1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /**
54  * amdgpu_vm_num_pde - return the number of page directory entries
55  *
56  * @adev: amdgpu_device pointer
57  *
58  * Calculate the number of page directory entries (cayman+).
59  */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64 
65 /**
66  * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67  *
68  * @adev: amdgpu_device pointer
69  *
70  * Calculate the size of the page directory in bytes (cayman+).
71  */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76 
77 /**
78  * amdgpu_vm_get_bos - add the vm BOs to a validation list
79  *
80  * @vm: vm providing the BOs
81  * @head: head of validation list
82  *
83  * Add the page directory to the list of BOs to
84  * validate for command submission (cayman+).
85  */
86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
87 					  struct amdgpu_vm *vm,
88 					  struct list_head *head)
89 {
90 	struct amdgpu_bo_list_entry *list;
91 	unsigned i, idx;
92 
93 	list = drm_malloc_ab(vm->max_pde_used + 2,
94 			     sizeof(struct amdgpu_bo_list_entry));
95 	if (!list) {
96 		return NULL;
97 	}
98 
99 	/* add the vm page table to the list */
100 	list[0].robj = vm->page_directory;
101 	list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
102 	list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
103 	list[0].priority = 0;
104 	list[0].tv.bo = &vm->page_directory->tbo;
105 	list[0].tv.shared = true;
106 	list_add(&list[0].tv.head, head);
107 
108 	for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
109 		if (!vm->page_tables[i].bo)
110 			continue;
111 
112 		list[idx].robj = vm->page_tables[i].bo;
113 		list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
114 		list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
115 		list[idx].priority = 0;
116 		list[idx].tv.bo = &list[idx].robj->tbo;
117 		list[idx].tv.shared = true;
118 		list_add(&list[idx++].tv.head, head);
119 	}
120 
121 	return list;
122 }
123 
124 /**
125  * amdgpu_vm_grab_id - allocate the next free VMID
126  *
127  * @vm: vm to allocate id for
128  * @ring: ring we want to submit job to
129  * @sync: sync object where we add dependencies
130  *
131  * Allocate an id for the vm, adding fences to the sync obj as necessary.
132  *
133  * Global mutex must be locked!
134  */
135 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
136 		      struct amdgpu_sync *sync)
137 {
138 	struct fence *best[AMDGPU_MAX_RINGS] = {};
139 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
140 	struct amdgpu_device *adev = ring->adev;
141 
142 	unsigned choices[2] = {};
143 	unsigned i;
144 
145 	/* check if the id is still valid */
146 	if (vm_id->id) {
147 		unsigned id = vm_id->id;
148 		long owner;
149 
150 		owner = atomic_long_read(&adev->vm_manager.ids[id].owner);
151 		if (owner == (long)vm) {
152 			trace_amdgpu_vm_grab_id(vm_id->id, ring->idx);
153 			return 0;
154 		}
155 	}
156 
157 	/* we definately need to flush */
158 	vm_id->pd_gpu_addr = ~0ll;
159 
160 	/* skip over VMID 0, since it is the system VM */
161 	for (i = 1; i < adev->vm_manager.nvm; ++i) {
162 		struct fence *fence = adev->vm_manager.ids[i].active;
163 		struct amdgpu_ring *fring;
164 
165 		if (fence == NULL) {
166 			/* found a free one */
167 			vm_id->id = i;
168 			trace_amdgpu_vm_grab_id(i, ring->idx);
169 			return 0;
170 		}
171 
172 		fring = amdgpu_ring_from_fence(fence);
173 		if (best[fring->idx] == NULL ||
174 		    fence_is_later(best[fring->idx], fence)) {
175 			best[fring->idx] = fence;
176 			choices[fring == ring ? 0 : 1] = i;
177 		}
178 	}
179 
180 	for (i = 0; i < 2; ++i) {
181 		if (choices[i]) {
182 			struct fence *fence;
183 
184 			fence  = adev->vm_manager.ids[choices[i]].active;
185 			vm_id->id = choices[i];
186 
187 			trace_amdgpu_vm_grab_id(choices[i], ring->idx);
188 			return amdgpu_sync_fence(ring->adev, sync, fence);
189 		}
190 	}
191 
192 	/* should never happen */
193 	BUG();
194 	return -EINVAL;
195 }
196 
197 /**
198  * amdgpu_vm_flush - hardware flush the vm
199  *
200  * @ring: ring to use for flush
201  * @vm: vm we want to flush
202  * @updates: last vm update that we waited for
203  *
204  * Flush the vm (cayman+).
205  *
206  * Global and local mutex must be locked!
207  */
208 void amdgpu_vm_flush(struct amdgpu_ring *ring,
209 		     struct amdgpu_vm *vm,
210 		     struct fence *updates)
211 {
212 	uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
213 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
214 	struct fence *flushed_updates = vm_id->flushed_updates;
215 	bool is_later;
216 
217 	if (!flushed_updates)
218 		is_later = true;
219 	else if (!updates)
220 		is_later = false;
221 	else
222 		is_later = fence_is_later(updates, flushed_updates);
223 
224 	if (pd_addr != vm_id->pd_gpu_addr || is_later) {
225 		trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
226 		if (is_later) {
227 			vm_id->flushed_updates = fence_get(updates);
228 			fence_put(flushed_updates);
229 		}
230 		vm_id->pd_gpu_addr = pd_addr;
231 		amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
232 	}
233 }
234 
235 /**
236  * amdgpu_vm_fence - remember fence for vm
237  *
238  * @adev: amdgpu_device pointer
239  * @vm: vm we want to fence
240  * @fence: fence to remember
241  *
242  * Fence the vm (cayman+).
243  * Set the fence used to protect page table and id.
244  *
245  * Global and local mutex must be locked!
246  */
247 void amdgpu_vm_fence(struct amdgpu_device *adev,
248 		     struct amdgpu_vm *vm,
249 		     struct fence *fence)
250 {
251 	struct amdgpu_ring *ring = amdgpu_ring_from_fence(fence);
252 	unsigned vm_id = vm->ids[ring->idx].id;
253 
254 	fence_put(adev->vm_manager.ids[vm_id].active);
255 	adev->vm_manager.ids[vm_id].active = fence_get(fence);
256 	atomic_long_set(&adev->vm_manager.ids[vm_id].owner, (long)vm);
257 }
258 
259 /**
260  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
261  *
262  * @vm: requested vm
263  * @bo: requested buffer object
264  *
265  * Find @bo inside the requested vm (cayman+).
266  * Search inside the @bos vm list for the requested vm
267  * Returns the found bo_va or NULL if none is found
268  *
269  * Object has to be reserved!
270  */
271 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
272 				       struct amdgpu_bo *bo)
273 {
274 	struct amdgpu_bo_va *bo_va;
275 
276 	list_for_each_entry(bo_va, &bo->va, bo_list) {
277 		if (bo_va->vm == vm) {
278 			return bo_va;
279 		}
280 	}
281 	return NULL;
282 }
283 
284 /**
285  * amdgpu_vm_update_pages - helper to call the right asic function
286  *
287  * @adev: amdgpu_device pointer
288  * @ib: indirect buffer to fill with commands
289  * @pe: addr of the page entry
290  * @addr: dst addr to write into pe
291  * @count: number of page entries to update
292  * @incr: increase next addr by incr bytes
293  * @flags: hw access flags
294  * @gtt_flags: GTT hw access flags
295  *
296  * Traces the parameters and calls the right asic functions
297  * to setup the page table using the DMA.
298  */
299 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
300 				   struct amdgpu_ib *ib,
301 				   uint64_t pe, uint64_t addr,
302 				   unsigned count, uint32_t incr,
303 				   uint32_t flags, uint32_t gtt_flags)
304 {
305 	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
306 
307 	if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
308 		uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
309 		amdgpu_vm_copy_pte(adev, ib, pe, src, count);
310 
311 	} else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
312 		amdgpu_vm_write_pte(adev, ib, pe, addr,
313 				      count, incr, flags);
314 
315 	} else {
316 		amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
317 				      count, incr, flags);
318 	}
319 }
320 
321 int amdgpu_vm_free_job(struct amdgpu_job *job)
322 {
323 	int i;
324 	for (i = 0; i < job->num_ibs; i++)
325 		amdgpu_ib_free(job->adev, &job->ibs[i]);
326 	kfree(job->ibs);
327 	return 0;
328 }
329 
330 /**
331  * amdgpu_vm_clear_bo - initially clear the page dir/table
332  *
333  * @adev: amdgpu_device pointer
334  * @bo: bo to clear
335  *
336  * need to reserve bo first before calling it.
337  */
338 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
339 			      struct amdgpu_bo *bo)
340 {
341 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
342 	struct fence *fence = NULL;
343 	struct amdgpu_ib *ib;
344 	unsigned entries;
345 	uint64_t addr;
346 	int r;
347 
348 	r = reservation_object_reserve_shared(bo->tbo.resv);
349 	if (r)
350 		return r;
351 
352 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
353 	if (r)
354 		goto error;
355 
356 	addr = amdgpu_bo_gpu_offset(bo);
357 	entries = amdgpu_bo_size(bo) / 8;
358 
359 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
360 	if (!ib)
361 		goto error;
362 
363 	r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
364 	if (r)
365 		goto error_free;
366 
367 	ib->length_dw = 0;
368 
369 	amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
370 	amdgpu_vm_pad_ib(adev, ib);
371 	WARN_ON(ib->length_dw > 64);
372 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
373 						 &amdgpu_vm_free_job,
374 						 AMDGPU_FENCE_OWNER_VM,
375 						 &fence);
376 	if (!r)
377 		amdgpu_bo_fence(bo, fence, true);
378 	fence_put(fence);
379 	if (amdgpu_enable_scheduler)
380 		return 0;
381 
382 error_free:
383 	amdgpu_ib_free(adev, ib);
384 	kfree(ib);
385 
386 error:
387 	return r;
388 }
389 
390 /**
391  * amdgpu_vm_map_gart - get the physical address of a gart page
392  *
393  * @adev: amdgpu_device pointer
394  * @addr: the unmapped addr
395  *
396  * Look up the physical address of the page that the pte resolves
397  * to (cayman+).
398  * Returns the physical address of the page.
399  */
400 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
401 {
402 	uint64_t result;
403 
404 	/* page table offset */
405 	result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
406 
407 	/* in case cpu page size != gpu page size*/
408 	result |= addr & (~PAGE_MASK);
409 
410 	return result;
411 }
412 
413 /**
414  * amdgpu_vm_update_pdes - make sure that page directory is valid
415  *
416  * @adev: amdgpu_device pointer
417  * @vm: requested vm
418  * @start: start of GPU address range
419  * @end: end of GPU address range
420  *
421  * Allocates new page tables if necessary
422  * and updates the page directory (cayman+).
423  * Returns 0 for success, error for failure.
424  *
425  * Global and local mutex must be locked!
426  */
427 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
428 				    struct amdgpu_vm *vm)
429 {
430 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
431 	struct amdgpu_bo *pd = vm->page_directory;
432 	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
433 	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
434 	uint64_t last_pde = ~0, last_pt = ~0;
435 	unsigned count = 0, pt_idx, ndw;
436 	struct amdgpu_ib *ib;
437 	struct fence *fence = NULL;
438 
439 	int r;
440 
441 	/* padding, etc. */
442 	ndw = 64;
443 
444 	/* assume the worst case */
445 	ndw += vm->max_pde_used * 6;
446 
447 	/* update too big for an IB */
448 	if (ndw > 0xfffff)
449 		return -ENOMEM;
450 
451 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
452 	if (!ib)
453 		return -ENOMEM;
454 
455 	r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
456 	if (r) {
457 		kfree(ib);
458 		return r;
459 	}
460 	ib->length_dw = 0;
461 
462 	/* walk over the address space and update the page directory */
463 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
464 		struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
465 		uint64_t pde, pt;
466 
467 		if (bo == NULL)
468 			continue;
469 
470 		pt = amdgpu_bo_gpu_offset(bo);
471 		if (vm->page_tables[pt_idx].addr == pt)
472 			continue;
473 		vm->page_tables[pt_idx].addr = pt;
474 
475 		pde = pd_addr + pt_idx * 8;
476 		if (((last_pde + 8 * count) != pde) ||
477 		    ((last_pt + incr * count) != pt)) {
478 
479 			if (count) {
480 				amdgpu_vm_update_pages(adev, ib, last_pde,
481 						       last_pt, count, incr,
482 						       AMDGPU_PTE_VALID, 0);
483 			}
484 
485 			count = 1;
486 			last_pde = pde;
487 			last_pt = pt;
488 		} else {
489 			++count;
490 		}
491 	}
492 
493 	if (count)
494 		amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
495 				       incr, AMDGPU_PTE_VALID, 0);
496 
497 	if (ib->length_dw != 0) {
498 		amdgpu_vm_pad_ib(adev, ib);
499 		amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
500 		WARN_ON(ib->length_dw > ndw);
501 		r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
502 							 &amdgpu_vm_free_job,
503 							 AMDGPU_FENCE_OWNER_VM,
504 							 &fence);
505 		if (r)
506 			goto error_free;
507 
508 		amdgpu_bo_fence(pd, fence, true);
509 		fence_put(vm->page_directory_fence);
510 		vm->page_directory_fence = fence_get(fence);
511 		fence_put(fence);
512 	}
513 
514 	if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
515 		amdgpu_ib_free(adev, ib);
516 		kfree(ib);
517 	}
518 
519 	return 0;
520 
521 error_free:
522 	amdgpu_ib_free(adev, ib);
523 	kfree(ib);
524 	return r;
525 }
526 
527 /**
528  * amdgpu_vm_frag_ptes - add fragment information to PTEs
529  *
530  * @adev: amdgpu_device pointer
531  * @ib: IB for the update
532  * @pe_start: first PTE to handle
533  * @pe_end: last PTE to handle
534  * @addr: addr those PTEs should point to
535  * @flags: hw mapping flags
536  * @gtt_flags: GTT hw mapping flags
537  *
538  * Global and local mutex must be locked!
539  */
540 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
541 				struct amdgpu_ib *ib,
542 				uint64_t pe_start, uint64_t pe_end,
543 				uint64_t addr, uint32_t flags,
544 				uint32_t gtt_flags)
545 {
546 	/**
547 	 * The MC L1 TLB supports variable sized pages, based on a fragment
548 	 * field in the PTE. When this field is set to a non-zero value, page
549 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
550 	 * flags are considered valid for all PTEs within the fragment range
551 	 * and corresponding mappings are assumed to be physically contiguous.
552 	 *
553 	 * The L1 TLB can store a single PTE for the whole fragment,
554 	 * significantly increasing the space available for translation
555 	 * caching. This leads to large improvements in throughput when the
556 	 * TLB is under pressure.
557 	 *
558 	 * The L2 TLB distributes small and large fragments into two
559 	 * asymmetric partitions. The large fragment cache is significantly
560 	 * larger. Thus, we try to use large fragments wherever possible.
561 	 * Userspace can support this by aligning virtual base address and
562 	 * allocation size to the fragment size.
563 	 */
564 
565 	/* SI and newer are optimized for 64KB */
566 	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
567 	uint64_t frag_align = 0x80;
568 
569 	uint64_t frag_start = ALIGN(pe_start, frag_align);
570 	uint64_t frag_end = pe_end & ~(frag_align - 1);
571 
572 	unsigned count;
573 
574 	/* system pages are non continuously */
575 	if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
576 	    (frag_start >= frag_end)) {
577 
578 		count = (pe_end - pe_start) / 8;
579 		amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
580 				       AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
581 		return;
582 	}
583 
584 	/* handle the 4K area at the beginning */
585 	if (pe_start != frag_start) {
586 		count = (frag_start - pe_start) / 8;
587 		amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
588 				       AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
589 		addr += AMDGPU_GPU_PAGE_SIZE * count;
590 	}
591 
592 	/* handle the area in the middle */
593 	count = (frag_end - frag_start) / 8;
594 	amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
595 			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
596 			       gtt_flags);
597 
598 	/* handle the 4K area at the end */
599 	if (frag_end != pe_end) {
600 		addr += AMDGPU_GPU_PAGE_SIZE * count;
601 		count = (pe_end - frag_end) / 8;
602 		amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
603 				       AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
604 	}
605 }
606 
607 /**
608  * amdgpu_vm_update_ptes - make sure that page tables are valid
609  *
610  * @adev: amdgpu_device pointer
611  * @vm: requested vm
612  * @start: start of GPU address range
613  * @end: end of GPU address range
614  * @dst: destination address to map to
615  * @flags: mapping flags
616  *
617  * Update the page tables in the range @start - @end (cayman+).
618  *
619  * Global and local mutex must be locked!
620  */
621 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
622 				 struct amdgpu_vm *vm,
623 				 struct amdgpu_ib *ib,
624 				 uint64_t start, uint64_t end,
625 				 uint64_t dst, uint32_t flags,
626 				 uint32_t gtt_flags)
627 {
628 	uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
629 	uint64_t last_pte = ~0, last_dst = ~0;
630 	void *owner = AMDGPU_FENCE_OWNER_VM;
631 	unsigned count = 0;
632 	uint64_t addr;
633 
634 	/* sync to everything on unmapping */
635 	if (!(flags & AMDGPU_PTE_VALID))
636 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
637 
638 	/* walk over the address space and update the page tables */
639 	for (addr = start; addr < end; ) {
640 		uint64_t pt_idx = addr >> amdgpu_vm_block_size;
641 		struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
642 		unsigned nptes;
643 		uint64_t pte;
644 		int r;
645 
646 		amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
647 		r = reservation_object_reserve_shared(pt->tbo.resv);
648 		if (r)
649 			return r;
650 
651 		if ((addr & ~mask) == (end & ~mask))
652 			nptes = end - addr;
653 		else
654 			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
655 
656 		pte = amdgpu_bo_gpu_offset(pt);
657 		pte += (addr & mask) * 8;
658 
659 		if ((last_pte + 8 * count) != pte) {
660 
661 			if (count) {
662 				amdgpu_vm_frag_ptes(adev, ib, last_pte,
663 						    last_pte + 8 * count,
664 						    last_dst, flags,
665 						    gtt_flags);
666 			}
667 
668 			count = nptes;
669 			last_pte = pte;
670 			last_dst = dst;
671 		} else {
672 			count += nptes;
673 		}
674 
675 		addr += nptes;
676 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
677 	}
678 
679 	if (count) {
680 		amdgpu_vm_frag_ptes(adev, ib, last_pte,
681 				    last_pte + 8 * count,
682 				    last_dst, flags, gtt_flags);
683 	}
684 
685 	return 0;
686 }
687 
688 /**
689  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
690  *
691  * @adev: amdgpu_device pointer
692  * @vm: requested vm
693  * @mapping: mapped range and flags to use for the update
694  * @addr: addr to set the area to
695  * @gtt_flags: flags as they are used for GTT
696  * @fence: optional resulting fence
697  *
698  * Fill in the page table entries for @mapping.
699  * Returns 0 for success, -EINVAL for failure.
700  *
701  * Object have to be reserved and mutex must be locked!
702  */
703 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
704 				       struct amdgpu_vm *vm,
705 				       struct amdgpu_bo_va_mapping *mapping,
706 				       uint64_t addr, uint32_t gtt_flags,
707 				       struct fence **fence)
708 {
709 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
710 	unsigned nptes, ncmds, ndw;
711 	uint32_t flags = gtt_flags;
712 	struct amdgpu_ib *ib;
713 	struct fence *f = NULL;
714 	int r;
715 
716 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
717 	 * but in case of something, we filter the flags in first place
718 	 */
719 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
720 		flags &= ~AMDGPU_PTE_READABLE;
721 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
722 		flags &= ~AMDGPU_PTE_WRITEABLE;
723 
724 	trace_amdgpu_vm_bo_update(mapping);
725 
726 	nptes = mapping->it.last - mapping->it.start + 1;
727 
728 	/*
729 	 * reserve space for one command every (1 << BLOCK_SIZE)
730 	 *  entries or 2k dwords (whatever is smaller)
731 	 */
732 	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
733 
734 	/* padding, etc. */
735 	ndw = 64;
736 
737 	if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
738 		/* only copy commands needed */
739 		ndw += ncmds * 7;
740 
741 	} else if (flags & AMDGPU_PTE_SYSTEM) {
742 		/* header for write data commands */
743 		ndw += ncmds * 4;
744 
745 		/* body of write data command */
746 		ndw += nptes * 2;
747 
748 	} else {
749 		/* set page commands needed */
750 		ndw += ncmds * 10;
751 
752 		/* two extra commands for begin/end of fragment */
753 		ndw += 2 * 10;
754 	}
755 
756 	/* update too big for an IB */
757 	if (ndw > 0xfffff)
758 		return -ENOMEM;
759 
760 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
761 	if (!ib)
762 		return -ENOMEM;
763 
764 	r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
765 	if (r) {
766 		kfree(ib);
767 		return r;
768 	}
769 
770 	ib->length_dw = 0;
771 
772 	r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
773 				  mapping->it.last + 1, addr + mapping->offset,
774 				  flags, gtt_flags);
775 
776 	if (r) {
777 		amdgpu_ib_free(adev, ib);
778 		kfree(ib);
779 		return r;
780 	}
781 
782 	amdgpu_vm_pad_ib(adev, ib);
783 	WARN_ON(ib->length_dw > ndw);
784 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
785 						 &amdgpu_vm_free_job,
786 						 AMDGPU_FENCE_OWNER_VM,
787 						 &f);
788 	if (r)
789 		goto error_free;
790 
791 	amdgpu_bo_fence(vm->page_directory, f, true);
792 	if (fence) {
793 		fence_put(*fence);
794 		*fence = fence_get(f);
795 	}
796 	fence_put(f);
797 	if (!amdgpu_enable_scheduler) {
798 		amdgpu_ib_free(adev, ib);
799 		kfree(ib);
800 	}
801 	return 0;
802 
803 error_free:
804 	amdgpu_ib_free(adev, ib);
805 	kfree(ib);
806 	return r;
807 }
808 
809 /**
810  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
811  *
812  * @adev: amdgpu_device pointer
813  * @bo_va: requested BO and VM object
814  * @mem: ttm mem
815  *
816  * Fill in the page table entries for @bo_va.
817  * Returns 0 for success, -EINVAL for failure.
818  *
819  * Object have to be reserved and mutex must be locked!
820  */
821 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
822 			struct amdgpu_bo_va *bo_va,
823 			struct ttm_mem_reg *mem)
824 {
825 	struct amdgpu_vm *vm = bo_va->vm;
826 	struct amdgpu_bo_va_mapping *mapping;
827 	uint32_t flags;
828 	uint64_t addr;
829 	int r;
830 
831 	if (mem) {
832 		addr = (u64)mem->start << PAGE_SHIFT;
833 		if (mem->mem_type != TTM_PL_TT)
834 			addr += adev->vm_manager.vram_base_offset;
835 	} else {
836 		addr = 0;
837 	}
838 
839 	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
840 
841 	spin_lock(&vm->status_lock);
842 	if (!list_empty(&bo_va->vm_status))
843 		list_splice_init(&bo_va->valids, &bo_va->invalids);
844 	spin_unlock(&vm->status_lock);
845 
846 	list_for_each_entry(mapping, &bo_va->invalids, list) {
847 		r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
848 						flags, &bo_va->last_pt_update);
849 		if (r)
850 			return r;
851 	}
852 
853 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
854 		list_for_each_entry(mapping, &bo_va->valids, list)
855 			trace_amdgpu_vm_bo_mapping(mapping);
856 
857 		list_for_each_entry(mapping, &bo_va->invalids, list)
858 			trace_amdgpu_vm_bo_mapping(mapping);
859 	}
860 
861 	spin_lock(&vm->status_lock);
862 	list_splice_init(&bo_va->invalids, &bo_va->valids);
863 	list_del_init(&bo_va->vm_status);
864 	if (!mem)
865 		list_add(&bo_va->vm_status, &vm->cleared);
866 	spin_unlock(&vm->status_lock);
867 
868 	return 0;
869 }
870 
871 /**
872  * amdgpu_vm_clear_freed - clear freed BOs in the PT
873  *
874  * @adev: amdgpu_device pointer
875  * @vm: requested vm
876  *
877  * Make sure all freed BOs are cleared in the PT.
878  * Returns 0 for success.
879  *
880  * PTs have to be reserved and mutex must be locked!
881  */
882 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
883 			  struct amdgpu_vm *vm)
884 {
885 	struct amdgpu_bo_va_mapping *mapping;
886 	int r;
887 
888 	while (!list_empty(&vm->freed)) {
889 		mapping = list_first_entry(&vm->freed,
890 			struct amdgpu_bo_va_mapping, list);
891 		list_del(&mapping->list);
892 
893 		r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
894 		kfree(mapping);
895 		if (r)
896 			return r;
897 
898 	}
899 	return 0;
900 
901 }
902 
903 /**
904  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
905  *
906  * @adev: amdgpu_device pointer
907  * @vm: requested vm
908  *
909  * Make sure all invalidated BOs are cleared in the PT.
910  * Returns 0 for success.
911  *
912  * PTs have to be reserved and mutex must be locked!
913  */
914 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
915 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
916 {
917 	struct amdgpu_bo_va *bo_va = NULL;
918 	int r = 0;
919 
920 	spin_lock(&vm->status_lock);
921 	while (!list_empty(&vm->invalidated)) {
922 		bo_va = list_first_entry(&vm->invalidated,
923 			struct amdgpu_bo_va, vm_status);
924 		spin_unlock(&vm->status_lock);
925 
926 		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
927 		if (r)
928 			return r;
929 
930 		spin_lock(&vm->status_lock);
931 	}
932 	spin_unlock(&vm->status_lock);
933 
934 	if (bo_va)
935 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
936 
937 	return r;
938 }
939 
940 /**
941  * amdgpu_vm_bo_add - add a bo to a specific vm
942  *
943  * @adev: amdgpu_device pointer
944  * @vm: requested vm
945  * @bo: amdgpu buffer object
946  *
947  * Add @bo into the requested vm (cayman+).
948  * Add @bo to the list of bos associated with the vm
949  * Returns newly added bo_va or NULL for failure
950  *
951  * Object has to be reserved!
952  */
953 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
954 				      struct amdgpu_vm *vm,
955 				      struct amdgpu_bo *bo)
956 {
957 	struct amdgpu_bo_va *bo_va;
958 
959 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
960 	if (bo_va == NULL) {
961 		return NULL;
962 	}
963 	bo_va->vm = vm;
964 	bo_va->bo = bo;
965 	bo_va->ref_count = 1;
966 	INIT_LIST_HEAD(&bo_va->bo_list);
967 	INIT_LIST_HEAD(&bo_va->valids);
968 	INIT_LIST_HEAD(&bo_va->invalids);
969 	INIT_LIST_HEAD(&bo_va->vm_status);
970 
971 	list_add_tail(&bo_va->bo_list, &bo->va);
972 
973 	return bo_va;
974 }
975 
976 /**
977  * amdgpu_vm_bo_map - map bo inside a vm
978  *
979  * @adev: amdgpu_device pointer
980  * @bo_va: bo_va to store the address
981  * @saddr: where to map the BO
982  * @offset: requested offset in the BO
983  * @flags: attributes of pages (read/write/valid/etc.)
984  *
985  * Add a mapping of the BO at the specefied addr into the VM.
986  * Returns 0 for success, error for failure.
987  *
988  * Object has to be reserved and unreserved outside!
989  */
990 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
991 		     struct amdgpu_bo_va *bo_va,
992 		     uint64_t saddr, uint64_t offset,
993 		     uint64_t size, uint32_t flags)
994 {
995 	struct amdgpu_bo_va_mapping *mapping;
996 	struct amdgpu_vm *vm = bo_va->vm;
997 	struct interval_tree_node *it;
998 	unsigned last_pfn, pt_idx;
999 	uint64_t eaddr;
1000 	int r;
1001 
1002 	/* validate the parameters */
1003 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1004 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1005 		return -EINVAL;
1006 
1007 	/* make sure object fit at this offset */
1008 	eaddr = saddr + size;
1009 	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1010 		return -EINVAL;
1011 
1012 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1013 	if (last_pfn > adev->vm_manager.max_pfn) {
1014 		dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n",
1015 			last_pfn, adev->vm_manager.max_pfn);
1016 		return -EINVAL;
1017 	}
1018 
1019 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1020 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1021 
1022 	spin_lock(&vm->it_lock);
1023 	it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1);
1024 	spin_unlock(&vm->it_lock);
1025 	if (it) {
1026 		struct amdgpu_bo_va_mapping *tmp;
1027 		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1028 		/* bo and tmp overlap, invalid addr */
1029 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1030 			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1031 			tmp->it.start, tmp->it.last + 1);
1032 		r = -EINVAL;
1033 		goto error;
1034 	}
1035 
1036 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1037 	if (!mapping) {
1038 		r = -ENOMEM;
1039 		goto error;
1040 	}
1041 
1042 	INIT_LIST_HEAD(&mapping->list);
1043 	mapping->it.start = saddr;
1044 	mapping->it.last = eaddr - 1;
1045 	mapping->offset = offset;
1046 	mapping->flags = flags;
1047 
1048 	list_add(&mapping->list, &bo_va->invalids);
1049 	spin_lock(&vm->it_lock);
1050 	interval_tree_insert(&mapping->it, &vm->va);
1051 	spin_unlock(&vm->it_lock);
1052 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1053 
1054 	/* Make sure the page tables are allocated */
1055 	saddr >>= amdgpu_vm_block_size;
1056 	eaddr >>= amdgpu_vm_block_size;
1057 
1058 	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1059 
1060 	if (eaddr > vm->max_pde_used)
1061 		vm->max_pde_used = eaddr;
1062 
1063 	/* walk over the address space and allocate the page tables */
1064 	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1065 		struct reservation_object *resv = vm->page_directory->tbo.resv;
1066 		struct amdgpu_bo *pt;
1067 
1068 		if (vm->page_tables[pt_idx].bo)
1069 			continue;
1070 
1071 		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1072 				     AMDGPU_GPU_PAGE_SIZE, true,
1073 				     AMDGPU_GEM_DOMAIN_VRAM,
1074 				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1075 				     NULL, resv, &pt);
1076 		if (r)
1077 			goto error_free;
1078 
1079 		r = amdgpu_vm_clear_bo(adev, pt);
1080 		if (r) {
1081 			amdgpu_bo_unref(&pt);
1082 			goto error_free;
1083 		}
1084 
1085 		vm->page_tables[pt_idx].addr = 0;
1086 		vm->page_tables[pt_idx].bo = pt;
1087 	}
1088 
1089 	return 0;
1090 
1091 error_free:
1092 	list_del(&mapping->list);
1093 	spin_lock(&vm->it_lock);
1094 	interval_tree_remove(&mapping->it, &vm->va);
1095 	spin_unlock(&vm->it_lock);
1096 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1097 	kfree(mapping);
1098 
1099 error:
1100 	return r;
1101 }
1102 
1103 /**
1104  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1105  *
1106  * @adev: amdgpu_device pointer
1107  * @bo_va: bo_va to remove the address from
1108  * @saddr: where to the BO is mapped
1109  *
1110  * Remove a mapping of the BO at the specefied addr from the VM.
1111  * Returns 0 for success, error for failure.
1112  *
1113  * Object has to be reserved and unreserved outside!
1114  */
1115 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1116 		       struct amdgpu_bo_va *bo_va,
1117 		       uint64_t saddr)
1118 {
1119 	struct amdgpu_bo_va_mapping *mapping;
1120 	struct amdgpu_vm *vm = bo_va->vm;
1121 	bool valid = true;
1122 
1123 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1124 
1125 	list_for_each_entry(mapping, &bo_va->valids, list) {
1126 		if (mapping->it.start == saddr)
1127 			break;
1128 	}
1129 
1130 	if (&mapping->list == &bo_va->valids) {
1131 		valid = false;
1132 
1133 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1134 			if (mapping->it.start == saddr)
1135 				break;
1136 		}
1137 
1138 		if (&mapping->list == &bo_va->invalids)
1139 			return -ENOENT;
1140 	}
1141 
1142 	list_del(&mapping->list);
1143 	spin_lock(&vm->it_lock);
1144 	interval_tree_remove(&mapping->it, &vm->va);
1145 	spin_unlock(&vm->it_lock);
1146 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1147 
1148 	if (valid)
1149 		list_add(&mapping->list, &vm->freed);
1150 	else
1151 		kfree(mapping);
1152 
1153 	return 0;
1154 }
1155 
1156 /**
1157  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1158  *
1159  * @adev: amdgpu_device pointer
1160  * @bo_va: requested bo_va
1161  *
1162  * Remove @bo_va->bo from the requested vm (cayman+).
1163  *
1164  * Object have to be reserved!
1165  */
1166 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1167 		      struct amdgpu_bo_va *bo_va)
1168 {
1169 	struct amdgpu_bo_va_mapping *mapping, *next;
1170 	struct amdgpu_vm *vm = bo_va->vm;
1171 
1172 	list_del(&bo_va->bo_list);
1173 
1174 	spin_lock(&vm->status_lock);
1175 	list_del(&bo_va->vm_status);
1176 	spin_unlock(&vm->status_lock);
1177 
1178 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1179 		list_del(&mapping->list);
1180 		spin_lock(&vm->it_lock);
1181 		interval_tree_remove(&mapping->it, &vm->va);
1182 		spin_unlock(&vm->it_lock);
1183 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1184 		list_add(&mapping->list, &vm->freed);
1185 	}
1186 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1187 		list_del(&mapping->list);
1188 		spin_lock(&vm->it_lock);
1189 		interval_tree_remove(&mapping->it, &vm->va);
1190 		spin_unlock(&vm->it_lock);
1191 		kfree(mapping);
1192 	}
1193 
1194 	fence_put(bo_va->last_pt_update);
1195 	kfree(bo_va);
1196 }
1197 
1198 /**
1199  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1200  *
1201  * @adev: amdgpu_device pointer
1202  * @vm: requested vm
1203  * @bo: amdgpu buffer object
1204  *
1205  * Mark @bo as invalid (cayman+).
1206  */
1207 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1208 			     struct amdgpu_bo *bo)
1209 {
1210 	struct amdgpu_bo_va *bo_va;
1211 
1212 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1213 		spin_lock(&bo_va->vm->status_lock);
1214 		if (list_empty(&bo_va->vm_status))
1215 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1216 		spin_unlock(&bo_va->vm->status_lock);
1217 	}
1218 }
1219 
1220 /**
1221  * amdgpu_vm_init - initialize a vm instance
1222  *
1223  * @adev: amdgpu_device pointer
1224  * @vm: requested vm
1225  *
1226  * Init @vm fields (cayman+).
1227  */
1228 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1229 {
1230 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1231 		AMDGPU_VM_PTE_COUNT * 8);
1232 	unsigned pd_size, pd_entries, pts_size;
1233 	int i, r;
1234 
1235 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1236 		vm->ids[i].id = 0;
1237 		vm->ids[i].flushed_updates = NULL;
1238 	}
1239 	mutex_init(&vm->mutex);
1240 	vm->va = RB_ROOT;
1241 	spin_lock_init(&vm->status_lock);
1242 	INIT_LIST_HEAD(&vm->invalidated);
1243 	INIT_LIST_HEAD(&vm->cleared);
1244 	INIT_LIST_HEAD(&vm->freed);
1245 	spin_lock_init(&vm->it_lock);
1246 	pd_size = amdgpu_vm_directory_size(adev);
1247 	pd_entries = amdgpu_vm_num_pdes(adev);
1248 
1249 	/* allocate page table array */
1250 	pts_size = pd_entries * sizeof(struct amdgpu_vm_pt);
1251 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1252 	if (vm->page_tables == NULL) {
1253 		DRM_ERROR("Cannot allocate memory for page table array\n");
1254 		return -ENOMEM;
1255 	}
1256 
1257 	vm->page_directory_fence = NULL;
1258 
1259 	r = amdgpu_bo_create(adev, pd_size, align, true,
1260 			     AMDGPU_GEM_DOMAIN_VRAM,
1261 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1262 			     NULL, NULL, &vm->page_directory);
1263 	if (r)
1264 		return r;
1265 	r = amdgpu_bo_reserve(vm->page_directory, false);
1266 	if (r) {
1267 		amdgpu_bo_unref(&vm->page_directory);
1268 		vm->page_directory = NULL;
1269 		return r;
1270 	}
1271 	r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1272 	amdgpu_bo_unreserve(vm->page_directory);
1273 	if (r) {
1274 		amdgpu_bo_unref(&vm->page_directory);
1275 		vm->page_directory = NULL;
1276 		return r;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * amdgpu_vm_fini - tear down a vm instance
1284  *
1285  * @adev: amdgpu_device pointer
1286  * @vm: requested vm
1287  *
1288  * Tear down @vm (cayman+).
1289  * Unbind the VM and remove all bos from the vm bo list
1290  */
1291 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1292 {
1293 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1294 	int i;
1295 
1296 	if (!RB_EMPTY_ROOT(&vm->va)) {
1297 		dev_err(adev->dev, "still active bo inside vm\n");
1298 	}
1299 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1300 		list_del(&mapping->list);
1301 		interval_tree_remove(&mapping->it, &vm->va);
1302 		kfree(mapping);
1303 	}
1304 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1305 		list_del(&mapping->list);
1306 		kfree(mapping);
1307 	}
1308 
1309 	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1310 		amdgpu_bo_unref(&vm->page_tables[i].bo);
1311 	kfree(vm->page_tables);
1312 
1313 	amdgpu_bo_unref(&vm->page_directory);
1314 	fence_put(vm->page_directory_fence);
1315 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1316 		unsigned id = vm->ids[i].id;
1317 
1318 		atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1319 				    (long)vm, 0);
1320 		fence_put(vm->ids[i].flushed_updates);
1321 	}
1322 
1323 	mutex_destroy(&vm->mutex);
1324 }
1325 
1326 /**
1327  * amdgpu_vm_manager_fini - cleanup VM manager
1328  *
1329  * @adev: amdgpu_device pointer
1330  *
1331  * Cleanup the VM manager and free resources.
1332  */
1333 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1334 {
1335 	unsigned i;
1336 
1337 	for (i = 0; i < AMDGPU_NUM_VM; ++i)
1338 		fence_put(adev->vm_manager.ids[i].active);
1339 }
1340