_PL_TT) { 1660 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1661 pages_addr = ttm->dma_address; 1662 } 1663 exclusive = reservation_object_get_excl(bo->tbo.resv); 1664 } 1665 1666 if (bo) 1667 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1668 else 1669 flags = 0x0; 1670 1671 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1672 last_update = &vm->last_update; 1673 else 1674 last_update = &bo_va->last_pt_update; 1675 1676 if (!clear && bo_va->base.moved) { 1677 bo_va->base.moved = false; 1678 list_splice_init(&bo_va->valids, &bo_va->invalids); 1679 1680 } else if (bo_va->cleared != clear) { 1681 list_splice_init(&bo_va->valids, &bo_va->invalids); 1682 } 1683 1684 list_for_each_entry(mapping, &bo_va->invalids, list) { 1685 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1686 mapping, flags, nodes, 1687 last_update); 1688 if (r) 1689 return r; 1690 } 1691 1692 if (vm->use_cpu_for_update) { 1693 /* Flush HDP */ 1694 mb(); 1695 amdgpu_asic_flush_hdp(adev, NULL); 1696 } 1697 1698 spin_lock(&vm->moved_lock); 1699 list_del_init(&bo_va->base.vm_status); 1700 spin_unlock(&vm->moved_lock); 1701 1702 /* If the BO is not in its preferred location add it back to 1703 * the evicted list so that it gets validated again on the 1704 * next command submission. 1705 */ 1706 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1707 uint32_t mem_type = bo->tbo.mem.mem_type; 1708 1709 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 1710 list_add_tail(&bo_va->base.vm_status, &vm->evicted); 1711 else 1712 list_add(&bo_va->base.vm_status, &vm->idle); 1713 } 1714 1715 list_splice_init(&bo_va->invalids, &bo_va->valids); 1716 bo_va->cleared = clear; 1717 1718 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1719 list_for_each_entry(mapping, &bo_va->valids, list) 1720 trace_amdgpu_vm_bo_mapping(mapping); 1721 } 1722 1723 return 0; 1724 } 1725 1726 /** 1727 * amdgpu_vm_update_prt_state - update the global PRT state 1728 * 1729 * @adev: amdgpu_device pointer 1730 */ 1731 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1732 { 1733 unsigned long flags; 1734 bool enable; 1735 1736 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1737 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1738 adev->gmc.gmc_funcs->set_prt(adev, enable); 1739 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1740 } 1741 1742 /** 1743 * amdgpu_vm_prt_get - add a PRT user 1744 * 1745 * @adev: amdgpu_device pointer 1746 */ 1747 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1748 { 1749 if (!adev->gmc.gmc_funcs->set_prt) 1750 return; 1751 1752 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1753 amdgpu_vm_update_prt_state(adev); 1754 } 1755 1756 /** 1757 * amdgpu_vm_prt_put - drop a PRT user 1758 * 1759 * @adev: amdgpu_device pointer 1760 */ 1761 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1762 { 1763 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1764 amdgpu_vm_update_prt_state(adev); 1765 } 1766 1767 /** 1768 * amdgpu_vm_prt_cb - callback for updating the PRT status 1769 * 1770 * @fence: fence for the callback 1771 * @_cb: the callback function 1772 */ 1773 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1774 { 1775 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1776 1777 amdgpu_vm_prt_put(cb->adev); 1778 kfree(cb); 1779 } 1780 1781 /** 1782 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1783 * 1784 * @adev: amdgpu_device pointer 1785 * @fence: fence for the callback 1786 */ 1787 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1788 struct dma_fence *fence) 1789 { 1790 struct amdgpu_prt_cb *cb; 1791 1792 if (!adev->gmc.gmc_funcs->set_prt) 1793 return; 1794 1795 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1796 if (!cb) { 1797 /* Last resort when we are OOM */ 1798 if (fence) 1799 dma_fence_wait(fence, false); 1800 1801 amdgpu_vm_prt_put(adev); 1802 } else { 1803 cb->adev = adev; 1804 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1805 amdgpu_vm_prt_cb)) 1806 amdgpu_vm_prt_cb(fence, &cb->cb); 1807 } 1808 } 1809 1810 /** 1811 * amdgpu_vm_free_mapping - free a mapping 1812 * 1813 * @adev: amdgpu_device pointer 1814 * @vm: requested vm 1815 * @mapping: mapping to be freed 1816 * @fence: fence of the unmap operation 1817 * 1818 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1819 */ 1820 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1821 struct amdgpu_vm *vm, 1822 struct amdgpu_bo_va_mapping *mapping, 1823 struct dma_fence *fence) 1824 { 1825 if (mapping->flags & AMDGPU_PTE_PRT) 1826 amdgpu_vm_add_prt_cb(adev, fence); 1827 kfree(mapping); 1828 } 1829 1830 /** 1831 * amdgpu_vm_prt_fini - finish all prt mappings 1832 * 1833 * @adev: amdgpu_device pointer 1834 * @vm: requested vm 1835 * 1836 * Register a cleanup callback to disable PRT support after VM dies. 1837 */ 1838 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1839 { 1840 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1841 struct dma_fence *excl, **shared; 1842 unsigned i, shared_count; 1843 int r; 1844 1845 r = reservation_object_get_fences_rcu(resv, &excl, 1846 &shared_count, &shared); 1847 if (r) { 1848 /* Not enough memory to grab the fence list, as last resort 1849 * block for all the fences to complete. 1850 */ 1851 reservation_object_wait_timeout_rcu(resv, true, false, 1852 MAX_SCHEDULE_TIMEOUT); 1853 return; 1854 } 1855 1856 /* Add a callback for each fence in the reservation object */ 1857 amdgpu_vm_prt_get(adev); 1858 amdgpu_vm_add_prt_cb(adev, excl); 1859 1860 for (i = 0; i < shared_count; ++i) { 1861 amdgpu_vm_prt_get(adev); 1862 amdgpu_vm_add_prt_cb(adev, shared[i]); 1863 } 1864 1865 kfree(shared); 1866 } 1867 1868 /** 1869 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1870 * 1871 * @adev: amdgpu_device pointer 1872 * @vm: requested vm 1873 * @fence: optional resulting fence (unchanged if no work needed to be done 1874 * or if an error occurred) 1875 * 1876 * Make sure all freed BOs are cleared in the PT. 1877 * PTs have to be reserved and mutex must be locked! 1878 * 1879 * Returns: 1880 * 0 for success. 1881 * 1882 */ 1883 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1884 struct amdgpu_vm *vm, 1885 struct dma_fence **fence) 1886 { 1887 struct amdgpu_bo_va_mapping *mapping; 1888 uint64_t init_pte_value = 0; 1889 struct dma_fence *f = NULL; 1890 int r; 1891 1892 while (!list_empty(&vm->freed)) { 1893 mapping = list_first_entry(&vm->freed, 1894 struct amdgpu_bo_va_mapping, list); 1895 list_del(&mapping->list); 1896 1897 if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START) 1898 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1899 1900 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1901 mapping->start, mapping->last, 1902 init_pte_value, 0, &f); 1903 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1904 if (r) { 1905 dma_fence_put(f); 1906 return r; 1907 } 1908 } 1909 1910 if (fence && f) { 1911 dma_fence_put(*fence); 1912 *fence = f; 1913 } else { 1914 dma_fence_put(f); 1915 } 1916 1917 return 0; 1918 1919 } 1920 1921 /** 1922 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1923 * 1924 * @adev: amdgpu_device pointer 1925 * @vm: requested vm 1926 * 1927 * Make sure all BOs which are moved are updated in the PTs. 1928 * 1929 * Returns: 1930 * 0 for success. 1931 * 1932 * PTs have to be reserved! 1933 */ 1934 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1935 struct amdgpu_vm *vm) 1936 { 1937 struct amdgpu_bo_va *bo_va, *tmp; 1938 struct list_head moved; 1939 bool clear; 1940 int r; 1941 1942 INIT_LIST_HEAD(&moved); 1943 spin_lock(&vm->moved_lock); 1944 list_splice_init(&vm->moved, &moved); 1945 spin_unlock(&vm->moved_lock); 1946 1947 list_for_each_entry_safe(bo_va, tmp, &moved, base.vm_status) { 1948 struct reservation_object *resv = bo_va->base.bo->tbo.resv; 1949 1950 /* Per VM BOs never need to bo cleared in the page tables */ 1951 if (resv == vm->root.base.bo->tbo.resv) 1952 clear = false; 1953 /* Try to reserve the BO to avoid clearing its ptes */ 1954 else if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 1955 clear = false; 1956 /* Somebody else is using the BO right now */ 1957 else 1958 clear = true; 1959 1960 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1961 if (r) { 1962 spin_lock(&vm->moved_lock); 1963 list_splice(&moved, &vm->moved); 1964 spin_unlock(&vm->moved_lock); 1965 return r; 1966 } 1967 1968 if (!clear && resv != vm->root.base.bo->tbo.resv) 1969 reservation_object_unlock(resv); 1970 1971 } 1972 1973 return 0; 1974 } 1975 1976 /** 1977 * amdgpu_vm_bo_add - add a bo to a specific vm 1978 * 1979 * @adev: amdgpu_device pointer 1980 * @vm: requested vm 1981 * @bo: amdgpu buffer object 1982 * 1983 * Add @bo into the requested vm. 1984 * Add @bo to the list of bos associated with the vm 1985 * 1986 * Returns: 1987 * Newly added bo_va or NULL for failure 1988 * 1989 * Object has to be reserved! 1990 */ 1991 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1992 struct amdgpu_vm *vm, 1993 struct amdgpu_bo *bo) 1994 { 1995 struct amdgpu_bo_va *bo_va; 1996 1997 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1998 if (bo_va == NULL) { 1999 return NULL; 2000 } 2001 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2002 2003 bo_va->ref_count = 1; 2004 INIT_LIST_HEAD(&bo_va->valids); 2005 INIT_LIST_HEAD(&bo_va->invalids); 2006 2007 return bo_va; 2008 } 2009 2010 2011 /** 2012 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2013 * 2014 * @adev: amdgpu_device pointer 2015 * @bo_va: bo_va to store the address 2016 * @mapping: the mapping to insert 2017 * 2018 * Insert a new mapping into all structures. 2019 */ 2020 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2021 struct amdgpu_bo_va *bo_va, 2022 struct amdgpu_bo_va_mapping *mapping) 2023 { 2024 struct amdgpu_vm *vm = bo_va->base.vm; 2025 struct amdgpu_bo *bo = bo_va->base.bo; 2026 2027 mapping->bo_va = bo_va; 2028 list_add(&mapping->list, &bo_va->invalids); 2029 amdgpu_vm_it_insert(mapping, &vm->va); 2030 2031 if (mapping->flags & AMDGPU_PTE_PRT) 2032 amdgpu_vm_prt_get(adev); 2033 2034 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2035 !bo_va->base.moved) { 2036 spin_lock(&vm->moved_lock); 2037 list_move(&bo_va->base.vm_status, &vm->moved); 2038 spin_unlock(&vm->moved_lock); 2039 } 2040 trace_amdgpu_vm_bo_map(bo_va, mapping); 2041 } 2042 2043 /** 2044 * amdgpu_vm_bo_map - map bo inside a vm 2045 * 2046 * @adev: amdgpu_device pointer 2047 * @bo_va: bo_va to store the address 2048 * @saddr: where to map the BO 2049 * @offset: requested offset in the BO 2050 * @size: BO size in bytes 2051 * @flags: attributes of pages (read/write/valid/etc.) 2052 * 2053 * Add a mapping of the BO at the specefied addr into the VM. 2054 * 2055 * Returns: 2056 * 0 for success, error for failure. 2057 * 2058 * Object has to be reserved and unreserved outside! 2059 */ 2060 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2061 struct amdgpu_bo_va *bo_va, 2062 uint64_t saddr, uint64_t offset, 2063 uint64_t size, uint64_t flags) 2064 { 2065 struct amdgpu_bo_va_mapping *mapping, *tmp; 2066 struct amdgpu_bo *bo = bo_va->base.bo; 2067 struct amdgpu_vm *vm = bo_va->base.vm; 2068 uint64_t eaddr; 2069 2070 /* validate the parameters */ 2071 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2072 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2073 return -EINVAL; 2074 2075 /* make sure object fit at this offset */ 2076 eaddr = saddr + size - 1; 2077 if (saddr >= eaddr || 2078 (bo && offset + size > amdgpu_bo_size(bo))) 2079 return -EINVAL; 2080 2081 saddr /= AMDGPU_GPU_PAGE_SIZE; 2082 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2083 2084 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2085 if (tmp) { 2086 /* bo and tmp overlap, invalid addr */ 2087 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2088 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2089 tmp->start, tmp->last + 1); 2090 return -EINVAL; 2091 } 2092 2093 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2094 if (!mapping) 2095 return -ENOMEM; 2096 2097 mapping->start = saddr; 2098 mapping->last = eaddr; 2099 mapping->offset = offset; 2100 mapping->flags = flags; 2101 2102 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2103 2104 return 0; 2105 } 2106 2107 /** 2108 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2109 * 2110 * @adev: amdgpu_device pointer 2111 * @bo_va: bo_va to store the address 2112 * @saddr: where to map the BO 2113 * @offset: requested offset in the BO 2114 * @size: BO size in bytes 2115 * @flags: attributes of pages (read/write/valid/etc.) 2116 * 2117 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2118 * mappings as we do so. 2119 * 2120 * Returns: 2121 * 0 for success, error for failure. 2122 * 2123 * Object has to be reserved and unreserved outside! 2124 */ 2125 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2126 struct amdgpu_bo_va *bo_va, 2127 uint64_t saddr, uint64_t offset, 2128 uint64_t size, uint64_t flags) 2129 { 2130 struct amdgpu_bo_va_mapping *mapping; 2131 struct amdgpu_bo *bo = bo_va->base.bo; 2132 uint64_t eaddr; 2133 int r; 2134 2135 /* validate the parameters */ 2136 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2137 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2138 return -EINVAL; 2139 2140 /* make sure object fit at this offset */ 2141 eaddr = saddr + size - 1; 2142 if (saddr >= eaddr || 2143 (bo && offset + size > amdgpu_bo_size(bo))) 2144 return -EINVAL; 2145 2146 /* Allocate all the needed memory */ 2147 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2148 if (!mapping) 2149 return -ENOMEM; 2150 2151 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2152 if (r) { 2153 kfree(mapping); 2154 return r; 2155 } 2156 2157 saddr /= AMDGPU_GPU_PAGE_SIZE; 2158 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2159 2160 mapping->start = saddr; 2161 mapping->last = eaddr; 2162 mapping->offset = offset; 2163 mapping->flags = flags; 2164 2165 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2166 2167 return 0; 2168 } 2169 2170 /** 2171 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2172 * 2173 * @adev: amdgpu_device pointer 2174 * @bo_va: bo_va to remove the address from 2175 * @saddr: where to the BO is mapped 2176 * 2177 * Remove a mapping of the BO at the specefied addr from the VM. 2178 * 2179 * Returns: 2180 * 0 for success, error for failure. 2181 * 2182 * Object has to be reserved and unreserved outside! 2183 */ 2184 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2185 struct amdgpu_bo_va *bo_va, 2186 uint64_t saddr) 2187 { 2188 struct amdgpu_bo_va_mapping *mapping; 2189 struct amdgpu_vm *vm = bo_va->base.vm; 2190 bool valid = true; 2191 2192 saddr /= AMDGPU_GPU_PAGE_SIZE; 2193 2194 list_for_each_entry(mapping, &bo_va->valids, list) { 2195 if (mapping->start == saddr) 2196 break; 2197 } 2198 2199 if (&mapping->list == &bo_va->valids) { 2200 valid = false; 2201 2202 list_for_each_entry(mapping, &bo_va->invalids, list) { 2203 if (mapping->start == saddr) 2204 break; 2205 } 2206 2207 if (&mapping->list == &bo_va->invalids) 2208 return -ENOENT; 2209 } 2210 2211 list_del(&mapping->list); 2212 amdgpu_vm_it_remove(mapping, &vm->va); 2213 mapping->bo_va = NULL; 2214 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2215 2216 if (valid) 2217 list_add(&mapping->list, &vm->freed); 2218 else 2219 amdgpu_vm_free_mapping(adev, vm, mapping, 2220 bo_va->last_pt_update); 2221 2222 return 0; 2223 } 2224 2225 /** 2226 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2227 * 2228 * @adev: amdgpu_device pointer 2229 * @vm: VM structure to use 2230 * @saddr: start of the range 2231 * @size: size of the range 2232 * 2233 * Remove all mappings in a range, split them as appropriate. 2234 * 2235 * Returns: 2236 * 0 for success, error for failure. 2237 */ 2238 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2239 struct amdgpu_vm *vm, 2240 uint64_t saddr, uint64_t size) 2241 { 2242 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2243 LIST_HEAD(removed); 2244 uint64_t eaddr; 2245 2246 eaddr = saddr + size - 1; 2247 saddr /= AMDGPU_GPU_PAGE_SIZE; 2248 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2249 2250 /* Allocate all the needed memory */ 2251 before = kzalloc(sizeof(*before), GFP_KERNEL); 2252 if (!before) 2253 return -ENOMEM; 2254 INIT_LIST_HEAD(&before->list); 2255 2256 after = kzalloc(sizeof(*after), GFP_KERNEL); 2257 if (!after) { 2258 kfree(before); 2259 return -ENOMEM; 2260 } 2261 INIT_LIST_HEAD(&after->list); 2262 2263 /* Now gather all removed mappings */ 2264 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2265 while (tmp) { 2266 /* Remember mapping split at the start */ 2267 if (tmp->start < saddr) { 2268 before->start = tmp->start; 2269 before->last = saddr - 1; 2270 before->offset = tmp->offset; 2271 before->flags = tmp->flags; 2272 before->bo_va = tmp->bo_va; 2273 list_add(&before->list, &tmp->bo_va->invalids); 2274 } 2275 2276 /* Remember mapping split at the end */ 2277 if (tmp->last > eaddr) { 2278 after->start = eaddr + 1; 2279 after->last = tmp->last; 2280 after->offset = tmp->offset; 2281 after->offset += after->start - tmp->start; 2282 after->flags = tmp->flags; 2283 after->bo_va = tmp->bo_va; 2284 list_add(&after->list, &tmp->bo_va->invalids); 2285 } 2286 2287 list_del(&tmp->list); 2288 list_add(&tmp->list, &removed); 2289 2290 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2291 } 2292 2293 /* And free them up */ 2294 list_for_each_entry_safe(tmp, next, &removed, list) { 2295 amdgpu_vm_it_remove(tmp, &vm->va); 2296 list_del(&tmp->list); 2297 2298 if (tmp->start < saddr) 2299 tmp->start = saddr; 2300 if (tmp->last > eaddr) 2301 tmp->last = eaddr; 2302 2303 tmp->bo_va = NULL; 2304 list_add(&tmp->list, &vm->freed); 2305 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2306 } 2307 2308 /* Insert partial mapping before the range */ 2309 if (!list_empty(&before->list)) { 2310 amdgpu_vm_it_insert(before, &vm->va); 2311 if (before->flags & AMDGPU_PTE_PRT) 2312 amdgpu_vm_prt_get(adev); 2313 } else { 2314 kfree(before); 2315 } 2316 2317 /* Insert partial mapping after the range */ 2318 if (!list_empty(&after->list)) { 2319 amdgpu_vm_it_insert(after, &vm->va); 2320 if (after->flags & AMDGPU_PTE_PRT) 2321 amdgpu_vm_prt_get(adev); 2322 } else { 2323 kfree(after); 2324 } 2325 2326 return 0; 2327 } 2328 2329 /** 2330 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2331 * 2332 * @vm: the requested VM 2333 * @addr: the address 2334 * 2335 * Find a mapping by it's address. 2336 * 2337 * Returns: 2338 * The amdgpu_bo_va_mapping matching for addr or NULL 2339 * 2340 */ 2341 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2342 uint64_t addr) 2343 { 2344 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2345 } 2346 2347 /** 2348 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2349 * 2350 * @vm: the requested vm 2351 * @ticket: CS ticket 2352 * 2353 * Trace all mappings of BOs reserved during a command submission. 2354 */ 2355 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2356 { 2357 struct amdgpu_bo_va_mapping *mapping; 2358 2359 if (!trace_amdgpu_vm_bo_cs_enabled()) 2360 return; 2361 2362 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2363 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2364 if (mapping->bo_va && mapping->bo_va->base.bo) { 2365 struct amdgpu_bo *bo; 2366 2367 bo = mapping->bo_va->base.bo; 2368 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2369 continue; 2370 } 2371 2372 trace_amdgpu_vm_bo_cs(mapping); 2373 } 2374 } 2375 2376 /** 2377 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2378 * 2379 * @adev: amdgpu_device pointer 2380 * @bo_va: requested bo_va 2381 * 2382 * Remove @bo_va->bo from the requested vm. 2383 * 2384 * Object have to be reserved! 2385 */ 2386 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2387 struct amdgpu_bo_va *bo_va) 2388 { 2389 struct amdgpu_bo_va_mapping *mapping, *next; 2390 struct amdgpu_vm *vm = bo_va->base.vm; 2391 2392 list_del(&bo_va->base.bo_list); 2393 2394 spin_lock(&vm->moved_lock); 2395 list_del(&bo_va->base.vm_status); 2396 spin_unlock(&vm->moved_lock); 2397 2398 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2399 list_del(&mapping->list); 2400 amdgpu_vm_it_remove(mapping, &vm->va); 2401 mapping->bo_va = NULL; 2402 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2403 list_add(&mapping->list, &vm->freed); 2404 } 2405 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2406 list_del(&mapping->list); 2407 amdgpu_vm_it_remove(mapping, &vm->va); 2408 amdgpu_vm_free_mapping(adev, vm, mapping, 2409 bo_va->last_pt_update); 2410 } 2411 2412 dma_fence_put(bo_va->last_pt_update); 2413 kfree(bo_va); 2414 } 2415 2416 /** 2417 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2418 * 2419 * @adev: amdgpu_device pointer 2420 * @bo: amdgpu buffer object 2421 * @evicted: is the BO evicted 2422 * 2423 * Mark @bo as invalid. 2424 */ 2425 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2426 struct amdgpu_bo *bo, bool evicted) 2427 { 2428 struct amdgpu_vm_bo_base *bo_base; 2429 2430 /* shadow bo doesn't have bo base, its validation needs its parent */ 2431 if (bo->parent && bo->parent->shadow == bo) 2432 bo = bo->parent; 2433 2434 list_for_each_entry(bo_base, &bo->va, bo_list) { 2435 struct amdgpu_vm *vm = bo_base->vm; 2436 bool was_moved = bo_base->moved; 2437 2438 bo_base->moved = true; 2439 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2440 if (bo->tbo.type == ttm_bo_type_kernel) 2441 list_move(&bo_base->vm_status, &vm->evicted); 2442 else 2443 list_move_tail(&bo_base->vm_status, 2444 &vm->evicted); 2445 continue; 2446 } 2447 2448 if (was_moved) 2449 continue; 2450 2451 if (bo->tbo.type == ttm_bo_type_kernel) { 2452 list_move(&bo_base->vm_status, &vm->relocated); 2453 } else { 2454 spin_lock(&bo_base->vm->moved_lock); 2455 list_move(&bo_base->vm_status, &vm->moved); 2456 spin_unlock(&bo_base->vm->moved_lock); 2457 } 2458 } 2459 } 2460 2461 /** 2462 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2463 * 2464 * @vm_size: VM size 2465 * 2466 * Returns: 2467 * VM page table as power of two 2468 */ 2469 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2470 { 2471 /* Total bits covered by PD + PTs */ 2472 unsigned bits = ilog2(vm_size) + 18; 2473 2474 /* Make sure the PD is 4K in size up to 8GB address space. 2475 Above that split equal between PD and PTs */ 2476 if (vm_size <= 8) 2477 return (bits - 9); 2478 else 2479 return ((bits + 3) / 2); 2480 } 2481 2482 /** 2483 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2484 * 2485 * @adev: amdgpu_device pointer 2486 * @vm_size: the default vm size if it's set auto 2487 * @fragment_size_default: Default PTE fragment size 2488 * @max_level: max VMPT level 2489 * @max_bits: max address space size in bits 2490 * 2491 */ 2492 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size, 2493 uint32_t fragment_size_default, unsigned max_level, 2494 unsigned max_bits) 2495 { 2496 uint64_t tmp; 2497 2498 /* adjust vm size first */ 2499 if (amdgpu_vm_size != -1) { 2500 unsigned max_size = 1 << (max_bits - 30); 2501 2502 vm_size = amdgpu_vm_size; 2503 if (vm_size > max_size) { 2504 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2505 amdgpu_vm_size, max_size); 2506 vm_size = max_size; 2507 } 2508 } 2509 2510 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2511 2512 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2513 if (amdgpu_vm_block_size != -1) 2514 tmp >>= amdgpu_vm_block_size - 9; 2515 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2516 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2517 switch (adev->vm_manager.num_level) { 2518 case 3: 2519 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2520 break; 2521 case 2: 2522 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2523 break; 2524 case 1: 2525 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2526 break; 2527 default: 2528 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2529 } 2530 /* block size depends on vm size and hw setup*/ 2531 if (amdgpu_vm_block_size != -1) 2532 adev->vm_manager.block_size = 2533 min((unsigned)amdgpu_vm_block_size, max_bits 2534 - AMDGPU_GPU_PAGE_SHIFT 2535 - 9 * adev->vm_manager.num_level); 2536 else if (adev->vm_manager.num_level > 1) 2537 adev->vm_manager.block_size = 9; 2538 else 2539 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2540 2541 if (amdgpu_vm_fragment_size == -1) 2542 adev->vm_manager.fragment_size = fragment_size_default; 2543 else 2544 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2545 2546 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2547 vm_size, adev->vm_manager.num_level + 1, 2548 adev->vm_manager.block_size, 2549 adev->vm_manager.fragment_size); 2550 } 2551 2552 /** 2553 * amdgpu_vm_init - initialize a vm instance 2554 * 2555 * @adev: amdgpu_device pointer 2556 * @vm: requested vm 2557 * @vm_context: Indicates if it GFX or Compute context 2558 * @pasid: Process address space identifier 2559 * 2560 * Init @vm fields. 2561 * 2562 * Returns: 2563 * 0 for success, error for failure. 2564 */ 2565 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2566 int vm_context, unsigned int pasid) 2567 { 2568 struct amdgpu_bo_param bp; 2569 struct amdgpu_bo *root; 2570 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2571 AMDGPU_VM_PTE_COUNT(adev) * 8); 2572 unsigned ring_instance; 2573 struct amdgpu_ring *ring; 2574 struct drm_sched_rq *rq; 2575 unsigned long size; 2576 uint64_t flags; 2577 int r, i; 2578 2579 vm->va = RB_ROOT_CACHED; 2580 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2581 vm->reserved_vmid[i] = NULL; 2582 INIT_LIST_HEAD(&vm->evicted); 2583 INIT_LIST_HEAD(&vm->relocated); 2584 spin_lock_init(&vm->moved_lock); 2585 INIT_LIST_HEAD(&vm->moved); 2586 INIT_LIST_HEAD(&vm->idle); 2587 INIT_LIST_HEAD(&vm->freed); 2588 2589 /* create scheduler entity for page table updates */ 2590 2591 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2592 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2593 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2594 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 2595 r = drm_sched_entity_init(&vm->entity, &rq, 1, NULL); 2596 if (r) 2597 return r; 2598 2599 vm->pte_support_ats = false; 2600 2601 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2602 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2603 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2604 2605 if (adev->asic_type == CHIP_RAVEN) 2606 vm->pte_support_ats = true; 2607 } else { 2608 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2609 AMDGPU_VM_USE_CPU_FOR_GFX); 2610 } 2611 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2612 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2613 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2614 "CPU update of VM recommended only for large BAR system\n"); 2615 vm->last_update = NULL; 2616 2617 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 2618 if (vm->use_cpu_for_update) 2619 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2620 else if (vm_context != AMDGPU_VM_CONTEXT_COMPUTE) 2621 flags |= AMDGPU_GEM_CREATE_SHADOW; 2622 2623 size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level); 2624 memset(&bp, 0, sizeof(bp)); 2625 bp.size = size; 2626 bp.byte_align = align; 2627 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 2628 bp.flags = flags; 2629 bp.type = ttm_bo_type_kernel; 2630 bp.resv = NULL; 2631 r = amdgpu_bo_create(adev, &bp, &root); 2632 if (r) 2633 goto error_free_sched_entity; 2634 2635 r = amdgpu_bo_reserve(root, true); 2636 if (r) 2637 goto error_free_root; 2638 2639 r = amdgpu_vm_clear_bo(adev, vm, root, 2640 adev->vm_manager.root_level, 2641 vm->pte_support_ats); 2642 if (r) 2643 goto error_unreserve; 2644 2645 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2646 amdgpu_bo_unreserve(vm->root.base.bo); 2647 2648 if (pasid) { 2649 unsigned long flags; 2650 2651 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2652 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2653 GFP_ATOMIC); 2654 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2655 if (r < 0) 2656 goto error_free_root; 2657 2658 vm->pasid = pasid; 2659 } 2660 2661 INIT_KFIFO(vm->faults); 2662 vm->fault_credit = 16; 2663 2664 return 0; 2665 2666 error_unreserve: 2667 amdgpu_bo_unreserve(vm->root.base.bo); 2668 2669 error_free_root: 2670 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2671 amdgpu_bo_unref(&vm->root.base.bo); 2672 vm->root.base.bo = NULL; 2673 2674 error_free_sched_entity: 2675 drm_sched_entity_destroy(&vm->entity); 2676 2677 return r; 2678 } 2679 2680 /** 2681 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2682 * 2683 * @adev: amdgpu_device pointer 2684 * @vm: requested vm 2685 * 2686 * This only works on GFX VMs that don't have any BOs added and no 2687 * page tables allocated yet. 2688 * 2689 * Changes the following VM parameters: 2690 * - use_cpu_for_update 2691 * - pte_supports_ats 2692 * - pasid (old PASID is released, because compute manages its own PASIDs) 2693 * 2694 * Reinitializes the page directory to reflect the changed ATS 2695 * setting. 2696 * 2697 * Returns: 2698 * 0 for success, -errno for errors. 2699 */ 2700 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2701 { 2702 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2703 int r; 2704 2705 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2706 if (r) 2707 return r; 2708 2709 /* Sanity checks */ 2710 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 2711 r = -EINVAL; 2712 goto error; 2713 } 2714 2715 /* Check if PD needs to be reinitialized and do it before 2716 * changing any other state, in case it fails. 2717 */ 2718 if (pte_support_ats != vm->pte_support_ats) { 2719 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 2720 adev->vm_manager.root_level, 2721 pte_support_ats); 2722 if (r) 2723 goto error; 2724 } 2725 2726 /* Update VM state */ 2727 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2728 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2729 vm->pte_support_ats = pte_support_ats; 2730 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2731 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2732 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2733 "CPU update of VM recommended only for large BAR system\n"); 2734 2735 if (vm->pasid) { 2736 unsigned long flags; 2737 2738 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2739 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2740 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2741 2742 vm->pasid = 0; 2743 } 2744 2745 /* Free the shadow bo for compute VM */ 2746 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2747 2748 error: 2749 amdgpu_bo_unreserve(vm->root.base.bo); 2750 return r; 2751 } 2752 2753 /** 2754 * amdgpu_vm_free_levels - free PD/PT levels 2755 * 2756 * @adev: amdgpu device structure 2757 * @parent: PD/PT starting level to free 2758 * @level: level of parent structure 2759 * 2760 * Free the page directory or page table level and all sub levels. 2761 */ 2762 static void amdgpu_vm_free_levels(struct amdgpu_device *adev, 2763 struct amdgpu_vm_pt *parent, 2764 unsigned level) 2765 { 2766 unsigned i, num_entries = amdgpu_vm_num_entries(adev, level); 2767 2768 if (parent->base.bo) { 2769 list_del(&parent->base.bo_list); 2770 list_del(&parent->base.vm_status); 2771 amdgpu_bo_unref(&parent->base.bo->shadow); 2772 amdgpu_bo_unref(&parent->base.bo); 2773 } 2774 2775 if (parent->entries) 2776 for (i = 0; i < num_entries; i++) 2777 amdgpu_vm_free_levels(adev, &parent->entries[i], 2778 level + 1); 2779 2780 kvfree(parent->entries); 2781 } 2782 2783 /** 2784 * amdgpu_vm_fini - tear down a vm instance 2785 * 2786 * @adev: amdgpu_device pointer 2787 * @vm: requested vm 2788 * 2789 * Tear down @vm. 2790 * Unbind the VM and remove all bos from the vm bo list 2791 */ 2792 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2793 { 2794 struct amdgpu_bo_va_mapping *mapping, *tmp; 2795 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2796 struct amdgpu_bo *root; 2797 u64 fault; 2798 int i, r; 2799 2800 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2801 2802 /* Clear pending page faults from IH when the VM is destroyed */ 2803 while (kfifo_get(&vm->faults, &fault)) 2804 amdgpu_ih_clear_fault(adev, fault); 2805 2806 if (vm->pasid) { 2807 unsigned long flags; 2808 2809 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2810 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2811 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2812 } 2813 2814 drm_sched_entity_destroy(&vm->entity); 2815 2816 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2817 dev_err(adev->dev, "still active bo inside vm\n"); 2818 } 2819 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2820 &vm->va.rb_root, rb) { 2821 list_del(&mapping->list); 2822 amdgpu_vm_it_remove(mapping, &vm->va); 2823 kfree(mapping); 2824 } 2825 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2826 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2827 amdgpu_vm_prt_fini(adev, vm); 2828 prt_fini_needed = false; 2829 } 2830 2831 list_del(&mapping->list); 2832 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2833 } 2834 2835 root = amdgpu_bo_ref(vm->root.base.bo); 2836 r = amdgpu_bo_reserve(root, true); 2837 if (r) { 2838 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2839 } else { 2840 amdgpu_vm_free_levels(adev, &vm->root, 2841 adev->vm_manager.root_level); 2842 amdgpu_bo_unreserve(root); 2843 } 2844 amdgpu_bo_unref(&root); 2845 dma_fence_put(vm->last_update); 2846 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2847 amdgpu_vmid_free_reserved(adev, vm, i); 2848 } 2849 2850 /** 2851 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2852 * 2853 * @adev: amdgpu_device pointer 2854 * @pasid: PASID do identify the VM 2855 * 2856 * This function is expected to be called in interrupt context. 2857 * 2858 * Returns: 2859 * True if there was fault credit, false otherwise 2860 */ 2861 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2862 unsigned int pasid) 2863 { 2864 struct amdgpu_vm *vm; 2865 2866 spin_lock(&adev->vm_manager.pasid_lock); 2867 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2868 if (!vm) { 2869 /* VM not found, can't track fault credit */ 2870 spin_unlock(&adev->vm_manager.pasid_lock); 2871 return true; 2872 } 2873 2874 /* No lock needed. only accessed by IRQ handler */ 2875 if (!vm->fault_credit) { 2876 /* Too many faults in this VM */ 2877 spin_unlock(&adev->vm_manager.pasid_lock); 2878 return false; 2879 } 2880 2881 vm->fault_credit--; 2882 spin_unlock(&adev->vm_manager.pasid_lock); 2883 return true; 2884 } 2885 2886 /** 2887 * amdgpu_vm_manager_init - init the VM manager 2888 * 2889 * @adev: amdgpu_device pointer 2890 * 2891 * Initialize the VM manager structures 2892 */ 2893 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2894 { 2895 unsigned i; 2896 2897 amdgpu_vmid_mgr_init(adev); 2898 2899 adev->vm_manager.fence_context = 2900 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2901 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2902 adev->vm_manager.seqno[i] = 0; 2903 2904 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2905 spin_lock_init(&adev->vm_manager.prt_lock); 2906 atomic_set(&adev->vm_manager.num_prt_users, 0); 2907 2908 /* If not overridden by the user, by default, only in large BAR systems 2909 * Compute VM tables will be updated by CPU 2910 */ 2911 #ifdef CONFIG_X86_64 2912 if (amdgpu_vm_update_mode == -1) { 2913 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 2914 adev->vm_manager.vm_update_mode = 2915 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2916 else 2917 adev->vm_manager.vm_update_mode = 0; 2918 } else 2919 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2920 #else 2921 adev->vm_manager.vm_update_mode = 0; 2922 #endif 2923 2924 idr_init(&adev->vm_manager.pasid_idr); 2925 spin_lock_init(&adev->vm_manager.pasid_lock); 2926 } 2927 2928 /** 2929 * amdgpu_vm_manager_fini - cleanup VM manager 2930 * 2931 * @adev: amdgpu_device pointer 2932 * 2933 * Cleanup the VM manager and free resources. 2934 */ 2935 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2936 { 2937 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 2938 idr_destroy(&adev->vm_manager.pasid_idr); 2939 2940 amdgpu_vmid_mgr_fini(adev); 2941 } 2942 2943 /** 2944 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2945 * 2946 * @dev: drm device pointer 2947 * @data: drm_amdgpu_vm 2948 * @filp: drm file pointer 2949 * 2950 * Returns: 2951 * 0 for success, -errno for errors. 2952 */ 2953 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2954 { 2955 union drm_amdgpu_vm *args = data; 2956 struct amdgpu_device *adev = dev->dev_private; 2957 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2958 int r; 2959 2960 switch (args->in.op) { 2961 case AMDGPU_VM_OP_RESERVE_VMID: 2962 /* current, we only have requirement to reserve vmid from gfxhub */ 2963 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2964 if (r) 2965 return r; 2966 break; 2967 case AMDGPU_VM_OP_UNRESERVE_VMID: 2968 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2969 break; 2970 default: 2971 return -EINVAL; 2972 } 2973 2974 return 0; 2975 } 2976 2977 /** 2978 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 2979 * 2980 * @dev: drm device pointer 2981 * @pasid: PASID identifier for VM 2982 * @task_info: task_info to fill. 2983 */ 2984 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 2985 struct amdgpu_task_info *task_info) 2986 { 2987 struct amdgpu_vm *vm; 2988 2989 spin_lock(&adev->vm_manager.pasid_lock); 2990 2991 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2992 if (vm) 2993 *task_info = vm->task_info; 2994 2995 spin_unlock(&adev->vm_manager.pasid_lock); 2996 } 2997 2998 /** 2999 * amdgpu_vm_set_task_info - Sets VMs task info. 3000 * 3001 * @vm: vm for which to set the info 3002 */ 3003 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3004 { 3005 if (!vm->task_info.pid) { 3006 vm->task_info.pid = current->pid; 3007 get_task_comm(vm->task_info.task_name, current); 3008 3009 if (current->group_leader->mm == current->mm) { 3010 vm->task_info.tgid = current->group_leader->pid; 3011 get_task_comm(vm->task_info.process_name, current->group_leader); 3012 } 3013 } 3014 } 3015