xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38 
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59 
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62 
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64 		     START, LAST, static, amdgpu_vm_it)
65 
66 #undef START
67 #undef LAST
68 
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73 
74 	/**
75 	 * @adev: amdgpu device
76 	 */
77 	struct amdgpu_device *adev;
78 
79 	/**
80 	 * @cb: callback
81 	 */
82 	struct dma_fence_cb cb;
83 };
84 
85 /**
86  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
87  * happens while holding this lock anywhere to prevent deadlocks when
88  * an MMU notifier runs in reclaim-FS context.
89  */
90 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
91 {
92 	mutex_lock(&vm->eviction_lock);
93 	vm->saved_flags = memalloc_nofs_save();
94 }
95 
96 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
97 {
98 	if (mutex_trylock(&vm->eviction_lock)) {
99 		vm->saved_flags = memalloc_nofs_save();
100 		return 1;
101 	}
102 	return 0;
103 }
104 
105 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
106 {
107 	memalloc_nofs_restore(vm->saved_flags);
108 	mutex_unlock(&vm->eviction_lock);
109 }
110 
111 /**
112  * amdgpu_vm_level_shift - return the addr shift for each level
113  *
114  * @adev: amdgpu_device pointer
115  * @level: VMPT level
116  *
117  * Returns:
118  * The number of bits the pfn needs to be right shifted for a level.
119  */
120 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
121 				      unsigned level)
122 {
123 	switch (level) {
124 	case AMDGPU_VM_PDB2:
125 	case AMDGPU_VM_PDB1:
126 	case AMDGPU_VM_PDB0:
127 		return 9 * (AMDGPU_VM_PDB0 - level) +
128 			adev->vm_manager.block_size;
129 	case AMDGPU_VM_PTB:
130 		return 0;
131 	default:
132 		return ~0;
133 	}
134 }
135 
136 /**
137  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
138  *
139  * @adev: amdgpu_device pointer
140  * @level: VMPT level
141  *
142  * Returns:
143  * The number of entries in a page directory or page table.
144  */
145 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
146 				      unsigned level)
147 {
148 	unsigned shift = amdgpu_vm_level_shift(adev,
149 					       adev->vm_manager.root_level);
150 
151 	if (level == adev->vm_manager.root_level)
152 		/* For the root directory */
153 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
154 			>> shift;
155 	else if (level != AMDGPU_VM_PTB)
156 		/* Everything in between */
157 		return 512;
158 	else
159 		/* For the page tables on the leaves */
160 		return AMDGPU_VM_PTE_COUNT(adev);
161 }
162 
163 /**
164  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
165  *
166  * @adev: amdgpu_device pointer
167  *
168  * Returns:
169  * The number of entries in the root page directory which needs the ATS setting.
170  */
171 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
172 {
173 	unsigned shift;
174 
175 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
176 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
177 }
178 
179 /**
180  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
181  *
182  * @adev: amdgpu_device pointer
183  * @level: VMPT level
184  *
185  * Returns:
186  * The mask to extract the entry number of a PD/PT from an address.
187  */
188 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
189 				       unsigned int level)
190 {
191 	if (level <= adev->vm_manager.root_level)
192 		return 0xffffffff;
193 	else if (level != AMDGPU_VM_PTB)
194 		return 0x1ff;
195 	else
196 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
197 }
198 
199 /**
200  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
201  *
202  * @adev: amdgpu_device pointer
203  * @level: VMPT level
204  *
205  * Returns:
206  * The size of the BO for a page directory or page table in bytes.
207  */
208 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
209 {
210 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
211 }
212 
213 /**
214  * amdgpu_vm_bo_evicted - vm_bo is evicted
215  *
216  * @vm_bo: vm_bo which is evicted
217  *
218  * State for PDs/PTs and per VM BOs which are not at the location they should
219  * be.
220  */
221 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
222 {
223 	struct amdgpu_vm *vm = vm_bo->vm;
224 	struct amdgpu_bo *bo = vm_bo->bo;
225 
226 	vm_bo->moved = true;
227 	if (bo->tbo.type == ttm_bo_type_kernel)
228 		list_move(&vm_bo->vm_status, &vm->evicted);
229 	else
230 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
231 }
232 /**
233  * amdgpu_vm_bo_moved - vm_bo is moved
234  *
235  * @vm_bo: vm_bo which is moved
236  *
237  * State for per VM BOs which are moved, but that change is not yet reflected
238  * in the page tables.
239  */
240 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
241 {
242 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
243 }
244 
245 /**
246  * amdgpu_vm_bo_idle - vm_bo is idle
247  *
248  * @vm_bo: vm_bo which is now idle
249  *
250  * State for PDs/PTs and per VM BOs which have gone through the state machine
251  * and are now idle.
252  */
253 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
254 {
255 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
256 	vm_bo->moved = false;
257 }
258 
259 /**
260  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
261  *
262  * @vm_bo: vm_bo which is now invalidated
263  *
264  * State for normal BOs which are invalidated and that change not yet reflected
265  * in the PTs.
266  */
267 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	spin_lock(&vm_bo->vm->invalidated_lock);
270 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
271 	spin_unlock(&vm_bo->vm->invalidated_lock);
272 }
273 
274 /**
275  * amdgpu_vm_bo_relocated - vm_bo is reloacted
276  *
277  * @vm_bo: vm_bo which is relocated
278  *
279  * State for PDs/PTs which needs to update their parent PD.
280  * For the root PD, just move to idle state.
281  */
282 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
283 {
284 	if (vm_bo->bo->parent)
285 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
286 	else
287 		amdgpu_vm_bo_idle(vm_bo);
288 }
289 
290 /**
291  * amdgpu_vm_bo_done - vm_bo is done
292  *
293  * @vm_bo: vm_bo which is now done
294  *
295  * State for normal BOs which are invalidated and that change has been updated
296  * in the PTs.
297  */
298 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
299 {
300 	spin_lock(&vm_bo->vm->invalidated_lock);
301 	list_del_init(&vm_bo->vm_status);
302 	spin_unlock(&vm_bo->vm->invalidated_lock);
303 }
304 
305 /**
306  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
307  *
308  * @base: base structure for tracking BO usage in a VM
309  * @vm: vm to which bo is to be added
310  * @bo: amdgpu buffer object
311  *
312  * Initialize a bo_va_base structure and add it to the appropriate lists
313  *
314  */
315 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
316 				   struct amdgpu_vm *vm,
317 				   struct amdgpu_bo *bo)
318 {
319 	base->vm = vm;
320 	base->bo = bo;
321 	base->next = NULL;
322 	INIT_LIST_HEAD(&base->vm_status);
323 
324 	if (!bo)
325 		return;
326 	base->next = bo->vm_bo;
327 	bo->vm_bo = base;
328 
329 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
330 		return;
331 
332 	vm->bulk_moveable = false;
333 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
334 		amdgpu_vm_bo_relocated(base);
335 	else
336 		amdgpu_vm_bo_idle(base);
337 
338 	if (bo->preferred_domains &
339 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
340 		return;
341 
342 	/*
343 	 * we checked all the prerequisites, but it looks like this per vm bo
344 	 * is currently evicted. add the bo to the evicted list to make sure it
345 	 * is validated on next vm use to avoid fault.
346 	 * */
347 	amdgpu_vm_bo_evicted(base);
348 }
349 
350 /**
351  * amdgpu_vm_pt_parent - get the parent page directory
352  *
353  * @pt: child page table
354  *
355  * Helper to get the parent entry for the child page table. NULL if we are at
356  * the root page directory.
357  */
358 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
359 {
360 	struct amdgpu_bo *parent = pt->base.bo->parent;
361 
362 	if (!parent)
363 		return NULL;
364 
365 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
366 }
367 
368 /*
369  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
370  */
371 struct amdgpu_vm_pt_cursor {
372 	uint64_t pfn;
373 	struct amdgpu_vm_pt *parent;
374 	struct amdgpu_vm_pt *entry;
375 	unsigned level;
376 };
377 
378 /**
379  * amdgpu_vm_pt_start - start PD/PT walk
380  *
381  * @adev: amdgpu_device pointer
382  * @vm: amdgpu_vm structure
383  * @start: start address of the walk
384  * @cursor: state to initialize
385  *
386  * Initialize a amdgpu_vm_pt_cursor to start a walk.
387  */
388 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
389 			       struct amdgpu_vm *vm, uint64_t start,
390 			       struct amdgpu_vm_pt_cursor *cursor)
391 {
392 	cursor->pfn = start;
393 	cursor->parent = NULL;
394 	cursor->entry = &vm->root;
395 	cursor->level = adev->vm_manager.root_level;
396 }
397 
398 /**
399  * amdgpu_vm_pt_descendant - go to child node
400  *
401  * @adev: amdgpu_device pointer
402  * @cursor: current state
403  *
404  * Walk to the child node of the current node.
405  * Returns:
406  * True if the walk was possible, false otherwise.
407  */
408 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
409 				    struct amdgpu_vm_pt_cursor *cursor)
410 {
411 	unsigned mask, shift, idx;
412 
413 	if (!cursor->entry->entries)
414 		return false;
415 
416 	BUG_ON(!cursor->entry->base.bo);
417 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
418 	shift = amdgpu_vm_level_shift(adev, cursor->level);
419 
420 	++cursor->level;
421 	idx = (cursor->pfn >> shift) & mask;
422 	cursor->parent = cursor->entry;
423 	cursor->entry = &cursor->entry->entries[idx];
424 	return true;
425 }
426 
427 /**
428  * amdgpu_vm_pt_sibling - go to sibling node
429  *
430  * @adev: amdgpu_device pointer
431  * @cursor: current state
432  *
433  * Walk to the sibling node of the current node.
434  * Returns:
435  * True if the walk was possible, false otherwise.
436  */
437 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
438 				 struct amdgpu_vm_pt_cursor *cursor)
439 {
440 	unsigned shift, num_entries;
441 
442 	/* Root doesn't have a sibling */
443 	if (!cursor->parent)
444 		return false;
445 
446 	/* Go to our parents and see if we got a sibling */
447 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
448 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
449 
450 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
451 		return false;
452 
453 	cursor->pfn += 1ULL << shift;
454 	cursor->pfn &= ~((1ULL << shift) - 1);
455 	++cursor->entry;
456 	return true;
457 }
458 
459 /**
460  * amdgpu_vm_pt_ancestor - go to parent node
461  *
462  * @cursor: current state
463  *
464  * Walk to the parent node of the current node.
465  * Returns:
466  * True if the walk was possible, false otherwise.
467  */
468 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
469 {
470 	if (!cursor->parent)
471 		return false;
472 
473 	--cursor->level;
474 	cursor->entry = cursor->parent;
475 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
476 	return true;
477 }
478 
479 /**
480  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
481  *
482  * @adev: amdgpu_device pointer
483  * @cursor: current state
484  *
485  * Walk the PD/PT tree to the next node.
486  */
487 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
488 			      struct amdgpu_vm_pt_cursor *cursor)
489 {
490 	/* First try a newborn child */
491 	if (amdgpu_vm_pt_descendant(adev, cursor))
492 		return;
493 
494 	/* If that didn't worked try to find a sibling */
495 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
496 		/* No sibling, go to our parents and grandparents */
497 		if (!amdgpu_vm_pt_ancestor(cursor)) {
498 			cursor->pfn = ~0ll;
499 			return;
500 		}
501 	}
502 }
503 
504 /**
505  * amdgpu_vm_pt_first_dfs - start a deep first search
506  *
507  * @adev: amdgpu_device structure
508  * @vm: amdgpu_vm structure
509  * @start: optional cursor to start with
510  * @cursor: state to initialize
511  *
512  * Starts a deep first traversal of the PD/PT tree.
513  */
514 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
515 				   struct amdgpu_vm *vm,
516 				   struct amdgpu_vm_pt_cursor *start,
517 				   struct amdgpu_vm_pt_cursor *cursor)
518 {
519 	if (start)
520 		*cursor = *start;
521 	else
522 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
523 	while (amdgpu_vm_pt_descendant(adev, cursor));
524 }
525 
526 /**
527  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
528  *
529  * @start: starting point for the search
530  * @entry: current entry
531  *
532  * Returns:
533  * True when the search should continue, false otherwise.
534  */
535 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
536 				      struct amdgpu_vm_pt *entry)
537 {
538 	return entry && (!start || entry != start->entry);
539 }
540 
541 /**
542  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
543  *
544  * @adev: amdgpu_device structure
545  * @cursor: current state
546  *
547  * Move the cursor to the next node in a deep first search.
548  */
549 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
550 				  struct amdgpu_vm_pt_cursor *cursor)
551 {
552 	if (!cursor->entry)
553 		return;
554 
555 	if (!cursor->parent)
556 		cursor->entry = NULL;
557 	else if (amdgpu_vm_pt_sibling(adev, cursor))
558 		while (amdgpu_vm_pt_descendant(adev, cursor));
559 	else
560 		amdgpu_vm_pt_ancestor(cursor);
561 }
562 
563 /*
564  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
565  */
566 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
567 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
568 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
569 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
570 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
571 
572 /**
573  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
574  *
575  * @vm: vm providing the BOs
576  * @validated: head of validation list
577  * @entry: entry to add
578  *
579  * Add the page directory to the list of BOs to
580  * validate for command submission.
581  */
582 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
583 			 struct list_head *validated,
584 			 struct amdgpu_bo_list_entry *entry)
585 {
586 	entry->priority = 0;
587 	entry->tv.bo = &vm->root.base.bo->tbo;
588 	/* Two for VM updates, one for TTM and one for the CS job */
589 	entry->tv.num_shared = 4;
590 	entry->user_pages = NULL;
591 	list_add(&entry->tv.head, validated);
592 }
593 
594 /**
595  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
596  *
597  * @bo: BO which was removed from the LRU
598  *
599  * Make sure the bulk_moveable flag is updated when a BO is removed from the
600  * LRU.
601  */
602 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
603 {
604 	struct amdgpu_bo *abo;
605 	struct amdgpu_vm_bo_base *bo_base;
606 
607 	if (!amdgpu_bo_is_amdgpu_bo(bo))
608 		return;
609 
610 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
611 		return;
612 
613 	abo = ttm_to_amdgpu_bo(bo);
614 	if (!abo->parent)
615 		return;
616 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
617 		struct amdgpu_vm *vm = bo_base->vm;
618 
619 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
620 			vm->bulk_moveable = false;
621 	}
622 
623 }
624 /**
625  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
626  *
627  * @adev: amdgpu device pointer
628  * @vm: vm providing the BOs
629  *
630  * Move all BOs to the end of LRU and remember their positions to put them
631  * together.
632  */
633 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
634 				struct amdgpu_vm *vm)
635 {
636 	struct amdgpu_vm_bo_base *bo_base;
637 
638 	if (vm->bulk_moveable) {
639 		spin_lock(&ttm_bo_glob.lru_lock);
640 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
641 		spin_unlock(&ttm_bo_glob.lru_lock);
642 		return;
643 	}
644 
645 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
646 
647 	spin_lock(&ttm_bo_glob.lru_lock);
648 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
649 		struct amdgpu_bo *bo = bo_base->bo;
650 
651 		if (!bo->parent)
652 			continue;
653 
654 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
655 		if (bo->shadow)
656 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
657 						&vm->lru_bulk_move);
658 	}
659 	spin_unlock(&ttm_bo_glob.lru_lock);
660 
661 	vm->bulk_moveable = true;
662 }
663 
664 /**
665  * amdgpu_vm_validate_pt_bos - validate the page table BOs
666  *
667  * @adev: amdgpu device pointer
668  * @vm: vm providing the BOs
669  * @validate: callback to do the validation
670  * @param: parameter for the validation callback
671  *
672  * Validate the page table BOs on command submission if neccessary.
673  *
674  * Returns:
675  * Validation result.
676  */
677 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
678 			      int (*validate)(void *p, struct amdgpu_bo *bo),
679 			      void *param)
680 {
681 	struct amdgpu_vm_bo_base *bo_base, *tmp;
682 	int r;
683 
684 	vm->bulk_moveable &= list_empty(&vm->evicted);
685 
686 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
687 		struct amdgpu_bo *bo = bo_base->bo;
688 
689 		r = validate(param, bo);
690 		if (r)
691 			return r;
692 
693 		if (bo->tbo.type != ttm_bo_type_kernel) {
694 			amdgpu_vm_bo_moved(bo_base);
695 		} else {
696 			vm->update_funcs->map_table(bo);
697 			amdgpu_vm_bo_relocated(bo_base);
698 		}
699 	}
700 
701 	amdgpu_vm_eviction_lock(vm);
702 	vm->evicting = false;
703 	amdgpu_vm_eviction_unlock(vm);
704 
705 	return 0;
706 }
707 
708 /**
709  * amdgpu_vm_ready - check VM is ready for updates
710  *
711  * @vm: VM to check
712  *
713  * Check if all VM PDs/PTs are ready for updates
714  *
715  * Returns:
716  * True if eviction list is empty.
717  */
718 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
719 {
720 	return list_empty(&vm->evicted);
721 }
722 
723 /**
724  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
725  *
726  * @adev: amdgpu_device pointer
727  * @vm: VM to clear BO from
728  * @bo: BO to clear
729  * @direct: use a direct update
730  *
731  * Root PD needs to be reserved when calling this.
732  *
733  * Returns:
734  * 0 on success, errno otherwise.
735  */
736 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
737 			      struct amdgpu_vm *vm,
738 			      struct amdgpu_bo *bo,
739 			      bool direct)
740 {
741 	struct ttm_operation_ctx ctx = { true, false };
742 	unsigned level = adev->vm_manager.root_level;
743 	struct amdgpu_vm_update_params params;
744 	struct amdgpu_bo *ancestor = bo;
745 	unsigned entries, ats_entries;
746 	uint64_t addr;
747 	int r;
748 
749 	/* Figure out our place in the hierarchy */
750 	if (ancestor->parent) {
751 		++level;
752 		while (ancestor->parent->parent) {
753 			++level;
754 			ancestor = ancestor->parent;
755 		}
756 	}
757 
758 	entries = amdgpu_bo_size(bo) / 8;
759 	if (!vm->pte_support_ats) {
760 		ats_entries = 0;
761 
762 	} else if (!bo->parent) {
763 		ats_entries = amdgpu_vm_num_ats_entries(adev);
764 		ats_entries = min(ats_entries, entries);
765 		entries -= ats_entries;
766 
767 	} else {
768 		struct amdgpu_vm_pt *pt;
769 
770 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
771 		ats_entries = amdgpu_vm_num_ats_entries(adev);
772 		if ((pt - vm->root.entries) >= ats_entries) {
773 			ats_entries = 0;
774 		} else {
775 			ats_entries = entries;
776 			entries = 0;
777 		}
778 	}
779 
780 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
781 	if (r)
782 		return r;
783 
784 	if (bo->shadow) {
785 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
786 				    &ctx);
787 		if (r)
788 			return r;
789 	}
790 
791 	r = vm->update_funcs->map_table(bo);
792 	if (r)
793 		return r;
794 
795 	memset(&params, 0, sizeof(params));
796 	params.adev = adev;
797 	params.vm = vm;
798 	params.direct = direct;
799 
800 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
801 	if (r)
802 		return r;
803 
804 	addr = 0;
805 	if (ats_entries) {
806 		uint64_t value = 0, flags;
807 
808 		flags = AMDGPU_PTE_DEFAULT_ATC;
809 		if (level != AMDGPU_VM_PTB) {
810 			/* Handle leaf PDEs as PTEs */
811 			flags |= AMDGPU_PDE_PTE;
812 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
813 		}
814 
815 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
816 					     value, flags);
817 		if (r)
818 			return r;
819 
820 		addr += ats_entries * 8;
821 	}
822 
823 	if (entries) {
824 		uint64_t value = 0, flags = 0;
825 
826 		if (adev->asic_type >= CHIP_VEGA10) {
827 			if (level != AMDGPU_VM_PTB) {
828 				/* Handle leaf PDEs as PTEs */
829 				flags |= AMDGPU_PDE_PTE;
830 				amdgpu_gmc_get_vm_pde(adev, level,
831 						      &value, &flags);
832 			} else {
833 				/* Workaround for fault priority problem on GMC9 */
834 				flags = AMDGPU_PTE_EXECUTABLE;
835 			}
836 		}
837 
838 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
839 					     value, flags);
840 		if (r)
841 			return r;
842 	}
843 
844 	return vm->update_funcs->commit(&params, NULL);
845 }
846 
847 /**
848  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
849  *
850  * @adev: amdgpu_device pointer
851  * @vm: requesting vm
852  * @level: the page table level
853  * @direct: use a direct update
854  * @bp: resulting BO allocation parameters
855  */
856 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
857 			       int level, bool direct,
858 			       struct amdgpu_bo_param *bp)
859 {
860 	memset(bp, 0, sizeof(*bp));
861 
862 	bp->size = amdgpu_vm_bo_size(adev, level);
863 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
864 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
865 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
866 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
867 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
868 	if (vm->use_cpu_for_update)
869 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
870 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
871 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
872 	bp->type = ttm_bo_type_kernel;
873 	bp->no_wait_gpu = direct;
874 	if (vm->root.base.bo)
875 		bp->resv = vm->root.base.bo->tbo.base.resv;
876 }
877 
878 /**
879  * amdgpu_vm_alloc_pts - Allocate a specific page table
880  *
881  * @adev: amdgpu_device pointer
882  * @vm: VM to allocate page tables for
883  * @cursor: Which page table to allocate
884  * @direct: use a direct update
885  *
886  * Make sure a specific page table or directory is allocated.
887  *
888  * Returns:
889  * 1 if page table needed to be allocated, 0 if page table was already
890  * allocated, negative errno if an error occurred.
891  */
892 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
893 			       struct amdgpu_vm *vm,
894 			       struct amdgpu_vm_pt_cursor *cursor,
895 			       bool direct)
896 {
897 	struct amdgpu_vm_pt *entry = cursor->entry;
898 	struct amdgpu_bo_param bp;
899 	struct amdgpu_bo *pt;
900 	int r;
901 
902 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
903 		unsigned num_entries;
904 
905 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
906 		entry->entries = kvmalloc_array(num_entries,
907 						sizeof(*entry->entries),
908 						GFP_KERNEL | __GFP_ZERO);
909 		if (!entry->entries)
910 			return -ENOMEM;
911 	}
912 
913 	if (entry->base.bo)
914 		return 0;
915 
916 	amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp);
917 
918 	r = amdgpu_bo_create(adev, &bp, &pt);
919 	if (r)
920 		return r;
921 
922 	/* Keep a reference to the root directory to avoid
923 	 * freeing them up in the wrong order.
924 	 */
925 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
926 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
927 
928 	r = amdgpu_vm_clear_bo(adev, vm, pt, direct);
929 	if (r)
930 		goto error_free_pt;
931 
932 	return 0;
933 
934 error_free_pt:
935 	amdgpu_bo_unref(&pt->shadow);
936 	amdgpu_bo_unref(&pt);
937 	return r;
938 }
939 
940 /**
941  * amdgpu_vm_free_table - fre one PD/PT
942  *
943  * @entry: PDE to free
944  */
945 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
946 {
947 	if (entry->base.bo) {
948 		entry->base.bo->vm_bo = NULL;
949 		list_del(&entry->base.vm_status);
950 		amdgpu_bo_unref(&entry->base.bo->shadow);
951 		amdgpu_bo_unref(&entry->base.bo);
952 	}
953 	kvfree(entry->entries);
954 	entry->entries = NULL;
955 }
956 
957 /**
958  * amdgpu_vm_free_pts - free PD/PT levels
959  *
960  * @adev: amdgpu device structure
961  * @vm: amdgpu vm structure
962  * @start: optional cursor where to start freeing PDs/PTs
963  *
964  * Free the page directory or page table level and all sub levels.
965  */
966 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
967 			       struct amdgpu_vm *vm,
968 			       struct amdgpu_vm_pt_cursor *start)
969 {
970 	struct amdgpu_vm_pt_cursor cursor;
971 	struct amdgpu_vm_pt *entry;
972 
973 	vm->bulk_moveable = false;
974 
975 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
976 		amdgpu_vm_free_table(entry);
977 
978 	if (start)
979 		amdgpu_vm_free_table(start->entry);
980 }
981 
982 /**
983  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
984  *
985  * @adev: amdgpu_device pointer
986  */
987 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
988 {
989 	const struct amdgpu_ip_block *ip_block;
990 	bool has_compute_vm_bug;
991 	struct amdgpu_ring *ring;
992 	int i;
993 
994 	has_compute_vm_bug = false;
995 
996 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
997 	if (ip_block) {
998 		/* Compute has a VM bug for GFX version < 7.
999 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1000 		if (ip_block->version->major <= 7)
1001 			has_compute_vm_bug = true;
1002 		else if (ip_block->version->major == 8)
1003 			if (adev->gfx.mec_fw_version < 673)
1004 				has_compute_vm_bug = true;
1005 	}
1006 
1007 	for (i = 0; i < adev->num_rings; i++) {
1008 		ring = adev->rings[i];
1009 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1010 			/* only compute rings */
1011 			ring->has_compute_vm_bug = has_compute_vm_bug;
1012 		else
1013 			ring->has_compute_vm_bug = false;
1014 	}
1015 }
1016 
1017 /**
1018  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1019  *
1020  * @ring: ring on which the job will be submitted
1021  * @job: job to submit
1022  *
1023  * Returns:
1024  * True if sync is needed.
1025  */
1026 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1027 				  struct amdgpu_job *job)
1028 {
1029 	struct amdgpu_device *adev = ring->adev;
1030 	unsigned vmhub = ring->funcs->vmhub;
1031 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1032 	struct amdgpu_vmid *id;
1033 	bool gds_switch_needed;
1034 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1035 
1036 	if (job->vmid == 0)
1037 		return false;
1038 	id = &id_mgr->ids[job->vmid];
1039 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1040 		id->gds_base != job->gds_base ||
1041 		id->gds_size != job->gds_size ||
1042 		id->gws_base != job->gws_base ||
1043 		id->gws_size != job->gws_size ||
1044 		id->oa_base != job->oa_base ||
1045 		id->oa_size != job->oa_size);
1046 
1047 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1048 		return true;
1049 
1050 	return vm_flush_needed || gds_switch_needed;
1051 }
1052 
1053 /**
1054  * amdgpu_vm_flush - hardware flush the vm
1055  *
1056  * @ring: ring to use for flush
1057  * @job:  related job
1058  * @need_pipe_sync: is pipe sync needed
1059  *
1060  * Emit a VM flush when it is necessary.
1061  *
1062  * Returns:
1063  * 0 on success, errno otherwise.
1064  */
1065 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1066 		    bool need_pipe_sync)
1067 {
1068 	struct amdgpu_device *adev = ring->adev;
1069 	unsigned vmhub = ring->funcs->vmhub;
1070 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1071 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1072 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1073 		id->gds_base != job->gds_base ||
1074 		id->gds_size != job->gds_size ||
1075 		id->gws_base != job->gws_base ||
1076 		id->gws_size != job->gws_size ||
1077 		id->oa_base != job->oa_base ||
1078 		id->oa_size != job->oa_size);
1079 	bool vm_flush_needed = job->vm_needs_flush;
1080 	struct dma_fence *fence = NULL;
1081 	bool pasid_mapping_needed = false;
1082 	unsigned patch_offset = 0;
1083 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1084 	int r;
1085 
1086 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1087 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1088 
1089 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1090 		gds_switch_needed = true;
1091 		vm_flush_needed = true;
1092 		pasid_mapping_needed = true;
1093 	}
1094 
1095 	mutex_lock(&id_mgr->lock);
1096 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1097 	    !dma_fence_is_signaled(id->pasid_mapping))
1098 		pasid_mapping_needed = true;
1099 	mutex_unlock(&id_mgr->lock);
1100 
1101 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1102 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1103 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1104 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1105 		ring->funcs->emit_wreg;
1106 
1107 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1108 		return 0;
1109 
1110 	if (ring->funcs->init_cond_exec)
1111 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1112 
1113 	if (need_pipe_sync)
1114 		amdgpu_ring_emit_pipeline_sync(ring);
1115 
1116 	if (vm_flush_needed) {
1117 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1118 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1119 	}
1120 
1121 	if (pasid_mapping_needed)
1122 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1123 
1124 	if (vm_flush_needed || pasid_mapping_needed) {
1125 		r = amdgpu_fence_emit(ring, &fence, 0);
1126 		if (r)
1127 			return r;
1128 	}
1129 
1130 	if (vm_flush_needed) {
1131 		mutex_lock(&id_mgr->lock);
1132 		dma_fence_put(id->last_flush);
1133 		id->last_flush = dma_fence_get(fence);
1134 		id->current_gpu_reset_count =
1135 			atomic_read(&adev->gpu_reset_counter);
1136 		mutex_unlock(&id_mgr->lock);
1137 	}
1138 
1139 	if (pasid_mapping_needed) {
1140 		mutex_lock(&id_mgr->lock);
1141 		id->pasid = job->pasid;
1142 		dma_fence_put(id->pasid_mapping);
1143 		id->pasid_mapping = dma_fence_get(fence);
1144 		mutex_unlock(&id_mgr->lock);
1145 	}
1146 	dma_fence_put(fence);
1147 
1148 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1149 		id->gds_base = job->gds_base;
1150 		id->gds_size = job->gds_size;
1151 		id->gws_base = job->gws_base;
1152 		id->gws_size = job->gws_size;
1153 		id->oa_base = job->oa_base;
1154 		id->oa_size = job->oa_size;
1155 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1156 					    job->gds_size, job->gws_base,
1157 					    job->gws_size, job->oa_base,
1158 					    job->oa_size);
1159 	}
1160 
1161 	if (ring->funcs->patch_cond_exec)
1162 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1163 
1164 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1165 	if (ring->funcs->emit_switch_buffer) {
1166 		amdgpu_ring_emit_switch_buffer(ring);
1167 		amdgpu_ring_emit_switch_buffer(ring);
1168 	}
1169 	return 0;
1170 }
1171 
1172 /**
1173  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1174  *
1175  * @vm: requested vm
1176  * @bo: requested buffer object
1177  *
1178  * Find @bo inside the requested vm.
1179  * Search inside the @bos vm list for the requested vm
1180  * Returns the found bo_va or NULL if none is found
1181  *
1182  * Object has to be reserved!
1183  *
1184  * Returns:
1185  * Found bo_va or NULL.
1186  */
1187 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1188 				       struct amdgpu_bo *bo)
1189 {
1190 	struct amdgpu_vm_bo_base *base;
1191 
1192 	for (base = bo->vm_bo; base; base = base->next) {
1193 		if (base->vm != vm)
1194 			continue;
1195 
1196 		return container_of(base, struct amdgpu_bo_va, base);
1197 	}
1198 	return NULL;
1199 }
1200 
1201 /**
1202  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1203  *
1204  * @pages_addr: optional DMA address to use for lookup
1205  * @addr: the unmapped addr
1206  *
1207  * Look up the physical address of the page that the pte resolves
1208  * to.
1209  *
1210  * Returns:
1211  * The pointer for the page table entry.
1212  */
1213 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1214 {
1215 	uint64_t result;
1216 
1217 	/* page table offset */
1218 	result = pages_addr[addr >> PAGE_SHIFT];
1219 
1220 	/* in case cpu page size != gpu page size*/
1221 	result |= addr & (~PAGE_MASK);
1222 
1223 	result &= 0xFFFFFFFFFFFFF000ULL;
1224 
1225 	return result;
1226 }
1227 
1228 /**
1229  * amdgpu_vm_update_pde - update a single level in the hierarchy
1230  *
1231  * @params: parameters for the update
1232  * @vm: requested vm
1233  * @entry: entry to update
1234  *
1235  * Makes sure the requested entry in parent is up to date.
1236  */
1237 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1238 				struct amdgpu_vm *vm,
1239 				struct amdgpu_vm_pt *entry)
1240 {
1241 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1242 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1243 	uint64_t pde, pt, flags;
1244 	unsigned level;
1245 
1246 	for (level = 0, pbo = bo->parent; pbo; ++level)
1247 		pbo = pbo->parent;
1248 
1249 	level += params->adev->vm_manager.root_level;
1250 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1251 	pde = (entry - parent->entries) * 8;
1252 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1253 }
1254 
1255 /**
1256  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1257  *
1258  * @adev: amdgpu_device pointer
1259  * @vm: related vm
1260  *
1261  * Mark all PD level as invalid after an error.
1262  */
1263 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1264 				     struct amdgpu_vm *vm)
1265 {
1266 	struct amdgpu_vm_pt_cursor cursor;
1267 	struct amdgpu_vm_pt *entry;
1268 
1269 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1270 		if (entry->base.bo && !entry->base.moved)
1271 			amdgpu_vm_bo_relocated(&entry->base);
1272 }
1273 
1274 /**
1275  * amdgpu_vm_update_pdes - make sure that all directories are valid
1276  *
1277  * @adev: amdgpu_device pointer
1278  * @vm: requested vm
1279  * @direct: submit directly to the paging queue
1280  *
1281  * Makes sure all directories are up to date.
1282  *
1283  * Returns:
1284  * 0 for success, error for failure.
1285  */
1286 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1287 			  struct amdgpu_vm *vm, bool direct)
1288 {
1289 	struct amdgpu_vm_update_params params;
1290 	int r;
1291 
1292 	if (list_empty(&vm->relocated))
1293 		return 0;
1294 
1295 	memset(&params, 0, sizeof(params));
1296 	params.adev = adev;
1297 	params.vm = vm;
1298 	params.direct = direct;
1299 
1300 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1301 	if (r)
1302 		return r;
1303 
1304 	while (!list_empty(&vm->relocated)) {
1305 		struct amdgpu_vm_pt *entry;
1306 
1307 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1308 					 base.vm_status);
1309 		amdgpu_vm_bo_idle(&entry->base);
1310 
1311 		r = amdgpu_vm_update_pde(&params, vm, entry);
1312 		if (r)
1313 			goto error;
1314 	}
1315 
1316 	r = vm->update_funcs->commit(&params, &vm->last_update);
1317 	if (r)
1318 		goto error;
1319 	return 0;
1320 
1321 error:
1322 	amdgpu_vm_invalidate_pds(adev, vm);
1323 	return r;
1324 }
1325 
1326 /*
1327  * amdgpu_vm_update_flags - figure out flags for PTE updates
1328  *
1329  * Make sure to set the right flags for the PTEs at the desired level.
1330  */
1331 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1332 				   struct amdgpu_bo *bo, unsigned level,
1333 				   uint64_t pe, uint64_t addr,
1334 				   unsigned count, uint32_t incr,
1335 				   uint64_t flags)
1336 
1337 {
1338 	if (level != AMDGPU_VM_PTB) {
1339 		flags |= AMDGPU_PDE_PTE;
1340 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1341 
1342 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1343 		   !(flags & AMDGPU_PTE_VALID) &&
1344 		   !(flags & AMDGPU_PTE_PRT)) {
1345 
1346 		/* Workaround for fault priority problem on GMC9 */
1347 		flags |= AMDGPU_PTE_EXECUTABLE;
1348 	}
1349 
1350 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1351 					 flags);
1352 }
1353 
1354 /**
1355  * amdgpu_vm_fragment - get fragment for PTEs
1356  *
1357  * @params: see amdgpu_vm_update_params definition
1358  * @start: first PTE to handle
1359  * @end: last PTE to handle
1360  * @flags: hw mapping flags
1361  * @frag: resulting fragment size
1362  * @frag_end: end of this fragment
1363  *
1364  * Returns the first possible fragment for the start and end address.
1365  */
1366 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1367 			       uint64_t start, uint64_t end, uint64_t flags,
1368 			       unsigned int *frag, uint64_t *frag_end)
1369 {
1370 	/**
1371 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1372 	 * field in the PTE. When this field is set to a non-zero value, page
1373 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1374 	 * flags are considered valid for all PTEs within the fragment range
1375 	 * and corresponding mappings are assumed to be physically contiguous.
1376 	 *
1377 	 * The L1 TLB can store a single PTE for the whole fragment,
1378 	 * significantly increasing the space available for translation
1379 	 * caching. This leads to large improvements in throughput when the
1380 	 * TLB is under pressure.
1381 	 *
1382 	 * The L2 TLB distributes small and large fragments into two
1383 	 * asymmetric partitions. The large fragment cache is significantly
1384 	 * larger. Thus, we try to use large fragments wherever possible.
1385 	 * Userspace can support this by aligning virtual base address and
1386 	 * allocation size to the fragment size.
1387 	 *
1388 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1389 	 * is now directly feed with small/huge/giant pages from the walker.
1390 	 */
1391 	unsigned max_frag;
1392 
1393 	if (params->adev->asic_type < CHIP_VEGA10)
1394 		max_frag = params->adev->vm_manager.fragment_size;
1395 	else
1396 		max_frag = 31;
1397 
1398 	/* system pages are non continuously */
1399 	if (params->pages_addr) {
1400 		*frag = 0;
1401 		*frag_end = end;
1402 		return;
1403 	}
1404 
1405 	/* This intentionally wraps around if no bit is set */
1406 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1407 	if (*frag >= max_frag) {
1408 		*frag = max_frag;
1409 		*frag_end = end & ~((1ULL << max_frag) - 1);
1410 	} else {
1411 		*frag_end = start + (1 << *frag);
1412 	}
1413 }
1414 
1415 /**
1416  * amdgpu_vm_update_ptes - make sure that page tables are valid
1417  *
1418  * @params: see amdgpu_vm_update_params definition
1419  * @start: start of GPU address range
1420  * @end: end of GPU address range
1421  * @dst: destination address to map to, the next dst inside the function
1422  * @flags: mapping flags
1423  *
1424  * Update the page tables in the range @start - @end.
1425  *
1426  * Returns:
1427  * 0 for success, -EINVAL for failure.
1428  */
1429 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1430 				 uint64_t start, uint64_t end,
1431 				 uint64_t dst, uint64_t flags)
1432 {
1433 	struct amdgpu_device *adev = params->adev;
1434 	struct amdgpu_vm_pt_cursor cursor;
1435 	uint64_t frag_start = start, frag_end;
1436 	unsigned int frag;
1437 	int r;
1438 
1439 	/* figure out the initial fragment */
1440 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1441 
1442 	/* walk over the address space and update the PTs */
1443 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1444 	while (cursor.pfn < end) {
1445 		unsigned shift, parent_shift, mask;
1446 		uint64_t incr, entry_end, pe_start;
1447 		struct amdgpu_bo *pt;
1448 
1449 		if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1450 			/* make sure that the page tables covering the
1451 			 * address range are actually allocated
1452 			 */
1453 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1454 						&cursor, params->direct);
1455 			if (r)
1456 				return r;
1457 		}
1458 
1459 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1460 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1461 		if (adev->asic_type < CHIP_VEGA10 &&
1462 		    (flags & AMDGPU_PTE_VALID)) {
1463 			/* No huge page support before GMC v9 */
1464 			if (cursor.level != AMDGPU_VM_PTB) {
1465 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1466 					return -ENOENT;
1467 				continue;
1468 			}
1469 		} else if (frag < shift) {
1470 			/* We can't use this level when the fragment size is
1471 			 * smaller than the address shift. Go to the next
1472 			 * child entry and try again.
1473 			 */
1474 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1475 				continue;
1476 		} else if (frag >= parent_shift) {
1477 			/* If the fragment size is even larger than the parent
1478 			 * shift we should go up one level and check it again.
1479 			 */
1480 			if (!amdgpu_vm_pt_ancestor(&cursor))
1481 				return -EINVAL;
1482 			continue;
1483 		}
1484 
1485 		pt = cursor.entry->base.bo;
1486 		if (!pt) {
1487 			/* We need all PDs and PTs for mapping something, */
1488 			if (flags & AMDGPU_PTE_VALID)
1489 				return -ENOENT;
1490 
1491 			/* but unmapping something can happen at a higher
1492 			 * level.
1493 			 */
1494 			if (!amdgpu_vm_pt_ancestor(&cursor))
1495 				return -EINVAL;
1496 
1497 			pt = cursor.entry->base.bo;
1498 			shift = parent_shift;
1499 		}
1500 
1501 		/* Looks good so far, calculate parameters for the update */
1502 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1503 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1504 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1505 		entry_end = ((uint64_t)mask + 1) << shift;
1506 		entry_end += cursor.pfn & ~(entry_end - 1);
1507 		entry_end = min(entry_end, end);
1508 
1509 		do {
1510 			uint64_t upd_end = min(entry_end, frag_end);
1511 			unsigned nptes = (upd_end - frag_start) >> shift;
1512 
1513 			/* This can happen when we set higher level PDs to
1514 			 * silent to stop fault floods.
1515 			 */
1516 			nptes = max(nptes, 1u);
1517 			amdgpu_vm_update_flags(params, pt, cursor.level,
1518 					       pe_start, dst, nptes, incr,
1519 					       flags | AMDGPU_PTE_FRAG(frag));
1520 
1521 			pe_start += nptes * 8;
1522 			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1523 
1524 			frag_start = upd_end;
1525 			if (frag_start >= frag_end) {
1526 				/* figure out the next fragment */
1527 				amdgpu_vm_fragment(params, frag_start, end,
1528 						   flags, &frag, &frag_end);
1529 				if (frag < shift)
1530 					break;
1531 			}
1532 		} while (frag_start < entry_end);
1533 
1534 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1535 			/* Free all child entries.
1536 			 * Update the tables with the flags and addresses and free up subsequent
1537 			 * tables in the case of huge pages or freed up areas.
1538 			 * This is the maximum you can free, because all other page tables are not
1539 			 * completely covered by the range and so potentially still in use.
1540 			 */
1541 			while (cursor.pfn < frag_start) {
1542 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1543 				amdgpu_vm_pt_next(adev, &cursor);
1544 			}
1545 
1546 		} else if (frag >= shift) {
1547 			/* or just move on to the next on the same level. */
1548 			amdgpu_vm_pt_next(adev, &cursor);
1549 		}
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 /**
1556  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1557  *
1558  * @adev: amdgpu_device pointer
1559  * @vm: requested vm
1560  * @direct: direct submission in a page fault
1561  * @resv: fences we need to sync to
1562  * @start: start of mapped range
1563  * @last: last mapped entry
1564  * @flags: flags for the entries
1565  * @addr: addr to set the area to
1566  * @pages_addr: DMA addresses to use for mapping
1567  * @fence: optional resulting fence
1568  *
1569  * Fill in the page table entries between @start and @last.
1570  *
1571  * Returns:
1572  * 0 for success, -EINVAL for failure.
1573  */
1574 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1575 				       struct amdgpu_vm *vm, bool direct,
1576 				       struct dma_resv *resv,
1577 				       uint64_t start, uint64_t last,
1578 				       uint64_t flags, uint64_t addr,
1579 				       dma_addr_t *pages_addr,
1580 				       struct dma_fence **fence)
1581 {
1582 	struct amdgpu_vm_update_params params;
1583 	enum amdgpu_sync_mode sync_mode;
1584 	int r;
1585 
1586 	memset(&params, 0, sizeof(params));
1587 	params.adev = adev;
1588 	params.vm = vm;
1589 	params.direct = direct;
1590 	params.pages_addr = pages_addr;
1591 
1592 	/* Implicitly sync to command submissions in the same VM before
1593 	 * unmapping. Sync to moving fences before mapping.
1594 	 */
1595 	if (!(flags & AMDGPU_PTE_VALID))
1596 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1597 	else
1598 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1599 
1600 	amdgpu_vm_eviction_lock(vm);
1601 	if (vm->evicting) {
1602 		r = -EBUSY;
1603 		goto error_unlock;
1604 	}
1605 
1606 	if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1607 		struct amdgpu_bo *root = vm->root.base.bo;
1608 
1609 		if (!dma_fence_is_signaled(vm->last_direct))
1610 			amdgpu_bo_fence(root, vm->last_direct, true);
1611 	}
1612 
1613 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1614 	if (r)
1615 		goto error_unlock;
1616 
1617 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1618 	if (r)
1619 		goto error_unlock;
1620 
1621 	r = vm->update_funcs->commit(&params, fence);
1622 
1623 error_unlock:
1624 	amdgpu_vm_eviction_unlock(vm);
1625 	return r;
1626 }
1627 
1628 /**
1629  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1630  *
1631  * @adev: amdgpu_device pointer
1632  * @resv: fences we need to sync to
1633  * @pages_addr: DMA addresses to use for mapping
1634  * @vm: requested vm
1635  * @mapping: mapped range and flags to use for the update
1636  * @flags: HW flags for the mapping
1637  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1638  * @nodes: array of drm_mm_nodes with the MC addresses
1639  * @fence: optional resulting fence
1640  *
1641  * Split the mapping into smaller chunks so that each update fits
1642  * into a SDMA IB.
1643  *
1644  * Returns:
1645  * 0 for success, -EINVAL for failure.
1646  */
1647 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1648 				      struct dma_resv *resv,
1649 				      dma_addr_t *pages_addr,
1650 				      struct amdgpu_vm *vm,
1651 				      struct amdgpu_bo_va_mapping *mapping,
1652 				      uint64_t flags,
1653 				      struct amdgpu_device *bo_adev,
1654 				      struct drm_mm_node *nodes,
1655 				      struct dma_fence **fence)
1656 {
1657 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1658 	uint64_t pfn, start = mapping->start;
1659 	int r;
1660 
1661 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1662 	 * but in case of something, we filter the flags in first place
1663 	 */
1664 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1665 		flags &= ~AMDGPU_PTE_READABLE;
1666 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1667 		flags &= ~AMDGPU_PTE_WRITEABLE;
1668 
1669 	/* Apply ASIC specific mapping flags */
1670 	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1671 
1672 	trace_amdgpu_vm_bo_update(mapping);
1673 
1674 	pfn = mapping->offset >> PAGE_SHIFT;
1675 	if (nodes) {
1676 		while (pfn >= nodes->size) {
1677 			pfn -= nodes->size;
1678 			++nodes;
1679 		}
1680 	}
1681 
1682 	do {
1683 		dma_addr_t *dma_addr = NULL;
1684 		uint64_t max_entries;
1685 		uint64_t addr, last;
1686 
1687 		if (nodes) {
1688 			addr = nodes->start << PAGE_SHIFT;
1689 			max_entries = (nodes->size - pfn) *
1690 				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1691 		} else {
1692 			addr = 0;
1693 			max_entries = S64_MAX;
1694 		}
1695 
1696 		if (pages_addr) {
1697 			uint64_t count;
1698 
1699 			for (count = 1;
1700 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1701 			     ++count) {
1702 				uint64_t idx = pfn + count;
1703 
1704 				if (pages_addr[idx] !=
1705 				    (pages_addr[idx - 1] + PAGE_SIZE))
1706 					break;
1707 			}
1708 
1709 			if (count < min_linear_pages) {
1710 				addr = pfn << PAGE_SHIFT;
1711 				dma_addr = pages_addr;
1712 			} else {
1713 				addr = pages_addr[pfn];
1714 				max_entries = count *
1715 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1716 			}
1717 
1718 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1719 			addr += bo_adev->vm_manager.vram_base_offset;
1720 			addr += pfn << PAGE_SHIFT;
1721 		}
1722 
1723 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1724 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, resv,
1725 						start, last, flags, addr,
1726 						dma_addr, fence);
1727 		if (r)
1728 			return r;
1729 
1730 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1731 		if (nodes && nodes->size == pfn) {
1732 			pfn = 0;
1733 			++nodes;
1734 		}
1735 		start = last + 1;
1736 
1737 	} while (unlikely(start != mapping->last + 1));
1738 
1739 	return 0;
1740 }
1741 
1742 /**
1743  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1744  *
1745  * @adev: amdgpu_device pointer
1746  * @bo_va: requested BO and VM object
1747  * @clear: if true clear the entries
1748  *
1749  * Fill in the page table entries for @bo_va.
1750  *
1751  * Returns:
1752  * 0 for success, -EINVAL for failure.
1753  */
1754 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1755 			bool clear)
1756 {
1757 	struct amdgpu_bo *bo = bo_va->base.bo;
1758 	struct amdgpu_vm *vm = bo_va->base.vm;
1759 	struct amdgpu_bo_va_mapping *mapping;
1760 	dma_addr_t *pages_addr = NULL;
1761 	struct ttm_mem_reg *mem;
1762 	struct drm_mm_node *nodes;
1763 	struct dma_fence **last_update;
1764 	struct dma_resv *resv;
1765 	uint64_t flags;
1766 	struct amdgpu_device *bo_adev = adev;
1767 	int r;
1768 
1769 	if (clear || !bo) {
1770 		mem = NULL;
1771 		nodes = NULL;
1772 		resv = vm->root.base.bo->tbo.base.resv;
1773 	} else {
1774 		struct ttm_dma_tt *ttm;
1775 
1776 		mem = &bo->tbo.mem;
1777 		nodes = mem->mm_node;
1778 		if (mem->mem_type == TTM_PL_TT) {
1779 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1780 			pages_addr = ttm->dma_address;
1781 		}
1782 		resv = bo->tbo.base.resv;
1783 	}
1784 
1785 	if (bo) {
1786 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1787 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1788 	} else {
1789 		flags = 0x0;
1790 	}
1791 
1792 	if (clear || (bo && bo->tbo.base.resv ==
1793 		      vm->root.base.bo->tbo.base.resv))
1794 		last_update = &vm->last_update;
1795 	else
1796 		last_update = &bo_va->last_pt_update;
1797 
1798 	if (!clear && bo_va->base.moved) {
1799 		bo_va->base.moved = false;
1800 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1801 
1802 	} else if (bo_va->cleared != clear) {
1803 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1804 	}
1805 
1806 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1807 		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1808 					       mapping, flags, bo_adev, nodes,
1809 					       last_update);
1810 		if (r)
1811 			return r;
1812 	}
1813 
1814 	/* If the BO is not in its preferred location add it back to
1815 	 * the evicted list so that it gets validated again on the
1816 	 * next command submission.
1817 	 */
1818 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1819 		uint32_t mem_type = bo->tbo.mem.mem_type;
1820 
1821 		if (!(bo->preferred_domains &
1822 		      amdgpu_mem_type_to_domain(mem_type)))
1823 			amdgpu_vm_bo_evicted(&bo_va->base);
1824 		else
1825 			amdgpu_vm_bo_idle(&bo_va->base);
1826 	} else {
1827 		amdgpu_vm_bo_done(&bo_va->base);
1828 	}
1829 
1830 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1831 	bo_va->cleared = clear;
1832 
1833 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1834 		list_for_each_entry(mapping, &bo_va->valids, list)
1835 			trace_amdgpu_vm_bo_mapping(mapping);
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * amdgpu_vm_update_prt_state - update the global PRT state
1843  *
1844  * @adev: amdgpu_device pointer
1845  */
1846 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1847 {
1848 	unsigned long flags;
1849 	bool enable;
1850 
1851 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1852 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1853 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1854 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1855 }
1856 
1857 /**
1858  * amdgpu_vm_prt_get - add a PRT user
1859  *
1860  * @adev: amdgpu_device pointer
1861  */
1862 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1863 {
1864 	if (!adev->gmc.gmc_funcs->set_prt)
1865 		return;
1866 
1867 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1868 		amdgpu_vm_update_prt_state(adev);
1869 }
1870 
1871 /**
1872  * amdgpu_vm_prt_put - drop a PRT user
1873  *
1874  * @adev: amdgpu_device pointer
1875  */
1876 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1877 {
1878 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1879 		amdgpu_vm_update_prt_state(adev);
1880 }
1881 
1882 /**
1883  * amdgpu_vm_prt_cb - callback for updating the PRT status
1884  *
1885  * @fence: fence for the callback
1886  * @_cb: the callback function
1887  */
1888 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1889 {
1890 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1891 
1892 	amdgpu_vm_prt_put(cb->adev);
1893 	kfree(cb);
1894 }
1895 
1896 /**
1897  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1898  *
1899  * @adev: amdgpu_device pointer
1900  * @fence: fence for the callback
1901  */
1902 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1903 				 struct dma_fence *fence)
1904 {
1905 	struct amdgpu_prt_cb *cb;
1906 
1907 	if (!adev->gmc.gmc_funcs->set_prt)
1908 		return;
1909 
1910 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1911 	if (!cb) {
1912 		/* Last resort when we are OOM */
1913 		if (fence)
1914 			dma_fence_wait(fence, false);
1915 
1916 		amdgpu_vm_prt_put(adev);
1917 	} else {
1918 		cb->adev = adev;
1919 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1920 						     amdgpu_vm_prt_cb))
1921 			amdgpu_vm_prt_cb(fence, &cb->cb);
1922 	}
1923 }
1924 
1925 /**
1926  * amdgpu_vm_free_mapping - free a mapping
1927  *
1928  * @adev: amdgpu_device pointer
1929  * @vm: requested vm
1930  * @mapping: mapping to be freed
1931  * @fence: fence of the unmap operation
1932  *
1933  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1934  */
1935 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1936 				   struct amdgpu_vm *vm,
1937 				   struct amdgpu_bo_va_mapping *mapping,
1938 				   struct dma_fence *fence)
1939 {
1940 	if (mapping->flags & AMDGPU_PTE_PRT)
1941 		amdgpu_vm_add_prt_cb(adev, fence);
1942 	kfree(mapping);
1943 }
1944 
1945 /**
1946  * amdgpu_vm_prt_fini - finish all prt mappings
1947  *
1948  * @adev: amdgpu_device pointer
1949  * @vm: requested vm
1950  *
1951  * Register a cleanup callback to disable PRT support after VM dies.
1952  */
1953 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1954 {
1955 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1956 	struct dma_fence *excl, **shared;
1957 	unsigned i, shared_count;
1958 	int r;
1959 
1960 	r = dma_resv_get_fences_rcu(resv, &excl,
1961 					      &shared_count, &shared);
1962 	if (r) {
1963 		/* Not enough memory to grab the fence list, as last resort
1964 		 * block for all the fences to complete.
1965 		 */
1966 		dma_resv_wait_timeout_rcu(resv, true, false,
1967 						    MAX_SCHEDULE_TIMEOUT);
1968 		return;
1969 	}
1970 
1971 	/* Add a callback for each fence in the reservation object */
1972 	amdgpu_vm_prt_get(adev);
1973 	amdgpu_vm_add_prt_cb(adev, excl);
1974 
1975 	for (i = 0; i < shared_count; ++i) {
1976 		amdgpu_vm_prt_get(adev);
1977 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1978 	}
1979 
1980 	kfree(shared);
1981 }
1982 
1983 /**
1984  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1985  *
1986  * @adev: amdgpu_device pointer
1987  * @vm: requested vm
1988  * @fence: optional resulting fence (unchanged if no work needed to be done
1989  * or if an error occurred)
1990  *
1991  * Make sure all freed BOs are cleared in the PT.
1992  * PTs have to be reserved and mutex must be locked!
1993  *
1994  * Returns:
1995  * 0 for success.
1996  *
1997  */
1998 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1999 			  struct amdgpu_vm *vm,
2000 			  struct dma_fence **fence)
2001 {
2002 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2003 	struct amdgpu_bo_va_mapping *mapping;
2004 	uint64_t init_pte_value = 0;
2005 	struct dma_fence *f = NULL;
2006 	int r;
2007 
2008 	while (!list_empty(&vm->freed)) {
2009 		mapping = list_first_entry(&vm->freed,
2010 			struct amdgpu_bo_va_mapping, list);
2011 		list_del(&mapping->list);
2012 
2013 		if (vm->pte_support_ats &&
2014 		    mapping->start < AMDGPU_GMC_HOLE_START)
2015 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2016 
2017 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, resv,
2018 						mapping->start, mapping->last,
2019 						init_pte_value, 0, NULL, &f);
2020 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2021 		if (r) {
2022 			dma_fence_put(f);
2023 			return r;
2024 		}
2025 	}
2026 
2027 	if (fence && f) {
2028 		dma_fence_put(*fence);
2029 		*fence = f;
2030 	} else {
2031 		dma_fence_put(f);
2032 	}
2033 
2034 	return 0;
2035 
2036 }
2037 
2038 /**
2039  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2040  *
2041  * @adev: amdgpu_device pointer
2042  * @vm: requested vm
2043  *
2044  * Make sure all BOs which are moved are updated in the PTs.
2045  *
2046  * Returns:
2047  * 0 for success.
2048  *
2049  * PTs have to be reserved!
2050  */
2051 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2052 			   struct amdgpu_vm *vm)
2053 {
2054 	struct amdgpu_bo_va *bo_va, *tmp;
2055 	struct dma_resv *resv;
2056 	bool clear;
2057 	int r;
2058 
2059 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2060 		/* Per VM BOs never need to bo cleared in the page tables */
2061 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2062 		if (r)
2063 			return r;
2064 	}
2065 
2066 	spin_lock(&vm->invalidated_lock);
2067 	while (!list_empty(&vm->invalidated)) {
2068 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2069 					 base.vm_status);
2070 		resv = bo_va->base.bo->tbo.base.resv;
2071 		spin_unlock(&vm->invalidated_lock);
2072 
2073 		/* Try to reserve the BO to avoid clearing its ptes */
2074 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2075 			clear = false;
2076 		/* Somebody else is using the BO right now */
2077 		else
2078 			clear = true;
2079 
2080 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2081 		if (r)
2082 			return r;
2083 
2084 		if (!clear)
2085 			dma_resv_unlock(resv);
2086 		spin_lock(&vm->invalidated_lock);
2087 	}
2088 	spin_unlock(&vm->invalidated_lock);
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * amdgpu_vm_bo_add - add a bo to a specific vm
2095  *
2096  * @adev: amdgpu_device pointer
2097  * @vm: requested vm
2098  * @bo: amdgpu buffer object
2099  *
2100  * Add @bo into the requested vm.
2101  * Add @bo to the list of bos associated with the vm
2102  *
2103  * Returns:
2104  * Newly added bo_va or NULL for failure
2105  *
2106  * Object has to be reserved!
2107  */
2108 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2109 				      struct amdgpu_vm *vm,
2110 				      struct amdgpu_bo *bo)
2111 {
2112 	struct amdgpu_bo_va *bo_va;
2113 
2114 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2115 	if (bo_va == NULL) {
2116 		return NULL;
2117 	}
2118 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2119 
2120 	bo_va->ref_count = 1;
2121 	INIT_LIST_HEAD(&bo_va->valids);
2122 	INIT_LIST_HEAD(&bo_va->invalids);
2123 
2124 	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2125 	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2126 		bo_va->is_xgmi = true;
2127 		mutex_lock(&adev->vm_manager.lock_pstate);
2128 		/* Power up XGMI if it can be potentially used */
2129 		if (++adev->vm_manager.xgmi_map_counter == 1)
2130 			amdgpu_xgmi_set_pstate(adev, 1);
2131 		mutex_unlock(&adev->vm_manager.lock_pstate);
2132 	}
2133 
2134 	return bo_va;
2135 }
2136 
2137 
2138 /**
2139  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2140  *
2141  * @adev: amdgpu_device pointer
2142  * @bo_va: bo_va to store the address
2143  * @mapping: the mapping to insert
2144  *
2145  * Insert a new mapping into all structures.
2146  */
2147 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2148 				    struct amdgpu_bo_va *bo_va,
2149 				    struct amdgpu_bo_va_mapping *mapping)
2150 {
2151 	struct amdgpu_vm *vm = bo_va->base.vm;
2152 	struct amdgpu_bo *bo = bo_va->base.bo;
2153 
2154 	mapping->bo_va = bo_va;
2155 	list_add(&mapping->list, &bo_va->invalids);
2156 	amdgpu_vm_it_insert(mapping, &vm->va);
2157 
2158 	if (mapping->flags & AMDGPU_PTE_PRT)
2159 		amdgpu_vm_prt_get(adev);
2160 
2161 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2162 	    !bo_va->base.moved) {
2163 		list_move(&bo_va->base.vm_status, &vm->moved);
2164 	}
2165 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2166 }
2167 
2168 /**
2169  * amdgpu_vm_bo_map - map bo inside a vm
2170  *
2171  * @adev: amdgpu_device pointer
2172  * @bo_va: bo_va to store the address
2173  * @saddr: where to map the BO
2174  * @offset: requested offset in the BO
2175  * @size: BO size in bytes
2176  * @flags: attributes of pages (read/write/valid/etc.)
2177  *
2178  * Add a mapping of the BO at the specefied addr into the VM.
2179  *
2180  * Returns:
2181  * 0 for success, error for failure.
2182  *
2183  * Object has to be reserved and unreserved outside!
2184  */
2185 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2186 		     struct amdgpu_bo_va *bo_va,
2187 		     uint64_t saddr, uint64_t offset,
2188 		     uint64_t size, uint64_t flags)
2189 {
2190 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2191 	struct amdgpu_bo *bo = bo_va->base.bo;
2192 	struct amdgpu_vm *vm = bo_va->base.vm;
2193 	uint64_t eaddr;
2194 
2195 	/* validate the parameters */
2196 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2197 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2198 		return -EINVAL;
2199 
2200 	/* make sure object fit at this offset */
2201 	eaddr = saddr + size - 1;
2202 	if (saddr >= eaddr ||
2203 	    (bo && offset + size > amdgpu_bo_size(bo)))
2204 		return -EINVAL;
2205 
2206 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2207 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2208 
2209 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2210 	if (tmp) {
2211 		/* bo and tmp overlap, invalid addr */
2212 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2213 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2214 			tmp->start, tmp->last + 1);
2215 		return -EINVAL;
2216 	}
2217 
2218 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2219 	if (!mapping)
2220 		return -ENOMEM;
2221 
2222 	mapping->start = saddr;
2223 	mapping->last = eaddr;
2224 	mapping->offset = offset;
2225 	mapping->flags = flags;
2226 
2227 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2228 
2229 	return 0;
2230 }
2231 
2232 /**
2233  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2234  *
2235  * @adev: amdgpu_device pointer
2236  * @bo_va: bo_va to store the address
2237  * @saddr: where to map the BO
2238  * @offset: requested offset in the BO
2239  * @size: BO size in bytes
2240  * @flags: attributes of pages (read/write/valid/etc.)
2241  *
2242  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2243  * mappings as we do so.
2244  *
2245  * Returns:
2246  * 0 for success, error for failure.
2247  *
2248  * Object has to be reserved and unreserved outside!
2249  */
2250 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2251 			     struct amdgpu_bo_va *bo_va,
2252 			     uint64_t saddr, uint64_t offset,
2253 			     uint64_t size, uint64_t flags)
2254 {
2255 	struct amdgpu_bo_va_mapping *mapping;
2256 	struct amdgpu_bo *bo = bo_va->base.bo;
2257 	uint64_t eaddr;
2258 	int r;
2259 
2260 	/* validate the parameters */
2261 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2262 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2263 		return -EINVAL;
2264 
2265 	/* make sure object fit at this offset */
2266 	eaddr = saddr + size - 1;
2267 	if (saddr >= eaddr ||
2268 	    (bo && offset + size > amdgpu_bo_size(bo)))
2269 		return -EINVAL;
2270 
2271 	/* Allocate all the needed memory */
2272 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2273 	if (!mapping)
2274 		return -ENOMEM;
2275 
2276 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2277 	if (r) {
2278 		kfree(mapping);
2279 		return r;
2280 	}
2281 
2282 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2283 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2284 
2285 	mapping->start = saddr;
2286 	mapping->last = eaddr;
2287 	mapping->offset = offset;
2288 	mapping->flags = flags;
2289 
2290 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2291 
2292 	return 0;
2293 }
2294 
2295 /**
2296  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2297  *
2298  * @adev: amdgpu_device pointer
2299  * @bo_va: bo_va to remove the address from
2300  * @saddr: where to the BO is mapped
2301  *
2302  * Remove a mapping of the BO at the specefied addr from the VM.
2303  *
2304  * Returns:
2305  * 0 for success, error for failure.
2306  *
2307  * Object has to be reserved and unreserved outside!
2308  */
2309 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2310 		       struct amdgpu_bo_va *bo_va,
2311 		       uint64_t saddr)
2312 {
2313 	struct amdgpu_bo_va_mapping *mapping;
2314 	struct amdgpu_vm *vm = bo_va->base.vm;
2315 	bool valid = true;
2316 
2317 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2318 
2319 	list_for_each_entry(mapping, &bo_va->valids, list) {
2320 		if (mapping->start == saddr)
2321 			break;
2322 	}
2323 
2324 	if (&mapping->list == &bo_va->valids) {
2325 		valid = false;
2326 
2327 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2328 			if (mapping->start == saddr)
2329 				break;
2330 		}
2331 
2332 		if (&mapping->list == &bo_va->invalids)
2333 			return -ENOENT;
2334 	}
2335 
2336 	list_del(&mapping->list);
2337 	amdgpu_vm_it_remove(mapping, &vm->va);
2338 	mapping->bo_va = NULL;
2339 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2340 
2341 	if (valid)
2342 		list_add(&mapping->list, &vm->freed);
2343 	else
2344 		amdgpu_vm_free_mapping(adev, vm, mapping,
2345 				       bo_va->last_pt_update);
2346 
2347 	return 0;
2348 }
2349 
2350 /**
2351  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2352  *
2353  * @adev: amdgpu_device pointer
2354  * @vm: VM structure to use
2355  * @saddr: start of the range
2356  * @size: size of the range
2357  *
2358  * Remove all mappings in a range, split them as appropriate.
2359  *
2360  * Returns:
2361  * 0 for success, error for failure.
2362  */
2363 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2364 				struct amdgpu_vm *vm,
2365 				uint64_t saddr, uint64_t size)
2366 {
2367 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2368 	LIST_HEAD(removed);
2369 	uint64_t eaddr;
2370 
2371 	eaddr = saddr + size - 1;
2372 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2373 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2374 
2375 	/* Allocate all the needed memory */
2376 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2377 	if (!before)
2378 		return -ENOMEM;
2379 	INIT_LIST_HEAD(&before->list);
2380 
2381 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2382 	if (!after) {
2383 		kfree(before);
2384 		return -ENOMEM;
2385 	}
2386 	INIT_LIST_HEAD(&after->list);
2387 
2388 	/* Now gather all removed mappings */
2389 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2390 	while (tmp) {
2391 		/* Remember mapping split at the start */
2392 		if (tmp->start < saddr) {
2393 			before->start = tmp->start;
2394 			before->last = saddr - 1;
2395 			before->offset = tmp->offset;
2396 			before->flags = tmp->flags;
2397 			before->bo_va = tmp->bo_va;
2398 			list_add(&before->list, &tmp->bo_va->invalids);
2399 		}
2400 
2401 		/* Remember mapping split at the end */
2402 		if (tmp->last > eaddr) {
2403 			after->start = eaddr + 1;
2404 			after->last = tmp->last;
2405 			after->offset = tmp->offset;
2406 			after->offset += after->start - tmp->start;
2407 			after->flags = tmp->flags;
2408 			after->bo_va = tmp->bo_va;
2409 			list_add(&after->list, &tmp->bo_va->invalids);
2410 		}
2411 
2412 		list_del(&tmp->list);
2413 		list_add(&tmp->list, &removed);
2414 
2415 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2416 	}
2417 
2418 	/* And free them up */
2419 	list_for_each_entry_safe(tmp, next, &removed, list) {
2420 		amdgpu_vm_it_remove(tmp, &vm->va);
2421 		list_del(&tmp->list);
2422 
2423 		if (tmp->start < saddr)
2424 		    tmp->start = saddr;
2425 		if (tmp->last > eaddr)
2426 		    tmp->last = eaddr;
2427 
2428 		tmp->bo_va = NULL;
2429 		list_add(&tmp->list, &vm->freed);
2430 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2431 	}
2432 
2433 	/* Insert partial mapping before the range */
2434 	if (!list_empty(&before->list)) {
2435 		amdgpu_vm_it_insert(before, &vm->va);
2436 		if (before->flags & AMDGPU_PTE_PRT)
2437 			amdgpu_vm_prt_get(adev);
2438 	} else {
2439 		kfree(before);
2440 	}
2441 
2442 	/* Insert partial mapping after the range */
2443 	if (!list_empty(&after->list)) {
2444 		amdgpu_vm_it_insert(after, &vm->va);
2445 		if (after->flags & AMDGPU_PTE_PRT)
2446 			amdgpu_vm_prt_get(adev);
2447 	} else {
2448 		kfree(after);
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 /**
2455  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2456  *
2457  * @vm: the requested VM
2458  * @addr: the address
2459  *
2460  * Find a mapping by it's address.
2461  *
2462  * Returns:
2463  * The amdgpu_bo_va_mapping matching for addr or NULL
2464  *
2465  */
2466 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2467 							 uint64_t addr)
2468 {
2469 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2470 }
2471 
2472 /**
2473  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2474  *
2475  * @vm: the requested vm
2476  * @ticket: CS ticket
2477  *
2478  * Trace all mappings of BOs reserved during a command submission.
2479  */
2480 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2481 {
2482 	struct amdgpu_bo_va_mapping *mapping;
2483 
2484 	if (!trace_amdgpu_vm_bo_cs_enabled())
2485 		return;
2486 
2487 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2488 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2489 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2490 			struct amdgpu_bo *bo;
2491 
2492 			bo = mapping->bo_va->base.bo;
2493 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2494 			    ticket)
2495 				continue;
2496 		}
2497 
2498 		trace_amdgpu_vm_bo_cs(mapping);
2499 	}
2500 }
2501 
2502 /**
2503  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2504  *
2505  * @adev: amdgpu_device pointer
2506  * @bo_va: requested bo_va
2507  *
2508  * Remove @bo_va->bo from the requested vm.
2509  *
2510  * Object have to be reserved!
2511  */
2512 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2513 		      struct amdgpu_bo_va *bo_va)
2514 {
2515 	struct amdgpu_bo_va_mapping *mapping, *next;
2516 	struct amdgpu_bo *bo = bo_va->base.bo;
2517 	struct amdgpu_vm *vm = bo_va->base.vm;
2518 	struct amdgpu_vm_bo_base **base;
2519 
2520 	if (bo) {
2521 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2522 			vm->bulk_moveable = false;
2523 
2524 		for (base = &bo_va->base.bo->vm_bo; *base;
2525 		     base = &(*base)->next) {
2526 			if (*base != &bo_va->base)
2527 				continue;
2528 
2529 			*base = bo_va->base.next;
2530 			break;
2531 		}
2532 	}
2533 
2534 	spin_lock(&vm->invalidated_lock);
2535 	list_del(&bo_va->base.vm_status);
2536 	spin_unlock(&vm->invalidated_lock);
2537 
2538 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2539 		list_del(&mapping->list);
2540 		amdgpu_vm_it_remove(mapping, &vm->va);
2541 		mapping->bo_va = NULL;
2542 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2543 		list_add(&mapping->list, &vm->freed);
2544 	}
2545 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2546 		list_del(&mapping->list);
2547 		amdgpu_vm_it_remove(mapping, &vm->va);
2548 		amdgpu_vm_free_mapping(adev, vm, mapping,
2549 				       bo_va->last_pt_update);
2550 	}
2551 
2552 	dma_fence_put(bo_va->last_pt_update);
2553 
2554 	if (bo && bo_va->is_xgmi) {
2555 		mutex_lock(&adev->vm_manager.lock_pstate);
2556 		if (--adev->vm_manager.xgmi_map_counter == 0)
2557 			amdgpu_xgmi_set_pstate(adev, 0);
2558 		mutex_unlock(&adev->vm_manager.lock_pstate);
2559 	}
2560 
2561 	kfree(bo_va);
2562 }
2563 
2564 /**
2565  * amdgpu_vm_evictable - check if we can evict a VM
2566  *
2567  * @bo: A page table of the VM.
2568  *
2569  * Check if it is possible to evict a VM.
2570  */
2571 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2572 {
2573 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2574 
2575 	/* Page tables of a destroyed VM can go away immediately */
2576 	if (!bo_base || !bo_base->vm)
2577 		return true;
2578 
2579 	/* Don't evict VM page tables while they are busy */
2580 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2581 		return false;
2582 
2583 	/* Try to block ongoing updates */
2584 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2585 		return false;
2586 
2587 	/* Don't evict VM page tables while they are updated */
2588 	if (!dma_fence_is_signaled(bo_base->vm->last_direct)) {
2589 		amdgpu_vm_eviction_unlock(bo_base->vm);
2590 		return false;
2591 	}
2592 
2593 	bo_base->vm->evicting = true;
2594 	amdgpu_vm_eviction_unlock(bo_base->vm);
2595 	return true;
2596 }
2597 
2598 /**
2599  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2600  *
2601  * @adev: amdgpu_device pointer
2602  * @bo: amdgpu buffer object
2603  * @evicted: is the BO evicted
2604  *
2605  * Mark @bo as invalid.
2606  */
2607 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2608 			     struct amdgpu_bo *bo, bool evicted)
2609 {
2610 	struct amdgpu_vm_bo_base *bo_base;
2611 
2612 	/* shadow bo doesn't have bo base, its validation needs its parent */
2613 	if (bo->parent && bo->parent->shadow == bo)
2614 		bo = bo->parent;
2615 
2616 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2617 		struct amdgpu_vm *vm = bo_base->vm;
2618 
2619 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2620 			amdgpu_vm_bo_evicted(bo_base);
2621 			continue;
2622 		}
2623 
2624 		if (bo_base->moved)
2625 			continue;
2626 		bo_base->moved = true;
2627 
2628 		if (bo->tbo.type == ttm_bo_type_kernel)
2629 			amdgpu_vm_bo_relocated(bo_base);
2630 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2631 			amdgpu_vm_bo_moved(bo_base);
2632 		else
2633 			amdgpu_vm_bo_invalidated(bo_base);
2634 	}
2635 }
2636 
2637 /**
2638  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2639  *
2640  * @vm_size: VM size
2641  *
2642  * Returns:
2643  * VM page table as power of two
2644  */
2645 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2646 {
2647 	/* Total bits covered by PD + PTs */
2648 	unsigned bits = ilog2(vm_size) + 18;
2649 
2650 	/* Make sure the PD is 4K in size up to 8GB address space.
2651 	   Above that split equal between PD and PTs */
2652 	if (vm_size <= 8)
2653 		return (bits - 9);
2654 	else
2655 		return ((bits + 3) / 2);
2656 }
2657 
2658 /**
2659  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2660  *
2661  * @adev: amdgpu_device pointer
2662  * @min_vm_size: the minimum vm size in GB if it's set auto
2663  * @fragment_size_default: Default PTE fragment size
2664  * @max_level: max VMPT level
2665  * @max_bits: max address space size in bits
2666  *
2667  */
2668 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2669 			   uint32_t fragment_size_default, unsigned max_level,
2670 			   unsigned max_bits)
2671 {
2672 	unsigned int max_size = 1 << (max_bits - 30);
2673 	unsigned int vm_size;
2674 	uint64_t tmp;
2675 
2676 	/* adjust vm size first */
2677 	if (amdgpu_vm_size != -1) {
2678 		vm_size = amdgpu_vm_size;
2679 		if (vm_size > max_size) {
2680 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2681 				 amdgpu_vm_size, max_size);
2682 			vm_size = max_size;
2683 		}
2684 	} else {
2685 		struct sysinfo si;
2686 		unsigned int phys_ram_gb;
2687 
2688 		/* Optimal VM size depends on the amount of physical
2689 		 * RAM available. Underlying requirements and
2690 		 * assumptions:
2691 		 *
2692 		 *  - Need to map system memory and VRAM from all GPUs
2693 		 *     - VRAM from other GPUs not known here
2694 		 *     - Assume VRAM <= system memory
2695 		 *  - On GFX8 and older, VM space can be segmented for
2696 		 *    different MTYPEs
2697 		 *  - Need to allow room for fragmentation, guard pages etc.
2698 		 *
2699 		 * This adds up to a rough guess of system memory x3.
2700 		 * Round up to power of two to maximize the available
2701 		 * VM size with the given page table size.
2702 		 */
2703 		si_meminfo(&si);
2704 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2705 			       (1 << 30) - 1) >> 30;
2706 		vm_size = roundup_pow_of_two(
2707 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2708 	}
2709 
2710 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2711 
2712 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2713 	if (amdgpu_vm_block_size != -1)
2714 		tmp >>= amdgpu_vm_block_size - 9;
2715 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2716 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2717 	switch (adev->vm_manager.num_level) {
2718 	case 3:
2719 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2720 		break;
2721 	case 2:
2722 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2723 		break;
2724 	case 1:
2725 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2726 		break;
2727 	default:
2728 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2729 	}
2730 	/* block size depends on vm size and hw setup*/
2731 	if (amdgpu_vm_block_size != -1)
2732 		adev->vm_manager.block_size =
2733 			min((unsigned)amdgpu_vm_block_size, max_bits
2734 			    - AMDGPU_GPU_PAGE_SHIFT
2735 			    - 9 * adev->vm_manager.num_level);
2736 	else if (adev->vm_manager.num_level > 1)
2737 		adev->vm_manager.block_size = 9;
2738 	else
2739 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2740 
2741 	if (amdgpu_vm_fragment_size == -1)
2742 		adev->vm_manager.fragment_size = fragment_size_default;
2743 	else
2744 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2745 
2746 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2747 		 vm_size, adev->vm_manager.num_level + 1,
2748 		 adev->vm_manager.block_size,
2749 		 adev->vm_manager.fragment_size);
2750 }
2751 
2752 /**
2753  * amdgpu_vm_wait_idle - wait for the VM to become idle
2754  *
2755  * @vm: VM object to wait for
2756  * @timeout: timeout to wait for VM to become idle
2757  */
2758 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2759 {
2760 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2761 					    true, true, timeout);
2762 	if (timeout <= 0)
2763 		return timeout;
2764 
2765 	return dma_fence_wait_timeout(vm->last_direct, true, timeout);
2766 }
2767 
2768 /**
2769  * amdgpu_vm_init - initialize a vm instance
2770  *
2771  * @adev: amdgpu_device pointer
2772  * @vm: requested vm
2773  * @vm_context: Indicates if it GFX or Compute context
2774  * @pasid: Process address space identifier
2775  *
2776  * Init @vm fields.
2777  *
2778  * Returns:
2779  * 0 for success, error for failure.
2780  */
2781 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2782 		   int vm_context, unsigned int pasid)
2783 {
2784 	struct amdgpu_bo_param bp;
2785 	struct amdgpu_bo *root;
2786 	int r, i;
2787 
2788 	vm->va = RB_ROOT_CACHED;
2789 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2790 		vm->reserved_vmid[i] = NULL;
2791 	INIT_LIST_HEAD(&vm->evicted);
2792 	INIT_LIST_HEAD(&vm->relocated);
2793 	INIT_LIST_HEAD(&vm->moved);
2794 	INIT_LIST_HEAD(&vm->idle);
2795 	INIT_LIST_HEAD(&vm->invalidated);
2796 	spin_lock_init(&vm->invalidated_lock);
2797 	INIT_LIST_HEAD(&vm->freed);
2798 
2799 
2800 	/* create scheduler entities for page table updates */
2801 	r = drm_sched_entity_init(&vm->direct, DRM_SCHED_PRIORITY_NORMAL,
2802 				  adev->vm_manager.vm_pte_scheds,
2803 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2804 	if (r)
2805 		return r;
2806 
2807 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2808 				  adev->vm_manager.vm_pte_scheds,
2809 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2810 	if (r)
2811 		goto error_free_direct;
2812 
2813 	vm->pte_support_ats = false;
2814 	vm->is_compute_context = false;
2815 
2816 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2817 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2818 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2819 
2820 		if (adev->asic_type == CHIP_RAVEN)
2821 			vm->pte_support_ats = true;
2822 	} else {
2823 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2824 						AMDGPU_VM_USE_CPU_FOR_GFX);
2825 	}
2826 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2827 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2828 	WARN_ONCE((vm->use_cpu_for_update &&
2829 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2830 		  "CPU update of VM recommended only for large BAR system\n");
2831 
2832 	if (vm->use_cpu_for_update)
2833 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2834 	else
2835 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2836 	vm->last_update = NULL;
2837 	vm->last_direct = dma_fence_get_stub();
2838 
2839 	mutex_init(&vm->eviction_lock);
2840 	vm->evicting = false;
2841 
2842 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2843 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2844 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2845 	r = amdgpu_bo_create(adev, &bp, &root);
2846 	if (r)
2847 		goto error_free_delayed;
2848 
2849 	r = amdgpu_bo_reserve(root, true);
2850 	if (r)
2851 		goto error_free_root;
2852 
2853 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2854 	if (r)
2855 		goto error_unreserve;
2856 
2857 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2858 
2859 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2860 	if (r)
2861 		goto error_unreserve;
2862 
2863 	amdgpu_bo_unreserve(vm->root.base.bo);
2864 
2865 	if (pasid) {
2866 		unsigned long flags;
2867 
2868 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2869 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2870 			      GFP_ATOMIC);
2871 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2872 		if (r < 0)
2873 			goto error_free_root;
2874 
2875 		vm->pasid = pasid;
2876 	}
2877 
2878 	INIT_KFIFO(vm->faults);
2879 
2880 	return 0;
2881 
2882 error_unreserve:
2883 	amdgpu_bo_unreserve(vm->root.base.bo);
2884 
2885 error_free_root:
2886 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2887 	amdgpu_bo_unref(&vm->root.base.bo);
2888 	vm->root.base.bo = NULL;
2889 
2890 error_free_delayed:
2891 	dma_fence_put(vm->last_direct);
2892 	drm_sched_entity_destroy(&vm->delayed);
2893 
2894 error_free_direct:
2895 	drm_sched_entity_destroy(&vm->direct);
2896 
2897 	return r;
2898 }
2899 
2900 /**
2901  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2902  *
2903  * @adev: amdgpu_device pointer
2904  * @vm: the VM to check
2905  *
2906  * check all entries of the root PD, if any subsequent PDs are allocated,
2907  * it means there are page table creating and filling, and is no a clean
2908  * VM
2909  *
2910  * Returns:
2911  *	0 if this VM is clean
2912  */
2913 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2914 	struct amdgpu_vm *vm)
2915 {
2916 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2917 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2918 	unsigned int i = 0;
2919 
2920 	if (!(vm->root.entries))
2921 		return 0;
2922 
2923 	for (i = 0; i < entries; i++) {
2924 		if (vm->root.entries[i].base.bo)
2925 			return -EINVAL;
2926 	}
2927 
2928 	return 0;
2929 }
2930 
2931 /**
2932  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2933  *
2934  * @adev: amdgpu_device pointer
2935  * @vm: requested vm
2936  * @pasid: pasid to use
2937  *
2938  * This only works on GFX VMs that don't have any BOs added and no
2939  * page tables allocated yet.
2940  *
2941  * Changes the following VM parameters:
2942  * - use_cpu_for_update
2943  * - pte_supports_ats
2944  * - pasid (old PASID is released, because compute manages its own PASIDs)
2945  *
2946  * Reinitializes the page directory to reflect the changed ATS
2947  * setting.
2948  *
2949  * Returns:
2950  * 0 for success, -errno for errors.
2951  */
2952 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2953 			   unsigned int pasid)
2954 {
2955 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2956 	int r;
2957 
2958 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2959 	if (r)
2960 		return r;
2961 
2962 	/* Sanity checks */
2963 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2964 	if (r)
2965 		goto unreserve_bo;
2966 
2967 	if (pasid) {
2968 		unsigned long flags;
2969 
2970 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2971 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2972 			      GFP_ATOMIC);
2973 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2974 
2975 		if (r == -ENOSPC)
2976 			goto unreserve_bo;
2977 		r = 0;
2978 	}
2979 
2980 	/* Check if PD needs to be reinitialized and do it before
2981 	 * changing any other state, in case it fails.
2982 	 */
2983 	if (pte_support_ats != vm->pte_support_ats) {
2984 		vm->pte_support_ats = pte_support_ats;
2985 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2986 		if (r)
2987 			goto free_idr;
2988 	}
2989 
2990 	/* Update VM state */
2991 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2992 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2993 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2994 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2995 	WARN_ONCE((vm->use_cpu_for_update &&
2996 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2997 		  "CPU update of VM recommended only for large BAR system\n");
2998 
2999 	if (vm->use_cpu_for_update)
3000 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3001 	else
3002 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3003 	dma_fence_put(vm->last_update);
3004 	vm->last_update = NULL;
3005 	vm->is_compute_context = true;
3006 
3007 	if (vm->pasid) {
3008 		unsigned long flags;
3009 
3010 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3011 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3012 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3013 
3014 		/* Free the original amdgpu allocated pasid
3015 		 * Will be replaced with kfd allocated pasid
3016 		 */
3017 		amdgpu_pasid_free(vm->pasid);
3018 		vm->pasid = 0;
3019 	}
3020 
3021 	/* Free the shadow bo for compute VM */
3022 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3023 
3024 	if (pasid)
3025 		vm->pasid = pasid;
3026 
3027 	goto unreserve_bo;
3028 
3029 free_idr:
3030 	if (pasid) {
3031 		unsigned long flags;
3032 
3033 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3034 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3035 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3036 	}
3037 unreserve_bo:
3038 	amdgpu_bo_unreserve(vm->root.base.bo);
3039 	return r;
3040 }
3041 
3042 /**
3043  * amdgpu_vm_release_compute - release a compute vm
3044  * @adev: amdgpu_device pointer
3045  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3046  *
3047  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3048  * pasid from vm. Compute should stop use of vm after this call.
3049  */
3050 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3051 {
3052 	if (vm->pasid) {
3053 		unsigned long flags;
3054 
3055 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3056 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3057 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3058 	}
3059 	vm->pasid = 0;
3060 	vm->is_compute_context = false;
3061 }
3062 
3063 /**
3064  * amdgpu_vm_fini - tear down a vm instance
3065  *
3066  * @adev: amdgpu_device pointer
3067  * @vm: requested vm
3068  *
3069  * Tear down @vm.
3070  * Unbind the VM and remove all bos from the vm bo list
3071  */
3072 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3073 {
3074 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3075 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3076 	struct amdgpu_bo *root;
3077 	int i;
3078 
3079 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3080 
3081 	root = amdgpu_bo_ref(vm->root.base.bo);
3082 	amdgpu_bo_reserve(root, true);
3083 	if (vm->pasid) {
3084 		unsigned long flags;
3085 
3086 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3087 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3088 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3089 		vm->pasid = 0;
3090 	}
3091 
3092 	dma_fence_wait(vm->last_direct, false);
3093 	dma_fence_put(vm->last_direct);
3094 
3095 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3096 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3097 			amdgpu_vm_prt_fini(adev, vm);
3098 			prt_fini_needed = false;
3099 		}
3100 
3101 		list_del(&mapping->list);
3102 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3103 	}
3104 
3105 	amdgpu_vm_free_pts(adev, vm, NULL);
3106 	amdgpu_bo_unreserve(root);
3107 	amdgpu_bo_unref(&root);
3108 	WARN_ON(vm->root.base.bo);
3109 
3110 	drm_sched_entity_destroy(&vm->direct);
3111 	drm_sched_entity_destroy(&vm->delayed);
3112 
3113 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3114 		dev_err(adev->dev, "still active bo inside vm\n");
3115 	}
3116 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3117 					     &vm->va.rb_root, rb) {
3118 		/* Don't remove the mapping here, we don't want to trigger a
3119 		 * rebalance and the tree is about to be destroyed anyway.
3120 		 */
3121 		list_del(&mapping->list);
3122 		kfree(mapping);
3123 	}
3124 
3125 	dma_fence_put(vm->last_update);
3126 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3127 		amdgpu_vmid_free_reserved(adev, vm, i);
3128 }
3129 
3130 /**
3131  * amdgpu_vm_manager_init - init the VM manager
3132  *
3133  * @adev: amdgpu_device pointer
3134  *
3135  * Initialize the VM manager structures
3136  */
3137 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3138 {
3139 	unsigned i;
3140 
3141 	amdgpu_vmid_mgr_init(adev);
3142 
3143 	adev->vm_manager.fence_context =
3144 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3145 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3146 		adev->vm_manager.seqno[i] = 0;
3147 
3148 	spin_lock_init(&adev->vm_manager.prt_lock);
3149 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3150 
3151 	/* If not overridden by the user, by default, only in large BAR systems
3152 	 * Compute VM tables will be updated by CPU
3153 	 */
3154 #ifdef CONFIG_X86_64
3155 	if (amdgpu_vm_update_mode == -1) {
3156 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3157 			adev->vm_manager.vm_update_mode =
3158 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3159 		else
3160 			adev->vm_manager.vm_update_mode = 0;
3161 	} else
3162 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3163 #else
3164 	adev->vm_manager.vm_update_mode = 0;
3165 #endif
3166 
3167 	idr_init(&adev->vm_manager.pasid_idr);
3168 	spin_lock_init(&adev->vm_manager.pasid_lock);
3169 
3170 	adev->vm_manager.xgmi_map_counter = 0;
3171 	mutex_init(&adev->vm_manager.lock_pstate);
3172 }
3173 
3174 /**
3175  * amdgpu_vm_manager_fini - cleanup VM manager
3176  *
3177  * @adev: amdgpu_device pointer
3178  *
3179  * Cleanup the VM manager and free resources.
3180  */
3181 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3182 {
3183 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3184 	idr_destroy(&adev->vm_manager.pasid_idr);
3185 
3186 	amdgpu_vmid_mgr_fini(adev);
3187 }
3188 
3189 /**
3190  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3191  *
3192  * @dev: drm device pointer
3193  * @data: drm_amdgpu_vm
3194  * @filp: drm file pointer
3195  *
3196  * Returns:
3197  * 0 for success, -errno for errors.
3198  */
3199 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3200 {
3201 	union drm_amdgpu_vm *args = data;
3202 	struct amdgpu_device *adev = dev->dev_private;
3203 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3204 	long timeout = msecs_to_jiffies(2000);
3205 	int r;
3206 
3207 	switch (args->in.op) {
3208 	case AMDGPU_VM_OP_RESERVE_VMID:
3209 		/* We only have requirement to reserve vmid from gfxhub */
3210 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3211 					       AMDGPU_GFXHUB_0);
3212 		if (r)
3213 			return r;
3214 		break;
3215 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3216 		if (amdgpu_sriov_runtime(adev))
3217 			timeout = 8 * timeout;
3218 
3219 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3220 		 * not referenced anymore.
3221 		 */
3222 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3223 		if (r)
3224 			return r;
3225 
3226 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3227 		if (r < 0)
3228 			return r;
3229 
3230 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3231 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3232 		break;
3233 	default:
3234 		return -EINVAL;
3235 	}
3236 
3237 	return 0;
3238 }
3239 
3240 /**
3241  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3242  *
3243  * @adev: drm device pointer
3244  * @pasid: PASID identifier for VM
3245  * @task_info: task_info to fill.
3246  */
3247 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3248 			 struct amdgpu_task_info *task_info)
3249 {
3250 	struct amdgpu_vm *vm;
3251 	unsigned long flags;
3252 
3253 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3254 
3255 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3256 	if (vm)
3257 		*task_info = vm->task_info;
3258 
3259 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3260 }
3261 
3262 /**
3263  * amdgpu_vm_set_task_info - Sets VMs task info.
3264  *
3265  * @vm: vm for which to set the info
3266  */
3267 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3268 {
3269 	if (vm->task_info.pid)
3270 		return;
3271 
3272 	vm->task_info.pid = current->pid;
3273 	get_task_comm(vm->task_info.task_name, current);
3274 
3275 	if (current->group_leader->mm != current->mm)
3276 		return;
3277 
3278 	vm->task_info.tgid = current->group_leader->pid;
3279 	get_task_comm(vm->task_info.process_name, current->group_leader);
3280 }
3281 
3282 /**
3283  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3284  * @adev: amdgpu device pointer
3285  * @pasid: PASID of the VM
3286  * @addr: Address of the fault
3287  *
3288  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3289  * shouldn't be reported any more.
3290  */
3291 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3292 			    uint64_t addr)
3293 {
3294 	struct amdgpu_bo *root;
3295 	uint64_t value, flags;
3296 	struct amdgpu_vm *vm;
3297 	long r;
3298 
3299 	spin_lock(&adev->vm_manager.pasid_lock);
3300 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3301 	if (vm)
3302 		root = amdgpu_bo_ref(vm->root.base.bo);
3303 	else
3304 		root = NULL;
3305 	spin_unlock(&adev->vm_manager.pasid_lock);
3306 
3307 	if (!root)
3308 		return false;
3309 
3310 	r = amdgpu_bo_reserve(root, true);
3311 	if (r)
3312 		goto error_unref;
3313 
3314 	/* Double check that the VM still exists */
3315 	spin_lock(&adev->vm_manager.pasid_lock);
3316 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3317 	if (vm && vm->root.base.bo != root)
3318 		vm = NULL;
3319 	spin_unlock(&adev->vm_manager.pasid_lock);
3320 	if (!vm)
3321 		goto error_unlock;
3322 
3323 	addr /= AMDGPU_GPU_PAGE_SIZE;
3324 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3325 		AMDGPU_PTE_SYSTEM;
3326 
3327 	if (vm->is_compute_context) {
3328 		/* Intentionally setting invalid PTE flag
3329 		 * combination to force a no-retry-fault
3330 		 */
3331 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3332 			AMDGPU_PTE_TF;
3333 		value = 0;
3334 
3335 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3336 		/* Redirect the access to the dummy page */
3337 		value = adev->dummy_page_addr;
3338 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3339 			AMDGPU_PTE_WRITEABLE;
3340 
3341 	} else {
3342 		/* Let the hw retry silently on the PTE */
3343 		value = 0;
3344 	}
3345 
3346 	r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1,
3347 					flags, value, NULL, NULL);
3348 	if (r)
3349 		goto error_unlock;
3350 
3351 	r = amdgpu_vm_update_pdes(adev, vm, true);
3352 
3353 error_unlock:
3354 	amdgpu_bo_unreserve(root);
3355 	if (r < 0)
3356 		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3357 
3358 error_unref:
3359 	amdgpu_bo_unref(&root);
3360 
3361 	return false;
3362 }
3363