1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <drm/drmP.h> 31 #include <drm/amdgpu_drm.h> 32 #include "amdgpu.h" 33 #include "amdgpu_trace.h" 34 35 /* 36 * GPUVM 37 * GPUVM is similar to the legacy gart on older asics, however 38 * rather than there being a single global gart table 39 * for the entire GPU, there are multiple VM page tables active 40 * at any given time. The VM page tables can contain a mix 41 * vram pages and system memory pages and system memory pages 42 * can be mapped as snooped (cached system pages) or unsnooped 43 * (uncached system pages). 44 * Each VM has an ID associated with it and there is a page table 45 * associated with each VMID. When execting a command buffer, 46 * the kernel tells the the ring what VMID to use for that command 47 * buffer. VMIDs are allocated dynamically as commands are submitted. 48 * The userspace drivers maintain their own address space and the kernel 49 * sets up their pages tables accordingly when they submit their 50 * command buffers and a VMID is assigned. 51 * Cayman/Trinity support up to 8 active VMs at any given time; 52 * SI supports 16. 53 */ 54 55 #define START(node) ((node)->start) 56 #define LAST(node) ((node)->last) 57 58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 59 START, LAST, static, amdgpu_vm_it) 60 61 #undef START 62 #undef LAST 63 64 /* Local structure. Encapsulate some VM table update parameters to reduce 65 * the number of function parameters 66 */ 67 struct amdgpu_pte_update_params { 68 /* amdgpu device we do this update for */ 69 struct amdgpu_device *adev; 70 /* optional amdgpu_vm we do this update for */ 71 struct amdgpu_vm *vm; 72 /* address where to copy page table entries from */ 73 uint64_t src; 74 /* indirect buffer to fill with commands */ 75 struct amdgpu_ib *ib; 76 /* Function which actually does the update */ 77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 78 uint64_t addr, unsigned count, uint32_t incr, 79 uint64_t flags); 80 /* indicate update pt or its shadow */ 81 bool shadow; 82 /* The next two are used during VM update by CPU 83 * DMA addresses to use for mapping 84 * Kernel pointer of PD/PT BO that needs to be updated 85 */ 86 dma_addr_t *pages_addr; 87 void *kptr; 88 }; 89 90 /* Helper to disable partial resident texture feature from a fence callback */ 91 struct amdgpu_prt_cb { 92 struct amdgpu_device *adev; 93 struct dma_fence_cb cb; 94 }; 95 96 /** 97 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 98 * 99 * @adev: amdgpu_device pointer 100 * 101 * Calculate the number of entries in a page directory or page table. 102 */ 103 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 104 unsigned level) 105 { 106 if (level == 0) 107 /* For the root directory */ 108 return adev->vm_manager.max_pfn >> 109 (adev->vm_manager.block_size * 110 adev->vm_manager.num_level); 111 else if (level == adev->vm_manager.num_level) 112 /* For the page tables on the leaves */ 113 return AMDGPU_VM_PTE_COUNT(adev); 114 else 115 /* Everything in between */ 116 return 1 << adev->vm_manager.block_size; 117 } 118 119 /** 120 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 121 * 122 * @adev: amdgpu_device pointer 123 * 124 * Calculate the size of the BO for a page directory or page table in bytes. 125 */ 126 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 127 { 128 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 129 } 130 131 /** 132 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 133 * 134 * @vm: vm providing the BOs 135 * @validated: head of validation list 136 * @entry: entry to add 137 * 138 * Add the page directory to the list of BOs to 139 * validate for command submission. 140 */ 141 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 142 struct list_head *validated, 143 struct amdgpu_bo_list_entry *entry) 144 { 145 entry->robj = vm->root.bo; 146 entry->priority = 0; 147 entry->tv.bo = &entry->robj->tbo; 148 entry->tv.shared = true; 149 entry->user_pages = NULL; 150 list_add(&entry->tv.head, validated); 151 } 152 153 /** 154 * amdgpu_vm_validate_layer - validate a single page table level 155 * 156 * @parent: parent page table level 157 * @validate: callback to do the validation 158 * @param: parameter for the validation callback 159 * 160 * Validate the page table BOs on command submission if neccessary. 161 */ 162 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent, 163 int (*validate)(void *, struct amdgpu_bo *), 164 void *param) 165 { 166 unsigned i; 167 int r; 168 169 if (!parent->entries) 170 return 0; 171 172 for (i = 0; i <= parent->last_entry_used; ++i) { 173 struct amdgpu_vm_pt *entry = &parent->entries[i]; 174 175 if (!entry->bo) 176 continue; 177 178 r = validate(param, entry->bo); 179 if (r) 180 return r; 181 182 /* 183 * Recurse into the sub directory. This is harmless because we 184 * have only a maximum of 5 layers. 185 */ 186 r = amdgpu_vm_validate_level(entry, validate, param); 187 if (r) 188 return r; 189 } 190 191 return r; 192 } 193 194 /** 195 * amdgpu_vm_validate_pt_bos - validate the page table BOs 196 * 197 * @adev: amdgpu device pointer 198 * @vm: vm providing the BOs 199 * @validate: callback to do the validation 200 * @param: parameter for the validation callback 201 * 202 * Validate the page table BOs on command submission if neccessary. 203 */ 204 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 205 int (*validate)(void *p, struct amdgpu_bo *bo), 206 void *param) 207 { 208 uint64_t num_evictions; 209 210 /* We only need to validate the page tables 211 * if they aren't already valid. 212 */ 213 num_evictions = atomic64_read(&adev->num_evictions); 214 if (num_evictions == vm->last_eviction_counter) 215 return 0; 216 217 return amdgpu_vm_validate_level(&vm->root, validate, param); 218 } 219 220 /** 221 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail 222 * 223 * @adev: amdgpu device instance 224 * @vm: vm providing the BOs 225 * 226 * Move the PT BOs to the tail of the LRU. 227 */ 228 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent) 229 { 230 unsigned i; 231 232 if (!parent->entries) 233 return; 234 235 for (i = 0; i <= parent->last_entry_used; ++i) { 236 struct amdgpu_vm_pt *entry = &parent->entries[i]; 237 238 if (!entry->bo) 239 continue; 240 241 ttm_bo_move_to_lru_tail(&entry->bo->tbo); 242 amdgpu_vm_move_level_in_lru(entry); 243 } 244 } 245 246 /** 247 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 248 * 249 * @adev: amdgpu device instance 250 * @vm: vm providing the BOs 251 * 252 * Move the PT BOs to the tail of the LRU. 253 */ 254 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 255 struct amdgpu_vm *vm) 256 { 257 struct ttm_bo_global *glob = adev->mman.bdev.glob; 258 259 spin_lock(&glob->lru_lock); 260 amdgpu_vm_move_level_in_lru(&vm->root); 261 spin_unlock(&glob->lru_lock); 262 } 263 264 /** 265 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 266 * 267 * @adev: amdgpu_device pointer 268 * @vm: requested vm 269 * @saddr: start of the address range 270 * @eaddr: end of the address range 271 * 272 * Make sure the page directories and page tables are allocated 273 */ 274 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 275 struct amdgpu_vm *vm, 276 struct amdgpu_vm_pt *parent, 277 uint64_t saddr, uint64_t eaddr, 278 unsigned level) 279 { 280 unsigned shift = (adev->vm_manager.num_level - level) * 281 adev->vm_manager.block_size; 282 unsigned pt_idx, from, to; 283 int r; 284 u64 flags; 285 286 if (!parent->entries) { 287 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 288 289 parent->entries = kvmalloc_array(num_entries, 290 sizeof(struct amdgpu_vm_pt), 291 GFP_KERNEL | __GFP_ZERO); 292 if (!parent->entries) 293 return -ENOMEM; 294 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 295 } 296 297 from = saddr >> shift; 298 to = eaddr >> shift; 299 if (from >= amdgpu_vm_num_entries(adev, level) || 300 to >= amdgpu_vm_num_entries(adev, level)) 301 return -EINVAL; 302 303 if (to > parent->last_entry_used) 304 parent->last_entry_used = to; 305 306 ++level; 307 saddr = saddr & ((1 << shift) - 1); 308 eaddr = eaddr & ((1 << shift) - 1); 309 310 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 311 AMDGPU_GEM_CREATE_VRAM_CLEARED; 312 if (vm->use_cpu_for_update) 313 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 314 else 315 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 316 AMDGPU_GEM_CREATE_SHADOW); 317 318 /* walk over the address space and allocate the page tables */ 319 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 320 struct reservation_object *resv = vm->root.bo->tbo.resv; 321 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 322 struct amdgpu_bo *pt; 323 324 if (!entry->bo) { 325 r = amdgpu_bo_create(adev, 326 amdgpu_vm_bo_size(adev, level), 327 AMDGPU_GPU_PAGE_SIZE, true, 328 AMDGPU_GEM_DOMAIN_VRAM, 329 flags, 330 NULL, resv, &pt); 331 if (r) 332 return r; 333 334 /* Keep a reference to the root directory to avoid 335 * freeing them up in the wrong order. 336 */ 337 pt->parent = amdgpu_bo_ref(vm->root.bo); 338 339 entry->bo = pt; 340 entry->addr = 0; 341 } 342 343 if (level < adev->vm_manager.num_level) { 344 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 345 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 346 ((1 << shift) - 1); 347 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 348 sub_eaddr, level); 349 if (r) 350 return r; 351 } 352 } 353 354 return 0; 355 } 356 357 /** 358 * amdgpu_vm_alloc_pts - Allocate page tables. 359 * 360 * @adev: amdgpu_device pointer 361 * @vm: VM to allocate page tables for 362 * @saddr: Start address which needs to be allocated 363 * @size: Size from start address we need. 364 * 365 * Make sure the page tables are allocated. 366 */ 367 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 368 struct amdgpu_vm *vm, 369 uint64_t saddr, uint64_t size) 370 { 371 uint64_t last_pfn; 372 uint64_t eaddr; 373 374 /* validate the parameters */ 375 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 376 return -EINVAL; 377 378 eaddr = saddr + size - 1; 379 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 380 if (last_pfn >= adev->vm_manager.max_pfn) { 381 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 382 last_pfn, adev->vm_manager.max_pfn); 383 return -EINVAL; 384 } 385 386 saddr /= AMDGPU_GPU_PAGE_SIZE; 387 eaddr /= AMDGPU_GPU_PAGE_SIZE; 388 389 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); 390 } 391 392 /** 393 * amdgpu_vm_had_gpu_reset - check if reset occured since last use 394 * 395 * @adev: amdgpu_device pointer 396 * @id: VMID structure 397 * 398 * Check if GPU reset occured since last use of the VMID. 399 */ 400 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev, 401 struct amdgpu_vm_id *id) 402 { 403 return id->current_gpu_reset_count != 404 atomic_read(&adev->gpu_reset_counter); 405 } 406 407 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub) 408 { 409 return !!vm->reserved_vmid[vmhub]; 410 } 411 412 /* idr_mgr->lock must be held */ 413 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm, 414 struct amdgpu_ring *ring, 415 struct amdgpu_sync *sync, 416 struct dma_fence *fence, 417 struct amdgpu_job *job) 418 { 419 struct amdgpu_device *adev = ring->adev; 420 unsigned vmhub = ring->funcs->vmhub; 421 uint64_t fence_context = adev->fence_context + ring->idx; 422 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub]; 423 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 424 struct dma_fence *updates = sync->last_vm_update; 425 int r = 0; 426 struct dma_fence *flushed, *tmp; 427 bool needs_flush = false; 428 429 flushed = id->flushed_updates; 430 if ((amdgpu_vm_had_gpu_reset(adev, id)) || 431 (atomic64_read(&id->owner) != vm->client_id) || 432 (job->vm_pd_addr != id->pd_gpu_addr) || 433 (updates && (!flushed || updates->context != flushed->context || 434 dma_fence_is_later(updates, flushed))) || 435 (!id->last_flush || (id->last_flush->context != fence_context && 436 !dma_fence_is_signaled(id->last_flush)))) { 437 needs_flush = true; 438 /* to prevent one context starved by another context */ 439 id->pd_gpu_addr = 0; 440 tmp = amdgpu_sync_peek_fence(&id->active, ring); 441 if (tmp) { 442 r = amdgpu_sync_fence(adev, sync, tmp); 443 return r; 444 } 445 } 446 447 /* Good we can use this VMID. Remember this submission as 448 * user of the VMID. 449 */ 450 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 451 if (r) 452 goto out; 453 454 if (updates && (!flushed || updates->context != flushed->context || 455 dma_fence_is_later(updates, flushed))) { 456 dma_fence_put(id->flushed_updates); 457 id->flushed_updates = dma_fence_get(updates); 458 } 459 id->pd_gpu_addr = job->vm_pd_addr; 460 atomic64_set(&id->owner, vm->client_id); 461 job->vm_needs_flush = needs_flush; 462 if (needs_flush) { 463 dma_fence_put(id->last_flush); 464 id->last_flush = NULL; 465 } 466 job->vm_id = id - id_mgr->ids; 467 trace_amdgpu_vm_grab_id(vm, ring, job); 468 out: 469 return r; 470 } 471 472 /** 473 * amdgpu_vm_grab_id - allocate the next free VMID 474 * 475 * @vm: vm to allocate id for 476 * @ring: ring we want to submit job to 477 * @sync: sync object where we add dependencies 478 * @fence: fence protecting ID from reuse 479 * 480 * Allocate an id for the vm, adding fences to the sync obj as necessary. 481 */ 482 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 483 struct amdgpu_sync *sync, struct dma_fence *fence, 484 struct amdgpu_job *job) 485 { 486 struct amdgpu_device *adev = ring->adev; 487 unsigned vmhub = ring->funcs->vmhub; 488 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 489 uint64_t fence_context = adev->fence_context + ring->idx; 490 struct dma_fence *updates = sync->last_vm_update; 491 struct amdgpu_vm_id *id, *idle; 492 struct dma_fence **fences; 493 unsigned i; 494 int r = 0; 495 496 mutex_lock(&id_mgr->lock); 497 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) { 498 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job); 499 mutex_unlock(&id_mgr->lock); 500 return r; 501 } 502 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL); 503 if (!fences) { 504 mutex_unlock(&id_mgr->lock); 505 return -ENOMEM; 506 } 507 /* Check if we have an idle VMID */ 508 i = 0; 509 list_for_each_entry(idle, &id_mgr->ids_lru, list) { 510 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 511 if (!fences[i]) 512 break; 513 ++i; 514 } 515 516 /* If we can't find a idle VMID to use, wait till one becomes available */ 517 if (&idle->list == &id_mgr->ids_lru) { 518 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 519 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 520 struct dma_fence_array *array; 521 unsigned j; 522 523 for (j = 0; j < i; ++j) 524 dma_fence_get(fences[j]); 525 526 array = dma_fence_array_create(i, fences, fence_context, 527 seqno, true); 528 if (!array) { 529 for (j = 0; j < i; ++j) 530 dma_fence_put(fences[j]); 531 kfree(fences); 532 r = -ENOMEM; 533 goto error; 534 } 535 536 537 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 538 dma_fence_put(&array->base); 539 if (r) 540 goto error; 541 542 mutex_unlock(&id_mgr->lock); 543 return 0; 544 545 } 546 kfree(fences); 547 548 job->vm_needs_flush = false; 549 /* Check if we can use a VMID already assigned to this VM */ 550 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) { 551 struct dma_fence *flushed; 552 bool needs_flush = false; 553 554 /* Check all the prerequisites to using this VMID */ 555 if (amdgpu_vm_had_gpu_reset(adev, id)) 556 continue; 557 558 if (atomic64_read(&id->owner) != vm->client_id) 559 continue; 560 561 if (job->vm_pd_addr != id->pd_gpu_addr) 562 continue; 563 564 if (!id->last_flush || 565 (id->last_flush->context != fence_context && 566 !dma_fence_is_signaled(id->last_flush))) 567 needs_flush = true; 568 569 flushed = id->flushed_updates; 570 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) 571 needs_flush = true; 572 573 /* Concurrent flushes are only possible starting with Vega10 */ 574 if (adev->asic_type < CHIP_VEGA10 && needs_flush) 575 continue; 576 577 /* Good we can use this VMID. Remember this submission as 578 * user of the VMID. 579 */ 580 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 581 if (r) 582 goto error; 583 584 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) { 585 dma_fence_put(id->flushed_updates); 586 id->flushed_updates = dma_fence_get(updates); 587 } 588 589 if (needs_flush) 590 goto needs_flush; 591 else 592 goto no_flush_needed; 593 594 }; 595 596 /* Still no ID to use? Then use the idle one found earlier */ 597 id = idle; 598 599 /* Remember this submission as user of the VMID */ 600 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 601 if (r) 602 goto error; 603 604 id->pd_gpu_addr = job->vm_pd_addr; 605 dma_fence_put(id->flushed_updates); 606 id->flushed_updates = dma_fence_get(updates); 607 atomic64_set(&id->owner, vm->client_id); 608 609 needs_flush: 610 job->vm_needs_flush = true; 611 dma_fence_put(id->last_flush); 612 id->last_flush = NULL; 613 614 no_flush_needed: 615 list_move_tail(&id->list, &id_mgr->ids_lru); 616 617 job->vm_id = id - id_mgr->ids; 618 trace_amdgpu_vm_grab_id(vm, ring, job); 619 620 error: 621 mutex_unlock(&id_mgr->lock); 622 return r; 623 } 624 625 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev, 626 struct amdgpu_vm *vm, 627 unsigned vmhub) 628 { 629 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 630 631 mutex_lock(&id_mgr->lock); 632 if (vm->reserved_vmid[vmhub]) { 633 list_add(&vm->reserved_vmid[vmhub]->list, 634 &id_mgr->ids_lru); 635 vm->reserved_vmid[vmhub] = NULL; 636 atomic_dec(&id_mgr->reserved_vmid_num); 637 } 638 mutex_unlock(&id_mgr->lock); 639 } 640 641 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev, 642 struct amdgpu_vm *vm, 643 unsigned vmhub) 644 { 645 struct amdgpu_vm_id_manager *id_mgr; 646 struct amdgpu_vm_id *idle; 647 int r = 0; 648 649 id_mgr = &adev->vm_manager.id_mgr[vmhub]; 650 mutex_lock(&id_mgr->lock); 651 if (vm->reserved_vmid[vmhub]) 652 goto unlock; 653 if (atomic_inc_return(&id_mgr->reserved_vmid_num) > 654 AMDGPU_VM_MAX_RESERVED_VMID) { 655 DRM_ERROR("Over limitation of reserved vmid\n"); 656 atomic_dec(&id_mgr->reserved_vmid_num); 657 r = -EINVAL; 658 goto unlock; 659 } 660 /* Select the first entry VMID */ 661 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list); 662 list_del_init(&idle->list); 663 vm->reserved_vmid[vmhub] = idle; 664 mutex_unlock(&id_mgr->lock); 665 666 return 0; 667 unlock: 668 mutex_unlock(&id_mgr->lock); 669 return r; 670 } 671 672 /** 673 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 674 * 675 * @adev: amdgpu_device pointer 676 */ 677 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 678 { 679 const struct amdgpu_ip_block *ip_block; 680 bool has_compute_vm_bug; 681 struct amdgpu_ring *ring; 682 int i; 683 684 has_compute_vm_bug = false; 685 686 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 687 if (ip_block) { 688 /* Compute has a VM bug for GFX version < 7. 689 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 690 if (ip_block->version->major <= 7) 691 has_compute_vm_bug = true; 692 else if (ip_block->version->major == 8) 693 if (adev->gfx.mec_fw_version < 673) 694 has_compute_vm_bug = true; 695 } 696 697 for (i = 0; i < adev->num_rings; i++) { 698 ring = adev->rings[i]; 699 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 700 /* only compute rings */ 701 ring->has_compute_vm_bug = has_compute_vm_bug; 702 else 703 ring->has_compute_vm_bug = false; 704 } 705 } 706 707 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 708 struct amdgpu_job *job) 709 { 710 struct amdgpu_device *adev = ring->adev; 711 unsigned vmhub = ring->funcs->vmhub; 712 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 713 struct amdgpu_vm_id *id; 714 bool gds_switch_needed; 715 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 716 717 if (job->vm_id == 0) 718 return false; 719 id = &id_mgr->ids[job->vm_id]; 720 gds_switch_needed = ring->funcs->emit_gds_switch && ( 721 id->gds_base != job->gds_base || 722 id->gds_size != job->gds_size || 723 id->gws_base != job->gws_base || 724 id->gws_size != job->gws_size || 725 id->oa_base != job->oa_base || 726 id->oa_size != job->oa_size); 727 728 if (amdgpu_vm_had_gpu_reset(adev, id)) 729 return true; 730 731 return vm_flush_needed || gds_switch_needed; 732 } 733 734 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev) 735 { 736 return (adev->mc.real_vram_size == adev->mc.visible_vram_size); 737 } 738 739 /** 740 * amdgpu_vm_flush - hardware flush the vm 741 * 742 * @ring: ring to use for flush 743 * @vm_id: vmid number to use 744 * @pd_addr: address of the page directory 745 * 746 * Emit a VM flush when it is necessary. 747 */ 748 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job) 749 { 750 struct amdgpu_device *adev = ring->adev; 751 unsigned vmhub = ring->funcs->vmhub; 752 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 753 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id]; 754 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 755 id->gds_base != job->gds_base || 756 id->gds_size != job->gds_size || 757 id->gws_base != job->gws_base || 758 id->gws_size != job->gws_size || 759 id->oa_base != job->oa_base || 760 id->oa_size != job->oa_size); 761 bool vm_flush_needed = job->vm_needs_flush; 762 unsigned patch_offset = 0; 763 int r; 764 765 if (amdgpu_vm_had_gpu_reset(adev, id)) { 766 gds_switch_needed = true; 767 vm_flush_needed = true; 768 } 769 770 if (!vm_flush_needed && !gds_switch_needed) 771 return 0; 772 773 if (ring->funcs->init_cond_exec) 774 patch_offset = amdgpu_ring_init_cond_exec(ring); 775 776 if (ring->funcs->emit_vm_flush && vm_flush_needed) { 777 struct dma_fence *fence; 778 779 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr); 780 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr); 781 782 r = amdgpu_fence_emit(ring, &fence); 783 if (r) 784 return r; 785 786 mutex_lock(&id_mgr->lock); 787 dma_fence_put(id->last_flush); 788 id->last_flush = fence; 789 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 790 mutex_unlock(&id_mgr->lock); 791 } 792 793 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 794 id->gds_base = job->gds_base; 795 id->gds_size = job->gds_size; 796 id->gws_base = job->gws_base; 797 id->gws_size = job->gws_size; 798 id->oa_base = job->oa_base; 799 id->oa_size = job->oa_size; 800 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base, 801 job->gds_size, job->gws_base, 802 job->gws_size, job->oa_base, 803 job->oa_size); 804 } 805 806 if (ring->funcs->patch_cond_exec) 807 amdgpu_ring_patch_cond_exec(ring, patch_offset); 808 809 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 810 if (ring->funcs->emit_switch_buffer) { 811 amdgpu_ring_emit_switch_buffer(ring); 812 amdgpu_ring_emit_switch_buffer(ring); 813 } 814 return 0; 815 } 816 817 /** 818 * amdgpu_vm_reset_id - reset VMID to zero 819 * 820 * @adev: amdgpu device structure 821 * @vm_id: vmid number to use 822 * 823 * Reset saved GDW, GWS and OA to force switch on next flush. 824 */ 825 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub, 826 unsigned vmid) 827 { 828 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 829 struct amdgpu_vm_id *id = &id_mgr->ids[vmid]; 830 831 atomic64_set(&id->owner, 0); 832 id->gds_base = 0; 833 id->gds_size = 0; 834 id->gws_base = 0; 835 id->gws_size = 0; 836 id->oa_base = 0; 837 id->oa_size = 0; 838 } 839 840 /** 841 * amdgpu_vm_reset_all_id - reset VMID to zero 842 * 843 * @adev: amdgpu device structure 844 * 845 * Reset VMID to force flush on next use 846 */ 847 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev) 848 { 849 unsigned i, j; 850 851 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 852 struct amdgpu_vm_id_manager *id_mgr = 853 &adev->vm_manager.id_mgr[i]; 854 855 for (j = 1; j < id_mgr->num_ids; ++j) 856 amdgpu_vm_reset_id(adev, i, j); 857 } 858 } 859 860 /** 861 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 862 * 863 * @vm: requested vm 864 * @bo: requested buffer object 865 * 866 * Find @bo inside the requested vm. 867 * Search inside the @bos vm list for the requested vm 868 * Returns the found bo_va or NULL if none is found 869 * 870 * Object has to be reserved! 871 */ 872 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 873 struct amdgpu_bo *bo) 874 { 875 struct amdgpu_bo_va *bo_va; 876 877 list_for_each_entry(bo_va, &bo->va, bo_list) { 878 if (bo_va->vm == vm) { 879 return bo_va; 880 } 881 } 882 return NULL; 883 } 884 885 /** 886 * amdgpu_vm_do_set_ptes - helper to call the right asic function 887 * 888 * @params: see amdgpu_pte_update_params definition 889 * @pe: addr of the page entry 890 * @addr: dst addr to write into pe 891 * @count: number of page entries to update 892 * @incr: increase next addr by incr bytes 893 * @flags: hw access flags 894 * 895 * Traces the parameters and calls the right asic functions 896 * to setup the page table using the DMA. 897 */ 898 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 899 uint64_t pe, uint64_t addr, 900 unsigned count, uint32_t incr, 901 uint64_t flags) 902 { 903 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 904 905 if (count < 3) { 906 amdgpu_vm_write_pte(params->adev, params->ib, pe, 907 addr | flags, count, incr); 908 909 } else { 910 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 911 count, incr, flags); 912 } 913 } 914 915 /** 916 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 917 * 918 * @params: see amdgpu_pte_update_params definition 919 * @pe: addr of the page entry 920 * @addr: dst addr to write into pe 921 * @count: number of page entries to update 922 * @incr: increase next addr by incr bytes 923 * @flags: hw access flags 924 * 925 * Traces the parameters and calls the DMA function to copy the PTEs. 926 */ 927 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 928 uint64_t pe, uint64_t addr, 929 unsigned count, uint32_t incr, 930 uint64_t flags) 931 { 932 uint64_t src = (params->src + (addr >> 12) * 8); 933 934 935 trace_amdgpu_vm_copy_ptes(pe, src, count); 936 937 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 938 } 939 940 /** 941 * amdgpu_vm_map_gart - Resolve gart mapping of addr 942 * 943 * @pages_addr: optional DMA address to use for lookup 944 * @addr: the unmapped addr 945 * 946 * Look up the physical address of the page that the pte resolves 947 * to and return the pointer for the page table entry. 948 */ 949 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 950 { 951 uint64_t result; 952 953 /* page table offset */ 954 result = pages_addr[addr >> PAGE_SHIFT]; 955 956 /* in case cpu page size != gpu page size*/ 957 result |= addr & (~PAGE_MASK); 958 959 result &= 0xFFFFFFFFFFFFF000ULL; 960 961 return result; 962 } 963 964 /** 965 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 966 * 967 * @params: see amdgpu_pte_update_params definition 968 * @pe: kmap addr of the page entry 969 * @addr: dst addr to write into pe 970 * @count: number of page entries to update 971 * @incr: increase next addr by incr bytes 972 * @flags: hw access flags 973 * 974 * Write count number of PT/PD entries directly. 975 */ 976 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 977 uint64_t pe, uint64_t addr, 978 unsigned count, uint32_t incr, 979 uint64_t flags) 980 { 981 unsigned int i; 982 uint64_t value; 983 984 for (i = 0; i < count; i++) { 985 value = params->pages_addr ? 986 amdgpu_vm_map_gart(params->pages_addr, addr) : 987 addr; 988 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 989 i, value, flags); 990 addr += incr; 991 } 992 993 /* Flush HDP */ 994 mb(); 995 amdgpu_gart_flush_gpu_tlb(params->adev, 0); 996 } 997 998 static int amdgpu_vm_bo_wait(struct amdgpu_device *adev, struct amdgpu_bo *bo) 999 { 1000 struct amdgpu_sync sync; 1001 int r; 1002 1003 amdgpu_sync_create(&sync); 1004 amdgpu_sync_resv(adev, &sync, bo->tbo.resv, AMDGPU_FENCE_OWNER_VM); 1005 r = amdgpu_sync_wait(&sync, true); 1006 amdgpu_sync_free(&sync); 1007 1008 return r; 1009 } 1010 1011 /* 1012 * amdgpu_vm_update_level - update a single level in the hierarchy 1013 * 1014 * @adev: amdgpu_device pointer 1015 * @vm: requested vm 1016 * @parent: parent directory 1017 * 1018 * Makes sure all entries in @parent are up to date. 1019 * Returns 0 for success, error for failure. 1020 */ 1021 static int amdgpu_vm_update_level(struct amdgpu_device *adev, 1022 struct amdgpu_vm *vm, 1023 struct amdgpu_vm_pt *parent, 1024 unsigned level) 1025 { 1026 struct amdgpu_bo *shadow; 1027 struct amdgpu_ring *ring = NULL; 1028 uint64_t pd_addr, shadow_addr = 0; 1029 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1); 1030 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 1031 unsigned count = 0, pt_idx, ndw = 0; 1032 struct amdgpu_job *job; 1033 struct amdgpu_pte_update_params params; 1034 struct dma_fence *fence = NULL; 1035 1036 int r; 1037 1038 if (!parent->entries) 1039 return 0; 1040 1041 memset(¶ms, 0, sizeof(params)); 1042 params.adev = adev; 1043 shadow = parent->bo->shadow; 1044 1045 WARN_ON(vm->use_cpu_for_update && shadow); 1046 if (vm->use_cpu_for_update && !shadow) { 1047 r = amdgpu_bo_kmap(parent->bo, (void **)&pd_addr); 1048 if (r) 1049 return r; 1050 r = amdgpu_vm_bo_wait(adev, parent->bo); 1051 if (unlikely(r)) { 1052 amdgpu_bo_kunmap(parent->bo); 1053 return r; 1054 } 1055 params.func = amdgpu_vm_cpu_set_ptes; 1056 } else { 1057 if (shadow) { 1058 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 1059 if (r) 1060 return r; 1061 } 1062 ring = container_of(vm->entity.sched, struct amdgpu_ring, 1063 sched); 1064 1065 /* padding, etc. */ 1066 ndw = 64; 1067 1068 /* assume the worst case */ 1069 ndw += parent->last_entry_used * 6; 1070 1071 pd_addr = amdgpu_bo_gpu_offset(parent->bo); 1072 1073 if (shadow) { 1074 shadow_addr = amdgpu_bo_gpu_offset(shadow); 1075 ndw *= 2; 1076 } else { 1077 shadow_addr = 0; 1078 } 1079 1080 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1081 if (r) 1082 return r; 1083 1084 params.ib = &job->ibs[0]; 1085 params.func = amdgpu_vm_do_set_ptes; 1086 } 1087 1088 1089 /* walk over the address space and update the directory */ 1090 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1091 struct amdgpu_bo *bo = parent->entries[pt_idx].bo; 1092 uint64_t pde, pt; 1093 1094 if (bo == NULL) 1095 continue; 1096 1097 if (bo->shadow) { 1098 struct amdgpu_bo *pt_shadow = bo->shadow; 1099 1100 r = amdgpu_ttm_bind(&pt_shadow->tbo, 1101 &pt_shadow->tbo.mem); 1102 if (r) 1103 return r; 1104 } 1105 1106 pt = amdgpu_bo_gpu_offset(bo); 1107 pt = amdgpu_gart_get_vm_pde(adev, pt); 1108 if (parent->entries[pt_idx].addr == pt) 1109 continue; 1110 1111 parent->entries[pt_idx].addr = pt; 1112 1113 pde = pd_addr + pt_idx * 8; 1114 if (((last_pde + 8 * count) != pde) || 1115 ((last_pt + incr * count) != pt) || 1116 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 1117 1118 if (count) { 1119 if (shadow) 1120 params.func(¶ms, 1121 last_shadow, 1122 last_pt, count, 1123 incr, 1124 AMDGPU_PTE_VALID); 1125 1126 params.func(¶ms, last_pde, 1127 last_pt, count, incr, 1128 AMDGPU_PTE_VALID); 1129 } 1130 1131 count = 1; 1132 last_pde = pde; 1133 last_shadow = shadow_addr + pt_idx * 8; 1134 last_pt = pt; 1135 } else { 1136 ++count; 1137 } 1138 } 1139 1140 if (count) { 1141 if (vm->root.bo->shadow) 1142 params.func(¶ms, last_shadow, last_pt, 1143 count, incr, AMDGPU_PTE_VALID); 1144 1145 params.func(¶ms, last_pde, last_pt, 1146 count, incr, AMDGPU_PTE_VALID); 1147 } 1148 1149 if (params.func == amdgpu_vm_cpu_set_ptes) 1150 amdgpu_bo_kunmap(parent->bo); 1151 else if (params.ib->length_dw == 0) { 1152 amdgpu_job_free(job); 1153 } else { 1154 amdgpu_ring_pad_ib(ring, params.ib); 1155 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv, 1156 AMDGPU_FENCE_OWNER_VM); 1157 if (shadow) 1158 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv, 1159 AMDGPU_FENCE_OWNER_VM); 1160 1161 WARN_ON(params.ib->length_dw > ndw); 1162 r = amdgpu_job_submit(job, ring, &vm->entity, 1163 AMDGPU_FENCE_OWNER_VM, &fence); 1164 if (r) 1165 goto error_free; 1166 1167 amdgpu_bo_fence(parent->bo, fence, true); 1168 dma_fence_put(vm->last_dir_update); 1169 vm->last_dir_update = dma_fence_get(fence); 1170 dma_fence_put(fence); 1171 } 1172 /* 1173 * Recurse into the subdirectories. This recursion is harmless because 1174 * we only have a maximum of 5 layers. 1175 */ 1176 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1177 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1178 1179 if (!entry->bo) 1180 continue; 1181 1182 r = amdgpu_vm_update_level(adev, vm, entry, level + 1); 1183 if (r) 1184 return r; 1185 } 1186 1187 return 0; 1188 1189 error_free: 1190 amdgpu_job_free(job); 1191 return r; 1192 } 1193 1194 /* 1195 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 1196 * 1197 * @parent: parent PD 1198 * 1199 * Mark all PD level as invalid after an error. 1200 */ 1201 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent) 1202 { 1203 unsigned pt_idx; 1204 1205 /* 1206 * Recurse into the subdirectories. This recursion is harmless because 1207 * we only have a maximum of 5 layers. 1208 */ 1209 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1210 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1211 1212 if (!entry->bo) 1213 continue; 1214 1215 entry->addr = ~0ULL; 1216 amdgpu_vm_invalidate_level(entry); 1217 } 1218 } 1219 1220 /* 1221 * amdgpu_vm_update_directories - make sure that all directories are valid 1222 * 1223 * @adev: amdgpu_device pointer 1224 * @vm: requested vm 1225 * 1226 * Makes sure all directories are up to date. 1227 * Returns 0 for success, error for failure. 1228 */ 1229 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1230 struct amdgpu_vm *vm) 1231 { 1232 int r; 1233 1234 r = amdgpu_vm_update_level(adev, vm, &vm->root, 0); 1235 if (r) 1236 amdgpu_vm_invalidate_level(&vm->root); 1237 1238 return r; 1239 } 1240 1241 /** 1242 * amdgpu_vm_find_pt - find the page table for an address 1243 * 1244 * @p: see amdgpu_pte_update_params definition 1245 * @addr: virtual address in question 1246 * 1247 * Find the page table BO for a virtual address, return NULL when none found. 1248 */ 1249 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p, 1250 uint64_t addr) 1251 { 1252 struct amdgpu_vm_pt *entry = &p->vm->root; 1253 unsigned idx, level = p->adev->vm_manager.num_level; 1254 1255 while (entry->entries) { 1256 idx = addr >> (p->adev->vm_manager.block_size * level--); 1257 idx %= amdgpu_bo_size(entry->bo) / 8; 1258 entry = &entry->entries[idx]; 1259 } 1260 1261 if (level) 1262 return NULL; 1263 1264 return entry->bo; 1265 } 1266 1267 /** 1268 * amdgpu_vm_update_ptes - make sure that page tables are valid 1269 * 1270 * @params: see amdgpu_pte_update_params definition 1271 * @vm: requested vm 1272 * @start: start of GPU address range 1273 * @end: end of GPU address range 1274 * @dst: destination address to map to, the next dst inside the function 1275 * @flags: mapping flags 1276 * 1277 * Update the page tables in the range @start - @end. 1278 * Returns 0 for success, -EINVAL for failure. 1279 */ 1280 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1281 uint64_t start, uint64_t end, 1282 uint64_t dst, uint64_t flags) 1283 { 1284 struct amdgpu_device *adev = params->adev; 1285 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1286 1287 uint64_t addr, pe_start; 1288 struct amdgpu_bo *pt; 1289 unsigned nptes; 1290 int r; 1291 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes); 1292 1293 1294 /* walk over the address space and update the page tables */ 1295 for (addr = start; addr < end; addr += nptes) { 1296 pt = amdgpu_vm_get_pt(params, addr); 1297 if (!pt) { 1298 pr_err("PT not found, aborting update_ptes\n"); 1299 return -EINVAL; 1300 } 1301 1302 if (params->shadow) { 1303 if (WARN_ONCE(use_cpu_update, 1304 "CPU VM update doesn't suuport shadow pages")) 1305 return 0; 1306 1307 if (!pt->shadow) 1308 return 0; 1309 pt = pt->shadow; 1310 } 1311 1312 if ((addr & ~mask) == (end & ~mask)) 1313 nptes = end - addr; 1314 else 1315 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1316 1317 if (use_cpu_update) { 1318 r = amdgpu_bo_kmap(pt, (void *)&pe_start); 1319 if (r) 1320 return r; 1321 } else 1322 pe_start = amdgpu_bo_gpu_offset(pt); 1323 1324 pe_start += (addr & mask) * 8; 1325 1326 params->func(params, pe_start, dst, nptes, 1327 AMDGPU_GPU_PAGE_SIZE, flags); 1328 1329 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1330 1331 if (use_cpu_update) 1332 amdgpu_bo_kunmap(pt); 1333 } 1334 1335 return 0; 1336 } 1337 1338 /* 1339 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1340 * 1341 * @params: see amdgpu_pte_update_params definition 1342 * @vm: requested vm 1343 * @start: first PTE to handle 1344 * @end: last PTE to handle 1345 * @dst: addr those PTEs should point to 1346 * @flags: hw mapping flags 1347 * Returns 0 for success, -EINVAL for failure. 1348 */ 1349 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1350 uint64_t start, uint64_t end, 1351 uint64_t dst, uint64_t flags) 1352 { 1353 int r; 1354 1355 /** 1356 * The MC L1 TLB supports variable sized pages, based on a fragment 1357 * field in the PTE. When this field is set to a non-zero value, page 1358 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1359 * flags are considered valid for all PTEs within the fragment range 1360 * and corresponding mappings are assumed to be physically contiguous. 1361 * 1362 * The L1 TLB can store a single PTE for the whole fragment, 1363 * significantly increasing the space available for translation 1364 * caching. This leads to large improvements in throughput when the 1365 * TLB is under pressure. 1366 * 1367 * The L2 TLB distributes small and large fragments into two 1368 * asymmetric partitions. The large fragment cache is significantly 1369 * larger. Thus, we try to use large fragments wherever possible. 1370 * Userspace can support this by aligning virtual base address and 1371 * allocation size to the fragment size. 1372 */ 1373 1374 /* SI and newer are optimized for 64KB */ 1375 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG); 1376 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG; 1377 1378 uint64_t frag_start = ALIGN(start, frag_align); 1379 uint64_t frag_end = end & ~(frag_align - 1); 1380 1381 /* system pages are non continuously */ 1382 if (params->src || !(flags & AMDGPU_PTE_VALID) || 1383 (frag_start >= frag_end)) 1384 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1385 1386 /* handle the 4K area at the beginning */ 1387 if (start != frag_start) { 1388 r = amdgpu_vm_update_ptes(params, start, frag_start, 1389 dst, flags); 1390 if (r) 1391 return r; 1392 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 1393 } 1394 1395 /* handle the area in the middle */ 1396 r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst, 1397 flags | frag_flags); 1398 if (r) 1399 return r; 1400 1401 /* handle the 4K area at the end */ 1402 if (frag_end != end) { 1403 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 1404 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags); 1405 } 1406 return r; 1407 } 1408 1409 /** 1410 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1411 * 1412 * @adev: amdgpu_device pointer 1413 * @exclusive: fence we need to sync to 1414 * @src: address where to copy page table entries from 1415 * @pages_addr: DMA addresses to use for mapping 1416 * @vm: requested vm 1417 * @start: start of mapped range 1418 * @last: last mapped entry 1419 * @flags: flags for the entries 1420 * @addr: addr to set the area to 1421 * @fence: optional resulting fence 1422 * 1423 * Fill in the page table entries between @start and @last. 1424 * Returns 0 for success, -EINVAL for failure. 1425 */ 1426 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1427 struct dma_fence *exclusive, 1428 uint64_t src, 1429 dma_addr_t *pages_addr, 1430 struct amdgpu_vm *vm, 1431 uint64_t start, uint64_t last, 1432 uint64_t flags, uint64_t addr, 1433 struct dma_fence **fence) 1434 { 1435 struct amdgpu_ring *ring; 1436 void *owner = AMDGPU_FENCE_OWNER_VM; 1437 unsigned nptes, ncmds, ndw; 1438 struct amdgpu_job *job; 1439 struct amdgpu_pte_update_params params; 1440 struct dma_fence *f = NULL; 1441 int r; 1442 1443 memset(¶ms, 0, sizeof(params)); 1444 params.adev = adev; 1445 params.vm = vm; 1446 params.src = src; 1447 1448 if (vm->use_cpu_for_update) { 1449 /* params.src is used as flag to indicate system Memory */ 1450 if (pages_addr) 1451 params.src = ~0; 1452 1453 /* Wait for PT BOs to be free. PTs share the same resv. object 1454 * as the root PD BO 1455 */ 1456 r = amdgpu_vm_bo_wait(adev, vm->root.bo); 1457 if (unlikely(r)) 1458 return r; 1459 1460 params.func = amdgpu_vm_cpu_set_ptes; 1461 params.pages_addr = pages_addr; 1462 params.shadow = false; 1463 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1464 addr, flags); 1465 } 1466 1467 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1468 1469 /* sync to everything on unmapping */ 1470 if (!(flags & AMDGPU_PTE_VALID)) 1471 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1472 1473 nptes = last - start + 1; 1474 1475 /* 1476 * reserve space for one command every (1 << BLOCK_SIZE) 1477 * entries or 2k dwords (whatever is smaller) 1478 */ 1479 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1; 1480 1481 /* padding, etc. */ 1482 ndw = 64; 1483 1484 if (src) { 1485 /* only copy commands needed */ 1486 ndw += ncmds * 7; 1487 1488 params.func = amdgpu_vm_do_copy_ptes; 1489 1490 } else if (pages_addr) { 1491 /* copy commands needed */ 1492 ndw += ncmds * 7; 1493 1494 /* and also PTEs */ 1495 ndw += nptes * 2; 1496 1497 params.func = amdgpu_vm_do_copy_ptes; 1498 1499 } else { 1500 /* set page commands needed */ 1501 ndw += ncmds * 10; 1502 1503 /* two extra commands for begin/end of fragment */ 1504 ndw += 2 * 10; 1505 1506 params.func = amdgpu_vm_do_set_ptes; 1507 } 1508 1509 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1510 if (r) 1511 return r; 1512 1513 params.ib = &job->ibs[0]; 1514 1515 if (!src && pages_addr) { 1516 uint64_t *pte; 1517 unsigned i; 1518 1519 /* Put the PTEs at the end of the IB. */ 1520 i = ndw - nptes * 2; 1521 pte= (uint64_t *)&(job->ibs->ptr[i]); 1522 params.src = job->ibs->gpu_addr + i * 4; 1523 1524 for (i = 0; i < nptes; ++i) { 1525 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1526 AMDGPU_GPU_PAGE_SIZE); 1527 pte[i] |= flags; 1528 } 1529 addr = 0; 1530 } 1531 1532 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1533 if (r) 1534 goto error_free; 1535 1536 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv, 1537 owner); 1538 if (r) 1539 goto error_free; 1540 1541 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv); 1542 if (r) 1543 goto error_free; 1544 1545 params.shadow = true; 1546 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1547 if (r) 1548 goto error_free; 1549 params.shadow = false; 1550 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1551 if (r) 1552 goto error_free; 1553 1554 amdgpu_ring_pad_ib(ring, params.ib); 1555 WARN_ON(params.ib->length_dw > ndw); 1556 r = amdgpu_job_submit(job, ring, &vm->entity, 1557 AMDGPU_FENCE_OWNER_VM, &f); 1558 if (r) 1559 goto error_free; 1560 1561 amdgpu_bo_fence(vm->root.bo, f, true); 1562 dma_fence_put(*fence); 1563 *fence = f; 1564 return 0; 1565 1566 error_free: 1567 amdgpu_job_free(job); 1568 return r; 1569 } 1570 1571 /** 1572 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1573 * 1574 * @adev: amdgpu_device pointer 1575 * @exclusive: fence we need to sync to 1576 * @gtt_flags: flags as they are used for GTT 1577 * @pages_addr: DMA addresses to use for mapping 1578 * @vm: requested vm 1579 * @mapping: mapped range and flags to use for the update 1580 * @flags: HW flags for the mapping 1581 * @nodes: array of drm_mm_nodes with the MC addresses 1582 * @fence: optional resulting fence 1583 * 1584 * Split the mapping into smaller chunks so that each update fits 1585 * into a SDMA IB. 1586 * Returns 0 for success, -EINVAL for failure. 1587 */ 1588 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1589 struct dma_fence *exclusive, 1590 uint64_t gtt_flags, 1591 dma_addr_t *pages_addr, 1592 struct amdgpu_vm *vm, 1593 struct amdgpu_bo_va_mapping *mapping, 1594 uint64_t flags, 1595 struct drm_mm_node *nodes, 1596 struct dma_fence **fence) 1597 { 1598 uint64_t pfn, src = 0, start = mapping->start; 1599 int r; 1600 1601 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1602 * but in case of something, we filter the flags in first place 1603 */ 1604 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1605 flags &= ~AMDGPU_PTE_READABLE; 1606 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1607 flags &= ~AMDGPU_PTE_WRITEABLE; 1608 1609 flags &= ~AMDGPU_PTE_EXECUTABLE; 1610 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1611 1612 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1613 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1614 1615 if ((mapping->flags & AMDGPU_PTE_PRT) && 1616 (adev->asic_type >= CHIP_VEGA10)) { 1617 flags |= AMDGPU_PTE_PRT; 1618 flags &= ~AMDGPU_PTE_VALID; 1619 } 1620 1621 trace_amdgpu_vm_bo_update(mapping); 1622 1623 pfn = mapping->offset >> PAGE_SHIFT; 1624 if (nodes) { 1625 while (pfn >= nodes->size) { 1626 pfn -= nodes->size; 1627 ++nodes; 1628 } 1629 } 1630 1631 do { 1632 uint64_t max_entries; 1633 uint64_t addr, last; 1634 1635 if (nodes) { 1636 addr = nodes->start << PAGE_SHIFT; 1637 max_entries = (nodes->size - pfn) * 1638 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1639 } else { 1640 addr = 0; 1641 max_entries = S64_MAX; 1642 } 1643 1644 if (pages_addr) { 1645 if (flags == gtt_flags) 1646 src = adev->gart.table_addr + 1647 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8; 1648 else 1649 max_entries = min(max_entries, 16ull * 1024ull); 1650 addr = 0; 1651 } else if (flags & AMDGPU_PTE_VALID) { 1652 addr += adev->vm_manager.vram_base_offset; 1653 } 1654 addr += pfn << PAGE_SHIFT; 1655 1656 last = min((uint64_t)mapping->last, start + max_entries - 1); 1657 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1658 src, pages_addr, vm, 1659 start, last, flags, addr, 1660 fence); 1661 if (r) 1662 return r; 1663 1664 pfn += last - start + 1; 1665 if (nodes && nodes->size == pfn) { 1666 pfn = 0; 1667 ++nodes; 1668 } 1669 start = last + 1; 1670 1671 } while (unlikely(start != mapping->last + 1)); 1672 1673 return 0; 1674 } 1675 1676 /** 1677 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1678 * 1679 * @adev: amdgpu_device pointer 1680 * @bo_va: requested BO and VM object 1681 * @clear: if true clear the entries 1682 * 1683 * Fill in the page table entries for @bo_va. 1684 * Returns 0 for success, -EINVAL for failure. 1685 */ 1686 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1687 struct amdgpu_bo_va *bo_va, 1688 bool clear) 1689 { 1690 struct amdgpu_vm *vm = bo_va->vm; 1691 struct amdgpu_bo_va_mapping *mapping; 1692 dma_addr_t *pages_addr = NULL; 1693 uint64_t gtt_flags, flags; 1694 struct ttm_mem_reg *mem; 1695 struct drm_mm_node *nodes; 1696 struct dma_fence *exclusive; 1697 int r; 1698 1699 if (clear || !bo_va->bo) { 1700 mem = NULL; 1701 nodes = NULL; 1702 exclusive = NULL; 1703 } else { 1704 struct ttm_dma_tt *ttm; 1705 1706 mem = &bo_va->bo->tbo.mem; 1707 nodes = mem->mm_node; 1708 if (mem->mem_type == TTM_PL_TT) { 1709 ttm = container_of(bo_va->bo->tbo.ttm, struct 1710 ttm_dma_tt, ttm); 1711 pages_addr = ttm->dma_address; 1712 } 1713 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv); 1714 } 1715 1716 if (bo_va->bo) { 1717 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 1718 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) && 1719 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ? 1720 flags : 0; 1721 } else { 1722 flags = 0x0; 1723 gtt_flags = ~0x0; 1724 } 1725 1726 spin_lock(&vm->status_lock); 1727 if (!list_empty(&bo_va->vm_status)) 1728 list_splice_init(&bo_va->valids, &bo_va->invalids); 1729 spin_unlock(&vm->status_lock); 1730 1731 list_for_each_entry(mapping, &bo_va->invalids, list) { 1732 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1733 gtt_flags, pages_addr, vm, 1734 mapping, flags, nodes, 1735 &bo_va->last_pt_update); 1736 if (r) 1737 return r; 1738 } 1739 1740 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1741 list_for_each_entry(mapping, &bo_va->valids, list) 1742 trace_amdgpu_vm_bo_mapping(mapping); 1743 1744 list_for_each_entry(mapping, &bo_va->invalids, list) 1745 trace_amdgpu_vm_bo_mapping(mapping); 1746 } 1747 1748 spin_lock(&vm->status_lock); 1749 list_splice_init(&bo_va->invalids, &bo_va->valids); 1750 list_del_init(&bo_va->vm_status); 1751 if (clear) 1752 list_add(&bo_va->vm_status, &vm->cleared); 1753 spin_unlock(&vm->status_lock); 1754 1755 return 0; 1756 } 1757 1758 /** 1759 * amdgpu_vm_update_prt_state - update the global PRT state 1760 */ 1761 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1762 { 1763 unsigned long flags; 1764 bool enable; 1765 1766 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1767 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1768 adev->gart.gart_funcs->set_prt(adev, enable); 1769 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1770 } 1771 1772 /** 1773 * amdgpu_vm_prt_get - add a PRT user 1774 */ 1775 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1776 { 1777 if (!adev->gart.gart_funcs->set_prt) 1778 return; 1779 1780 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1781 amdgpu_vm_update_prt_state(adev); 1782 } 1783 1784 /** 1785 * amdgpu_vm_prt_put - drop a PRT user 1786 */ 1787 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1788 { 1789 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1790 amdgpu_vm_update_prt_state(adev); 1791 } 1792 1793 /** 1794 * amdgpu_vm_prt_cb - callback for updating the PRT status 1795 */ 1796 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1797 { 1798 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1799 1800 amdgpu_vm_prt_put(cb->adev); 1801 kfree(cb); 1802 } 1803 1804 /** 1805 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1806 */ 1807 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1808 struct dma_fence *fence) 1809 { 1810 struct amdgpu_prt_cb *cb; 1811 1812 if (!adev->gart.gart_funcs->set_prt) 1813 return; 1814 1815 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1816 if (!cb) { 1817 /* Last resort when we are OOM */ 1818 if (fence) 1819 dma_fence_wait(fence, false); 1820 1821 amdgpu_vm_prt_put(adev); 1822 } else { 1823 cb->adev = adev; 1824 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1825 amdgpu_vm_prt_cb)) 1826 amdgpu_vm_prt_cb(fence, &cb->cb); 1827 } 1828 } 1829 1830 /** 1831 * amdgpu_vm_free_mapping - free a mapping 1832 * 1833 * @adev: amdgpu_device pointer 1834 * @vm: requested vm 1835 * @mapping: mapping to be freed 1836 * @fence: fence of the unmap operation 1837 * 1838 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1839 */ 1840 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1841 struct amdgpu_vm *vm, 1842 struct amdgpu_bo_va_mapping *mapping, 1843 struct dma_fence *fence) 1844 { 1845 if (mapping->flags & AMDGPU_PTE_PRT) 1846 amdgpu_vm_add_prt_cb(adev, fence); 1847 kfree(mapping); 1848 } 1849 1850 /** 1851 * amdgpu_vm_prt_fini - finish all prt mappings 1852 * 1853 * @adev: amdgpu_device pointer 1854 * @vm: requested vm 1855 * 1856 * Register a cleanup callback to disable PRT support after VM dies. 1857 */ 1858 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1859 { 1860 struct reservation_object *resv = vm->root.bo->tbo.resv; 1861 struct dma_fence *excl, **shared; 1862 unsigned i, shared_count; 1863 int r; 1864 1865 r = reservation_object_get_fences_rcu(resv, &excl, 1866 &shared_count, &shared); 1867 if (r) { 1868 /* Not enough memory to grab the fence list, as last resort 1869 * block for all the fences to complete. 1870 */ 1871 reservation_object_wait_timeout_rcu(resv, true, false, 1872 MAX_SCHEDULE_TIMEOUT); 1873 return; 1874 } 1875 1876 /* Add a callback for each fence in the reservation object */ 1877 amdgpu_vm_prt_get(adev); 1878 amdgpu_vm_add_prt_cb(adev, excl); 1879 1880 for (i = 0; i < shared_count; ++i) { 1881 amdgpu_vm_prt_get(adev); 1882 amdgpu_vm_add_prt_cb(adev, shared[i]); 1883 } 1884 1885 kfree(shared); 1886 } 1887 1888 /** 1889 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1890 * 1891 * @adev: amdgpu_device pointer 1892 * @vm: requested vm 1893 * @fence: optional resulting fence (unchanged if no work needed to be done 1894 * or if an error occurred) 1895 * 1896 * Make sure all freed BOs are cleared in the PT. 1897 * Returns 0 for success. 1898 * 1899 * PTs have to be reserved and mutex must be locked! 1900 */ 1901 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1902 struct amdgpu_vm *vm, 1903 struct dma_fence **fence) 1904 { 1905 struct amdgpu_bo_va_mapping *mapping; 1906 struct dma_fence *f = NULL; 1907 int r; 1908 1909 while (!list_empty(&vm->freed)) { 1910 mapping = list_first_entry(&vm->freed, 1911 struct amdgpu_bo_va_mapping, list); 1912 list_del(&mapping->list); 1913 1914 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm, 1915 mapping->start, mapping->last, 1916 0, 0, &f); 1917 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1918 if (r) { 1919 dma_fence_put(f); 1920 return r; 1921 } 1922 } 1923 1924 if (fence && f) { 1925 dma_fence_put(*fence); 1926 *fence = f; 1927 } else { 1928 dma_fence_put(f); 1929 } 1930 1931 return 0; 1932 1933 } 1934 1935 /** 1936 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1937 * 1938 * @adev: amdgpu_device pointer 1939 * @vm: requested vm 1940 * 1941 * Make sure all invalidated BOs are cleared in the PT. 1942 * Returns 0 for success. 1943 * 1944 * PTs have to be reserved and mutex must be locked! 1945 */ 1946 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1947 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1948 { 1949 struct amdgpu_bo_va *bo_va = NULL; 1950 int r = 0; 1951 1952 spin_lock(&vm->status_lock); 1953 while (!list_empty(&vm->invalidated)) { 1954 bo_va = list_first_entry(&vm->invalidated, 1955 struct amdgpu_bo_va, vm_status); 1956 spin_unlock(&vm->status_lock); 1957 1958 r = amdgpu_vm_bo_update(adev, bo_va, true); 1959 if (r) 1960 return r; 1961 1962 spin_lock(&vm->status_lock); 1963 } 1964 spin_unlock(&vm->status_lock); 1965 1966 if (bo_va) 1967 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1968 1969 return r; 1970 } 1971 1972 /** 1973 * amdgpu_vm_bo_add - add a bo to a specific vm 1974 * 1975 * @adev: amdgpu_device pointer 1976 * @vm: requested vm 1977 * @bo: amdgpu buffer object 1978 * 1979 * Add @bo into the requested vm. 1980 * Add @bo to the list of bos associated with the vm 1981 * Returns newly added bo_va or NULL for failure 1982 * 1983 * Object has to be reserved! 1984 */ 1985 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1986 struct amdgpu_vm *vm, 1987 struct amdgpu_bo *bo) 1988 { 1989 struct amdgpu_bo_va *bo_va; 1990 1991 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1992 if (bo_va == NULL) { 1993 return NULL; 1994 } 1995 bo_va->vm = vm; 1996 bo_va->bo = bo; 1997 bo_va->ref_count = 1; 1998 INIT_LIST_HEAD(&bo_va->bo_list); 1999 INIT_LIST_HEAD(&bo_va->valids); 2000 INIT_LIST_HEAD(&bo_va->invalids); 2001 INIT_LIST_HEAD(&bo_va->vm_status); 2002 2003 if (bo) 2004 list_add_tail(&bo_va->bo_list, &bo->va); 2005 2006 return bo_va; 2007 } 2008 2009 /** 2010 * amdgpu_vm_bo_map - map bo inside a vm 2011 * 2012 * @adev: amdgpu_device pointer 2013 * @bo_va: bo_va to store the address 2014 * @saddr: where to map the BO 2015 * @offset: requested offset in the BO 2016 * @flags: attributes of pages (read/write/valid/etc.) 2017 * 2018 * Add a mapping of the BO at the specefied addr into the VM. 2019 * Returns 0 for success, error for failure. 2020 * 2021 * Object has to be reserved and unreserved outside! 2022 */ 2023 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2024 struct amdgpu_bo_va *bo_va, 2025 uint64_t saddr, uint64_t offset, 2026 uint64_t size, uint64_t flags) 2027 { 2028 struct amdgpu_bo_va_mapping *mapping, *tmp; 2029 struct amdgpu_vm *vm = bo_va->vm; 2030 uint64_t eaddr; 2031 2032 /* validate the parameters */ 2033 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2034 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2035 return -EINVAL; 2036 2037 /* make sure object fit at this offset */ 2038 eaddr = saddr + size - 1; 2039 if (saddr >= eaddr || 2040 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 2041 return -EINVAL; 2042 2043 saddr /= AMDGPU_GPU_PAGE_SIZE; 2044 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2045 2046 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2047 if (tmp) { 2048 /* bo and tmp overlap, invalid addr */ 2049 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2050 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr, 2051 tmp->start, tmp->last + 1); 2052 return -EINVAL; 2053 } 2054 2055 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2056 if (!mapping) 2057 return -ENOMEM; 2058 2059 INIT_LIST_HEAD(&mapping->list); 2060 mapping->start = saddr; 2061 mapping->last = eaddr; 2062 mapping->offset = offset; 2063 mapping->flags = flags; 2064 2065 list_add(&mapping->list, &bo_va->invalids); 2066 amdgpu_vm_it_insert(mapping, &vm->va); 2067 2068 if (flags & AMDGPU_PTE_PRT) 2069 amdgpu_vm_prt_get(adev); 2070 2071 return 0; 2072 } 2073 2074 /** 2075 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2076 * 2077 * @adev: amdgpu_device pointer 2078 * @bo_va: bo_va to store the address 2079 * @saddr: where to map the BO 2080 * @offset: requested offset in the BO 2081 * @flags: attributes of pages (read/write/valid/etc.) 2082 * 2083 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2084 * mappings as we do so. 2085 * Returns 0 for success, error for failure. 2086 * 2087 * Object has to be reserved and unreserved outside! 2088 */ 2089 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2090 struct amdgpu_bo_va *bo_va, 2091 uint64_t saddr, uint64_t offset, 2092 uint64_t size, uint64_t flags) 2093 { 2094 struct amdgpu_bo_va_mapping *mapping; 2095 struct amdgpu_vm *vm = bo_va->vm; 2096 uint64_t eaddr; 2097 int r; 2098 2099 /* validate the parameters */ 2100 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2101 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2102 return -EINVAL; 2103 2104 /* make sure object fit at this offset */ 2105 eaddr = saddr + size - 1; 2106 if (saddr >= eaddr || 2107 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 2108 return -EINVAL; 2109 2110 /* Allocate all the needed memory */ 2111 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2112 if (!mapping) 2113 return -ENOMEM; 2114 2115 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size); 2116 if (r) { 2117 kfree(mapping); 2118 return r; 2119 } 2120 2121 saddr /= AMDGPU_GPU_PAGE_SIZE; 2122 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2123 2124 mapping->start = saddr; 2125 mapping->last = eaddr; 2126 mapping->offset = offset; 2127 mapping->flags = flags; 2128 2129 list_add(&mapping->list, &bo_va->invalids); 2130 amdgpu_vm_it_insert(mapping, &vm->va); 2131 2132 if (flags & AMDGPU_PTE_PRT) 2133 amdgpu_vm_prt_get(adev); 2134 2135 return 0; 2136 } 2137 2138 /** 2139 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2140 * 2141 * @adev: amdgpu_device pointer 2142 * @bo_va: bo_va to remove the address from 2143 * @saddr: where to the BO is mapped 2144 * 2145 * Remove a mapping of the BO at the specefied addr from the VM. 2146 * Returns 0 for success, error for failure. 2147 * 2148 * Object has to be reserved and unreserved outside! 2149 */ 2150 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2151 struct amdgpu_bo_va *bo_va, 2152 uint64_t saddr) 2153 { 2154 struct amdgpu_bo_va_mapping *mapping; 2155 struct amdgpu_vm *vm = bo_va->vm; 2156 bool valid = true; 2157 2158 saddr /= AMDGPU_GPU_PAGE_SIZE; 2159 2160 list_for_each_entry(mapping, &bo_va->valids, list) { 2161 if (mapping->start == saddr) 2162 break; 2163 } 2164 2165 if (&mapping->list == &bo_va->valids) { 2166 valid = false; 2167 2168 list_for_each_entry(mapping, &bo_va->invalids, list) { 2169 if (mapping->start == saddr) 2170 break; 2171 } 2172 2173 if (&mapping->list == &bo_va->invalids) 2174 return -ENOENT; 2175 } 2176 2177 list_del(&mapping->list); 2178 amdgpu_vm_it_remove(mapping, &vm->va); 2179 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2180 2181 if (valid) 2182 list_add(&mapping->list, &vm->freed); 2183 else 2184 amdgpu_vm_free_mapping(adev, vm, mapping, 2185 bo_va->last_pt_update); 2186 2187 return 0; 2188 } 2189 2190 /** 2191 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2192 * 2193 * @adev: amdgpu_device pointer 2194 * @vm: VM structure to use 2195 * @saddr: start of the range 2196 * @size: size of the range 2197 * 2198 * Remove all mappings in a range, split them as appropriate. 2199 * Returns 0 for success, error for failure. 2200 */ 2201 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2202 struct amdgpu_vm *vm, 2203 uint64_t saddr, uint64_t size) 2204 { 2205 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2206 LIST_HEAD(removed); 2207 uint64_t eaddr; 2208 2209 eaddr = saddr + size - 1; 2210 saddr /= AMDGPU_GPU_PAGE_SIZE; 2211 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2212 2213 /* Allocate all the needed memory */ 2214 before = kzalloc(sizeof(*before), GFP_KERNEL); 2215 if (!before) 2216 return -ENOMEM; 2217 INIT_LIST_HEAD(&before->list); 2218 2219 after = kzalloc(sizeof(*after), GFP_KERNEL); 2220 if (!after) { 2221 kfree(before); 2222 return -ENOMEM; 2223 } 2224 INIT_LIST_HEAD(&after->list); 2225 2226 /* Now gather all removed mappings */ 2227 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2228 while (tmp) { 2229 /* Remember mapping split at the start */ 2230 if (tmp->start < saddr) { 2231 before->start = tmp->start; 2232 before->last = saddr - 1; 2233 before->offset = tmp->offset; 2234 before->flags = tmp->flags; 2235 list_add(&before->list, &tmp->list); 2236 } 2237 2238 /* Remember mapping split at the end */ 2239 if (tmp->last > eaddr) { 2240 after->start = eaddr + 1; 2241 after->last = tmp->last; 2242 after->offset = tmp->offset; 2243 after->offset += after->start - tmp->start; 2244 after->flags = tmp->flags; 2245 list_add(&after->list, &tmp->list); 2246 } 2247 2248 list_del(&tmp->list); 2249 list_add(&tmp->list, &removed); 2250 2251 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2252 } 2253 2254 /* And free them up */ 2255 list_for_each_entry_safe(tmp, next, &removed, list) { 2256 amdgpu_vm_it_remove(tmp, &vm->va); 2257 list_del(&tmp->list); 2258 2259 if (tmp->start < saddr) 2260 tmp->start = saddr; 2261 if (tmp->last > eaddr) 2262 tmp->last = eaddr; 2263 2264 list_add(&tmp->list, &vm->freed); 2265 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2266 } 2267 2268 /* Insert partial mapping before the range */ 2269 if (!list_empty(&before->list)) { 2270 amdgpu_vm_it_insert(before, &vm->va); 2271 if (before->flags & AMDGPU_PTE_PRT) 2272 amdgpu_vm_prt_get(adev); 2273 } else { 2274 kfree(before); 2275 } 2276 2277 /* Insert partial mapping after the range */ 2278 if (!list_empty(&after->list)) { 2279 amdgpu_vm_it_insert(after, &vm->va); 2280 if (after->flags & AMDGPU_PTE_PRT) 2281 amdgpu_vm_prt_get(adev); 2282 } else { 2283 kfree(after); 2284 } 2285 2286 return 0; 2287 } 2288 2289 /** 2290 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2291 * 2292 * @adev: amdgpu_device pointer 2293 * @bo_va: requested bo_va 2294 * 2295 * Remove @bo_va->bo from the requested vm. 2296 * 2297 * Object have to be reserved! 2298 */ 2299 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2300 struct amdgpu_bo_va *bo_va) 2301 { 2302 struct amdgpu_bo_va_mapping *mapping, *next; 2303 struct amdgpu_vm *vm = bo_va->vm; 2304 2305 list_del(&bo_va->bo_list); 2306 2307 spin_lock(&vm->status_lock); 2308 list_del(&bo_va->vm_status); 2309 spin_unlock(&vm->status_lock); 2310 2311 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2312 list_del(&mapping->list); 2313 amdgpu_vm_it_remove(mapping, &vm->va); 2314 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2315 list_add(&mapping->list, &vm->freed); 2316 } 2317 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2318 list_del(&mapping->list); 2319 amdgpu_vm_it_remove(mapping, &vm->va); 2320 amdgpu_vm_free_mapping(adev, vm, mapping, 2321 bo_va->last_pt_update); 2322 } 2323 2324 dma_fence_put(bo_va->last_pt_update); 2325 kfree(bo_va); 2326 } 2327 2328 /** 2329 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2330 * 2331 * @adev: amdgpu_device pointer 2332 * @vm: requested vm 2333 * @bo: amdgpu buffer object 2334 * 2335 * Mark @bo as invalid. 2336 */ 2337 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2338 struct amdgpu_bo *bo) 2339 { 2340 struct amdgpu_bo_va *bo_va; 2341 2342 list_for_each_entry(bo_va, &bo->va, bo_list) { 2343 spin_lock(&bo_va->vm->status_lock); 2344 if (list_empty(&bo_va->vm_status)) 2345 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 2346 spin_unlock(&bo_va->vm->status_lock); 2347 } 2348 } 2349 2350 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2351 { 2352 /* Total bits covered by PD + PTs */ 2353 unsigned bits = ilog2(vm_size) + 18; 2354 2355 /* Make sure the PD is 4K in size up to 8GB address space. 2356 Above that split equal between PD and PTs */ 2357 if (vm_size <= 8) 2358 return (bits - 9); 2359 else 2360 return ((bits + 3) / 2); 2361 } 2362 2363 /** 2364 * amdgpu_vm_adjust_size - adjust vm size and block size 2365 * 2366 * @adev: amdgpu_device pointer 2367 * @vm_size: the default vm size if it's set auto 2368 */ 2369 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size) 2370 { 2371 /* adjust vm size firstly */ 2372 if (amdgpu_vm_size == -1) 2373 adev->vm_manager.vm_size = vm_size; 2374 else 2375 adev->vm_manager.vm_size = amdgpu_vm_size; 2376 2377 /* block size depends on vm size */ 2378 if (amdgpu_vm_block_size == -1) 2379 adev->vm_manager.block_size = 2380 amdgpu_vm_get_block_size(adev->vm_manager.vm_size); 2381 else 2382 adev->vm_manager.block_size = amdgpu_vm_block_size; 2383 2384 DRM_INFO("vm size is %llu GB, block size is %u-bit\n", 2385 adev->vm_manager.vm_size, adev->vm_manager.block_size); 2386 } 2387 2388 /** 2389 * amdgpu_vm_init - initialize a vm instance 2390 * 2391 * @adev: amdgpu_device pointer 2392 * @vm: requested vm 2393 * @vm_context: Indicates if it GFX or Compute context 2394 * 2395 * Init @vm fields. 2396 */ 2397 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2398 int vm_context) 2399 { 2400 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2401 AMDGPU_VM_PTE_COUNT(adev) * 8); 2402 unsigned ring_instance; 2403 struct amdgpu_ring *ring; 2404 struct amd_sched_rq *rq; 2405 int r, i; 2406 u64 flags; 2407 2408 vm->va = RB_ROOT; 2409 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 2410 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2411 vm->reserved_vmid[i] = NULL; 2412 spin_lock_init(&vm->status_lock); 2413 INIT_LIST_HEAD(&vm->invalidated); 2414 INIT_LIST_HEAD(&vm->cleared); 2415 INIT_LIST_HEAD(&vm->freed); 2416 2417 /* create scheduler entity for page table updates */ 2418 2419 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2420 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2421 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2422 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 2423 r = amd_sched_entity_init(&ring->sched, &vm->entity, 2424 rq, amdgpu_sched_jobs); 2425 if (r) 2426 return r; 2427 2428 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2429 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2430 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2431 else 2432 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2433 AMDGPU_VM_USE_CPU_FOR_GFX); 2434 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2435 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2436 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), 2437 "CPU update of VM recommended only for large BAR system\n"); 2438 vm->last_dir_update = NULL; 2439 2440 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2441 AMDGPU_GEM_CREATE_VRAM_CLEARED; 2442 if (vm->use_cpu_for_update) 2443 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2444 else 2445 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2446 AMDGPU_GEM_CREATE_SHADOW); 2447 2448 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, 2449 AMDGPU_GEM_DOMAIN_VRAM, 2450 flags, 2451 NULL, NULL, &vm->root.bo); 2452 if (r) 2453 goto error_free_sched_entity; 2454 2455 r = amdgpu_bo_reserve(vm->root.bo, false); 2456 if (r) 2457 goto error_free_root; 2458 2459 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 2460 amdgpu_bo_unreserve(vm->root.bo); 2461 2462 return 0; 2463 2464 error_free_root: 2465 amdgpu_bo_unref(&vm->root.bo->shadow); 2466 amdgpu_bo_unref(&vm->root.bo); 2467 vm->root.bo = NULL; 2468 2469 error_free_sched_entity: 2470 amd_sched_entity_fini(&ring->sched, &vm->entity); 2471 2472 return r; 2473 } 2474 2475 /** 2476 * amdgpu_vm_free_levels - free PD/PT levels 2477 * 2478 * @level: PD/PT starting level to free 2479 * 2480 * Free the page directory or page table level and all sub levels. 2481 */ 2482 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) 2483 { 2484 unsigned i; 2485 2486 if (level->bo) { 2487 amdgpu_bo_unref(&level->bo->shadow); 2488 amdgpu_bo_unref(&level->bo); 2489 } 2490 2491 if (level->entries) 2492 for (i = 0; i <= level->last_entry_used; i++) 2493 amdgpu_vm_free_levels(&level->entries[i]); 2494 2495 kvfree(level->entries); 2496 } 2497 2498 /** 2499 * amdgpu_vm_fini - tear down a vm instance 2500 * 2501 * @adev: amdgpu_device pointer 2502 * @vm: requested vm 2503 * 2504 * Tear down @vm. 2505 * Unbind the VM and remove all bos from the vm bo list 2506 */ 2507 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2508 { 2509 struct amdgpu_bo_va_mapping *mapping, *tmp; 2510 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; 2511 int i; 2512 2513 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 2514 2515 if (!RB_EMPTY_ROOT(&vm->va)) { 2516 dev_err(adev->dev, "still active bo inside vm\n"); 2517 } 2518 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) { 2519 list_del(&mapping->list); 2520 amdgpu_vm_it_remove(mapping, &vm->va); 2521 kfree(mapping); 2522 } 2523 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2524 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2525 amdgpu_vm_prt_fini(adev, vm); 2526 prt_fini_needed = false; 2527 } 2528 2529 list_del(&mapping->list); 2530 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2531 } 2532 2533 amdgpu_vm_free_levels(&vm->root); 2534 dma_fence_put(vm->last_dir_update); 2535 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2536 amdgpu_vm_free_reserved_vmid(adev, vm, i); 2537 } 2538 2539 /** 2540 * amdgpu_vm_manager_init - init the VM manager 2541 * 2542 * @adev: amdgpu_device pointer 2543 * 2544 * Initialize the VM manager structures 2545 */ 2546 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2547 { 2548 unsigned i, j; 2549 2550 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2551 struct amdgpu_vm_id_manager *id_mgr = 2552 &adev->vm_manager.id_mgr[i]; 2553 2554 mutex_init(&id_mgr->lock); 2555 INIT_LIST_HEAD(&id_mgr->ids_lru); 2556 atomic_set(&id_mgr->reserved_vmid_num, 0); 2557 2558 /* skip over VMID 0, since it is the system VM */ 2559 for (j = 1; j < id_mgr->num_ids; ++j) { 2560 amdgpu_vm_reset_id(adev, i, j); 2561 amdgpu_sync_create(&id_mgr->ids[i].active); 2562 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru); 2563 } 2564 } 2565 2566 adev->vm_manager.fence_context = 2567 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2568 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2569 adev->vm_manager.seqno[i] = 0; 2570 2571 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2572 atomic64_set(&adev->vm_manager.client_counter, 0); 2573 spin_lock_init(&adev->vm_manager.prt_lock); 2574 atomic_set(&adev->vm_manager.num_prt_users, 0); 2575 2576 /* If not overridden by the user, by default, only in large BAR systems 2577 * Compute VM tables will be updated by CPU 2578 */ 2579 #ifdef CONFIG_X86_64 2580 if (amdgpu_vm_update_mode == -1) { 2581 if (amdgpu_vm_is_large_bar(adev)) 2582 adev->vm_manager.vm_update_mode = 2583 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2584 else 2585 adev->vm_manager.vm_update_mode = 0; 2586 } else 2587 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2588 #else 2589 adev->vm_manager.vm_update_mode = 0; 2590 #endif 2591 2592 } 2593 2594 /** 2595 * amdgpu_vm_manager_fini - cleanup VM manager 2596 * 2597 * @adev: amdgpu_device pointer 2598 * 2599 * Cleanup the VM manager and free resources. 2600 */ 2601 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2602 { 2603 unsigned i, j; 2604 2605 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2606 struct amdgpu_vm_id_manager *id_mgr = 2607 &adev->vm_manager.id_mgr[i]; 2608 2609 mutex_destroy(&id_mgr->lock); 2610 for (j = 0; j < AMDGPU_NUM_VM; ++j) { 2611 struct amdgpu_vm_id *id = &id_mgr->ids[j]; 2612 2613 amdgpu_sync_free(&id->active); 2614 dma_fence_put(id->flushed_updates); 2615 dma_fence_put(id->last_flush); 2616 } 2617 } 2618 } 2619 2620 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2621 { 2622 union drm_amdgpu_vm *args = data; 2623 struct amdgpu_device *adev = dev->dev_private; 2624 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2625 int r; 2626 2627 switch (args->in.op) { 2628 case AMDGPU_VM_OP_RESERVE_VMID: 2629 /* current, we only have requirement to reserve vmid from gfxhub */ 2630 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm, 2631 AMDGPU_GFXHUB); 2632 if (r) 2633 return r; 2634 break; 2635 case AMDGPU_VM_OP_UNRESERVE_VMID: 2636 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB); 2637 break; 2638 default: 2639 return -EINVAL; 2640 } 2641 2642 return 0; 2643 } 2644