1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34 
35 /*
36  * GPUVM
37  * GPUVM is similar to the legacy gart on older asics, however
38  * rather than there being a single global gart table
39  * for the entire GPU, there are multiple VM page tables active
40  * at any given time.  The VM page tables can contain a mix
41  * vram pages and system memory pages and system memory pages
42  * can be mapped as snooped (cached system pages) or unsnooped
43  * (uncached system pages).
44  * Each VM has an ID associated with it and there is a page table
45  * associated with each VMID.  When execting a command buffer,
46  * the kernel tells the the ring what VMID to use for that command
47  * buffer.  VMIDs are allocated dynamically as commands are submitted.
48  * The userspace drivers maintain their own address space and the kernel
49  * sets up their pages tables accordingly when they submit their
50  * command buffers and a VMID is assigned.
51  * Cayman/Trinity support up to 8 active VMs at any given time;
52  * SI supports 16.
53  */
54 
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57 
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 		     START, LAST, static, amdgpu_vm_it)
60 
61 #undef START
62 #undef LAST
63 
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65  * the number of function parameters
66  */
67 struct amdgpu_pte_update_params {
68 	/* amdgpu device we do this update for */
69 	struct amdgpu_device *adev;
70 	/* optional amdgpu_vm we do this update for */
71 	struct amdgpu_vm *vm;
72 	/* address where to copy page table entries from */
73 	uint64_t src;
74 	/* indirect buffer to fill with commands */
75 	struct amdgpu_ib *ib;
76 	/* Function which actually does the update */
77 	void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 		     uint64_t addr, unsigned count, uint32_t incr,
79 		     uint64_t flags);
80 	/* indicate update pt or its shadow */
81 	bool shadow;
82 	/* The next two are used during VM update by CPU
83 	 *  DMA addresses to use for mapping
84 	 *  Kernel pointer of PD/PT BO that needs to be updated
85 	 */
86 	dma_addr_t *pages_addr;
87 	void *kptr;
88 };
89 
90 /* Helper to disable partial resident texture feature from a fence callback */
91 struct amdgpu_prt_cb {
92 	struct amdgpu_device *adev;
93 	struct dma_fence_cb cb;
94 };
95 
96 /**
97  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
98  *
99  * @adev: amdgpu_device pointer
100  *
101  * Calculate the number of entries in a page directory or page table.
102  */
103 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
104 				      unsigned level)
105 {
106 	if (level == 0)
107 		/* For the root directory */
108 		return adev->vm_manager.max_pfn >>
109 			(adev->vm_manager.block_size *
110 			 adev->vm_manager.num_level);
111 	else if (level == adev->vm_manager.num_level)
112 		/* For the page tables on the leaves */
113 		return AMDGPU_VM_PTE_COUNT(adev);
114 	else
115 		/* Everything in between */
116 		return 1 << adev->vm_manager.block_size;
117 }
118 
119 /**
120  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
121  *
122  * @adev: amdgpu_device pointer
123  *
124  * Calculate the size of the BO for a page directory or page table in bytes.
125  */
126 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
127 {
128 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
129 }
130 
131 /**
132  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
133  *
134  * @vm: vm providing the BOs
135  * @validated: head of validation list
136  * @entry: entry to add
137  *
138  * Add the page directory to the list of BOs to
139  * validate for command submission.
140  */
141 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
142 			 struct list_head *validated,
143 			 struct amdgpu_bo_list_entry *entry)
144 {
145 	entry->robj = vm->root.bo;
146 	entry->priority = 0;
147 	entry->tv.bo = &entry->robj->tbo;
148 	entry->tv.shared = true;
149 	entry->user_pages = NULL;
150 	list_add(&entry->tv.head, validated);
151 }
152 
153 /**
154  * amdgpu_vm_validate_layer - validate a single page table level
155  *
156  * @parent: parent page table level
157  * @validate: callback to do the validation
158  * @param: parameter for the validation callback
159  *
160  * Validate the page table BOs on command submission if neccessary.
161  */
162 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
163 				    int (*validate)(void *, struct amdgpu_bo *),
164 				    void *param)
165 {
166 	unsigned i;
167 	int r;
168 
169 	if (!parent->entries)
170 		return 0;
171 
172 	for (i = 0; i <= parent->last_entry_used; ++i) {
173 		struct amdgpu_vm_pt *entry = &parent->entries[i];
174 
175 		if (!entry->bo)
176 			continue;
177 
178 		r = validate(param, entry->bo);
179 		if (r)
180 			return r;
181 
182 		/*
183 		 * Recurse into the sub directory. This is harmless because we
184 		 * have only a maximum of 5 layers.
185 		 */
186 		r = amdgpu_vm_validate_level(entry, validate, param);
187 		if (r)
188 			return r;
189 	}
190 
191 	return r;
192 }
193 
194 /**
195  * amdgpu_vm_validate_pt_bos - validate the page table BOs
196  *
197  * @adev: amdgpu device pointer
198  * @vm: vm providing the BOs
199  * @validate: callback to do the validation
200  * @param: parameter for the validation callback
201  *
202  * Validate the page table BOs on command submission if neccessary.
203  */
204 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
205 			      int (*validate)(void *p, struct amdgpu_bo *bo),
206 			      void *param)
207 {
208 	uint64_t num_evictions;
209 
210 	/* We only need to validate the page tables
211 	 * if they aren't already valid.
212 	 */
213 	num_evictions = atomic64_read(&adev->num_evictions);
214 	if (num_evictions == vm->last_eviction_counter)
215 		return 0;
216 
217 	return amdgpu_vm_validate_level(&vm->root, validate, param);
218 }
219 
220 /**
221  * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
222  *
223  * @adev: amdgpu device instance
224  * @vm: vm providing the BOs
225  *
226  * Move the PT BOs to the tail of the LRU.
227  */
228 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
229 {
230 	unsigned i;
231 
232 	if (!parent->entries)
233 		return;
234 
235 	for (i = 0; i <= parent->last_entry_used; ++i) {
236 		struct amdgpu_vm_pt *entry = &parent->entries[i];
237 
238 		if (!entry->bo)
239 			continue;
240 
241 		ttm_bo_move_to_lru_tail(&entry->bo->tbo);
242 		amdgpu_vm_move_level_in_lru(entry);
243 	}
244 }
245 
246 /**
247  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
248  *
249  * @adev: amdgpu device instance
250  * @vm: vm providing the BOs
251  *
252  * Move the PT BOs to the tail of the LRU.
253  */
254 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
255 				  struct amdgpu_vm *vm)
256 {
257 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
258 
259 	spin_lock(&glob->lru_lock);
260 	amdgpu_vm_move_level_in_lru(&vm->root);
261 	spin_unlock(&glob->lru_lock);
262 }
263 
264  /**
265  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
266  *
267  * @adev: amdgpu_device pointer
268  * @vm: requested vm
269  * @saddr: start of the address range
270  * @eaddr: end of the address range
271  *
272  * Make sure the page directories and page tables are allocated
273  */
274 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
275 				  struct amdgpu_vm *vm,
276 				  struct amdgpu_vm_pt *parent,
277 				  uint64_t saddr, uint64_t eaddr,
278 				  unsigned level)
279 {
280 	unsigned shift = (adev->vm_manager.num_level - level) *
281 		adev->vm_manager.block_size;
282 	unsigned pt_idx, from, to;
283 	int r;
284 	u64 flags;
285 
286 	if (!parent->entries) {
287 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
288 
289 		parent->entries = kvmalloc_array(num_entries,
290 						   sizeof(struct amdgpu_vm_pt),
291 						   GFP_KERNEL | __GFP_ZERO);
292 		if (!parent->entries)
293 			return -ENOMEM;
294 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
295 	}
296 
297 	from = saddr >> shift;
298 	to = eaddr >> shift;
299 	if (from >= amdgpu_vm_num_entries(adev, level) ||
300 	    to >= amdgpu_vm_num_entries(adev, level))
301 		return -EINVAL;
302 
303 	if (to > parent->last_entry_used)
304 		parent->last_entry_used = to;
305 
306 	++level;
307 	saddr = saddr & ((1 << shift) - 1);
308 	eaddr = eaddr & ((1 << shift) - 1);
309 
310 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
311 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
312 	if (vm->use_cpu_for_update)
313 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
314 	else
315 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
316 				AMDGPU_GEM_CREATE_SHADOW);
317 
318 	/* walk over the address space and allocate the page tables */
319 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
320 		struct reservation_object *resv = vm->root.bo->tbo.resv;
321 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
322 		struct amdgpu_bo *pt;
323 
324 		if (!entry->bo) {
325 			r = amdgpu_bo_create(adev,
326 					     amdgpu_vm_bo_size(adev, level),
327 					     AMDGPU_GPU_PAGE_SIZE, true,
328 					     AMDGPU_GEM_DOMAIN_VRAM,
329 					     flags,
330 					     NULL, resv, &pt);
331 			if (r)
332 				return r;
333 
334 			/* Keep a reference to the root directory to avoid
335 			* freeing them up in the wrong order.
336 			*/
337 			pt->parent = amdgpu_bo_ref(vm->root.bo);
338 
339 			entry->bo = pt;
340 			entry->addr = 0;
341 		}
342 
343 		if (level < adev->vm_manager.num_level) {
344 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
345 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
346 				((1 << shift) - 1);
347 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
348 						   sub_eaddr, level);
349 			if (r)
350 				return r;
351 		}
352 	}
353 
354 	return 0;
355 }
356 
357 /**
358  * amdgpu_vm_alloc_pts - Allocate page tables.
359  *
360  * @adev: amdgpu_device pointer
361  * @vm: VM to allocate page tables for
362  * @saddr: Start address which needs to be allocated
363  * @size: Size from start address we need.
364  *
365  * Make sure the page tables are allocated.
366  */
367 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
368 			struct amdgpu_vm *vm,
369 			uint64_t saddr, uint64_t size)
370 {
371 	uint64_t last_pfn;
372 	uint64_t eaddr;
373 
374 	/* validate the parameters */
375 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
376 		return -EINVAL;
377 
378 	eaddr = saddr + size - 1;
379 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
380 	if (last_pfn >= adev->vm_manager.max_pfn) {
381 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
382 			last_pfn, adev->vm_manager.max_pfn);
383 		return -EINVAL;
384 	}
385 
386 	saddr /= AMDGPU_GPU_PAGE_SIZE;
387 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
388 
389 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
390 }
391 
392 /**
393  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
394  *
395  * @adev: amdgpu_device pointer
396  * @id: VMID structure
397  *
398  * Check if GPU reset occured since last use of the VMID.
399  */
400 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
401 				    struct amdgpu_vm_id *id)
402 {
403 	return id->current_gpu_reset_count !=
404 		atomic_read(&adev->gpu_reset_counter);
405 }
406 
407 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
408 {
409 	return !!vm->reserved_vmid[vmhub];
410 }
411 
412 /* idr_mgr->lock must be held */
413 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
414 					       struct amdgpu_ring *ring,
415 					       struct amdgpu_sync *sync,
416 					       struct dma_fence *fence,
417 					       struct amdgpu_job *job)
418 {
419 	struct amdgpu_device *adev = ring->adev;
420 	unsigned vmhub = ring->funcs->vmhub;
421 	uint64_t fence_context = adev->fence_context + ring->idx;
422 	struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
423 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
424 	struct dma_fence *updates = sync->last_vm_update;
425 	int r = 0;
426 	struct dma_fence *flushed, *tmp;
427 	bool needs_flush = false;
428 
429 	flushed  = id->flushed_updates;
430 	if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
431 	    (atomic64_read(&id->owner) != vm->client_id) ||
432 	    (job->vm_pd_addr != id->pd_gpu_addr) ||
433 	    (updates && (!flushed || updates->context != flushed->context ||
434 			dma_fence_is_later(updates, flushed))) ||
435 	    (!id->last_flush || (id->last_flush->context != fence_context &&
436 				 !dma_fence_is_signaled(id->last_flush)))) {
437 		needs_flush = true;
438 		/* to prevent one context starved by another context */
439 		id->pd_gpu_addr = 0;
440 		tmp = amdgpu_sync_peek_fence(&id->active, ring);
441 		if (tmp) {
442 			r = amdgpu_sync_fence(adev, sync, tmp);
443 			return r;
444 		}
445 	}
446 
447 	/* Good we can use this VMID. Remember this submission as
448 	* user of the VMID.
449 	*/
450 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
451 	if (r)
452 		goto out;
453 
454 	if (updates && (!flushed || updates->context != flushed->context ||
455 			dma_fence_is_later(updates, flushed))) {
456 		dma_fence_put(id->flushed_updates);
457 		id->flushed_updates = dma_fence_get(updates);
458 	}
459 	id->pd_gpu_addr = job->vm_pd_addr;
460 	atomic64_set(&id->owner, vm->client_id);
461 	job->vm_needs_flush = needs_flush;
462 	if (needs_flush) {
463 		dma_fence_put(id->last_flush);
464 		id->last_flush = NULL;
465 	}
466 	job->vm_id = id - id_mgr->ids;
467 	trace_amdgpu_vm_grab_id(vm, ring, job);
468 out:
469 	return r;
470 }
471 
472 /**
473  * amdgpu_vm_grab_id - allocate the next free VMID
474  *
475  * @vm: vm to allocate id for
476  * @ring: ring we want to submit job to
477  * @sync: sync object where we add dependencies
478  * @fence: fence protecting ID from reuse
479  *
480  * Allocate an id for the vm, adding fences to the sync obj as necessary.
481  */
482 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
483 		      struct amdgpu_sync *sync, struct dma_fence *fence,
484 		      struct amdgpu_job *job)
485 {
486 	struct amdgpu_device *adev = ring->adev;
487 	unsigned vmhub = ring->funcs->vmhub;
488 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
489 	uint64_t fence_context = adev->fence_context + ring->idx;
490 	struct dma_fence *updates = sync->last_vm_update;
491 	struct amdgpu_vm_id *id, *idle;
492 	struct dma_fence **fences;
493 	unsigned i;
494 	int r = 0;
495 
496 	mutex_lock(&id_mgr->lock);
497 	if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
498 		r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
499 		mutex_unlock(&id_mgr->lock);
500 		return r;
501 	}
502 	fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
503 	if (!fences) {
504 		mutex_unlock(&id_mgr->lock);
505 		return -ENOMEM;
506 	}
507 	/* Check if we have an idle VMID */
508 	i = 0;
509 	list_for_each_entry(idle, &id_mgr->ids_lru, list) {
510 		fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
511 		if (!fences[i])
512 			break;
513 		++i;
514 	}
515 
516 	/* If we can't find a idle VMID to use, wait till one becomes available */
517 	if (&idle->list == &id_mgr->ids_lru) {
518 		u64 fence_context = adev->vm_manager.fence_context + ring->idx;
519 		unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
520 		struct dma_fence_array *array;
521 		unsigned j;
522 
523 		for (j = 0; j < i; ++j)
524 			dma_fence_get(fences[j]);
525 
526 		array = dma_fence_array_create(i, fences, fence_context,
527 					   seqno, true);
528 		if (!array) {
529 			for (j = 0; j < i; ++j)
530 				dma_fence_put(fences[j]);
531 			kfree(fences);
532 			r = -ENOMEM;
533 			goto error;
534 		}
535 
536 
537 		r = amdgpu_sync_fence(ring->adev, sync, &array->base);
538 		dma_fence_put(&array->base);
539 		if (r)
540 			goto error;
541 
542 		mutex_unlock(&id_mgr->lock);
543 		return 0;
544 
545 	}
546 	kfree(fences);
547 
548 	job->vm_needs_flush = false;
549 	/* Check if we can use a VMID already assigned to this VM */
550 	list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
551 		struct dma_fence *flushed;
552 		bool needs_flush = false;
553 
554 		/* Check all the prerequisites to using this VMID */
555 		if (amdgpu_vm_had_gpu_reset(adev, id))
556 			continue;
557 
558 		if (atomic64_read(&id->owner) != vm->client_id)
559 			continue;
560 
561 		if (job->vm_pd_addr != id->pd_gpu_addr)
562 			continue;
563 
564 		if (!id->last_flush ||
565 		    (id->last_flush->context != fence_context &&
566 		     !dma_fence_is_signaled(id->last_flush)))
567 			needs_flush = true;
568 
569 		flushed  = id->flushed_updates;
570 		if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
571 			needs_flush = true;
572 
573 		/* Concurrent flushes are only possible starting with Vega10 */
574 		if (adev->asic_type < CHIP_VEGA10 && needs_flush)
575 			continue;
576 
577 		/* Good we can use this VMID. Remember this submission as
578 		 * user of the VMID.
579 		 */
580 		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
581 		if (r)
582 			goto error;
583 
584 		if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
585 			dma_fence_put(id->flushed_updates);
586 			id->flushed_updates = dma_fence_get(updates);
587 		}
588 
589 		if (needs_flush)
590 			goto needs_flush;
591 		else
592 			goto no_flush_needed;
593 
594 	};
595 
596 	/* Still no ID to use? Then use the idle one found earlier */
597 	id = idle;
598 
599 	/* Remember this submission as user of the VMID */
600 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
601 	if (r)
602 		goto error;
603 
604 	id->pd_gpu_addr = job->vm_pd_addr;
605 	dma_fence_put(id->flushed_updates);
606 	id->flushed_updates = dma_fence_get(updates);
607 	atomic64_set(&id->owner, vm->client_id);
608 
609 needs_flush:
610 	job->vm_needs_flush = true;
611 	dma_fence_put(id->last_flush);
612 	id->last_flush = NULL;
613 
614 no_flush_needed:
615 	list_move_tail(&id->list, &id_mgr->ids_lru);
616 
617 	job->vm_id = id - id_mgr->ids;
618 	trace_amdgpu_vm_grab_id(vm, ring, job);
619 
620 error:
621 	mutex_unlock(&id_mgr->lock);
622 	return r;
623 }
624 
625 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
626 					  struct amdgpu_vm *vm,
627 					  unsigned vmhub)
628 {
629 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
630 
631 	mutex_lock(&id_mgr->lock);
632 	if (vm->reserved_vmid[vmhub]) {
633 		list_add(&vm->reserved_vmid[vmhub]->list,
634 			&id_mgr->ids_lru);
635 		vm->reserved_vmid[vmhub] = NULL;
636 		atomic_dec(&id_mgr->reserved_vmid_num);
637 	}
638 	mutex_unlock(&id_mgr->lock);
639 }
640 
641 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
642 					 struct amdgpu_vm *vm,
643 					 unsigned vmhub)
644 {
645 	struct amdgpu_vm_id_manager *id_mgr;
646 	struct amdgpu_vm_id *idle;
647 	int r = 0;
648 
649 	id_mgr = &adev->vm_manager.id_mgr[vmhub];
650 	mutex_lock(&id_mgr->lock);
651 	if (vm->reserved_vmid[vmhub])
652 		goto unlock;
653 	if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
654 	    AMDGPU_VM_MAX_RESERVED_VMID) {
655 		DRM_ERROR("Over limitation of reserved vmid\n");
656 		atomic_dec(&id_mgr->reserved_vmid_num);
657 		r = -EINVAL;
658 		goto unlock;
659 	}
660 	/* Select the first entry VMID */
661 	idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
662 	list_del_init(&idle->list);
663 	vm->reserved_vmid[vmhub] = idle;
664 	mutex_unlock(&id_mgr->lock);
665 
666 	return 0;
667 unlock:
668 	mutex_unlock(&id_mgr->lock);
669 	return r;
670 }
671 
672 /**
673  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
674  *
675  * @adev: amdgpu_device pointer
676  */
677 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
678 {
679 	const struct amdgpu_ip_block *ip_block;
680 	bool has_compute_vm_bug;
681 	struct amdgpu_ring *ring;
682 	int i;
683 
684 	has_compute_vm_bug = false;
685 
686 	ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
687 	if (ip_block) {
688 		/* Compute has a VM bug for GFX version < 7.
689 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
690 		if (ip_block->version->major <= 7)
691 			has_compute_vm_bug = true;
692 		else if (ip_block->version->major == 8)
693 			if (adev->gfx.mec_fw_version < 673)
694 				has_compute_vm_bug = true;
695 	}
696 
697 	for (i = 0; i < adev->num_rings; i++) {
698 		ring = adev->rings[i];
699 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
700 			/* only compute rings */
701 			ring->has_compute_vm_bug = has_compute_vm_bug;
702 		else
703 			ring->has_compute_vm_bug = false;
704 	}
705 }
706 
707 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
708 				  struct amdgpu_job *job)
709 {
710 	struct amdgpu_device *adev = ring->adev;
711 	unsigned vmhub = ring->funcs->vmhub;
712 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
713 	struct amdgpu_vm_id *id;
714 	bool gds_switch_needed;
715 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
716 
717 	if (job->vm_id == 0)
718 		return false;
719 	id = &id_mgr->ids[job->vm_id];
720 	gds_switch_needed = ring->funcs->emit_gds_switch && (
721 		id->gds_base != job->gds_base ||
722 		id->gds_size != job->gds_size ||
723 		id->gws_base != job->gws_base ||
724 		id->gws_size != job->gws_size ||
725 		id->oa_base != job->oa_base ||
726 		id->oa_size != job->oa_size);
727 
728 	if (amdgpu_vm_had_gpu_reset(adev, id))
729 		return true;
730 
731 	return vm_flush_needed || gds_switch_needed;
732 }
733 
734 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
735 {
736 	return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
737 }
738 
739 /**
740  * amdgpu_vm_flush - hardware flush the vm
741  *
742  * @ring: ring to use for flush
743  * @vm_id: vmid number to use
744  * @pd_addr: address of the page directory
745  *
746  * Emit a VM flush when it is necessary.
747  */
748 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
749 {
750 	struct amdgpu_device *adev = ring->adev;
751 	unsigned vmhub = ring->funcs->vmhub;
752 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
753 	struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
754 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
755 		id->gds_base != job->gds_base ||
756 		id->gds_size != job->gds_size ||
757 		id->gws_base != job->gws_base ||
758 		id->gws_size != job->gws_size ||
759 		id->oa_base != job->oa_base ||
760 		id->oa_size != job->oa_size);
761 	bool vm_flush_needed = job->vm_needs_flush;
762 	unsigned patch_offset = 0;
763 	int r;
764 
765 	if (amdgpu_vm_had_gpu_reset(adev, id)) {
766 		gds_switch_needed = true;
767 		vm_flush_needed = true;
768 	}
769 
770 	if (!vm_flush_needed && !gds_switch_needed)
771 		return 0;
772 
773 	if (ring->funcs->init_cond_exec)
774 		patch_offset = amdgpu_ring_init_cond_exec(ring);
775 
776 	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
777 		struct dma_fence *fence;
778 
779 		trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
780 		amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
781 
782 		r = amdgpu_fence_emit(ring, &fence);
783 		if (r)
784 			return r;
785 
786 		mutex_lock(&id_mgr->lock);
787 		dma_fence_put(id->last_flush);
788 		id->last_flush = fence;
789 		id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
790 		mutex_unlock(&id_mgr->lock);
791 	}
792 
793 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
794 		id->gds_base = job->gds_base;
795 		id->gds_size = job->gds_size;
796 		id->gws_base = job->gws_base;
797 		id->gws_size = job->gws_size;
798 		id->oa_base = job->oa_base;
799 		id->oa_size = job->oa_size;
800 		amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
801 					    job->gds_size, job->gws_base,
802 					    job->gws_size, job->oa_base,
803 					    job->oa_size);
804 	}
805 
806 	if (ring->funcs->patch_cond_exec)
807 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
808 
809 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
810 	if (ring->funcs->emit_switch_buffer) {
811 		amdgpu_ring_emit_switch_buffer(ring);
812 		amdgpu_ring_emit_switch_buffer(ring);
813 	}
814 	return 0;
815 }
816 
817 /**
818  * amdgpu_vm_reset_id - reset VMID to zero
819  *
820  * @adev: amdgpu device structure
821  * @vm_id: vmid number to use
822  *
823  * Reset saved GDW, GWS and OA to force switch on next flush.
824  */
825 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
826 			unsigned vmid)
827 {
828 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
829 	struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
830 
831 	atomic64_set(&id->owner, 0);
832 	id->gds_base = 0;
833 	id->gds_size = 0;
834 	id->gws_base = 0;
835 	id->gws_size = 0;
836 	id->oa_base = 0;
837 	id->oa_size = 0;
838 }
839 
840 /**
841  * amdgpu_vm_reset_all_id - reset VMID to zero
842  *
843  * @adev: amdgpu device structure
844  *
845  * Reset VMID to force flush on next use
846  */
847 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
848 {
849 	unsigned i, j;
850 
851 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
852 		struct amdgpu_vm_id_manager *id_mgr =
853 			&adev->vm_manager.id_mgr[i];
854 
855 		for (j = 1; j < id_mgr->num_ids; ++j)
856 			amdgpu_vm_reset_id(adev, i, j);
857 	}
858 }
859 
860 /**
861  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
862  *
863  * @vm: requested vm
864  * @bo: requested buffer object
865  *
866  * Find @bo inside the requested vm.
867  * Search inside the @bos vm list for the requested vm
868  * Returns the found bo_va or NULL if none is found
869  *
870  * Object has to be reserved!
871  */
872 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
873 				       struct amdgpu_bo *bo)
874 {
875 	struct amdgpu_bo_va *bo_va;
876 
877 	list_for_each_entry(bo_va, &bo->va, bo_list) {
878 		if (bo_va->vm == vm) {
879 			return bo_va;
880 		}
881 	}
882 	return NULL;
883 }
884 
885 /**
886  * amdgpu_vm_do_set_ptes - helper to call the right asic function
887  *
888  * @params: see amdgpu_pte_update_params definition
889  * @pe: addr of the page entry
890  * @addr: dst addr to write into pe
891  * @count: number of page entries to update
892  * @incr: increase next addr by incr bytes
893  * @flags: hw access flags
894  *
895  * Traces the parameters and calls the right asic functions
896  * to setup the page table using the DMA.
897  */
898 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
899 				  uint64_t pe, uint64_t addr,
900 				  unsigned count, uint32_t incr,
901 				  uint64_t flags)
902 {
903 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
904 
905 	if (count < 3) {
906 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
907 				    addr | flags, count, incr);
908 
909 	} else {
910 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
911 				      count, incr, flags);
912 	}
913 }
914 
915 /**
916  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
917  *
918  * @params: see amdgpu_pte_update_params definition
919  * @pe: addr of the page entry
920  * @addr: dst addr to write into pe
921  * @count: number of page entries to update
922  * @incr: increase next addr by incr bytes
923  * @flags: hw access flags
924  *
925  * Traces the parameters and calls the DMA function to copy the PTEs.
926  */
927 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
928 				   uint64_t pe, uint64_t addr,
929 				   unsigned count, uint32_t incr,
930 				   uint64_t flags)
931 {
932 	uint64_t src = (params->src + (addr >> 12) * 8);
933 
934 
935 	trace_amdgpu_vm_copy_ptes(pe, src, count);
936 
937 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
938 }
939 
940 /**
941  * amdgpu_vm_map_gart - Resolve gart mapping of addr
942  *
943  * @pages_addr: optional DMA address to use for lookup
944  * @addr: the unmapped addr
945  *
946  * Look up the physical address of the page that the pte resolves
947  * to and return the pointer for the page table entry.
948  */
949 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
950 {
951 	uint64_t result;
952 
953 	/* page table offset */
954 	result = pages_addr[addr >> PAGE_SHIFT];
955 
956 	/* in case cpu page size != gpu page size*/
957 	result |= addr & (~PAGE_MASK);
958 
959 	result &= 0xFFFFFFFFFFFFF000ULL;
960 
961 	return result;
962 }
963 
964 /**
965  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
966  *
967  * @params: see amdgpu_pte_update_params definition
968  * @pe: kmap addr of the page entry
969  * @addr: dst addr to write into pe
970  * @count: number of page entries to update
971  * @incr: increase next addr by incr bytes
972  * @flags: hw access flags
973  *
974  * Write count number of PT/PD entries directly.
975  */
976 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
977 				   uint64_t pe, uint64_t addr,
978 				   unsigned count, uint32_t incr,
979 				   uint64_t flags)
980 {
981 	unsigned int i;
982 	uint64_t value;
983 
984 	for (i = 0; i < count; i++) {
985 		value = params->pages_addr ?
986 			amdgpu_vm_map_gart(params->pages_addr, addr) :
987 			addr;
988 		amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
989 					i, value, flags);
990 		addr += incr;
991 	}
992 
993 	/* Flush HDP */
994 	mb();
995 	amdgpu_gart_flush_gpu_tlb(params->adev, 0);
996 }
997 
998 static int amdgpu_vm_bo_wait(struct amdgpu_device *adev, struct amdgpu_bo *bo)
999 {
1000 	struct amdgpu_sync sync;
1001 	int r;
1002 
1003 	amdgpu_sync_create(&sync);
1004 	amdgpu_sync_resv(adev, &sync, bo->tbo.resv, AMDGPU_FENCE_OWNER_VM);
1005 	r = amdgpu_sync_wait(&sync, true);
1006 	amdgpu_sync_free(&sync);
1007 
1008 	return r;
1009 }
1010 
1011 /*
1012  * amdgpu_vm_update_level - update a single level in the hierarchy
1013  *
1014  * @adev: amdgpu_device pointer
1015  * @vm: requested vm
1016  * @parent: parent directory
1017  *
1018  * Makes sure all entries in @parent are up to date.
1019  * Returns 0 for success, error for failure.
1020  */
1021 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1022 				  struct amdgpu_vm *vm,
1023 				  struct amdgpu_vm_pt *parent,
1024 				  unsigned level)
1025 {
1026 	struct amdgpu_bo *shadow;
1027 	struct amdgpu_ring *ring = NULL;
1028 	uint64_t pd_addr, shadow_addr = 0;
1029 	uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
1030 	uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1031 	unsigned count = 0, pt_idx, ndw = 0;
1032 	struct amdgpu_job *job;
1033 	struct amdgpu_pte_update_params params;
1034 	struct dma_fence *fence = NULL;
1035 
1036 	int r;
1037 
1038 	if (!parent->entries)
1039 		return 0;
1040 
1041 	memset(&params, 0, sizeof(params));
1042 	params.adev = adev;
1043 	shadow = parent->bo->shadow;
1044 
1045 	WARN_ON(vm->use_cpu_for_update && shadow);
1046 	if (vm->use_cpu_for_update && !shadow) {
1047 		r = amdgpu_bo_kmap(parent->bo, (void **)&pd_addr);
1048 		if (r)
1049 			return r;
1050 		r = amdgpu_vm_bo_wait(adev, parent->bo);
1051 		if (unlikely(r)) {
1052 			amdgpu_bo_kunmap(parent->bo);
1053 			return r;
1054 		}
1055 		params.func = amdgpu_vm_cpu_set_ptes;
1056 	} else {
1057 		if (shadow) {
1058 			r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
1059 			if (r)
1060 				return r;
1061 		}
1062 		ring = container_of(vm->entity.sched, struct amdgpu_ring,
1063 				    sched);
1064 
1065 		/* padding, etc. */
1066 		ndw = 64;
1067 
1068 		/* assume the worst case */
1069 		ndw += parent->last_entry_used * 6;
1070 
1071 		pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1072 
1073 		if (shadow) {
1074 			shadow_addr = amdgpu_bo_gpu_offset(shadow);
1075 			ndw *= 2;
1076 		} else {
1077 			shadow_addr = 0;
1078 		}
1079 
1080 		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1081 		if (r)
1082 			return r;
1083 
1084 		params.ib = &job->ibs[0];
1085 		params.func = amdgpu_vm_do_set_ptes;
1086 	}
1087 
1088 
1089 	/* walk over the address space and update the directory */
1090 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1091 		struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
1092 		uint64_t pde, pt;
1093 
1094 		if (bo == NULL)
1095 			continue;
1096 
1097 		if (bo->shadow) {
1098 			struct amdgpu_bo *pt_shadow = bo->shadow;
1099 
1100 			r = amdgpu_ttm_bind(&pt_shadow->tbo,
1101 					    &pt_shadow->tbo.mem);
1102 			if (r)
1103 				return r;
1104 		}
1105 
1106 		pt = amdgpu_bo_gpu_offset(bo);
1107 		pt = amdgpu_gart_get_vm_pde(adev, pt);
1108 		if (parent->entries[pt_idx].addr == pt)
1109 			continue;
1110 
1111 		parent->entries[pt_idx].addr = pt;
1112 
1113 		pde = pd_addr + pt_idx * 8;
1114 		if (((last_pde + 8 * count) != pde) ||
1115 		    ((last_pt + incr * count) != pt) ||
1116 		    (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1117 
1118 			if (count) {
1119 				if (shadow)
1120 					params.func(&params,
1121 						    last_shadow,
1122 						    last_pt, count,
1123 						    incr,
1124 						    AMDGPU_PTE_VALID);
1125 
1126 				params.func(&params, last_pde,
1127 					    last_pt, count, incr,
1128 					    AMDGPU_PTE_VALID);
1129 			}
1130 
1131 			count = 1;
1132 			last_pde = pde;
1133 			last_shadow = shadow_addr + pt_idx * 8;
1134 			last_pt = pt;
1135 		} else {
1136 			++count;
1137 		}
1138 	}
1139 
1140 	if (count) {
1141 		if (vm->root.bo->shadow)
1142 			params.func(&params, last_shadow, last_pt,
1143 				    count, incr, AMDGPU_PTE_VALID);
1144 
1145 		params.func(&params, last_pde, last_pt,
1146 			    count, incr, AMDGPU_PTE_VALID);
1147 	}
1148 
1149 	if (params.func == amdgpu_vm_cpu_set_ptes)
1150 		amdgpu_bo_kunmap(parent->bo);
1151 	else if (params.ib->length_dw == 0) {
1152 		amdgpu_job_free(job);
1153 	} else {
1154 		amdgpu_ring_pad_ib(ring, params.ib);
1155 		amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1156 				 AMDGPU_FENCE_OWNER_VM);
1157 		if (shadow)
1158 			amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
1159 					 AMDGPU_FENCE_OWNER_VM);
1160 
1161 		WARN_ON(params.ib->length_dw > ndw);
1162 		r = amdgpu_job_submit(job, ring, &vm->entity,
1163 				AMDGPU_FENCE_OWNER_VM, &fence);
1164 		if (r)
1165 			goto error_free;
1166 
1167 		amdgpu_bo_fence(parent->bo, fence, true);
1168 		dma_fence_put(vm->last_dir_update);
1169 		vm->last_dir_update = dma_fence_get(fence);
1170 		dma_fence_put(fence);
1171 	}
1172 	/*
1173 	 * Recurse into the subdirectories. This recursion is harmless because
1174 	 * we only have a maximum of 5 layers.
1175 	 */
1176 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1177 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1178 
1179 		if (!entry->bo)
1180 			continue;
1181 
1182 		r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1183 		if (r)
1184 			return r;
1185 	}
1186 
1187 	return 0;
1188 
1189 error_free:
1190 	amdgpu_job_free(job);
1191 	return r;
1192 }
1193 
1194 /*
1195  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1196  *
1197  * @parent: parent PD
1198  *
1199  * Mark all PD level as invalid after an error.
1200  */
1201 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1202 {
1203 	unsigned pt_idx;
1204 
1205 	/*
1206 	 * Recurse into the subdirectories. This recursion is harmless because
1207 	 * we only have a maximum of 5 layers.
1208 	 */
1209 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1210 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1211 
1212 		if (!entry->bo)
1213 			continue;
1214 
1215 		entry->addr = ~0ULL;
1216 		amdgpu_vm_invalidate_level(entry);
1217 	}
1218 }
1219 
1220 /*
1221  * amdgpu_vm_update_directories - make sure that all directories are valid
1222  *
1223  * @adev: amdgpu_device pointer
1224  * @vm: requested vm
1225  *
1226  * Makes sure all directories are up to date.
1227  * Returns 0 for success, error for failure.
1228  */
1229 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1230 				 struct amdgpu_vm *vm)
1231 {
1232 	int r;
1233 
1234 	r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1235 	if (r)
1236 		amdgpu_vm_invalidate_level(&vm->root);
1237 
1238 	return r;
1239 }
1240 
1241 /**
1242  * amdgpu_vm_find_pt - find the page table for an address
1243  *
1244  * @p: see amdgpu_pte_update_params definition
1245  * @addr: virtual address in question
1246  *
1247  * Find the page table BO for a virtual address, return NULL when none found.
1248  */
1249 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
1250 					  uint64_t addr)
1251 {
1252 	struct amdgpu_vm_pt *entry = &p->vm->root;
1253 	unsigned idx, level = p->adev->vm_manager.num_level;
1254 
1255 	while (entry->entries) {
1256 		idx = addr >> (p->adev->vm_manager.block_size * level--);
1257 		idx %= amdgpu_bo_size(entry->bo) / 8;
1258 		entry = &entry->entries[idx];
1259 	}
1260 
1261 	if (level)
1262 		return NULL;
1263 
1264 	return entry->bo;
1265 }
1266 
1267 /**
1268  * amdgpu_vm_update_ptes - make sure that page tables are valid
1269  *
1270  * @params: see amdgpu_pte_update_params definition
1271  * @vm: requested vm
1272  * @start: start of GPU address range
1273  * @end: end of GPU address range
1274  * @dst: destination address to map to, the next dst inside the function
1275  * @flags: mapping flags
1276  *
1277  * Update the page tables in the range @start - @end.
1278  * Returns 0 for success, -EINVAL for failure.
1279  */
1280 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1281 				  uint64_t start, uint64_t end,
1282 				  uint64_t dst, uint64_t flags)
1283 {
1284 	struct amdgpu_device *adev = params->adev;
1285 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1286 
1287 	uint64_t addr, pe_start;
1288 	struct amdgpu_bo *pt;
1289 	unsigned nptes;
1290 	int r;
1291 	bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1292 
1293 
1294 	/* walk over the address space and update the page tables */
1295 	for (addr = start; addr < end; addr += nptes) {
1296 		pt = amdgpu_vm_get_pt(params, addr);
1297 		if (!pt) {
1298 			pr_err("PT not found, aborting update_ptes\n");
1299 			return -EINVAL;
1300 		}
1301 
1302 		if (params->shadow) {
1303 			if (WARN_ONCE(use_cpu_update,
1304 				"CPU VM update doesn't suuport shadow pages"))
1305 				return 0;
1306 
1307 			if (!pt->shadow)
1308 				return 0;
1309 			pt = pt->shadow;
1310 		}
1311 
1312 		if ((addr & ~mask) == (end & ~mask))
1313 			nptes = end - addr;
1314 		else
1315 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1316 
1317 		if (use_cpu_update) {
1318 			r = amdgpu_bo_kmap(pt, (void *)&pe_start);
1319 			if (r)
1320 				return r;
1321 		} else
1322 			pe_start = amdgpu_bo_gpu_offset(pt);
1323 
1324 		pe_start += (addr & mask) * 8;
1325 
1326 		params->func(params, pe_start, dst, nptes,
1327 			     AMDGPU_GPU_PAGE_SIZE, flags);
1328 
1329 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1330 
1331 		if (use_cpu_update)
1332 			amdgpu_bo_kunmap(pt);
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 /*
1339  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1340  *
1341  * @params: see amdgpu_pte_update_params definition
1342  * @vm: requested vm
1343  * @start: first PTE to handle
1344  * @end: last PTE to handle
1345  * @dst: addr those PTEs should point to
1346  * @flags: hw mapping flags
1347  * Returns 0 for success, -EINVAL for failure.
1348  */
1349 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1350 				uint64_t start, uint64_t end,
1351 				uint64_t dst, uint64_t flags)
1352 {
1353 	int r;
1354 
1355 	/**
1356 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1357 	 * field in the PTE. When this field is set to a non-zero value, page
1358 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1359 	 * flags are considered valid for all PTEs within the fragment range
1360 	 * and corresponding mappings are assumed to be physically contiguous.
1361 	 *
1362 	 * The L1 TLB can store a single PTE for the whole fragment,
1363 	 * significantly increasing the space available for translation
1364 	 * caching. This leads to large improvements in throughput when the
1365 	 * TLB is under pressure.
1366 	 *
1367 	 * The L2 TLB distributes small and large fragments into two
1368 	 * asymmetric partitions. The large fragment cache is significantly
1369 	 * larger. Thus, we try to use large fragments wherever possible.
1370 	 * Userspace can support this by aligning virtual base address and
1371 	 * allocation size to the fragment size.
1372 	 */
1373 
1374 	/* SI and newer are optimized for 64KB */
1375 	uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1376 	uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1377 
1378 	uint64_t frag_start = ALIGN(start, frag_align);
1379 	uint64_t frag_end = end & ~(frag_align - 1);
1380 
1381 	/* system pages are non continuously */
1382 	if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1383 	    (frag_start >= frag_end))
1384 		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1385 
1386 	/* handle the 4K area at the beginning */
1387 	if (start != frag_start) {
1388 		r = amdgpu_vm_update_ptes(params, start, frag_start,
1389 					  dst, flags);
1390 		if (r)
1391 			return r;
1392 		dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1393 	}
1394 
1395 	/* handle the area in the middle */
1396 	r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1397 				  flags | frag_flags);
1398 	if (r)
1399 		return r;
1400 
1401 	/* handle the 4K area at the end */
1402 	if (frag_end != end) {
1403 		dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1404 		r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1405 	}
1406 	return r;
1407 }
1408 
1409 /**
1410  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1411  *
1412  * @adev: amdgpu_device pointer
1413  * @exclusive: fence we need to sync to
1414  * @src: address where to copy page table entries from
1415  * @pages_addr: DMA addresses to use for mapping
1416  * @vm: requested vm
1417  * @start: start of mapped range
1418  * @last: last mapped entry
1419  * @flags: flags for the entries
1420  * @addr: addr to set the area to
1421  * @fence: optional resulting fence
1422  *
1423  * Fill in the page table entries between @start and @last.
1424  * Returns 0 for success, -EINVAL for failure.
1425  */
1426 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1427 				       struct dma_fence *exclusive,
1428 				       uint64_t src,
1429 				       dma_addr_t *pages_addr,
1430 				       struct amdgpu_vm *vm,
1431 				       uint64_t start, uint64_t last,
1432 				       uint64_t flags, uint64_t addr,
1433 				       struct dma_fence **fence)
1434 {
1435 	struct amdgpu_ring *ring;
1436 	void *owner = AMDGPU_FENCE_OWNER_VM;
1437 	unsigned nptes, ncmds, ndw;
1438 	struct amdgpu_job *job;
1439 	struct amdgpu_pte_update_params params;
1440 	struct dma_fence *f = NULL;
1441 	int r;
1442 
1443 	memset(&params, 0, sizeof(params));
1444 	params.adev = adev;
1445 	params.vm = vm;
1446 	params.src = src;
1447 
1448 	if (vm->use_cpu_for_update) {
1449 		/* params.src is used as flag to indicate system Memory */
1450 		if (pages_addr)
1451 			params.src = ~0;
1452 
1453 		/* Wait for PT BOs to be free. PTs share the same resv. object
1454 		 * as the root PD BO
1455 		 */
1456 		r = amdgpu_vm_bo_wait(adev, vm->root.bo);
1457 		if (unlikely(r))
1458 			return r;
1459 
1460 		params.func = amdgpu_vm_cpu_set_ptes;
1461 		params.pages_addr = pages_addr;
1462 		params.shadow = false;
1463 		return amdgpu_vm_frag_ptes(&params, start, last + 1,
1464 					   addr, flags);
1465 	}
1466 
1467 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1468 
1469 	/* sync to everything on unmapping */
1470 	if (!(flags & AMDGPU_PTE_VALID))
1471 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1472 
1473 	nptes = last - start + 1;
1474 
1475 	/*
1476 	 * reserve space for one command every (1 << BLOCK_SIZE)
1477 	 *  entries or 2k dwords (whatever is smaller)
1478 	 */
1479 	ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1480 
1481 	/* padding, etc. */
1482 	ndw = 64;
1483 
1484 	if (src) {
1485 		/* only copy commands needed */
1486 		ndw += ncmds * 7;
1487 
1488 		params.func = amdgpu_vm_do_copy_ptes;
1489 
1490 	} else if (pages_addr) {
1491 		/* copy commands needed */
1492 		ndw += ncmds * 7;
1493 
1494 		/* and also PTEs */
1495 		ndw += nptes * 2;
1496 
1497 		params.func = amdgpu_vm_do_copy_ptes;
1498 
1499 	} else {
1500 		/* set page commands needed */
1501 		ndw += ncmds * 10;
1502 
1503 		/* two extra commands for begin/end of fragment */
1504 		ndw += 2 * 10;
1505 
1506 		params.func = amdgpu_vm_do_set_ptes;
1507 	}
1508 
1509 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1510 	if (r)
1511 		return r;
1512 
1513 	params.ib = &job->ibs[0];
1514 
1515 	if (!src && pages_addr) {
1516 		uint64_t *pte;
1517 		unsigned i;
1518 
1519 		/* Put the PTEs at the end of the IB. */
1520 		i = ndw - nptes * 2;
1521 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1522 		params.src = job->ibs->gpu_addr + i * 4;
1523 
1524 		for (i = 0; i < nptes; ++i) {
1525 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1526 						    AMDGPU_GPU_PAGE_SIZE);
1527 			pte[i] |= flags;
1528 		}
1529 		addr = 0;
1530 	}
1531 
1532 	r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1533 	if (r)
1534 		goto error_free;
1535 
1536 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1537 			     owner);
1538 	if (r)
1539 		goto error_free;
1540 
1541 	r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1542 	if (r)
1543 		goto error_free;
1544 
1545 	params.shadow = true;
1546 	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1547 	if (r)
1548 		goto error_free;
1549 	params.shadow = false;
1550 	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1551 	if (r)
1552 		goto error_free;
1553 
1554 	amdgpu_ring_pad_ib(ring, params.ib);
1555 	WARN_ON(params.ib->length_dw > ndw);
1556 	r = amdgpu_job_submit(job, ring, &vm->entity,
1557 			      AMDGPU_FENCE_OWNER_VM, &f);
1558 	if (r)
1559 		goto error_free;
1560 
1561 	amdgpu_bo_fence(vm->root.bo, f, true);
1562 	dma_fence_put(*fence);
1563 	*fence = f;
1564 	return 0;
1565 
1566 error_free:
1567 	amdgpu_job_free(job);
1568 	return r;
1569 }
1570 
1571 /**
1572  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1573  *
1574  * @adev: amdgpu_device pointer
1575  * @exclusive: fence we need to sync to
1576  * @gtt_flags: flags as they are used for GTT
1577  * @pages_addr: DMA addresses to use for mapping
1578  * @vm: requested vm
1579  * @mapping: mapped range and flags to use for the update
1580  * @flags: HW flags for the mapping
1581  * @nodes: array of drm_mm_nodes with the MC addresses
1582  * @fence: optional resulting fence
1583  *
1584  * Split the mapping into smaller chunks so that each update fits
1585  * into a SDMA IB.
1586  * Returns 0 for success, -EINVAL for failure.
1587  */
1588 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1589 				      struct dma_fence *exclusive,
1590 				      uint64_t gtt_flags,
1591 				      dma_addr_t *pages_addr,
1592 				      struct amdgpu_vm *vm,
1593 				      struct amdgpu_bo_va_mapping *mapping,
1594 				      uint64_t flags,
1595 				      struct drm_mm_node *nodes,
1596 				      struct dma_fence **fence)
1597 {
1598 	uint64_t pfn, src = 0, start = mapping->start;
1599 	int r;
1600 
1601 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1602 	 * but in case of something, we filter the flags in first place
1603 	 */
1604 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1605 		flags &= ~AMDGPU_PTE_READABLE;
1606 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1607 		flags &= ~AMDGPU_PTE_WRITEABLE;
1608 
1609 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1610 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1611 
1612 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1613 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1614 
1615 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1616 	    (adev->asic_type >= CHIP_VEGA10)) {
1617 		flags |= AMDGPU_PTE_PRT;
1618 		flags &= ~AMDGPU_PTE_VALID;
1619 	}
1620 
1621 	trace_amdgpu_vm_bo_update(mapping);
1622 
1623 	pfn = mapping->offset >> PAGE_SHIFT;
1624 	if (nodes) {
1625 		while (pfn >= nodes->size) {
1626 			pfn -= nodes->size;
1627 			++nodes;
1628 		}
1629 	}
1630 
1631 	do {
1632 		uint64_t max_entries;
1633 		uint64_t addr, last;
1634 
1635 		if (nodes) {
1636 			addr = nodes->start << PAGE_SHIFT;
1637 			max_entries = (nodes->size - pfn) *
1638 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1639 		} else {
1640 			addr = 0;
1641 			max_entries = S64_MAX;
1642 		}
1643 
1644 		if (pages_addr) {
1645 			if (flags == gtt_flags)
1646 				src = adev->gart.table_addr +
1647 					(addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1648 			else
1649 				max_entries = min(max_entries, 16ull * 1024ull);
1650 			addr = 0;
1651 		} else if (flags & AMDGPU_PTE_VALID) {
1652 			addr += adev->vm_manager.vram_base_offset;
1653 		}
1654 		addr += pfn << PAGE_SHIFT;
1655 
1656 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1657 		r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1658 						src, pages_addr, vm,
1659 						start, last, flags, addr,
1660 						fence);
1661 		if (r)
1662 			return r;
1663 
1664 		pfn += last - start + 1;
1665 		if (nodes && nodes->size == pfn) {
1666 			pfn = 0;
1667 			++nodes;
1668 		}
1669 		start = last + 1;
1670 
1671 	} while (unlikely(start != mapping->last + 1));
1672 
1673 	return 0;
1674 }
1675 
1676 /**
1677  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1678  *
1679  * @adev: amdgpu_device pointer
1680  * @bo_va: requested BO and VM object
1681  * @clear: if true clear the entries
1682  *
1683  * Fill in the page table entries for @bo_va.
1684  * Returns 0 for success, -EINVAL for failure.
1685  */
1686 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1687 			struct amdgpu_bo_va *bo_va,
1688 			bool clear)
1689 {
1690 	struct amdgpu_vm *vm = bo_va->vm;
1691 	struct amdgpu_bo_va_mapping *mapping;
1692 	dma_addr_t *pages_addr = NULL;
1693 	uint64_t gtt_flags, flags;
1694 	struct ttm_mem_reg *mem;
1695 	struct drm_mm_node *nodes;
1696 	struct dma_fence *exclusive;
1697 	int r;
1698 
1699 	if (clear || !bo_va->bo) {
1700 		mem = NULL;
1701 		nodes = NULL;
1702 		exclusive = NULL;
1703 	} else {
1704 		struct ttm_dma_tt *ttm;
1705 
1706 		mem = &bo_va->bo->tbo.mem;
1707 		nodes = mem->mm_node;
1708 		if (mem->mem_type == TTM_PL_TT) {
1709 			ttm = container_of(bo_va->bo->tbo.ttm, struct
1710 					   ttm_dma_tt, ttm);
1711 			pages_addr = ttm->dma_address;
1712 		}
1713 		exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1714 	}
1715 
1716 	if (bo_va->bo) {
1717 		flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1718 		gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1719 			adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1720 			flags : 0;
1721 	} else {
1722 		flags = 0x0;
1723 		gtt_flags = ~0x0;
1724 	}
1725 
1726 	spin_lock(&vm->status_lock);
1727 	if (!list_empty(&bo_va->vm_status))
1728 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1729 	spin_unlock(&vm->status_lock);
1730 
1731 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1732 		r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1733 					       gtt_flags, pages_addr, vm,
1734 					       mapping, flags, nodes,
1735 					       &bo_va->last_pt_update);
1736 		if (r)
1737 			return r;
1738 	}
1739 
1740 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1741 		list_for_each_entry(mapping, &bo_va->valids, list)
1742 			trace_amdgpu_vm_bo_mapping(mapping);
1743 
1744 		list_for_each_entry(mapping, &bo_va->invalids, list)
1745 			trace_amdgpu_vm_bo_mapping(mapping);
1746 	}
1747 
1748 	spin_lock(&vm->status_lock);
1749 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1750 	list_del_init(&bo_va->vm_status);
1751 	if (clear)
1752 		list_add(&bo_va->vm_status, &vm->cleared);
1753 	spin_unlock(&vm->status_lock);
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * amdgpu_vm_update_prt_state - update the global PRT state
1760  */
1761 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1762 {
1763 	unsigned long flags;
1764 	bool enable;
1765 
1766 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1767 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1768 	adev->gart.gart_funcs->set_prt(adev, enable);
1769 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1770 }
1771 
1772 /**
1773  * amdgpu_vm_prt_get - add a PRT user
1774  */
1775 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1776 {
1777 	if (!adev->gart.gart_funcs->set_prt)
1778 		return;
1779 
1780 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1781 		amdgpu_vm_update_prt_state(adev);
1782 }
1783 
1784 /**
1785  * amdgpu_vm_prt_put - drop a PRT user
1786  */
1787 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1788 {
1789 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1790 		amdgpu_vm_update_prt_state(adev);
1791 }
1792 
1793 /**
1794  * amdgpu_vm_prt_cb - callback for updating the PRT status
1795  */
1796 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1797 {
1798 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1799 
1800 	amdgpu_vm_prt_put(cb->adev);
1801 	kfree(cb);
1802 }
1803 
1804 /**
1805  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1806  */
1807 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1808 				 struct dma_fence *fence)
1809 {
1810 	struct amdgpu_prt_cb *cb;
1811 
1812 	if (!adev->gart.gart_funcs->set_prt)
1813 		return;
1814 
1815 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1816 	if (!cb) {
1817 		/* Last resort when we are OOM */
1818 		if (fence)
1819 			dma_fence_wait(fence, false);
1820 
1821 		amdgpu_vm_prt_put(adev);
1822 	} else {
1823 		cb->adev = adev;
1824 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1825 						     amdgpu_vm_prt_cb))
1826 			amdgpu_vm_prt_cb(fence, &cb->cb);
1827 	}
1828 }
1829 
1830 /**
1831  * amdgpu_vm_free_mapping - free a mapping
1832  *
1833  * @adev: amdgpu_device pointer
1834  * @vm: requested vm
1835  * @mapping: mapping to be freed
1836  * @fence: fence of the unmap operation
1837  *
1838  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1839  */
1840 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1841 				   struct amdgpu_vm *vm,
1842 				   struct amdgpu_bo_va_mapping *mapping,
1843 				   struct dma_fence *fence)
1844 {
1845 	if (mapping->flags & AMDGPU_PTE_PRT)
1846 		amdgpu_vm_add_prt_cb(adev, fence);
1847 	kfree(mapping);
1848 }
1849 
1850 /**
1851  * amdgpu_vm_prt_fini - finish all prt mappings
1852  *
1853  * @adev: amdgpu_device pointer
1854  * @vm: requested vm
1855  *
1856  * Register a cleanup callback to disable PRT support after VM dies.
1857  */
1858 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1859 {
1860 	struct reservation_object *resv = vm->root.bo->tbo.resv;
1861 	struct dma_fence *excl, **shared;
1862 	unsigned i, shared_count;
1863 	int r;
1864 
1865 	r = reservation_object_get_fences_rcu(resv, &excl,
1866 					      &shared_count, &shared);
1867 	if (r) {
1868 		/* Not enough memory to grab the fence list, as last resort
1869 		 * block for all the fences to complete.
1870 		 */
1871 		reservation_object_wait_timeout_rcu(resv, true, false,
1872 						    MAX_SCHEDULE_TIMEOUT);
1873 		return;
1874 	}
1875 
1876 	/* Add a callback for each fence in the reservation object */
1877 	amdgpu_vm_prt_get(adev);
1878 	amdgpu_vm_add_prt_cb(adev, excl);
1879 
1880 	for (i = 0; i < shared_count; ++i) {
1881 		amdgpu_vm_prt_get(adev);
1882 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1883 	}
1884 
1885 	kfree(shared);
1886 }
1887 
1888 /**
1889  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1890  *
1891  * @adev: amdgpu_device pointer
1892  * @vm: requested vm
1893  * @fence: optional resulting fence (unchanged if no work needed to be done
1894  * or if an error occurred)
1895  *
1896  * Make sure all freed BOs are cleared in the PT.
1897  * Returns 0 for success.
1898  *
1899  * PTs have to be reserved and mutex must be locked!
1900  */
1901 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1902 			  struct amdgpu_vm *vm,
1903 			  struct dma_fence **fence)
1904 {
1905 	struct amdgpu_bo_va_mapping *mapping;
1906 	struct dma_fence *f = NULL;
1907 	int r;
1908 
1909 	while (!list_empty(&vm->freed)) {
1910 		mapping = list_first_entry(&vm->freed,
1911 			struct amdgpu_bo_va_mapping, list);
1912 		list_del(&mapping->list);
1913 
1914 		r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1915 						mapping->start, mapping->last,
1916 						0, 0, &f);
1917 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1918 		if (r) {
1919 			dma_fence_put(f);
1920 			return r;
1921 		}
1922 	}
1923 
1924 	if (fence && f) {
1925 		dma_fence_put(*fence);
1926 		*fence = f;
1927 	} else {
1928 		dma_fence_put(f);
1929 	}
1930 
1931 	return 0;
1932 
1933 }
1934 
1935 /**
1936  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1937  *
1938  * @adev: amdgpu_device pointer
1939  * @vm: requested vm
1940  *
1941  * Make sure all invalidated BOs are cleared in the PT.
1942  * Returns 0 for success.
1943  *
1944  * PTs have to be reserved and mutex must be locked!
1945  */
1946 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1947 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1948 {
1949 	struct amdgpu_bo_va *bo_va = NULL;
1950 	int r = 0;
1951 
1952 	spin_lock(&vm->status_lock);
1953 	while (!list_empty(&vm->invalidated)) {
1954 		bo_va = list_first_entry(&vm->invalidated,
1955 			struct amdgpu_bo_va, vm_status);
1956 		spin_unlock(&vm->status_lock);
1957 
1958 		r = amdgpu_vm_bo_update(adev, bo_va, true);
1959 		if (r)
1960 			return r;
1961 
1962 		spin_lock(&vm->status_lock);
1963 	}
1964 	spin_unlock(&vm->status_lock);
1965 
1966 	if (bo_va)
1967 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1968 
1969 	return r;
1970 }
1971 
1972 /**
1973  * amdgpu_vm_bo_add - add a bo to a specific vm
1974  *
1975  * @adev: amdgpu_device pointer
1976  * @vm: requested vm
1977  * @bo: amdgpu buffer object
1978  *
1979  * Add @bo into the requested vm.
1980  * Add @bo to the list of bos associated with the vm
1981  * Returns newly added bo_va or NULL for failure
1982  *
1983  * Object has to be reserved!
1984  */
1985 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1986 				      struct amdgpu_vm *vm,
1987 				      struct amdgpu_bo *bo)
1988 {
1989 	struct amdgpu_bo_va *bo_va;
1990 
1991 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1992 	if (bo_va == NULL) {
1993 		return NULL;
1994 	}
1995 	bo_va->vm = vm;
1996 	bo_va->bo = bo;
1997 	bo_va->ref_count = 1;
1998 	INIT_LIST_HEAD(&bo_va->bo_list);
1999 	INIT_LIST_HEAD(&bo_va->valids);
2000 	INIT_LIST_HEAD(&bo_va->invalids);
2001 	INIT_LIST_HEAD(&bo_va->vm_status);
2002 
2003 	if (bo)
2004 		list_add_tail(&bo_va->bo_list, &bo->va);
2005 
2006 	return bo_va;
2007 }
2008 
2009 /**
2010  * amdgpu_vm_bo_map - map bo inside a vm
2011  *
2012  * @adev: amdgpu_device pointer
2013  * @bo_va: bo_va to store the address
2014  * @saddr: where to map the BO
2015  * @offset: requested offset in the BO
2016  * @flags: attributes of pages (read/write/valid/etc.)
2017  *
2018  * Add a mapping of the BO at the specefied addr into the VM.
2019  * Returns 0 for success, error for failure.
2020  *
2021  * Object has to be reserved and unreserved outside!
2022  */
2023 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2024 		     struct amdgpu_bo_va *bo_va,
2025 		     uint64_t saddr, uint64_t offset,
2026 		     uint64_t size, uint64_t flags)
2027 {
2028 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2029 	struct amdgpu_vm *vm = bo_va->vm;
2030 	uint64_t eaddr;
2031 
2032 	/* validate the parameters */
2033 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2034 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2035 		return -EINVAL;
2036 
2037 	/* make sure object fit at this offset */
2038 	eaddr = saddr + size - 1;
2039 	if (saddr >= eaddr ||
2040 	    (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
2041 		return -EINVAL;
2042 
2043 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2044 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2045 
2046 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2047 	if (tmp) {
2048 		/* bo and tmp overlap, invalid addr */
2049 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2050 			"0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
2051 			tmp->start, tmp->last + 1);
2052 		return -EINVAL;
2053 	}
2054 
2055 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2056 	if (!mapping)
2057 		return -ENOMEM;
2058 
2059 	INIT_LIST_HEAD(&mapping->list);
2060 	mapping->start = saddr;
2061 	mapping->last = eaddr;
2062 	mapping->offset = offset;
2063 	mapping->flags = flags;
2064 
2065 	list_add(&mapping->list, &bo_va->invalids);
2066 	amdgpu_vm_it_insert(mapping, &vm->va);
2067 
2068 	if (flags & AMDGPU_PTE_PRT)
2069 		amdgpu_vm_prt_get(adev);
2070 
2071 	return 0;
2072 }
2073 
2074 /**
2075  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2076  *
2077  * @adev: amdgpu_device pointer
2078  * @bo_va: bo_va to store the address
2079  * @saddr: where to map the BO
2080  * @offset: requested offset in the BO
2081  * @flags: attributes of pages (read/write/valid/etc.)
2082  *
2083  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2084  * mappings as we do so.
2085  * Returns 0 for success, error for failure.
2086  *
2087  * Object has to be reserved and unreserved outside!
2088  */
2089 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2090 			     struct amdgpu_bo_va *bo_va,
2091 			     uint64_t saddr, uint64_t offset,
2092 			     uint64_t size, uint64_t flags)
2093 {
2094 	struct amdgpu_bo_va_mapping *mapping;
2095 	struct amdgpu_vm *vm = bo_va->vm;
2096 	uint64_t eaddr;
2097 	int r;
2098 
2099 	/* validate the parameters */
2100 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2101 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2102 		return -EINVAL;
2103 
2104 	/* make sure object fit at this offset */
2105 	eaddr = saddr + size - 1;
2106 	if (saddr >= eaddr ||
2107 	    (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
2108 		return -EINVAL;
2109 
2110 	/* Allocate all the needed memory */
2111 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2112 	if (!mapping)
2113 		return -ENOMEM;
2114 
2115 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
2116 	if (r) {
2117 		kfree(mapping);
2118 		return r;
2119 	}
2120 
2121 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2122 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2123 
2124 	mapping->start = saddr;
2125 	mapping->last = eaddr;
2126 	mapping->offset = offset;
2127 	mapping->flags = flags;
2128 
2129 	list_add(&mapping->list, &bo_va->invalids);
2130 	amdgpu_vm_it_insert(mapping, &vm->va);
2131 
2132 	if (flags & AMDGPU_PTE_PRT)
2133 		amdgpu_vm_prt_get(adev);
2134 
2135 	return 0;
2136 }
2137 
2138 /**
2139  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2140  *
2141  * @adev: amdgpu_device pointer
2142  * @bo_va: bo_va to remove the address from
2143  * @saddr: where to the BO is mapped
2144  *
2145  * Remove a mapping of the BO at the specefied addr from the VM.
2146  * Returns 0 for success, error for failure.
2147  *
2148  * Object has to be reserved and unreserved outside!
2149  */
2150 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2151 		       struct amdgpu_bo_va *bo_va,
2152 		       uint64_t saddr)
2153 {
2154 	struct amdgpu_bo_va_mapping *mapping;
2155 	struct amdgpu_vm *vm = bo_va->vm;
2156 	bool valid = true;
2157 
2158 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2159 
2160 	list_for_each_entry(mapping, &bo_va->valids, list) {
2161 		if (mapping->start == saddr)
2162 			break;
2163 	}
2164 
2165 	if (&mapping->list == &bo_va->valids) {
2166 		valid = false;
2167 
2168 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2169 			if (mapping->start == saddr)
2170 				break;
2171 		}
2172 
2173 		if (&mapping->list == &bo_va->invalids)
2174 			return -ENOENT;
2175 	}
2176 
2177 	list_del(&mapping->list);
2178 	amdgpu_vm_it_remove(mapping, &vm->va);
2179 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2180 
2181 	if (valid)
2182 		list_add(&mapping->list, &vm->freed);
2183 	else
2184 		amdgpu_vm_free_mapping(adev, vm, mapping,
2185 				       bo_va->last_pt_update);
2186 
2187 	return 0;
2188 }
2189 
2190 /**
2191  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2192  *
2193  * @adev: amdgpu_device pointer
2194  * @vm: VM structure to use
2195  * @saddr: start of the range
2196  * @size: size of the range
2197  *
2198  * Remove all mappings in a range, split them as appropriate.
2199  * Returns 0 for success, error for failure.
2200  */
2201 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2202 				struct amdgpu_vm *vm,
2203 				uint64_t saddr, uint64_t size)
2204 {
2205 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2206 	LIST_HEAD(removed);
2207 	uint64_t eaddr;
2208 
2209 	eaddr = saddr + size - 1;
2210 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2211 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2212 
2213 	/* Allocate all the needed memory */
2214 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2215 	if (!before)
2216 		return -ENOMEM;
2217 	INIT_LIST_HEAD(&before->list);
2218 
2219 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2220 	if (!after) {
2221 		kfree(before);
2222 		return -ENOMEM;
2223 	}
2224 	INIT_LIST_HEAD(&after->list);
2225 
2226 	/* Now gather all removed mappings */
2227 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2228 	while (tmp) {
2229 		/* Remember mapping split at the start */
2230 		if (tmp->start < saddr) {
2231 			before->start = tmp->start;
2232 			before->last = saddr - 1;
2233 			before->offset = tmp->offset;
2234 			before->flags = tmp->flags;
2235 			list_add(&before->list, &tmp->list);
2236 		}
2237 
2238 		/* Remember mapping split at the end */
2239 		if (tmp->last > eaddr) {
2240 			after->start = eaddr + 1;
2241 			after->last = tmp->last;
2242 			after->offset = tmp->offset;
2243 			after->offset += after->start - tmp->start;
2244 			after->flags = tmp->flags;
2245 			list_add(&after->list, &tmp->list);
2246 		}
2247 
2248 		list_del(&tmp->list);
2249 		list_add(&tmp->list, &removed);
2250 
2251 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2252 	}
2253 
2254 	/* And free them up */
2255 	list_for_each_entry_safe(tmp, next, &removed, list) {
2256 		amdgpu_vm_it_remove(tmp, &vm->va);
2257 		list_del(&tmp->list);
2258 
2259 		if (tmp->start < saddr)
2260 		    tmp->start = saddr;
2261 		if (tmp->last > eaddr)
2262 		    tmp->last = eaddr;
2263 
2264 		list_add(&tmp->list, &vm->freed);
2265 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2266 	}
2267 
2268 	/* Insert partial mapping before the range */
2269 	if (!list_empty(&before->list)) {
2270 		amdgpu_vm_it_insert(before, &vm->va);
2271 		if (before->flags & AMDGPU_PTE_PRT)
2272 			amdgpu_vm_prt_get(adev);
2273 	} else {
2274 		kfree(before);
2275 	}
2276 
2277 	/* Insert partial mapping after the range */
2278 	if (!list_empty(&after->list)) {
2279 		amdgpu_vm_it_insert(after, &vm->va);
2280 		if (after->flags & AMDGPU_PTE_PRT)
2281 			amdgpu_vm_prt_get(adev);
2282 	} else {
2283 		kfree(after);
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 /**
2290  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2291  *
2292  * @adev: amdgpu_device pointer
2293  * @bo_va: requested bo_va
2294  *
2295  * Remove @bo_va->bo from the requested vm.
2296  *
2297  * Object have to be reserved!
2298  */
2299 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2300 		      struct amdgpu_bo_va *bo_va)
2301 {
2302 	struct amdgpu_bo_va_mapping *mapping, *next;
2303 	struct amdgpu_vm *vm = bo_va->vm;
2304 
2305 	list_del(&bo_va->bo_list);
2306 
2307 	spin_lock(&vm->status_lock);
2308 	list_del(&bo_va->vm_status);
2309 	spin_unlock(&vm->status_lock);
2310 
2311 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2312 		list_del(&mapping->list);
2313 		amdgpu_vm_it_remove(mapping, &vm->va);
2314 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2315 		list_add(&mapping->list, &vm->freed);
2316 	}
2317 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2318 		list_del(&mapping->list);
2319 		amdgpu_vm_it_remove(mapping, &vm->va);
2320 		amdgpu_vm_free_mapping(adev, vm, mapping,
2321 				       bo_va->last_pt_update);
2322 	}
2323 
2324 	dma_fence_put(bo_va->last_pt_update);
2325 	kfree(bo_va);
2326 }
2327 
2328 /**
2329  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2330  *
2331  * @adev: amdgpu_device pointer
2332  * @vm: requested vm
2333  * @bo: amdgpu buffer object
2334  *
2335  * Mark @bo as invalid.
2336  */
2337 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2338 			     struct amdgpu_bo *bo)
2339 {
2340 	struct amdgpu_bo_va *bo_va;
2341 
2342 	list_for_each_entry(bo_va, &bo->va, bo_list) {
2343 		spin_lock(&bo_va->vm->status_lock);
2344 		if (list_empty(&bo_va->vm_status))
2345 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2346 		spin_unlock(&bo_va->vm->status_lock);
2347 	}
2348 }
2349 
2350 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2351 {
2352 	/* Total bits covered by PD + PTs */
2353 	unsigned bits = ilog2(vm_size) + 18;
2354 
2355 	/* Make sure the PD is 4K in size up to 8GB address space.
2356 	   Above that split equal between PD and PTs */
2357 	if (vm_size <= 8)
2358 		return (bits - 9);
2359 	else
2360 		return ((bits + 3) / 2);
2361 }
2362 
2363 /**
2364  * amdgpu_vm_adjust_size - adjust vm size and block size
2365  *
2366  * @adev: amdgpu_device pointer
2367  * @vm_size: the default vm size if it's set auto
2368  */
2369 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2370 {
2371 	/* adjust vm size firstly */
2372 	if (amdgpu_vm_size == -1)
2373 		adev->vm_manager.vm_size = vm_size;
2374 	else
2375 		adev->vm_manager.vm_size = amdgpu_vm_size;
2376 
2377 	/* block size depends on vm size */
2378 	if (amdgpu_vm_block_size == -1)
2379 		adev->vm_manager.block_size =
2380 			amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2381 	else
2382 		adev->vm_manager.block_size = amdgpu_vm_block_size;
2383 
2384 	DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2385 		adev->vm_manager.vm_size, adev->vm_manager.block_size);
2386 }
2387 
2388 /**
2389  * amdgpu_vm_init - initialize a vm instance
2390  *
2391  * @adev: amdgpu_device pointer
2392  * @vm: requested vm
2393  * @vm_context: Indicates if it GFX or Compute context
2394  *
2395  * Init @vm fields.
2396  */
2397 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2398 		   int vm_context)
2399 {
2400 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2401 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2402 	unsigned ring_instance;
2403 	struct amdgpu_ring *ring;
2404 	struct amd_sched_rq *rq;
2405 	int r, i;
2406 	u64 flags;
2407 
2408 	vm->va = RB_ROOT;
2409 	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2410 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2411 		vm->reserved_vmid[i] = NULL;
2412 	spin_lock_init(&vm->status_lock);
2413 	INIT_LIST_HEAD(&vm->invalidated);
2414 	INIT_LIST_HEAD(&vm->cleared);
2415 	INIT_LIST_HEAD(&vm->freed);
2416 
2417 	/* create scheduler entity for page table updates */
2418 
2419 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2420 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2421 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2422 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2423 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
2424 				  rq, amdgpu_sched_jobs);
2425 	if (r)
2426 		return r;
2427 
2428 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2429 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2430 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2431 	else
2432 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2433 						AMDGPU_VM_USE_CPU_FOR_GFX);
2434 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2435 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2436 	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2437 		  "CPU update of VM recommended only for large BAR system\n");
2438 	vm->last_dir_update = NULL;
2439 
2440 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2441 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
2442 	if (vm->use_cpu_for_update)
2443 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2444 	else
2445 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2446 				AMDGPU_GEM_CREATE_SHADOW);
2447 
2448 	r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2449 			     AMDGPU_GEM_DOMAIN_VRAM,
2450 			     flags,
2451 			     NULL, NULL, &vm->root.bo);
2452 	if (r)
2453 		goto error_free_sched_entity;
2454 
2455 	r = amdgpu_bo_reserve(vm->root.bo, false);
2456 	if (r)
2457 		goto error_free_root;
2458 
2459 	vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2460 	amdgpu_bo_unreserve(vm->root.bo);
2461 
2462 	return 0;
2463 
2464 error_free_root:
2465 	amdgpu_bo_unref(&vm->root.bo->shadow);
2466 	amdgpu_bo_unref(&vm->root.bo);
2467 	vm->root.bo = NULL;
2468 
2469 error_free_sched_entity:
2470 	amd_sched_entity_fini(&ring->sched, &vm->entity);
2471 
2472 	return r;
2473 }
2474 
2475 /**
2476  * amdgpu_vm_free_levels - free PD/PT levels
2477  *
2478  * @level: PD/PT starting level to free
2479  *
2480  * Free the page directory or page table level and all sub levels.
2481  */
2482 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2483 {
2484 	unsigned i;
2485 
2486 	if (level->bo) {
2487 		amdgpu_bo_unref(&level->bo->shadow);
2488 		amdgpu_bo_unref(&level->bo);
2489 	}
2490 
2491 	if (level->entries)
2492 		for (i = 0; i <= level->last_entry_used; i++)
2493 			amdgpu_vm_free_levels(&level->entries[i]);
2494 
2495 	kvfree(level->entries);
2496 }
2497 
2498 /**
2499  * amdgpu_vm_fini - tear down a vm instance
2500  *
2501  * @adev: amdgpu_device pointer
2502  * @vm: requested vm
2503  *
2504  * Tear down @vm.
2505  * Unbind the VM and remove all bos from the vm bo list
2506  */
2507 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2508 {
2509 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2510 	bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2511 	int i;
2512 
2513 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2514 
2515 	if (!RB_EMPTY_ROOT(&vm->va)) {
2516 		dev_err(adev->dev, "still active bo inside vm\n");
2517 	}
2518 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2519 		list_del(&mapping->list);
2520 		amdgpu_vm_it_remove(mapping, &vm->va);
2521 		kfree(mapping);
2522 	}
2523 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2524 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2525 			amdgpu_vm_prt_fini(adev, vm);
2526 			prt_fini_needed = false;
2527 		}
2528 
2529 		list_del(&mapping->list);
2530 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2531 	}
2532 
2533 	amdgpu_vm_free_levels(&vm->root);
2534 	dma_fence_put(vm->last_dir_update);
2535 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2536 		amdgpu_vm_free_reserved_vmid(adev, vm, i);
2537 }
2538 
2539 /**
2540  * amdgpu_vm_manager_init - init the VM manager
2541  *
2542  * @adev: amdgpu_device pointer
2543  *
2544  * Initialize the VM manager structures
2545  */
2546 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2547 {
2548 	unsigned i, j;
2549 
2550 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2551 		struct amdgpu_vm_id_manager *id_mgr =
2552 			&adev->vm_manager.id_mgr[i];
2553 
2554 		mutex_init(&id_mgr->lock);
2555 		INIT_LIST_HEAD(&id_mgr->ids_lru);
2556 		atomic_set(&id_mgr->reserved_vmid_num, 0);
2557 
2558 		/* skip over VMID 0, since it is the system VM */
2559 		for (j = 1; j < id_mgr->num_ids; ++j) {
2560 			amdgpu_vm_reset_id(adev, i, j);
2561 			amdgpu_sync_create(&id_mgr->ids[i].active);
2562 			list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2563 		}
2564 	}
2565 
2566 	adev->vm_manager.fence_context =
2567 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2568 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2569 		adev->vm_manager.seqno[i] = 0;
2570 
2571 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2572 	atomic64_set(&adev->vm_manager.client_counter, 0);
2573 	spin_lock_init(&adev->vm_manager.prt_lock);
2574 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2575 
2576 	/* If not overridden by the user, by default, only in large BAR systems
2577 	 * Compute VM tables will be updated by CPU
2578 	 */
2579 #ifdef CONFIG_X86_64
2580 	if (amdgpu_vm_update_mode == -1) {
2581 		if (amdgpu_vm_is_large_bar(adev))
2582 			adev->vm_manager.vm_update_mode =
2583 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2584 		else
2585 			adev->vm_manager.vm_update_mode = 0;
2586 	} else
2587 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2588 #else
2589 	adev->vm_manager.vm_update_mode = 0;
2590 #endif
2591 
2592 }
2593 
2594 /**
2595  * amdgpu_vm_manager_fini - cleanup VM manager
2596  *
2597  * @adev: amdgpu_device pointer
2598  *
2599  * Cleanup the VM manager and free resources.
2600  */
2601 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2602 {
2603 	unsigned i, j;
2604 
2605 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2606 		struct amdgpu_vm_id_manager *id_mgr =
2607 			&adev->vm_manager.id_mgr[i];
2608 
2609 		mutex_destroy(&id_mgr->lock);
2610 		for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2611 			struct amdgpu_vm_id *id = &id_mgr->ids[j];
2612 
2613 			amdgpu_sync_free(&id->active);
2614 			dma_fence_put(id->flushed_updates);
2615 			dma_fence_put(id->last_flush);
2616 		}
2617 	}
2618 }
2619 
2620 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2621 {
2622 	union drm_amdgpu_vm *args = data;
2623 	struct amdgpu_device *adev = dev->dev_private;
2624 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2625 	int r;
2626 
2627 	switch (args->in.op) {
2628 	case AMDGPU_VM_OP_RESERVE_VMID:
2629 		/* current, we only have requirement to reserve vmid from gfxhub */
2630 		r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2631 						  AMDGPU_GFXHUB);
2632 		if (r)
2633 			return r;
2634 		break;
2635 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2636 		amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2637 		break;
2638 	default:
2639 		return -EINVAL;
2640 	}
2641 
2642 	return 0;
2643 }
2644