1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /**
54  * amdgpu_vm_num_pde - return the number of page directory entries
55  *
56  * @adev: amdgpu_device pointer
57  *
58  * Calculate the number of page directory entries.
59  */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64 
65 /**
66  * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67  *
68  * @adev: amdgpu_device pointer
69  *
70  * Calculate the size of the page directory in bytes.
71  */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76 
77 /**
78  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
79  *
80  * @vm: vm providing the BOs
81  * @validated: head of validation list
82  * @entry: entry to add
83  *
84  * Add the page directory to the list of BOs to
85  * validate for command submission.
86  */
87 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
88 			 struct list_head *validated,
89 			 struct amdgpu_bo_list_entry *entry)
90 {
91 	entry->robj = vm->page_directory;
92 	entry->priority = 0;
93 	entry->tv.bo = &vm->page_directory->tbo;
94 	entry->tv.shared = true;
95 	list_add(&entry->tv.head, validated);
96 }
97 
98 /**
99  * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
100  *
101  * @vm: vm providing the BOs
102  * @duplicates: head of duplicates list
103  *
104  * Add the page directory to the BO duplicates list
105  * for command submission.
106  */
107 void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
108 {
109 	unsigned i;
110 
111 	/* add the vm page table to the list */
112 	for (i = 0; i <= vm->max_pde_used; ++i) {
113 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
114 
115 		if (!entry->robj)
116 			continue;
117 
118 		list_add(&entry->tv.head, duplicates);
119 	}
120 
121 }
122 
123 /**
124  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
125  *
126  * @adev: amdgpu device instance
127  * @vm: vm providing the BOs
128  *
129  * Move the PT BOs to the tail of the LRU.
130  */
131 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
132 				  struct amdgpu_vm *vm)
133 {
134 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
135 	unsigned i;
136 
137 	spin_lock(&glob->lru_lock);
138 	for (i = 0; i <= vm->max_pde_used; ++i) {
139 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
140 
141 		if (!entry->robj)
142 			continue;
143 
144 		ttm_bo_move_to_lru_tail(&entry->robj->tbo);
145 	}
146 	spin_unlock(&glob->lru_lock);
147 }
148 
149 /**
150  * amdgpu_vm_grab_id - allocate the next free VMID
151  *
152  * @vm: vm to allocate id for
153  * @ring: ring we want to submit job to
154  * @sync: sync object where we add dependencies
155  * @fence: fence protecting ID from reuse
156  *
157  * Allocate an id for the vm, adding fences to the sync obj as necessary.
158  */
159 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
160 		      struct amdgpu_sync *sync, struct fence *fence)
161 {
162 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
163 	struct amdgpu_device *adev = ring->adev;
164 	struct amdgpu_vm_manager_id *id;
165 	int r;
166 
167 	mutex_lock(&adev->vm_manager.lock);
168 
169 	/* check if the id is still valid */
170 	if (vm_id->id) {
171 		long owner;
172 
173 		id = &adev->vm_manager.ids[vm_id->id];
174 		owner = atomic_long_read(&id->owner);
175 		if (owner == (long)vm) {
176 			list_move_tail(&id->list, &adev->vm_manager.ids_lru);
177 			trace_amdgpu_vm_grab_id(vm, vm_id->id, ring->idx);
178 
179 			fence_put(id->active);
180 			id->active = fence_get(fence);
181 
182 			mutex_unlock(&adev->vm_manager.lock);
183 			return 0;
184 		}
185 	}
186 
187 	/* we definately need to flush */
188 	vm_id->pd_gpu_addr = ~0ll;
189 
190 	id = list_first_entry(&adev->vm_manager.ids_lru,
191 			      struct amdgpu_vm_manager_id,
192 			      list);
193 	list_move_tail(&id->list, &adev->vm_manager.ids_lru);
194 	atomic_long_set(&id->owner, (long)vm);
195 
196 	vm_id->id = id - adev->vm_manager.ids;
197 	trace_amdgpu_vm_grab_id(vm, vm_id->id, ring->idx);
198 
199 	r = amdgpu_sync_fence(ring->adev, sync, id->active);
200 
201 	if (!r) {
202 		fence_put(id->active);
203 		id->active = fence_get(fence);
204 	}
205 
206 	mutex_unlock(&adev->vm_manager.lock);
207 	return r;
208 }
209 
210 /**
211  * amdgpu_vm_flush - hardware flush the vm
212  *
213  * @ring: ring to use for flush
214  * @vm: vm we want to flush
215  * @updates: last vm update that we waited for
216  *
217  * Flush the vm.
218  */
219 void amdgpu_vm_flush(struct amdgpu_ring *ring,
220 		     struct amdgpu_vm *vm,
221 		     struct fence *updates)
222 {
223 	uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
224 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
225 	struct fence *flushed_updates = vm_id->flushed_updates;
226 	bool is_later;
227 
228 	if (!flushed_updates)
229 		is_later = true;
230 	else if (!updates)
231 		is_later = false;
232 	else
233 		is_later = fence_is_later(updates, flushed_updates);
234 
235 	if (pd_addr != vm_id->pd_gpu_addr || is_later) {
236 		trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
237 		if (is_later) {
238 			vm_id->flushed_updates = fence_get(updates);
239 			fence_put(flushed_updates);
240 		}
241 		vm_id->pd_gpu_addr = pd_addr;
242 		amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
243 	}
244 }
245 
246 /**
247  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
248  *
249  * @vm: requested vm
250  * @bo: requested buffer object
251  *
252  * Find @bo inside the requested vm.
253  * Search inside the @bos vm list for the requested vm
254  * Returns the found bo_va or NULL if none is found
255  *
256  * Object has to be reserved!
257  */
258 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
259 				       struct amdgpu_bo *bo)
260 {
261 	struct amdgpu_bo_va *bo_va;
262 
263 	list_for_each_entry(bo_va, &bo->va, bo_list) {
264 		if (bo_va->vm == vm) {
265 			return bo_va;
266 		}
267 	}
268 	return NULL;
269 }
270 
271 /**
272  * amdgpu_vm_update_pages - helper to call the right asic function
273  *
274  * @adev: amdgpu_device pointer
275  * @gtt: GART instance to use for mapping
276  * @gtt_flags: GTT hw access flags
277  * @ib: indirect buffer to fill with commands
278  * @pe: addr of the page entry
279  * @addr: dst addr to write into pe
280  * @count: number of page entries to update
281  * @incr: increase next addr by incr bytes
282  * @flags: hw access flags
283  *
284  * Traces the parameters and calls the right asic functions
285  * to setup the page table using the DMA.
286  */
287 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
288 				   struct amdgpu_gart *gtt,
289 				   uint32_t gtt_flags,
290 				   struct amdgpu_ib *ib,
291 				   uint64_t pe, uint64_t addr,
292 				   unsigned count, uint32_t incr,
293 				   uint32_t flags)
294 {
295 	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
296 
297 	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
298 		uint64_t src = gtt->table_addr + (addr >> 12) * 8;
299 		amdgpu_vm_copy_pte(adev, ib, pe, src, count);
300 
301 	} else if (gtt) {
302 		dma_addr_t *pages_addr = gtt->pages_addr;
303 		amdgpu_vm_write_pte(adev, ib, pages_addr, pe, addr,
304 				    count, incr, flags);
305 
306 	} else if (count < 3) {
307 		amdgpu_vm_write_pte(adev, ib, NULL, pe, addr,
308 				    count, incr, flags);
309 
310 	} else {
311 		amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
312 				      count, incr, flags);
313 	}
314 }
315 
316 int amdgpu_vm_free_job(struct amdgpu_job *job)
317 {
318 	int i;
319 	for (i = 0; i < job->num_ibs; i++)
320 		amdgpu_ib_free(job->adev, &job->ibs[i]);
321 	kfree(job->ibs);
322 	return 0;
323 }
324 
325 /**
326  * amdgpu_vm_clear_bo - initially clear the page dir/table
327  *
328  * @adev: amdgpu_device pointer
329  * @bo: bo to clear
330  *
331  * need to reserve bo first before calling it.
332  */
333 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
334 			      struct amdgpu_bo *bo)
335 {
336 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
337 	struct fence *fence = NULL;
338 	struct amdgpu_ib *ib;
339 	unsigned entries;
340 	uint64_t addr;
341 	int r;
342 
343 	r = reservation_object_reserve_shared(bo->tbo.resv);
344 	if (r)
345 		return r;
346 
347 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
348 	if (r)
349 		goto error;
350 
351 	addr = amdgpu_bo_gpu_offset(bo);
352 	entries = amdgpu_bo_size(bo) / 8;
353 
354 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
355 	if (!ib)
356 		goto error;
357 
358 	r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
359 	if (r)
360 		goto error_free;
361 
362 	ib->length_dw = 0;
363 
364 	amdgpu_vm_update_pages(adev, NULL, 0, ib, addr, 0, entries, 0, 0);
365 
366 	amdgpu_vm_pad_ib(adev, ib);
367 	WARN_ON(ib->length_dw > 64);
368 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
369 						 &amdgpu_vm_free_job,
370 						 AMDGPU_FENCE_OWNER_VM,
371 						 &fence);
372 	if (!r)
373 		amdgpu_bo_fence(bo, fence, true);
374 	fence_put(fence);
375 	return 0;
376 
377 error_free:
378 	amdgpu_ib_free(adev, ib);
379 	kfree(ib);
380 
381 error:
382 	return r;
383 }
384 
385 /**
386  * amdgpu_vm_map_gart - Resolve gart mapping of addr
387  *
388  * @pages_addr: optional DMA address to use for lookup
389  * @addr: the unmapped addr
390  *
391  * Look up the physical address of the page that the pte resolves
392  * to and return the pointer for the page table entry.
393  */
394 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
395 {
396 	uint64_t result;
397 
398 	if (pages_addr) {
399 		/* page table offset */
400 		result = pages_addr[addr >> PAGE_SHIFT];
401 
402 		/* in case cpu page size != gpu page size*/
403 		result |= addr & (~PAGE_MASK);
404 
405 	} else {
406 		/* No mapping required */
407 		result = addr;
408 	}
409 
410 	result &= 0xFFFFFFFFFFFFF000ULL;
411 
412 	return result;
413 }
414 
415 /**
416  * amdgpu_vm_update_pdes - make sure that page directory is valid
417  *
418  * @adev: amdgpu_device pointer
419  * @vm: requested vm
420  * @start: start of GPU address range
421  * @end: end of GPU address range
422  *
423  * Allocates new page tables if necessary
424  * and updates the page directory.
425  * Returns 0 for success, error for failure.
426  */
427 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
428 				    struct amdgpu_vm *vm)
429 {
430 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
431 	struct amdgpu_bo *pd = vm->page_directory;
432 	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
433 	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
434 	uint64_t last_pde = ~0, last_pt = ~0;
435 	unsigned count = 0, pt_idx, ndw;
436 	struct amdgpu_ib *ib;
437 	struct fence *fence = NULL;
438 
439 	int r;
440 
441 	/* padding, etc. */
442 	ndw = 64;
443 
444 	/* assume the worst case */
445 	ndw += vm->max_pde_used * 6;
446 
447 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
448 	if (!ib)
449 		return -ENOMEM;
450 
451 	r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
452 	if (r) {
453 		kfree(ib);
454 		return r;
455 	}
456 	ib->length_dw = 0;
457 
458 	/* walk over the address space and update the page directory */
459 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
460 		struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
461 		uint64_t pde, pt;
462 
463 		if (bo == NULL)
464 			continue;
465 
466 		pt = amdgpu_bo_gpu_offset(bo);
467 		if (vm->page_tables[pt_idx].addr == pt)
468 			continue;
469 		vm->page_tables[pt_idx].addr = pt;
470 
471 		pde = pd_addr + pt_idx * 8;
472 		if (((last_pde + 8 * count) != pde) ||
473 		    ((last_pt + incr * count) != pt)) {
474 
475 			if (count) {
476 				amdgpu_vm_update_pages(adev, NULL, 0, ib,
477 						       last_pde, last_pt,
478 						       count, incr,
479 						       AMDGPU_PTE_VALID);
480 			}
481 
482 			count = 1;
483 			last_pde = pde;
484 			last_pt = pt;
485 		} else {
486 			++count;
487 		}
488 	}
489 
490 	if (count)
491 		amdgpu_vm_update_pages(adev, NULL, 0, ib, last_pde, last_pt,
492 				       count, incr, AMDGPU_PTE_VALID);
493 
494 	if (ib->length_dw != 0) {
495 		amdgpu_vm_pad_ib(adev, ib);
496 		amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
497 		WARN_ON(ib->length_dw > ndw);
498 		r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
499 							 &amdgpu_vm_free_job,
500 							 AMDGPU_FENCE_OWNER_VM,
501 							 &fence);
502 		if (r)
503 			goto error_free;
504 
505 		amdgpu_bo_fence(pd, fence, true);
506 		fence_put(vm->page_directory_fence);
507 		vm->page_directory_fence = fence_get(fence);
508 		fence_put(fence);
509 	}
510 
511 	if (ib->length_dw == 0) {
512 		amdgpu_ib_free(adev, ib);
513 		kfree(ib);
514 	}
515 
516 	return 0;
517 
518 error_free:
519 	amdgpu_ib_free(adev, ib);
520 	kfree(ib);
521 	return r;
522 }
523 
524 /**
525  * amdgpu_vm_frag_ptes - add fragment information to PTEs
526  *
527  * @adev: amdgpu_device pointer
528  * @gtt: GART instance to use for mapping
529  * @gtt_flags: GTT hw mapping flags
530  * @ib: IB for the update
531  * @pe_start: first PTE to handle
532  * @pe_end: last PTE to handle
533  * @addr: addr those PTEs should point to
534  * @flags: hw mapping flags
535  */
536 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
537 				struct amdgpu_gart *gtt,
538 				uint32_t gtt_flags,
539 				struct amdgpu_ib *ib,
540 				uint64_t pe_start, uint64_t pe_end,
541 				uint64_t addr, uint32_t flags)
542 {
543 	/**
544 	 * The MC L1 TLB supports variable sized pages, based on a fragment
545 	 * field in the PTE. When this field is set to a non-zero value, page
546 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
547 	 * flags are considered valid for all PTEs within the fragment range
548 	 * and corresponding mappings are assumed to be physically contiguous.
549 	 *
550 	 * The L1 TLB can store a single PTE for the whole fragment,
551 	 * significantly increasing the space available for translation
552 	 * caching. This leads to large improvements in throughput when the
553 	 * TLB is under pressure.
554 	 *
555 	 * The L2 TLB distributes small and large fragments into two
556 	 * asymmetric partitions. The large fragment cache is significantly
557 	 * larger. Thus, we try to use large fragments wherever possible.
558 	 * Userspace can support this by aligning virtual base address and
559 	 * allocation size to the fragment size.
560 	 */
561 
562 	/* SI and newer are optimized for 64KB */
563 	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
564 	uint64_t frag_align = 0x80;
565 
566 	uint64_t frag_start = ALIGN(pe_start, frag_align);
567 	uint64_t frag_end = pe_end & ~(frag_align - 1);
568 
569 	unsigned count;
570 
571 	/* Abort early if there isn't anything to do */
572 	if (pe_start == pe_end)
573 		return;
574 
575 	/* system pages are non continuously */
576 	if (gtt || !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
577 
578 		count = (pe_end - pe_start) / 8;
579 		amdgpu_vm_update_pages(adev, gtt, gtt_flags, ib, pe_start,
580 				       addr, count, AMDGPU_GPU_PAGE_SIZE,
581 				       flags);
582 		return;
583 	}
584 
585 	/* handle the 4K area at the beginning */
586 	if (pe_start != frag_start) {
587 		count = (frag_start - pe_start) / 8;
588 		amdgpu_vm_update_pages(adev, NULL, 0, ib, pe_start, addr,
589 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
590 		addr += AMDGPU_GPU_PAGE_SIZE * count;
591 	}
592 
593 	/* handle the area in the middle */
594 	count = (frag_end - frag_start) / 8;
595 	amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_start, addr, count,
596 			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
597 
598 	/* handle the 4K area at the end */
599 	if (frag_end != pe_end) {
600 		addr += AMDGPU_GPU_PAGE_SIZE * count;
601 		count = (pe_end - frag_end) / 8;
602 		amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_end, addr,
603 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
604 	}
605 }
606 
607 /**
608  * amdgpu_vm_update_ptes - make sure that page tables are valid
609  *
610  * @adev: amdgpu_device pointer
611  * @gtt: GART instance to use for mapping
612  * @gtt_flags: GTT hw mapping flags
613  * @vm: requested vm
614  * @start: start of GPU address range
615  * @end: end of GPU address range
616  * @dst: destination address to map to
617  * @flags: mapping flags
618  *
619  * Update the page tables in the range @start - @end.
620  */
621 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
622 				  struct amdgpu_gart *gtt,
623 				  uint32_t gtt_flags,
624 				  struct amdgpu_vm *vm,
625 				  struct amdgpu_ib *ib,
626 				  uint64_t start, uint64_t end,
627 				  uint64_t dst, uint32_t flags)
628 {
629 	const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
630 
631 	uint64_t last_pe_start = ~0, last_pe_end = ~0, last_dst = ~0;
632 	uint64_t addr;
633 
634 	/* walk over the address space and update the page tables */
635 	for (addr = start; addr < end; ) {
636 		uint64_t pt_idx = addr >> amdgpu_vm_block_size;
637 		struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj;
638 		unsigned nptes;
639 		uint64_t pe_start;
640 
641 		if ((addr & ~mask) == (end & ~mask))
642 			nptes = end - addr;
643 		else
644 			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
645 
646 		pe_start = amdgpu_bo_gpu_offset(pt);
647 		pe_start += (addr & mask) * 8;
648 
649 		if (last_pe_end != pe_start) {
650 
651 			amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
652 					    last_pe_start, last_pe_end,
653 					    last_dst, flags);
654 
655 			last_pe_start = pe_start;
656 			last_pe_end = pe_start + 8 * nptes;
657 			last_dst = dst;
658 		} else {
659 			last_pe_end += 8 * nptes;
660 		}
661 
662 		addr += nptes;
663 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
664 	}
665 
666 	amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
667 			    last_pe_start, last_pe_end,
668 			    last_dst, flags);
669 }
670 
671 /**
672  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
673  *
674  * @adev: amdgpu_device pointer
675  * @gtt: GART instance to use for mapping
676  * @gtt_flags: flags as they are used for GTT
677  * @vm: requested vm
678  * @start: start of mapped range
679  * @last: last mapped entry
680  * @flags: flags for the entries
681  * @addr: addr to set the area to
682  * @fence: optional resulting fence
683  *
684  * Fill in the page table entries between @start and @last.
685  * Returns 0 for success, -EINVAL for failure.
686  */
687 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
688 				       struct amdgpu_gart *gtt,
689 				       uint32_t gtt_flags,
690 				       struct amdgpu_vm *vm,
691 				       uint64_t start, uint64_t last,
692 				       uint32_t flags, uint64_t addr,
693 				       struct fence **fence)
694 {
695 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
696 	void *owner = AMDGPU_FENCE_OWNER_VM;
697 	unsigned nptes, ncmds, ndw;
698 	struct amdgpu_ib *ib;
699 	struct fence *f = NULL;
700 	int r;
701 
702 	/* sync to everything on unmapping */
703 	if (!(flags & AMDGPU_PTE_VALID))
704 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
705 
706 	nptes = last - start + 1;
707 
708 	/*
709 	 * reserve space for one command every (1 << BLOCK_SIZE)
710 	 *  entries or 2k dwords (whatever is smaller)
711 	 */
712 	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
713 
714 	/* padding, etc. */
715 	ndw = 64;
716 
717 	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
718 		/* only copy commands needed */
719 		ndw += ncmds * 7;
720 
721 	} else if (gtt) {
722 		/* header for write data commands */
723 		ndw += ncmds * 4;
724 
725 		/* body of write data command */
726 		ndw += nptes * 2;
727 
728 	} else {
729 		/* set page commands needed */
730 		ndw += ncmds * 10;
731 
732 		/* two extra commands for begin/end of fragment */
733 		ndw += 2 * 10;
734 	}
735 
736 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
737 	if (!ib)
738 		return -ENOMEM;
739 
740 	r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
741 	if (r) {
742 		kfree(ib);
743 		return r;
744 	}
745 
746 	r = amdgpu_sync_resv(adev, &ib->sync, vm->page_directory->tbo.resv,
747 			     owner);
748 	if (r)
749 		goto error_free;
750 
751 	r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
752 	if (r)
753 		goto error_free;
754 
755 	amdgpu_vm_update_ptes(adev, gtt, gtt_flags, vm, ib, start, last + 1,
756 			      addr, flags);
757 
758 	amdgpu_vm_pad_ib(adev, ib);
759 	WARN_ON(ib->length_dw > ndw);
760 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
761 						 &amdgpu_vm_free_job,
762 						 AMDGPU_FENCE_OWNER_VM,
763 						 &f);
764 	if (r)
765 		goto error_free;
766 
767 	amdgpu_bo_fence(vm->page_directory, f, true);
768 	if (fence) {
769 		fence_put(*fence);
770 		*fence = fence_get(f);
771 	}
772 	fence_put(f);
773 	return 0;
774 
775 error_free:
776 	amdgpu_ib_free(adev, ib);
777 	kfree(ib);
778 	return r;
779 }
780 
781 /**
782  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
783  *
784  * @adev: amdgpu_device pointer
785  * @gtt: GART instance to use for mapping
786  * @vm: requested vm
787  * @mapping: mapped range and flags to use for the update
788  * @addr: addr to set the area to
789  * @gtt_flags: flags as they are used for GTT
790  * @fence: optional resulting fence
791  *
792  * Split the mapping into smaller chunks so that each update fits
793  * into a SDMA IB.
794  * Returns 0 for success, -EINVAL for failure.
795  */
796 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
797 				      struct amdgpu_gart *gtt,
798 				      uint32_t gtt_flags,
799 				      struct amdgpu_vm *vm,
800 				      struct amdgpu_bo_va_mapping *mapping,
801 				      uint64_t addr, struct fence **fence)
802 {
803 	const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
804 
805 	uint64_t start = mapping->it.start;
806 	uint32_t flags = gtt_flags;
807 	int r;
808 
809 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
810 	 * but in case of something, we filter the flags in first place
811 	 */
812 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
813 		flags &= ~AMDGPU_PTE_READABLE;
814 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
815 		flags &= ~AMDGPU_PTE_WRITEABLE;
816 
817 	trace_amdgpu_vm_bo_update(mapping);
818 
819 	addr += mapping->offset;
820 
821 	if (!gtt || ((gtt == &adev->gart) && (flags == gtt_flags)))
822 		return amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
823 						   start, mapping->it.last,
824 						   flags, addr, fence);
825 
826 	while (start != mapping->it.last + 1) {
827 		uint64_t last;
828 
829 		last = min((uint64_t)mapping->it.last, start + max_size);
830 		r = amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
831 						start, last, flags, addr,
832 						fence);
833 		if (r)
834 			return r;
835 
836 		start = last + 1;
837 		addr += max_size;
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
845  *
846  * @adev: amdgpu_device pointer
847  * @bo_va: requested BO and VM object
848  * @mem: ttm mem
849  *
850  * Fill in the page table entries for @bo_va.
851  * Returns 0 for success, -EINVAL for failure.
852  *
853  * Object have to be reserved and mutex must be locked!
854  */
855 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
856 			struct amdgpu_bo_va *bo_va,
857 			struct ttm_mem_reg *mem)
858 {
859 	struct amdgpu_vm *vm = bo_va->vm;
860 	struct amdgpu_bo_va_mapping *mapping;
861 	struct amdgpu_gart *gtt = NULL;
862 	uint32_t flags;
863 	uint64_t addr;
864 	int r;
865 
866 	if (mem) {
867 		addr = (u64)mem->start << PAGE_SHIFT;
868 		switch (mem->mem_type) {
869 		case TTM_PL_TT:
870 			gtt = &bo_va->bo->adev->gart;
871 			break;
872 
873 		case TTM_PL_VRAM:
874 			addr += adev->vm_manager.vram_base_offset;
875 			break;
876 
877 		default:
878 			break;
879 		}
880 	} else {
881 		addr = 0;
882 	}
883 
884 	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
885 
886 	spin_lock(&vm->status_lock);
887 	if (!list_empty(&bo_va->vm_status))
888 		list_splice_init(&bo_va->valids, &bo_va->invalids);
889 	spin_unlock(&vm->status_lock);
890 
891 	list_for_each_entry(mapping, &bo_va->invalids, list) {
892 		r = amdgpu_vm_bo_split_mapping(adev, gtt, flags, vm, mapping, addr,
893 					       &bo_va->last_pt_update);
894 		if (r)
895 			return r;
896 	}
897 
898 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
899 		list_for_each_entry(mapping, &bo_va->valids, list)
900 			trace_amdgpu_vm_bo_mapping(mapping);
901 
902 		list_for_each_entry(mapping, &bo_va->invalids, list)
903 			trace_amdgpu_vm_bo_mapping(mapping);
904 	}
905 
906 	spin_lock(&vm->status_lock);
907 	list_splice_init(&bo_va->invalids, &bo_va->valids);
908 	list_del_init(&bo_va->vm_status);
909 	if (!mem)
910 		list_add(&bo_va->vm_status, &vm->cleared);
911 	spin_unlock(&vm->status_lock);
912 
913 	return 0;
914 }
915 
916 /**
917  * amdgpu_vm_clear_freed - clear freed BOs in the PT
918  *
919  * @adev: amdgpu_device pointer
920  * @vm: requested vm
921  *
922  * Make sure all freed BOs are cleared in the PT.
923  * Returns 0 for success.
924  *
925  * PTs have to be reserved and mutex must be locked!
926  */
927 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
928 			  struct amdgpu_vm *vm)
929 {
930 	struct amdgpu_bo_va_mapping *mapping;
931 	int r;
932 
933 	spin_lock(&vm->freed_lock);
934 	while (!list_empty(&vm->freed)) {
935 		mapping = list_first_entry(&vm->freed,
936 			struct amdgpu_bo_va_mapping, list);
937 		list_del(&mapping->list);
938 		spin_unlock(&vm->freed_lock);
939 		r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, vm, mapping,
940 					       0, NULL);
941 		kfree(mapping);
942 		if (r)
943 			return r;
944 
945 		spin_lock(&vm->freed_lock);
946 	}
947 	spin_unlock(&vm->freed_lock);
948 
949 	return 0;
950 
951 }
952 
953 /**
954  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
955  *
956  * @adev: amdgpu_device pointer
957  * @vm: requested vm
958  *
959  * Make sure all invalidated BOs are cleared in the PT.
960  * Returns 0 for success.
961  *
962  * PTs have to be reserved and mutex must be locked!
963  */
964 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
965 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
966 {
967 	struct amdgpu_bo_va *bo_va = NULL;
968 	int r = 0;
969 
970 	spin_lock(&vm->status_lock);
971 	while (!list_empty(&vm->invalidated)) {
972 		bo_va = list_first_entry(&vm->invalidated,
973 			struct amdgpu_bo_va, vm_status);
974 		spin_unlock(&vm->status_lock);
975 		mutex_lock(&bo_va->mutex);
976 		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
977 		mutex_unlock(&bo_va->mutex);
978 		if (r)
979 			return r;
980 
981 		spin_lock(&vm->status_lock);
982 	}
983 	spin_unlock(&vm->status_lock);
984 
985 	if (bo_va)
986 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
987 
988 	return r;
989 }
990 
991 /**
992  * amdgpu_vm_bo_add - add a bo to a specific vm
993  *
994  * @adev: amdgpu_device pointer
995  * @vm: requested vm
996  * @bo: amdgpu buffer object
997  *
998  * Add @bo into the requested vm.
999  * Add @bo to the list of bos associated with the vm
1000  * Returns newly added bo_va or NULL for failure
1001  *
1002  * Object has to be reserved!
1003  */
1004 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1005 				      struct amdgpu_vm *vm,
1006 				      struct amdgpu_bo *bo)
1007 {
1008 	struct amdgpu_bo_va *bo_va;
1009 
1010 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1011 	if (bo_va == NULL) {
1012 		return NULL;
1013 	}
1014 	bo_va->vm = vm;
1015 	bo_va->bo = bo;
1016 	bo_va->ref_count = 1;
1017 	INIT_LIST_HEAD(&bo_va->bo_list);
1018 	INIT_LIST_HEAD(&bo_va->valids);
1019 	INIT_LIST_HEAD(&bo_va->invalids);
1020 	INIT_LIST_HEAD(&bo_va->vm_status);
1021 	mutex_init(&bo_va->mutex);
1022 	list_add_tail(&bo_va->bo_list, &bo->va);
1023 
1024 	return bo_va;
1025 }
1026 
1027 /**
1028  * amdgpu_vm_bo_map - map bo inside a vm
1029  *
1030  * @adev: amdgpu_device pointer
1031  * @bo_va: bo_va to store the address
1032  * @saddr: where to map the BO
1033  * @offset: requested offset in the BO
1034  * @flags: attributes of pages (read/write/valid/etc.)
1035  *
1036  * Add a mapping of the BO at the specefied addr into the VM.
1037  * Returns 0 for success, error for failure.
1038  *
1039  * Object has to be reserved and unreserved outside!
1040  */
1041 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1042 		     struct amdgpu_bo_va *bo_va,
1043 		     uint64_t saddr, uint64_t offset,
1044 		     uint64_t size, uint32_t flags)
1045 {
1046 	struct amdgpu_bo_va_mapping *mapping;
1047 	struct amdgpu_vm *vm = bo_va->vm;
1048 	struct interval_tree_node *it;
1049 	unsigned last_pfn, pt_idx;
1050 	uint64_t eaddr;
1051 	int r;
1052 
1053 	/* validate the parameters */
1054 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1055 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1056 		return -EINVAL;
1057 
1058 	/* make sure object fit at this offset */
1059 	eaddr = saddr + size - 1;
1060 	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1061 		return -EINVAL;
1062 
1063 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1064 	if (last_pfn >= adev->vm_manager.max_pfn) {
1065 		dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1066 			last_pfn, adev->vm_manager.max_pfn);
1067 		return -EINVAL;
1068 	}
1069 
1070 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1071 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1072 
1073 	spin_lock(&vm->it_lock);
1074 	it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1075 	spin_unlock(&vm->it_lock);
1076 	if (it) {
1077 		struct amdgpu_bo_va_mapping *tmp;
1078 		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1079 		/* bo and tmp overlap, invalid addr */
1080 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1081 			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1082 			tmp->it.start, tmp->it.last + 1);
1083 		r = -EINVAL;
1084 		goto error;
1085 	}
1086 
1087 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1088 	if (!mapping) {
1089 		r = -ENOMEM;
1090 		goto error;
1091 	}
1092 
1093 	INIT_LIST_HEAD(&mapping->list);
1094 	mapping->it.start = saddr;
1095 	mapping->it.last = eaddr;
1096 	mapping->offset = offset;
1097 	mapping->flags = flags;
1098 
1099 	mutex_lock(&bo_va->mutex);
1100 	list_add(&mapping->list, &bo_va->invalids);
1101 	mutex_unlock(&bo_va->mutex);
1102 	spin_lock(&vm->it_lock);
1103 	interval_tree_insert(&mapping->it, &vm->va);
1104 	spin_unlock(&vm->it_lock);
1105 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1106 
1107 	/* Make sure the page tables are allocated */
1108 	saddr >>= amdgpu_vm_block_size;
1109 	eaddr >>= amdgpu_vm_block_size;
1110 
1111 	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1112 
1113 	if (eaddr > vm->max_pde_used)
1114 		vm->max_pde_used = eaddr;
1115 
1116 	/* walk over the address space and allocate the page tables */
1117 	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1118 		struct reservation_object *resv = vm->page_directory->tbo.resv;
1119 		struct amdgpu_bo_list_entry *entry;
1120 		struct amdgpu_bo *pt;
1121 
1122 		entry = &vm->page_tables[pt_idx].entry;
1123 		if (entry->robj)
1124 			continue;
1125 
1126 		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1127 				     AMDGPU_GPU_PAGE_SIZE, true,
1128 				     AMDGPU_GEM_DOMAIN_VRAM,
1129 				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1130 				     NULL, resv, &pt);
1131 		if (r)
1132 			goto error_free;
1133 
1134 		/* Keep a reference to the page table to avoid freeing
1135 		 * them up in the wrong order.
1136 		 */
1137 		pt->parent = amdgpu_bo_ref(vm->page_directory);
1138 
1139 		r = amdgpu_vm_clear_bo(adev, pt);
1140 		if (r) {
1141 			amdgpu_bo_unref(&pt);
1142 			goto error_free;
1143 		}
1144 
1145 		entry->robj = pt;
1146 		entry->priority = 0;
1147 		entry->tv.bo = &entry->robj->tbo;
1148 		entry->tv.shared = true;
1149 		vm->page_tables[pt_idx].addr = 0;
1150 	}
1151 
1152 	return 0;
1153 
1154 error_free:
1155 	list_del(&mapping->list);
1156 	spin_lock(&vm->it_lock);
1157 	interval_tree_remove(&mapping->it, &vm->va);
1158 	spin_unlock(&vm->it_lock);
1159 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1160 	kfree(mapping);
1161 
1162 error:
1163 	return r;
1164 }
1165 
1166 /**
1167  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1168  *
1169  * @adev: amdgpu_device pointer
1170  * @bo_va: bo_va to remove the address from
1171  * @saddr: where to the BO is mapped
1172  *
1173  * Remove a mapping of the BO at the specefied addr from the VM.
1174  * Returns 0 for success, error for failure.
1175  *
1176  * Object has to be reserved and unreserved outside!
1177  */
1178 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1179 		       struct amdgpu_bo_va *bo_va,
1180 		       uint64_t saddr)
1181 {
1182 	struct amdgpu_bo_va_mapping *mapping;
1183 	struct amdgpu_vm *vm = bo_va->vm;
1184 	bool valid = true;
1185 
1186 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1187 	mutex_lock(&bo_va->mutex);
1188 	list_for_each_entry(mapping, &bo_va->valids, list) {
1189 		if (mapping->it.start == saddr)
1190 			break;
1191 	}
1192 
1193 	if (&mapping->list == &bo_va->valids) {
1194 		valid = false;
1195 
1196 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1197 			if (mapping->it.start == saddr)
1198 				break;
1199 		}
1200 
1201 		if (&mapping->list == &bo_va->invalids) {
1202 			mutex_unlock(&bo_va->mutex);
1203 			return -ENOENT;
1204 		}
1205 	}
1206 	mutex_unlock(&bo_va->mutex);
1207 	list_del(&mapping->list);
1208 	spin_lock(&vm->it_lock);
1209 	interval_tree_remove(&mapping->it, &vm->va);
1210 	spin_unlock(&vm->it_lock);
1211 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1212 
1213 	if (valid) {
1214 		spin_lock(&vm->freed_lock);
1215 		list_add(&mapping->list, &vm->freed);
1216 		spin_unlock(&vm->freed_lock);
1217 	} else {
1218 		kfree(mapping);
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 /**
1225  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1226  *
1227  * @adev: amdgpu_device pointer
1228  * @bo_va: requested bo_va
1229  *
1230  * Remove @bo_va->bo from the requested vm.
1231  *
1232  * Object have to be reserved!
1233  */
1234 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1235 		      struct amdgpu_bo_va *bo_va)
1236 {
1237 	struct amdgpu_bo_va_mapping *mapping, *next;
1238 	struct amdgpu_vm *vm = bo_va->vm;
1239 
1240 	list_del(&bo_va->bo_list);
1241 
1242 	spin_lock(&vm->status_lock);
1243 	list_del(&bo_va->vm_status);
1244 	spin_unlock(&vm->status_lock);
1245 
1246 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1247 		list_del(&mapping->list);
1248 		spin_lock(&vm->it_lock);
1249 		interval_tree_remove(&mapping->it, &vm->va);
1250 		spin_unlock(&vm->it_lock);
1251 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1252 		spin_lock(&vm->freed_lock);
1253 		list_add(&mapping->list, &vm->freed);
1254 		spin_unlock(&vm->freed_lock);
1255 	}
1256 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1257 		list_del(&mapping->list);
1258 		spin_lock(&vm->it_lock);
1259 		interval_tree_remove(&mapping->it, &vm->va);
1260 		spin_unlock(&vm->it_lock);
1261 		kfree(mapping);
1262 	}
1263 	fence_put(bo_va->last_pt_update);
1264 	mutex_destroy(&bo_va->mutex);
1265 	kfree(bo_va);
1266 }
1267 
1268 /**
1269  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1270  *
1271  * @adev: amdgpu_device pointer
1272  * @vm: requested vm
1273  * @bo: amdgpu buffer object
1274  *
1275  * Mark @bo as invalid.
1276  */
1277 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1278 			     struct amdgpu_bo *bo)
1279 {
1280 	struct amdgpu_bo_va *bo_va;
1281 
1282 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1283 		spin_lock(&bo_va->vm->status_lock);
1284 		if (list_empty(&bo_va->vm_status))
1285 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1286 		spin_unlock(&bo_va->vm->status_lock);
1287 	}
1288 }
1289 
1290 /**
1291  * amdgpu_vm_init - initialize a vm instance
1292  *
1293  * @adev: amdgpu_device pointer
1294  * @vm: requested vm
1295  *
1296  * Init @vm fields.
1297  */
1298 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1299 {
1300 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1301 		AMDGPU_VM_PTE_COUNT * 8);
1302 	unsigned pd_size, pd_entries;
1303 	int i, r;
1304 
1305 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1306 		vm->ids[i].id = 0;
1307 		vm->ids[i].flushed_updates = NULL;
1308 	}
1309 	vm->va = RB_ROOT;
1310 	spin_lock_init(&vm->status_lock);
1311 	INIT_LIST_HEAD(&vm->invalidated);
1312 	INIT_LIST_HEAD(&vm->cleared);
1313 	INIT_LIST_HEAD(&vm->freed);
1314 	spin_lock_init(&vm->it_lock);
1315 	spin_lock_init(&vm->freed_lock);
1316 	pd_size = amdgpu_vm_directory_size(adev);
1317 	pd_entries = amdgpu_vm_num_pdes(adev);
1318 
1319 	/* allocate page table array */
1320 	vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1321 	if (vm->page_tables == NULL) {
1322 		DRM_ERROR("Cannot allocate memory for page table array\n");
1323 		return -ENOMEM;
1324 	}
1325 
1326 	vm->page_directory_fence = NULL;
1327 
1328 	r = amdgpu_bo_create(adev, pd_size, align, true,
1329 			     AMDGPU_GEM_DOMAIN_VRAM,
1330 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1331 			     NULL, NULL, &vm->page_directory);
1332 	if (r)
1333 		return r;
1334 	r = amdgpu_bo_reserve(vm->page_directory, false);
1335 	if (r) {
1336 		amdgpu_bo_unref(&vm->page_directory);
1337 		vm->page_directory = NULL;
1338 		return r;
1339 	}
1340 	r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1341 	amdgpu_bo_unreserve(vm->page_directory);
1342 	if (r) {
1343 		amdgpu_bo_unref(&vm->page_directory);
1344 		vm->page_directory = NULL;
1345 		return r;
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 /**
1352  * amdgpu_vm_fini - tear down a vm instance
1353  *
1354  * @adev: amdgpu_device pointer
1355  * @vm: requested vm
1356  *
1357  * Tear down @vm.
1358  * Unbind the VM and remove all bos from the vm bo list
1359  */
1360 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1361 {
1362 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1363 	int i;
1364 
1365 	if (!RB_EMPTY_ROOT(&vm->va)) {
1366 		dev_err(adev->dev, "still active bo inside vm\n");
1367 	}
1368 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1369 		list_del(&mapping->list);
1370 		interval_tree_remove(&mapping->it, &vm->va);
1371 		kfree(mapping);
1372 	}
1373 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1374 		list_del(&mapping->list);
1375 		kfree(mapping);
1376 	}
1377 
1378 	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1379 		amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1380 	drm_free_large(vm->page_tables);
1381 
1382 	amdgpu_bo_unref(&vm->page_directory);
1383 	fence_put(vm->page_directory_fence);
1384 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1385 		unsigned id = vm->ids[i].id;
1386 
1387 		atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1388 				    (long)vm, 0);
1389 		fence_put(vm->ids[i].flushed_updates);
1390 	}
1391 
1392 }
1393 
1394 /**
1395  * amdgpu_vm_manager_init - init the VM manager
1396  *
1397  * @adev: amdgpu_device pointer
1398  *
1399  * Initialize the VM manager structures
1400  */
1401 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1402 {
1403 	unsigned i;
1404 
1405 	INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1406 
1407 	/* skip over VMID 0, since it is the system VM */
1408 	for (i = 1; i < adev->vm_manager.num_ids; ++i)
1409 		list_add_tail(&adev->vm_manager.ids[i].list,
1410 			      &adev->vm_manager.ids_lru);
1411 }
1412 
1413 /**
1414  * amdgpu_vm_manager_fini - cleanup VM manager
1415  *
1416  * @adev: amdgpu_device pointer
1417  *
1418  * Cleanup the VM manager and free resources.
1419  */
1420 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1421 {
1422 	unsigned i;
1423 
1424 	for (i = 0; i < AMDGPU_NUM_VM; ++i)
1425 		fence_put(adev->vm_manager.ids[i].active);
1426 }
1427