1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include "amdgpu.h" 35 #include "amdgpu_trace.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_gmc.h" 38 #include "amdgpu_xgmi.h" 39 #include "amdgpu_dma_buf.h" 40 41 /** 42 * DOC: GPUVM 43 * 44 * GPUVM is similar to the legacy gart on older asics, however 45 * rather than there being a single global gart table 46 * for the entire GPU, there are multiple VM page tables active 47 * at any given time. The VM page tables can contain a mix 48 * vram pages and system memory pages and system memory pages 49 * can be mapped as snooped (cached system pages) or unsnooped 50 * (uncached system pages). 51 * Each VM has an ID associated with it and there is a page table 52 * associated with each VMID. When execting a command buffer, 53 * the kernel tells the the ring what VMID to use for that command 54 * buffer. VMIDs are allocated dynamically as commands are submitted. 55 * The userspace drivers maintain their own address space and the kernel 56 * sets up their pages tables accordingly when they submit their 57 * command buffers and a VMID is assigned. 58 * Cayman/Trinity support up to 8 active VMs at any given time; 59 * SI supports 16. 60 */ 61 62 #define START(node) ((node)->start) 63 #define LAST(node) ((node)->last) 64 65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 66 START, LAST, static, amdgpu_vm_it) 67 68 #undef START 69 #undef LAST 70 71 /** 72 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 73 */ 74 struct amdgpu_prt_cb { 75 76 /** 77 * @adev: amdgpu device 78 */ 79 struct amdgpu_device *adev; 80 81 /** 82 * @cb: callback 83 */ 84 struct dma_fence_cb cb; 85 }; 86 87 /* 88 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 89 * happens while holding this lock anywhere to prevent deadlocks when 90 * an MMU notifier runs in reclaim-FS context. 91 */ 92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 93 { 94 mutex_lock(&vm->eviction_lock); 95 vm->saved_flags = memalloc_nofs_save(); 96 } 97 98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 99 { 100 if (mutex_trylock(&vm->eviction_lock)) { 101 vm->saved_flags = memalloc_nofs_save(); 102 return 1; 103 } 104 return 0; 105 } 106 107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 108 { 109 memalloc_nofs_restore(vm->saved_flags); 110 mutex_unlock(&vm->eviction_lock); 111 } 112 113 /** 114 * amdgpu_vm_level_shift - return the addr shift for each level 115 * 116 * @adev: amdgpu_device pointer 117 * @level: VMPT level 118 * 119 * Returns: 120 * The number of bits the pfn needs to be right shifted for a level. 121 */ 122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 123 unsigned level) 124 { 125 switch (level) { 126 case AMDGPU_VM_PDB2: 127 case AMDGPU_VM_PDB1: 128 case AMDGPU_VM_PDB0: 129 return 9 * (AMDGPU_VM_PDB0 - level) + 130 adev->vm_manager.block_size; 131 case AMDGPU_VM_PTB: 132 return 0; 133 default: 134 return ~0; 135 } 136 } 137 138 /** 139 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 140 * 141 * @adev: amdgpu_device pointer 142 * @level: VMPT level 143 * 144 * Returns: 145 * The number of entries in a page directory or page table. 146 */ 147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 148 unsigned level) 149 { 150 unsigned shift = amdgpu_vm_level_shift(adev, 151 adev->vm_manager.root_level); 152 153 if (level == adev->vm_manager.root_level) 154 /* For the root directory */ 155 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 156 >> shift; 157 else if (level != AMDGPU_VM_PTB) 158 /* Everything in between */ 159 return 512; 160 else 161 /* For the page tables on the leaves */ 162 return AMDGPU_VM_PTE_COUNT(adev); 163 } 164 165 /** 166 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 167 * 168 * @adev: amdgpu_device pointer 169 * 170 * Returns: 171 * The number of entries in the root page directory which needs the ATS setting. 172 */ 173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 174 { 175 unsigned shift; 176 177 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 178 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 179 } 180 181 /** 182 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 183 * 184 * @adev: amdgpu_device pointer 185 * @level: VMPT level 186 * 187 * Returns: 188 * The mask to extract the entry number of a PD/PT from an address. 189 */ 190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 191 unsigned int level) 192 { 193 if (level <= adev->vm_manager.root_level) 194 return 0xffffffff; 195 else if (level != AMDGPU_VM_PTB) 196 return 0x1ff; 197 else 198 return AMDGPU_VM_PTE_COUNT(adev) - 1; 199 } 200 201 /** 202 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 203 * 204 * @adev: amdgpu_device pointer 205 * @level: VMPT level 206 * 207 * Returns: 208 * The size of the BO for a page directory or page table in bytes. 209 */ 210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 211 { 212 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 213 } 214 215 /** 216 * amdgpu_vm_bo_evicted - vm_bo is evicted 217 * 218 * @vm_bo: vm_bo which is evicted 219 * 220 * State for PDs/PTs and per VM BOs which are not at the location they should 221 * be. 222 */ 223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 224 { 225 struct amdgpu_vm *vm = vm_bo->vm; 226 struct amdgpu_bo *bo = vm_bo->bo; 227 228 vm_bo->moved = true; 229 if (bo->tbo.type == ttm_bo_type_kernel) 230 list_move(&vm_bo->vm_status, &vm->evicted); 231 else 232 list_move_tail(&vm_bo->vm_status, &vm->evicted); 233 } 234 /** 235 * amdgpu_vm_bo_moved - vm_bo is moved 236 * 237 * @vm_bo: vm_bo which is moved 238 * 239 * State for per VM BOs which are moved, but that change is not yet reflected 240 * in the page tables. 241 */ 242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 243 { 244 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 245 } 246 247 /** 248 * amdgpu_vm_bo_idle - vm_bo is idle 249 * 250 * @vm_bo: vm_bo which is now idle 251 * 252 * State for PDs/PTs and per VM BOs which have gone through the state machine 253 * and are now idle. 254 */ 255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 256 { 257 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 258 vm_bo->moved = false; 259 } 260 261 /** 262 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 263 * 264 * @vm_bo: vm_bo which is now invalidated 265 * 266 * State for normal BOs which are invalidated and that change not yet reflected 267 * in the PTs. 268 */ 269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 270 { 271 spin_lock(&vm_bo->vm->invalidated_lock); 272 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 273 spin_unlock(&vm_bo->vm->invalidated_lock); 274 } 275 276 /** 277 * amdgpu_vm_bo_relocated - vm_bo is reloacted 278 * 279 * @vm_bo: vm_bo which is relocated 280 * 281 * State for PDs/PTs which needs to update their parent PD. 282 * For the root PD, just move to idle state. 283 */ 284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 285 { 286 if (vm_bo->bo->parent) 287 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 288 else 289 amdgpu_vm_bo_idle(vm_bo); 290 } 291 292 /** 293 * amdgpu_vm_bo_done - vm_bo is done 294 * 295 * @vm_bo: vm_bo which is now done 296 * 297 * State for normal BOs which are invalidated and that change has been updated 298 * in the PTs. 299 */ 300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 301 { 302 spin_lock(&vm_bo->vm->invalidated_lock); 303 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 304 spin_unlock(&vm_bo->vm->invalidated_lock); 305 } 306 307 /** 308 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 309 * 310 * @base: base structure for tracking BO usage in a VM 311 * @vm: vm to which bo is to be added 312 * @bo: amdgpu buffer object 313 * 314 * Initialize a bo_va_base structure and add it to the appropriate lists 315 * 316 */ 317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 318 struct amdgpu_vm *vm, 319 struct amdgpu_bo *bo) 320 { 321 base->vm = vm; 322 base->bo = bo; 323 base->next = NULL; 324 INIT_LIST_HEAD(&base->vm_status); 325 326 if (!bo) 327 return; 328 base->next = bo->vm_bo; 329 bo->vm_bo = base; 330 331 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 332 return; 333 334 vm->bulk_moveable = false; 335 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 336 amdgpu_vm_bo_relocated(base); 337 else 338 amdgpu_vm_bo_idle(base); 339 340 if (bo->preferred_domains & 341 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 342 return; 343 344 /* 345 * we checked all the prerequisites, but it looks like this per vm bo 346 * is currently evicted. add the bo to the evicted list to make sure it 347 * is validated on next vm use to avoid fault. 348 * */ 349 amdgpu_vm_bo_evicted(base); 350 } 351 352 /** 353 * amdgpu_vm_pt_parent - get the parent page directory 354 * 355 * @pt: child page table 356 * 357 * Helper to get the parent entry for the child page table. NULL if we are at 358 * the root page directory. 359 */ 360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 361 { 362 struct amdgpu_bo *parent = pt->base.bo->parent; 363 364 if (!parent) 365 return NULL; 366 367 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 368 } 369 370 /* 371 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 372 */ 373 struct amdgpu_vm_pt_cursor { 374 uint64_t pfn; 375 struct amdgpu_vm_pt *parent; 376 struct amdgpu_vm_pt *entry; 377 unsigned level; 378 }; 379 380 /** 381 * amdgpu_vm_pt_start - start PD/PT walk 382 * 383 * @adev: amdgpu_device pointer 384 * @vm: amdgpu_vm structure 385 * @start: start address of the walk 386 * @cursor: state to initialize 387 * 388 * Initialize a amdgpu_vm_pt_cursor to start a walk. 389 */ 390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 391 struct amdgpu_vm *vm, uint64_t start, 392 struct amdgpu_vm_pt_cursor *cursor) 393 { 394 cursor->pfn = start; 395 cursor->parent = NULL; 396 cursor->entry = &vm->root; 397 cursor->level = adev->vm_manager.root_level; 398 } 399 400 /** 401 * amdgpu_vm_pt_descendant - go to child node 402 * 403 * @adev: amdgpu_device pointer 404 * @cursor: current state 405 * 406 * Walk to the child node of the current node. 407 * Returns: 408 * True if the walk was possible, false otherwise. 409 */ 410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 411 struct amdgpu_vm_pt_cursor *cursor) 412 { 413 unsigned mask, shift, idx; 414 415 if (!cursor->entry->entries) 416 return false; 417 418 BUG_ON(!cursor->entry->base.bo); 419 mask = amdgpu_vm_entries_mask(adev, cursor->level); 420 shift = amdgpu_vm_level_shift(adev, cursor->level); 421 422 ++cursor->level; 423 idx = (cursor->pfn >> shift) & mask; 424 cursor->parent = cursor->entry; 425 cursor->entry = &cursor->entry->entries[idx]; 426 return true; 427 } 428 429 /** 430 * amdgpu_vm_pt_sibling - go to sibling node 431 * 432 * @adev: amdgpu_device pointer 433 * @cursor: current state 434 * 435 * Walk to the sibling node of the current node. 436 * Returns: 437 * True if the walk was possible, false otherwise. 438 */ 439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 440 struct amdgpu_vm_pt_cursor *cursor) 441 { 442 unsigned shift, num_entries; 443 444 /* Root doesn't have a sibling */ 445 if (!cursor->parent) 446 return false; 447 448 /* Go to our parents and see if we got a sibling */ 449 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 450 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 451 452 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 453 return false; 454 455 cursor->pfn += 1ULL << shift; 456 cursor->pfn &= ~((1ULL << shift) - 1); 457 ++cursor->entry; 458 return true; 459 } 460 461 /** 462 * amdgpu_vm_pt_ancestor - go to parent node 463 * 464 * @cursor: current state 465 * 466 * Walk to the parent node of the current node. 467 * Returns: 468 * True if the walk was possible, false otherwise. 469 */ 470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 471 { 472 if (!cursor->parent) 473 return false; 474 475 --cursor->level; 476 cursor->entry = cursor->parent; 477 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 478 return true; 479 } 480 481 /** 482 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 483 * 484 * @adev: amdgpu_device pointer 485 * @cursor: current state 486 * 487 * Walk the PD/PT tree to the next node. 488 */ 489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 490 struct amdgpu_vm_pt_cursor *cursor) 491 { 492 /* First try a newborn child */ 493 if (amdgpu_vm_pt_descendant(adev, cursor)) 494 return; 495 496 /* If that didn't worked try to find a sibling */ 497 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 498 /* No sibling, go to our parents and grandparents */ 499 if (!amdgpu_vm_pt_ancestor(cursor)) { 500 cursor->pfn = ~0ll; 501 return; 502 } 503 } 504 } 505 506 /** 507 * amdgpu_vm_pt_first_dfs - start a deep first search 508 * 509 * @adev: amdgpu_device structure 510 * @vm: amdgpu_vm structure 511 * @start: optional cursor to start with 512 * @cursor: state to initialize 513 * 514 * Starts a deep first traversal of the PD/PT tree. 515 */ 516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 517 struct amdgpu_vm *vm, 518 struct amdgpu_vm_pt_cursor *start, 519 struct amdgpu_vm_pt_cursor *cursor) 520 { 521 if (start) 522 *cursor = *start; 523 else 524 amdgpu_vm_pt_start(adev, vm, 0, cursor); 525 while (amdgpu_vm_pt_descendant(adev, cursor)); 526 } 527 528 /** 529 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 530 * 531 * @start: starting point for the search 532 * @entry: current entry 533 * 534 * Returns: 535 * True when the search should continue, false otherwise. 536 */ 537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 538 struct amdgpu_vm_pt *entry) 539 { 540 return entry && (!start || entry != start->entry); 541 } 542 543 /** 544 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 545 * 546 * @adev: amdgpu_device structure 547 * @cursor: current state 548 * 549 * Move the cursor to the next node in a deep first search. 550 */ 551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 552 struct amdgpu_vm_pt_cursor *cursor) 553 { 554 if (!cursor->entry) 555 return; 556 557 if (!cursor->parent) 558 cursor->entry = NULL; 559 else if (amdgpu_vm_pt_sibling(adev, cursor)) 560 while (amdgpu_vm_pt_descendant(adev, cursor)); 561 else 562 amdgpu_vm_pt_ancestor(cursor); 563 } 564 565 /* 566 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 567 */ 568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 569 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 570 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 571 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 572 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 573 574 /** 575 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 576 * 577 * @vm: vm providing the BOs 578 * @validated: head of validation list 579 * @entry: entry to add 580 * 581 * Add the page directory to the list of BOs to 582 * validate for command submission. 583 */ 584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 585 struct list_head *validated, 586 struct amdgpu_bo_list_entry *entry) 587 { 588 entry->priority = 0; 589 entry->tv.bo = &vm->root.base.bo->tbo; 590 /* Two for VM updates, one for TTM and one for the CS job */ 591 entry->tv.num_shared = 4; 592 entry->user_pages = NULL; 593 list_add(&entry->tv.head, validated); 594 } 595 596 /** 597 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 598 * 599 * @bo: BO which was removed from the LRU 600 * 601 * Make sure the bulk_moveable flag is updated when a BO is removed from the 602 * LRU. 603 */ 604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 605 { 606 struct amdgpu_bo *abo; 607 struct amdgpu_vm_bo_base *bo_base; 608 609 if (!amdgpu_bo_is_amdgpu_bo(bo)) 610 return; 611 612 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 613 return; 614 615 abo = ttm_to_amdgpu_bo(bo); 616 if (!abo->parent) 617 return; 618 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 619 struct amdgpu_vm *vm = bo_base->vm; 620 621 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 622 vm->bulk_moveable = false; 623 } 624 625 } 626 /** 627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 628 * 629 * @adev: amdgpu device pointer 630 * @vm: vm providing the BOs 631 * 632 * Move all BOs to the end of LRU and remember their positions to put them 633 * together. 634 */ 635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 636 struct amdgpu_vm *vm) 637 { 638 struct amdgpu_vm_bo_base *bo_base; 639 640 if (vm->bulk_moveable) { 641 spin_lock(&ttm_bo_glob.lru_lock); 642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 643 spin_unlock(&ttm_bo_glob.lru_lock); 644 return; 645 } 646 647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 648 649 spin_lock(&ttm_bo_glob.lru_lock); 650 list_for_each_entry(bo_base, &vm->idle, vm_status) { 651 struct amdgpu_bo *bo = bo_base->bo; 652 653 if (!bo->parent) 654 continue; 655 656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 657 if (bo->shadow) 658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 659 &vm->lru_bulk_move); 660 } 661 spin_unlock(&ttm_bo_glob.lru_lock); 662 663 vm->bulk_moveable = true; 664 } 665 666 /** 667 * amdgpu_vm_validate_pt_bos - validate the page table BOs 668 * 669 * @adev: amdgpu device pointer 670 * @vm: vm providing the BOs 671 * @validate: callback to do the validation 672 * @param: parameter for the validation callback 673 * 674 * Validate the page table BOs on command submission if neccessary. 675 * 676 * Returns: 677 * Validation result. 678 */ 679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 680 int (*validate)(void *p, struct amdgpu_bo *bo), 681 void *param) 682 { 683 struct amdgpu_vm_bo_base *bo_base, *tmp; 684 int r; 685 686 vm->bulk_moveable &= list_empty(&vm->evicted); 687 688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 689 struct amdgpu_bo *bo = bo_base->bo; 690 691 r = validate(param, bo); 692 if (r) 693 return r; 694 695 if (bo->tbo.type != ttm_bo_type_kernel) { 696 amdgpu_vm_bo_moved(bo_base); 697 } else { 698 vm->update_funcs->map_table(bo); 699 amdgpu_vm_bo_relocated(bo_base); 700 } 701 } 702 703 amdgpu_vm_eviction_lock(vm); 704 vm->evicting = false; 705 amdgpu_vm_eviction_unlock(vm); 706 707 return 0; 708 } 709 710 /** 711 * amdgpu_vm_ready - check VM is ready for updates 712 * 713 * @vm: VM to check 714 * 715 * Check if all VM PDs/PTs are ready for updates 716 * 717 * Returns: 718 * True if eviction list is empty. 719 */ 720 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 721 { 722 return list_empty(&vm->evicted); 723 } 724 725 /** 726 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 727 * 728 * @adev: amdgpu_device pointer 729 * @vm: VM to clear BO from 730 * @bo: BO to clear 731 * @immediate: use an immediate update 732 * 733 * Root PD needs to be reserved when calling this. 734 * 735 * Returns: 736 * 0 on success, errno otherwise. 737 */ 738 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 739 struct amdgpu_vm *vm, 740 struct amdgpu_bo *bo, 741 bool immediate) 742 { 743 struct ttm_operation_ctx ctx = { true, false }; 744 unsigned level = adev->vm_manager.root_level; 745 struct amdgpu_vm_update_params params; 746 struct amdgpu_bo *ancestor = bo; 747 unsigned entries, ats_entries; 748 uint64_t addr; 749 int r; 750 751 /* Figure out our place in the hierarchy */ 752 if (ancestor->parent) { 753 ++level; 754 while (ancestor->parent->parent) { 755 ++level; 756 ancestor = ancestor->parent; 757 } 758 } 759 760 entries = amdgpu_bo_size(bo) / 8; 761 if (!vm->pte_support_ats) { 762 ats_entries = 0; 763 764 } else if (!bo->parent) { 765 ats_entries = amdgpu_vm_num_ats_entries(adev); 766 ats_entries = min(ats_entries, entries); 767 entries -= ats_entries; 768 769 } else { 770 struct amdgpu_vm_pt *pt; 771 772 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 773 ats_entries = amdgpu_vm_num_ats_entries(adev); 774 if ((pt - vm->root.entries) >= ats_entries) { 775 ats_entries = 0; 776 } else { 777 ats_entries = entries; 778 entries = 0; 779 } 780 } 781 782 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 783 if (r) 784 return r; 785 786 if (bo->shadow) { 787 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 788 &ctx); 789 if (r) 790 return r; 791 } 792 793 r = vm->update_funcs->map_table(bo); 794 if (r) 795 return r; 796 797 memset(¶ms, 0, sizeof(params)); 798 params.adev = adev; 799 params.vm = vm; 800 params.immediate = immediate; 801 802 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 803 if (r) 804 return r; 805 806 addr = 0; 807 if (ats_entries) { 808 uint64_t value = 0, flags; 809 810 flags = AMDGPU_PTE_DEFAULT_ATC; 811 if (level != AMDGPU_VM_PTB) { 812 /* Handle leaf PDEs as PTEs */ 813 flags |= AMDGPU_PDE_PTE; 814 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 815 } 816 817 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 818 value, flags); 819 if (r) 820 return r; 821 822 addr += ats_entries * 8; 823 } 824 825 if (entries) { 826 uint64_t value = 0, flags = 0; 827 828 if (adev->asic_type >= CHIP_VEGA10) { 829 if (level != AMDGPU_VM_PTB) { 830 /* Handle leaf PDEs as PTEs */ 831 flags |= AMDGPU_PDE_PTE; 832 amdgpu_gmc_get_vm_pde(adev, level, 833 &value, &flags); 834 } else { 835 /* Workaround for fault priority problem on GMC9 */ 836 flags = AMDGPU_PTE_EXECUTABLE; 837 } 838 } 839 840 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 841 value, flags); 842 if (r) 843 return r; 844 } 845 846 return vm->update_funcs->commit(¶ms, NULL); 847 } 848 849 /** 850 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 851 * 852 * @adev: amdgpu_device pointer 853 * @vm: requesting vm 854 * @level: the page table level 855 * @immediate: use a immediate update 856 * @bp: resulting BO allocation parameters 857 */ 858 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 859 int level, bool immediate, 860 struct amdgpu_bo_param *bp) 861 { 862 memset(bp, 0, sizeof(*bp)); 863 864 bp->size = amdgpu_vm_bo_size(adev, level); 865 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 866 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 867 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 868 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 869 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 870 if (vm->use_cpu_for_update) 871 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 872 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 873 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 874 bp->type = ttm_bo_type_kernel; 875 bp->no_wait_gpu = immediate; 876 if (vm->root.base.bo) 877 bp->resv = vm->root.base.bo->tbo.base.resv; 878 } 879 880 /** 881 * amdgpu_vm_alloc_pts - Allocate a specific page table 882 * 883 * @adev: amdgpu_device pointer 884 * @vm: VM to allocate page tables for 885 * @cursor: Which page table to allocate 886 * @immediate: use an immediate update 887 * 888 * Make sure a specific page table or directory is allocated. 889 * 890 * Returns: 891 * 1 if page table needed to be allocated, 0 if page table was already 892 * allocated, negative errno if an error occurred. 893 */ 894 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 895 struct amdgpu_vm *vm, 896 struct amdgpu_vm_pt_cursor *cursor, 897 bool immediate) 898 { 899 struct amdgpu_vm_pt *entry = cursor->entry; 900 struct amdgpu_bo_param bp; 901 struct amdgpu_bo *pt; 902 int r; 903 904 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 905 unsigned num_entries; 906 907 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 908 entry->entries = kvmalloc_array(num_entries, 909 sizeof(*entry->entries), 910 GFP_KERNEL | __GFP_ZERO); 911 if (!entry->entries) 912 return -ENOMEM; 913 } 914 915 if (entry->base.bo) 916 return 0; 917 918 amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp); 919 920 r = amdgpu_bo_create(adev, &bp, &pt); 921 if (r) 922 return r; 923 924 /* Keep a reference to the root directory to avoid 925 * freeing them up in the wrong order. 926 */ 927 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 928 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 929 930 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 931 if (r) 932 goto error_free_pt; 933 934 return 0; 935 936 error_free_pt: 937 amdgpu_bo_unref(&pt->shadow); 938 amdgpu_bo_unref(&pt); 939 return r; 940 } 941 942 /** 943 * amdgpu_vm_free_table - fre one PD/PT 944 * 945 * @entry: PDE to free 946 */ 947 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 948 { 949 if (entry->base.bo) { 950 entry->base.bo->vm_bo = NULL; 951 list_del(&entry->base.vm_status); 952 amdgpu_bo_unref(&entry->base.bo->shadow); 953 amdgpu_bo_unref(&entry->base.bo); 954 } 955 kvfree(entry->entries); 956 entry->entries = NULL; 957 } 958 959 /** 960 * amdgpu_vm_free_pts - free PD/PT levels 961 * 962 * @adev: amdgpu device structure 963 * @vm: amdgpu vm structure 964 * @start: optional cursor where to start freeing PDs/PTs 965 * 966 * Free the page directory or page table level and all sub levels. 967 */ 968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 969 struct amdgpu_vm *vm, 970 struct amdgpu_vm_pt_cursor *start) 971 { 972 struct amdgpu_vm_pt_cursor cursor; 973 struct amdgpu_vm_pt *entry; 974 975 vm->bulk_moveable = false; 976 977 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 978 amdgpu_vm_free_table(entry); 979 980 if (start) 981 amdgpu_vm_free_table(start->entry); 982 } 983 984 /** 985 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 986 * 987 * @adev: amdgpu_device pointer 988 */ 989 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 990 { 991 const struct amdgpu_ip_block *ip_block; 992 bool has_compute_vm_bug; 993 struct amdgpu_ring *ring; 994 int i; 995 996 has_compute_vm_bug = false; 997 998 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 999 if (ip_block) { 1000 /* Compute has a VM bug for GFX version < 7. 1001 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1002 if (ip_block->version->major <= 7) 1003 has_compute_vm_bug = true; 1004 else if (ip_block->version->major == 8) 1005 if (adev->gfx.mec_fw_version < 673) 1006 has_compute_vm_bug = true; 1007 } 1008 1009 for (i = 0; i < adev->num_rings; i++) { 1010 ring = adev->rings[i]; 1011 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1012 /* only compute rings */ 1013 ring->has_compute_vm_bug = has_compute_vm_bug; 1014 else 1015 ring->has_compute_vm_bug = false; 1016 } 1017 } 1018 1019 /** 1020 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1021 * 1022 * @ring: ring on which the job will be submitted 1023 * @job: job to submit 1024 * 1025 * Returns: 1026 * True if sync is needed. 1027 */ 1028 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1029 struct amdgpu_job *job) 1030 { 1031 struct amdgpu_device *adev = ring->adev; 1032 unsigned vmhub = ring->funcs->vmhub; 1033 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1034 struct amdgpu_vmid *id; 1035 bool gds_switch_needed; 1036 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1037 1038 if (job->vmid == 0) 1039 return false; 1040 id = &id_mgr->ids[job->vmid]; 1041 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1042 id->gds_base != job->gds_base || 1043 id->gds_size != job->gds_size || 1044 id->gws_base != job->gws_base || 1045 id->gws_size != job->gws_size || 1046 id->oa_base != job->oa_base || 1047 id->oa_size != job->oa_size); 1048 1049 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1050 return true; 1051 1052 return vm_flush_needed || gds_switch_needed; 1053 } 1054 1055 /** 1056 * amdgpu_vm_flush - hardware flush the vm 1057 * 1058 * @ring: ring to use for flush 1059 * @job: related job 1060 * @need_pipe_sync: is pipe sync needed 1061 * 1062 * Emit a VM flush when it is necessary. 1063 * 1064 * Returns: 1065 * 0 on success, errno otherwise. 1066 */ 1067 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1068 bool need_pipe_sync) 1069 { 1070 struct amdgpu_device *adev = ring->adev; 1071 unsigned vmhub = ring->funcs->vmhub; 1072 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1073 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1074 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1075 id->gds_base != job->gds_base || 1076 id->gds_size != job->gds_size || 1077 id->gws_base != job->gws_base || 1078 id->gws_size != job->gws_size || 1079 id->oa_base != job->oa_base || 1080 id->oa_size != job->oa_size); 1081 bool vm_flush_needed = job->vm_needs_flush; 1082 struct dma_fence *fence = NULL; 1083 bool pasid_mapping_needed = false; 1084 unsigned patch_offset = 0; 1085 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1086 int r; 1087 1088 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1089 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1090 1091 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1092 gds_switch_needed = true; 1093 vm_flush_needed = true; 1094 pasid_mapping_needed = true; 1095 } 1096 1097 mutex_lock(&id_mgr->lock); 1098 if (id->pasid != job->pasid || !id->pasid_mapping || 1099 !dma_fence_is_signaled(id->pasid_mapping)) 1100 pasid_mapping_needed = true; 1101 mutex_unlock(&id_mgr->lock); 1102 1103 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1104 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1105 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1106 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1107 ring->funcs->emit_wreg; 1108 1109 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1110 return 0; 1111 1112 if (ring->funcs->init_cond_exec) 1113 patch_offset = amdgpu_ring_init_cond_exec(ring); 1114 1115 if (need_pipe_sync) 1116 amdgpu_ring_emit_pipeline_sync(ring); 1117 1118 if (vm_flush_needed) { 1119 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1120 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1121 } 1122 1123 if (pasid_mapping_needed) 1124 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1125 1126 if (vm_flush_needed || pasid_mapping_needed) { 1127 r = amdgpu_fence_emit(ring, &fence, 0); 1128 if (r) 1129 return r; 1130 } 1131 1132 if (vm_flush_needed) { 1133 mutex_lock(&id_mgr->lock); 1134 dma_fence_put(id->last_flush); 1135 id->last_flush = dma_fence_get(fence); 1136 id->current_gpu_reset_count = 1137 atomic_read(&adev->gpu_reset_counter); 1138 mutex_unlock(&id_mgr->lock); 1139 } 1140 1141 if (pasid_mapping_needed) { 1142 mutex_lock(&id_mgr->lock); 1143 id->pasid = job->pasid; 1144 dma_fence_put(id->pasid_mapping); 1145 id->pasid_mapping = dma_fence_get(fence); 1146 mutex_unlock(&id_mgr->lock); 1147 } 1148 dma_fence_put(fence); 1149 1150 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1151 id->gds_base = job->gds_base; 1152 id->gds_size = job->gds_size; 1153 id->gws_base = job->gws_base; 1154 id->gws_size = job->gws_size; 1155 id->oa_base = job->oa_base; 1156 id->oa_size = job->oa_size; 1157 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1158 job->gds_size, job->gws_base, 1159 job->gws_size, job->oa_base, 1160 job->oa_size); 1161 } 1162 1163 if (ring->funcs->patch_cond_exec) 1164 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1165 1166 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1167 if (ring->funcs->emit_switch_buffer) { 1168 amdgpu_ring_emit_switch_buffer(ring); 1169 amdgpu_ring_emit_switch_buffer(ring); 1170 } 1171 return 0; 1172 } 1173 1174 /** 1175 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1176 * 1177 * @vm: requested vm 1178 * @bo: requested buffer object 1179 * 1180 * Find @bo inside the requested vm. 1181 * Search inside the @bos vm list for the requested vm 1182 * Returns the found bo_va or NULL if none is found 1183 * 1184 * Object has to be reserved! 1185 * 1186 * Returns: 1187 * Found bo_va or NULL. 1188 */ 1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1190 struct amdgpu_bo *bo) 1191 { 1192 struct amdgpu_vm_bo_base *base; 1193 1194 for (base = bo->vm_bo; base; base = base->next) { 1195 if (base->vm != vm) 1196 continue; 1197 1198 return container_of(base, struct amdgpu_bo_va, base); 1199 } 1200 return NULL; 1201 } 1202 1203 /** 1204 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1205 * 1206 * @pages_addr: optional DMA address to use for lookup 1207 * @addr: the unmapped addr 1208 * 1209 * Look up the physical address of the page that the pte resolves 1210 * to. 1211 * 1212 * Returns: 1213 * The pointer for the page table entry. 1214 */ 1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1216 { 1217 uint64_t result; 1218 1219 /* page table offset */ 1220 result = pages_addr[addr >> PAGE_SHIFT]; 1221 1222 /* in case cpu page size != gpu page size*/ 1223 result |= addr & (~PAGE_MASK); 1224 1225 result &= 0xFFFFFFFFFFFFF000ULL; 1226 1227 return result; 1228 } 1229 1230 /** 1231 * amdgpu_vm_update_pde - update a single level in the hierarchy 1232 * 1233 * @params: parameters for the update 1234 * @vm: requested vm 1235 * @entry: entry to update 1236 * 1237 * Makes sure the requested entry in parent is up to date. 1238 */ 1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1240 struct amdgpu_vm *vm, 1241 struct amdgpu_vm_pt *entry) 1242 { 1243 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1244 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1245 uint64_t pde, pt, flags; 1246 unsigned level; 1247 1248 for (level = 0, pbo = bo->parent; pbo; ++level) 1249 pbo = pbo->parent; 1250 1251 level += params->adev->vm_manager.root_level; 1252 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1253 pde = (entry - parent->entries) * 8; 1254 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1255 } 1256 1257 /** 1258 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1259 * 1260 * @adev: amdgpu_device pointer 1261 * @vm: related vm 1262 * 1263 * Mark all PD level as invalid after an error. 1264 */ 1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1266 struct amdgpu_vm *vm) 1267 { 1268 struct amdgpu_vm_pt_cursor cursor; 1269 struct amdgpu_vm_pt *entry; 1270 1271 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1272 if (entry->base.bo && !entry->base.moved) 1273 amdgpu_vm_bo_relocated(&entry->base); 1274 } 1275 1276 /** 1277 * amdgpu_vm_update_pdes - make sure that all directories are valid 1278 * 1279 * @adev: amdgpu_device pointer 1280 * @vm: requested vm 1281 * @immediate: submit immediately to the paging queue 1282 * 1283 * Makes sure all directories are up to date. 1284 * 1285 * Returns: 1286 * 0 for success, error for failure. 1287 */ 1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1289 struct amdgpu_vm *vm, bool immediate) 1290 { 1291 struct amdgpu_vm_update_params params; 1292 int r; 1293 1294 if (list_empty(&vm->relocated)) 1295 return 0; 1296 1297 memset(¶ms, 0, sizeof(params)); 1298 params.adev = adev; 1299 params.vm = vm; 1300 params.immediate = immediate; 1301 1302 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1303 if (r) 1304 return r; 1305 1306 while (!list_empty(&vm->relocated)) { 1307 struct amdgpu_vm_pt *entry; 1308 1309 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1310 base.vm_status); 1311 amdgpu_vm_bo_idle(&entry->base); 1312 1313 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1314 if (r) 1315 goto error; 1316 } 1317 1318 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1319 if (r) 1320 goto error; 1321 return 0; 1322 1323 error: 1324 amdgpu_vm_invalidate_pds(adev, vm); 1325 return r; 1326 } 1327 1328 /* 1329 * amdgpu_vm_update_flags - figure out flags for PTE updates 1330 * 1331 * Make sure to set the right flags for the PTEs at the desired level. 1332 */ 1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1334 struct amdgpu_bo *bo, unsigned level, 1335 uint64_t pe, uint64_t addr, 1336 unsigned count, uint32_t incr, 1337 uint64_t flags) 1338 1339 { 1340 if (level != AMDGPU_VM_PTB) { 1341 flags |= AMDGPU_PDE_PTE; 1342 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1343 1344 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1345 !(flags & AMDGPU_PTE_VALID) && 1346 !(flags & AMDGPU_PTE_PRT)) { 1347 1348 /* Workaround for fault priority problem on GMC9 */ 1349 flags |= AMDGPU_PTE_EXECUTABLE; 1350 } 1351 1352 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1353 flags); 1354 } 1355 1356 /** 1357 * amdgpu_vm_fragment - get fragment for PTEs 1358 * 1359 * @params: see amdgpu_vm_update_params definition 1360 * @start: first PTE to handle 1361 * @end: last PTE to handle 1362 * @flags: hw mapping flags 1363 * @frag: resulting fragment size 1364 * @frag_end: end of this fragment 1365 * 1366 * Returns the first possible fragment for the start and end address. 1367 */ 1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1369 uint64_t start, uint64_t end, uint64_t flags, 1370 unsigned int *frag, uint64_t *frag_end) 1371 { 1372 /** 1373 * The MC L1 TLB supports variable sized pages, based on a fragment 1374 * field in the PTE. When this field is set to a non-zero value, page 1375 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1376 * flags are considered valid for all PTEs within the fragment range 1377 * and corresponding mappings are assumed to be physically contiguous. 1378 * 1379 * The L1 TLB can store a single PTE for the whole fragment, 1380 * significantly increasing the space available for translation 1381 * caching. This leads to large improvements in throughput when the 1382 * TLB is under pressure. 1383 * 1384 * The L2 TLB distributes small and large fragments into two 1385 * asymmetric partitions. The large fragment cache is significantly 1386 * larger. Thus, we try to use large fragments wherever possible. 1387 * Userspace can support this by aligning virtual base address and 1388 * allocation size to the fragment size. 1389 * 1390 * Starting with Vega10 the fragment size only controls the L1. The L2 1391 * is now directly feed with small/huge/giant pages from the walker. 1392 */ 1393 unsigned max_frag; 1394 1395 if (params->adev->asic_type < CHIP_VEGA10) 1396 max_frag = params->adev->vm_manager.fragment_size; 1397 else 1398 max_frag = 31; 1399 1400 /* system pages are non continuously */ 1401 if (params->pages_addr) { 1402 *frag = 0; 1403 *frag_end = end; 1404 return; 1405 } 1406 1407 /* This intentionally wraps around if no bit is set */ 1408 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1409 if (*frag >= max_frag) { 1410 *frag = max_frag; 1411 *frag_end = end & ~((1ULL << max_frag) - 1); 1412 } else { 1413 *frag_end = start + (1 << *frag); 1414 } 1415 } 1416 1417 /** 1418 * amdgpu_vm_update_ptes - make sure that page tables are valid 1419 * 1420 * @params: see amdgpu_vm_update_params definition 1421 * @start: start of GPU address range 1422 * @end: end of GPU address range 1423 * @dst: destination address to map to, the next dst inside the function 1424 * @flags: mapping flags 1425 * 1426 * Update the page tables in the range @start - @end. 1427 * 1428 * Returns: 1429 * 0 for success, -EINVAL for failure. 1430 */ 1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1432 uint64_t start, uint64_t end, 1433 uint64_t dst, uint64_t flags) 1434 { 1435 struct amdgpu_device *adev = params->adev; 1436 struct amdgpu_vm_pt_cursor cursor; 1437 uint64_t frag_start = start, frag_end; 1438 unsigned int frag; 1439 int r; 1440 1441 /* figure out the initial fragment */ 1442 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1443 1444 /* walk over the address space and update the PTs */ 1445 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1446 while (cursor.pfn < end) { 1447 unsigned shift, parent_shift, mask; 1448 uint64_t incr, entry_end, pe_start; 1449 struct amdgpu_bo *pt; 1450 1451 if (!params->unlocked) { 1452 /* make sure that the page tables covering the 1453 * address range are actually allocated 1454 */ 1455 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1456 &cursor, params->immediate); 1457 if (r) 1458 return r; 1459 } 1460 1461 shift = amdgpu_vm_level_shift(adev, cursor.level); 1462 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1463 if (params->unlocked) { 1464 /* Unlocked updates are only allowed on the leaves */ 1465 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1466 continue; 1467 } else if (adev->asic_type < CHIP_VEGA10 && 1468 (flags & AMDGPU_PTE_VALID)) { 1469 /* No huge page support before GMC v9 */ 1470 if (cursor.level != AMDGPU_VM_PTB) { 1471 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1472 return -ENOENT; 1473 continue; 1474 } 1475 } else if (frag < shift) { 1476 /* We can't use this level when the fragment size is 1477 * smaller than the address shift. Go to the next 1478 * child entry and try again. 1479 */ 1480 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1481 continue; 1482 } else if (frag >= parent_shift) { 1483 /* If the fragment size is even larger than the parent 1484 * shift we should go up one level and check it again. 1485 */ 1486 if (!amdgpu_vm_pt_ancestor(&cursor)) 1487 return -EINVAL; 1488 continue; 1489 } 1490 1491 pt = cursor.entry->base.bo; 1492 if (!pt) { 1493 /* We need all PDs and PTs for mapping something, */ 1494 if (flags & AMDGPU_PTE_VALID) 1495 return -ENOENT; 1496 1497 /* but unmapping something can happen at a higher 1498 * level. 1499 */ 1500 if (!amdgpu_vm_pt_ancestor(&cursor)) 1501 return -EINVAL; 1502 1503 pt = cursor.entry->base.bo; 1504 shift = parent_shift; 1505 frag_end = max(frag_end, ALIGN(frag_start + 1, 1506 1ULL << shift)); 1507 } 1508 1509 /* Looks good so far, calculate parameters for the update */ 1510 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1511 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1512 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1513 entry_end = ((uint64_t)mask + 1) << shift; 1514 entry_end += cursor.pfn & ~(entry_end - 1); 1515 entry_end = min(entry_end, end); 1516 1517 do { 1518 struct amdgpu_vm *vm = params->vm; 1519 uint64_t upd_end = min(entry_end, frag_end); 1520 unsigned nptes = (upd_end - frag_start) >> shift; 1521 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1522 1523 /* This can happen when we set higher level PDs to 1524 * silent to stop fault floods. 1525 */ 1526 nptes = max(nptes, 1u); 1527 1528 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1529 nptes, dst, incr, upd_flags, 1530 vm->task_info.pid, 1531 vm->immediate.fence_context); 1532 amdgpu_vm_update_flags(params, pt, cursor.level, 1533 pe_start, dst, nptes, incr, 1534 upd_flags); 1535 1536 pe_start += nptes * 8; 1537 dst += nptes * incr; 1538 1539 frag_start = upd_end; 1540 if (frag_start >= frag_end) { 1541 /* figure out the next fragment */ 1542 amdgpu_vm_fragment(params, frag_start, end, 1543 flags, &frag, &frag_end); 1544 if (frag < shift) 1545 break; 1546 } 1547 } while (frag_start < entry_end); 1548 1549 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1550 /* Free all child entries. 1551 * Update the tables with the flags and addresses and free up subsequent 1552 * tables in the case of huge pages or freed up areas. 1553 * This is the maximum you can free, because all other page tables are not 1554 * completely covered by the range and so potentially still in use. 1555 */ 1556 while (cursor.pfn < frag_start) { 1557 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1558 amdgpu_vm_pt_next(adev, &cursor); 1559 } 1560 1561 } else if (frag >= shift) { 1562 /* or just move on to the next on the same level. */ 1563 amdgpu_vm_pt_next(adev, &cursor); 1564 } 1565 } 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1572 * 1573 * @adev: amdgpu_device pointer of the VM 1574 * @bo_adev: amdgpu_device pointer of the mapped BO 1575 * @vm: requested vm 1576 * @immediate: immediate submission in a page fault 1577 * @unlocked: unlocked invalidation during MM callback 1578 * @resv: fences we need to sync to 1579 * @start: start of mapped range 1580 * @last: last mapped entry 1581 * @flags: flags for the entries 1582 * @offset: offset into nodes and pages_addr 1583 * @nodes: array of drm_mm_nodes with the MC addresses 1584 * @pages_addr: DMA addresses to use for mapping 1585 * @fence: optional resulting fence 1586 * 1587 * Fill in the page table entries between @start and @last. 1588 * 1589 * Returns: 1590 * 0 for success, -EINVAL for failure. 1591 */ 1592 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1593 struct amdgpu_device *bo_adev, 1594 struct amdgpu_vm *vm, bool immediate, 1595 bool unlocked, struct dma_resv *resv, 1596 uint64_t start, uint64_t last, 1597 uint64_t flags, uint64_t offset, 1598 struct drm_mm_node *nodes, 1599 dma_addr_t *pages_addr, 1600 struct dma_fence **fence) 1601 { 1602 struct amdgpu_vm_update_params params; 1603 enum amdgpu_sync_mode sync_mode; 1604 uint64_t pfn; 1605 int r; 1606 1607 memset(¶ms, 0, sizeof(params)); 1608 params.adev = adev; 1609 params.vm = vm; 1610 params.immediate = immediate; 1611 params.pages_addr = pages_addr; 1612 params.unlocked = unlocked; 1613 1614 /* Implicitly sync to command submissions in the same VM before 1615 * unmapping. Sync to moving fences before mapping. 1616 */ 1617 if (!(flags & AMDGPU_PTE_VALID)) 1618 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1619 else 1620 sync_mode = AMDGPU_SYNC_EXPLICIT; 1621 1622 pfn = offset >> PAGE_SHIFT; 1623 if (nodes) { 1624 while (pfn >= nodes->size) { 1625 pfn -= nodes->size; 1626 ++nodes; 1627 } 1628 } 1629 1630 amdgpu_vm_eviction_lock(vm); 1631 if (vm->evicting) { 1632 r = -EBUSY; 1633 goto error_unlock; 1634 } 1635 1636 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1637 struct dma_fence *tmp = dma_fence_get_stub(); 1638 1639 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1640 swap(vm->last_unlocked, tmp); 1641 dma_fence_put(tmp); 1642 } 1643 1644 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1645 if (r) 1646 goto error_unlock; 1647 1648 do { 1649 uint64_t tmp, num_entries, addr; 1650 1651 1652 num_entries = last - start + 1; 1653 if (nodes) { 1654 addr = nodes->start << PAGE_SHIFT; 1655 num_entries = min((nodes->size - pfn) * 1656 AMDGPU_GPU_PAGES_IN_CPU_PAGE, num_entries); 1657 } else { 1658 addr = 0; 1659 } 1660 1661 if (pages_addr) { 1662 bool contiguous = true; 1663 1664 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1665 uint64_t count; 1666 1667 contiguous = pages_addr[pfn + 1] == 1668 pages_addr[pfn] + PAGE_SIZE; 1669 1670 tmp = num_entries / 1671 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1672 for (count = 2; count < tmp; ++count) { 1673 uint64_t idx = pfn + count; 1674 1675 if (contiguous != (pages_addr[idx] == 1676 pages_addr[idx - 1] + PAGE_SIZE)) 1677 break; 1678 } 1679 num_entries = count * 1680 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1681 } 1682 1683 if (!contiguous) { 1684 addr = pfn << PAGE_SHIFT; 1685 params.pages_addr = pages_addr; 1686 } else { 1687 addr = pages_addr[pfn]; 1688 params.pages_addr = NULL; 1689 } 1690 1691 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1692 addr += bo_adev->vm_manager.vram_base_offset; 1693 addr += pfn << PAGE_SHIFT; 1694 } 1695 1696 tmp = start + num_entries; 1697 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1698 if (r) 1699 goto error_unlock; 1700 1701 pfn += num_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1702 if (nodes && nodes->size == pfn) { 1703 pfn = 0; 1704 ++nodes; 1705 } 1706 start = tmp; 1707 1708 } while (unlikely(start != last + 1)); 1709 1710 r = vm->update_funcs->commit(¶ms, fence); 1711 1712 error_unlock: 1713 amdgpu_vm_eviction_unlock(vm); 1714 return r; 1715 } 1716 1717 /** 1718 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1719 * 1720 * @adev: amdgpu_device pointer 1721 * @bo_va: requested BO and VM object 1722 * @clear: if true clear the entries 1723 * 1724 * Fill in the page table entries for @bo_va. 1725 * 1726 * Returns: 1727 * 0 for success, -EINVAL for failure. 1728 */ 1729 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1730 bool clear) 1731 { 1732 struct amdgpu_bo *bo = bo_va->base.bo; 1733 struct amdgpu_vm *vm = bo_va->base.vm; 1734 struct amdgpu_bo_va_mapping *mapping; 1735 dma_addr_t *pages_addr = NULL; 1736 struct ttm_resource *mem; 1737 struct drm_mm_node *nodes; 1738 struct dma_fence **last_update; 1739 struct dma_resv *resv; 1740 uint64_t flags; 1741 struct amdgpu_device *bo_adev = adev; 1742 int r; 1743 1744 if (clear || !bo) { 1745 mem = NULL; 1746 nodes = NULL; 1747 resv = vm->root.base.bo->tbo.base.resv; 1748 } else { 1749 struct drm_gem_object *obj = &bo->tbo.base; 1750 struct ttm_dma_tt *ttm; 1751 1752 resv = bo->tbo.base.resv; 1753 if (obj->import_attach && bo_va->is_xgmi) { 1754 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1755 struct drm_gem_object *gobj = dma_buf->priv; 1756 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1757 1758 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1759 bo = gem_to_amdgpu_bo(gobj); 1760 } 1761 mem = &bo->tbo.mem; 1762 nodes = mem->mm_node; 1763 if (mem->mem_type == TTM_PL_TT) { 1764 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1765 pages_addr = ttm->dma_address; 1766 } 1767 } 1768 1769 if (bo) { 1770 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1771 1772 if (amdgpu_bo_encrypted(bo)) 1773 flags |= AMDGPU_PTE_TMZ; 1774 1775 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1776 } else { 1777 flags = 0x0; 1778 } 1779 1780 if (clear || (bo && bo->tbo.base.resv == 1781 vm->root.base.bo->tbo.base.resv)) 1782 last_update = &vm->last_update; 1783 else 1784 last_update = &bo_va->last_pt_update; 1785 1786 if (!clear && bo_va->base.moved) { 1787 bo_va->base.moved = false; 1788 list_splice_init(&bo_va->valids, &bo_va->invalids); 1789 1790 } else if (bo_va->cleared != clear) { 1791 list_splice_init(&bo_va->valids, &bo_va->invalids); 1792 } 1793 1794 list_for_each_entry(mapping, &bo_va->invalids, list) { 1795 uint64_t update_flags = flags; 1796 1797 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1798 * but in case of something, we filter the flags in first place 1799 */ 1800 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1801 update_flags &= ~AMDGPU_PTE_READABLE; 1802 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1803 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1804 1805 /* Apply ASIC specific mapping flags */ 1806 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1807 1808 trace_amdgpu_vm_bo_update(mapping); 1809 1810 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1811 resv, mapping->start, 1812 mapping->last, update_flags, 1813 mapping->offset, nodes, 1814 pages_addr, last_update); 1815 if (r) 1816 return r; 1817 } 1818 1819 /* If the BO is not in its preferred location add it back to 1820 * the evicted list so that it gets validated again on the 1821 * next command submission. 1822 */ 1823 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1824 uint32_t mem_type = bo->tbo.mem.mem_type; 1825 1826 if (!(bo->preferred_domains & 1827 amdgpu_mem_type_to_domain(mem_type))) 1828 amdgpu_vm_bo_evicted(&bo_va->base); 1829 else 1830 amdgpu_vm_bo_idle(&bo_va->base); 1831 } else { 1832 amdgpu_vm_bo_done(&bo_va->base); 1833 } 1834 1835 list_splice_init(&bo_va->invalids, &bo_va->valids); 1836 bo_va->cleared = clear; 1837 1838 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1839 list_for_each_entry(mapping, &bo_va->valids, list) 1840 trace_amdgpu_vm_bo_mapping(mapping); 1841 } 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * amdgpu_vm_update_prt_state - update the global PRT state 1848 * 1849 * @adev: amdgpu_device pointer 1850 */ 1851 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1852 { 1853 unsigned long flags; 1854 bool enable; 1855 1856 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1857 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1858 adev->gmc.gmc_funcs->set_prt(adev, enable); 1859 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1860 } 1861 1862 /** 1863 * amdgpu_vm_prt_get - add a PRT user 1864 * 1865 * @adev: amdgpu_device pointer 1866 */ 1867 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1868 { 1869 if (!adev->gmc.gmc_funcs->set_prt) 1870 return; 1871 1872 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1873 amdgpu_vm_update_prt_state(adev); 1874 } 1875 1876 /** 1877 * amdgpu_vm_prt_put - drop a PRT user 1878 * 1879 * @adev: amdgpu_device pointer 1880 */ 1881 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1882 { 1883 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1884 amdgpu_vm_update_prt_state(adev); 1885 } 1886 1887 /** 1888 * amdgpu_vm_prt_cb - callback for updating the PRT status 1889 * 1890 * @fence: fence for the callback 1891 * @_cb: the callback function 1892 */ 1893 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1894 { 1895 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1896 1897 amdgpu_vm_prt_put(cb->adev); 1898 kfree(cb); 1899 } 1900 1901 /** 1902 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1903 * 1904 * @adev: amdgpu_device pointer 1905 * @fence: fence for the callback 1906 */ 1907 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1908 struct dma_fence *fence) 1909 { 1910 struct amdgpu_prt_cb *cb; 1911 1912 if (!adev->gmc.gmc_funcs->set_prt) 1913 return; 1914 1915 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1916 if (!cb) { 1917 /* Last resort when we are OOM */ 1918 if (fence) 1919 dma_fence_wait(fence, false); 1920 1921 amdgpu_vm_prt_put(adev); 1922 } else { 1923 cb->adev = adev; 1924 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1925 amdgpu_vm_prt_cb)) 1926 amdgpu_vm_prt_cb(fence, &cb->cb); 1927 } 1928 } 1929 1930 /** 1931 * amdgpu_vm_free_mapping - free a mapping 1932 * 1933 * @adev: amdgpu_device pointer 1934 * @vm: requested vm 1935 * @mapping: mapping to be freed 1936 * @fence: fence of the unmap operation 1937 * 1938 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1939 */ 1940 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1941 struct amdgpu_vm *vm, 1942 struct amdgpu_bo_va_mapping *mapping, 1943 struct dma_fence *fence) 1944 { 1945 if (mapping->flags & AMDGPU_PTE_PRT) 1946 amdgpu_vm_add_prt_cb(adev, fence); 1947 kfree(mapping); 1948 } 1949 1950 /** 1951 * amdgpu_vm_prt_fini - finish all prt mappings 1952 * 1953 * @adev: amdgpu_device pointer 1954 * @vm: requested vm 1955 * 1956 * Register a cleanup callback to disable PRT support after VM dies. 1957 */ 1958 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1959 { 1960 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1961 struct dma_fence *excl, **shared; 1962 unsigned i, shared_count; 1963 int r; 1964 1965 r = dma_resv_get_fences_rcu(resv, &excl, 1966 &shared_count, &shared); 1967 if (r) { 1968 /* Not enough memory to grab the fence list, as last resort 1969 * block for all the fences to complete. 1970 */ 1971 dma_resv_wait_timeout_rcu(resv, true, false, 1972 MAX_SCHEDULE_TIMEOUT); 1973 return; 1974 } 1975 1976 /* Add a callback for each fence in the reservation object */ 1977 amdgpu_vm_prt_get(adev); 1978 amdgpu_vm_add_prt_cb(adev, excl); 1979 1980 for (i = 0; i < shared_count; ++i) { 1981 amdgpu_vm_prt_get(adev); 1982 amdgpu_vm_add_prt_cb(adev, shared[i]); 1983 } 1984 1985 kfree(shared); 1986 } 1987 1988 /** 1989 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1990 * 1991 * @adev: amdgpu_device pointer 1992 * @vm: requested vm 1993 * @fence: optional resulting fence (unchanged if no work needed to be done 1994 * or if an error occurred) 1995 * 1996 * Make sure all freed BOs are cleared in the PT. 1997 * PTs have to be reserved and mutex must be locked! 1998 * 1999 * Returns: 2000 * 0 for success. 2001 * 2002 */ 2003 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2004 struct amdgpu_vm *vm, 2005 struct dma_fence **fence) 2006 { 2007 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2008 struct amdgpu_bo_va_mapping *mapping; 2009 uint64_t init_pte_value = 0; 2010 struct dma_fence *f = NULL; 2011 int r; 2012 2013 while (!list_empty(&vm->freed)) { 2014 mapping = list_first_entry(&vm->freed, 2015 struct amdgpu_bo_va_mapping, list); 2016 list_del(&mapping->list); 2017 2018 if (vm->pte_support_ats && 2019 mapping->start < AMDGPU_GMC_HOLE_START) 2020 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2021 2022 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2023 resv, mapping->start, 2024 mapping->last, init_pte_value, 2025 0, NULL, NULL, &f); 2026 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2027 if (r) { 2028 dma_fence_put(f); 2029 return r; 2030 } 2031 } 2032 2033 if (fence && f) { 2034 dma_fence_put(*fence); 2035 *fence = f; 2036 } else { 2037 dma_fence_put(f); 2038 } 2039 2040 return 0; 2041 2042 } 2043 2044 /** 2045 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2046 * 2047 * @adev: amdgpu_device pointer 2048 * @vm: requested vm 2049 * 2050 * Make sure all BOs which are moved are updated in the PTs. 2051 * 2052 * Returns: 2053 * 0 for success. 2054 * 2055 * PTs have to be reserved! 2056 */ 2057 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2058 struct amdgpu_vm *vm) 2059 { 2060 struct amdgpu_bo_va *bo_va, *tmp; 2061 struct dma_resv *resv; 2062 bool clear; 2063 int r; 2064 2065 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2066 /* Per VM BOs never need to bo cleared in the page tables */ 2067 r = amdgpu_vm_bo_update(adev, bo_va, false); 2068 if (r) 2069 return r; 2070 } 2071 2072 spin_lock(&vm->invalidated_lock); 2073 while (!list_empty(&vm->invalidated)) { 2074 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2075 base.vm_status); 2076 resv = bo_va->base.bo->tbo.base.resv; 2077 spin_unlock(&vm->invalidated_lock); 2078 2079 /* Try to reserve the BO to avoid clearing its ptes */ 2080 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2081 clear = false; 2082 /* Somebody else is using the BO right now */ 2083 else 2084 clear = true; 2085 2086 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2087 if (r) 2088 return r; 2089 2090 if (!clear) 2091 dma_resv_unlock(resv); 2092 spin_lock(&vm->invalidated_lock); 2093 } 2094 spin_unlock(&vm->invalidated_lock); 2095 2096 return 0; 2097 } 2098 2099 /** 2100 * amdgpu_vm_bo_add - add a bo to a specific vm 2101 * 2102 * @adev: amdgpu_device pointer 2103 * @vm: requested vm 2104 * @bo: amdgpu buffer object 2105 * 2106 * Add @bo into the requested vm. 2107 * Add @bo to the list of bos associated with the vm 2108 * 2109 * Returns: 2110 * Newly added bo_va or NULL for failure 2111 * 2112 * Object has to be reserved! 2113 */ 2114 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2115 struct amdgpu_vm *vm, 2116 struct amdgpu_bo *bo) 2117 { 2118 struct amdgpu_bo_va *bo_va; 2119 2120 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2121 if (bo_va == NULL) { 2122 return NULL; 2123 } 2124 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2125 2126 bo_va->ref_count = 1; 2127 INIT_LIST_HEAD(&bo_va->valids); 2128 INIT_LIST_HEAD(&bo_va->invalids); 2129 2130 if (!bo) 2131 return bo_va; 2132 2133 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2134 bo_va->is_xgmi = true; 2135 /* Power up XGMI if it can be potentially used */ 2136 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2137 } 2138 2139 return bo_va; 2140 } 2141 2142 2143 /** 2144 * amdgpu_vm_bo_insert_map - insert a new mapping 2145 * 2146 * @adev: amdgpu_device pointer 2147 * @bo_va: bo_va to store the address 2148 * @mapping: the mapping to insert 2149 * 2150 * Insert a new mapping into all structures. 2151 */ 2152 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2153 struct amdgpu_bo_va *bo_va, 2154 struct amdgpu_bo_va_mapping *mapping) 2155 { 2156 struct amdgpu_vm *vm = bo_va->base.vm; 2157 struct amdgpu_bo *bo = bo_va->base.bo; 2158 2159 mapping->bo_va = bo_va; 2160 list_add(&mapping->list, &bo_va->invalids); 2161 amdgpu_vm_it_insert(mapping, &vm->va); 2162 2163 if (mapping->flags & AMDGPU_PTE_PRT) 2164 amdgpu_vm_prt_get(adev); 2165 2166 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2167 !bo_va->base.moved) { 2168 list_move(&bo_va->base.vm_status, &vm->moved); 2169 } 2170 trace_amdgpu_vm_bo_map(bo_va, mapping); 2171 } 2172 2173 /** 2174 * amdgpu_vm_bo_map - map bo inside a vm 2175 * 2176 * @adev: amdgpu_device pointer 2177 * @bo_va: bo_va to store the address 2178 * @saddr: where to map the BO 2179 * @offset: requested offset in the BO 2180 * @size: BO size in bytes 2181 * @flags: attributes of pages (read/write/valid/etc.) 2182 * 2183 * Add a mapping of the BO at the specefied addr into the VM. 2184 * 2185 * Returns: 2186 * 0 for success, error for failure. 2187 * 2188 * Object has to be reserved and unreserved outside! 2189 */ 2190 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2191 struct amdgpu_bo_va *bo_va, 2192 uint64_t saddr, uint64_t offset, 2193 uint64_t size, uint64_t flags) 2194 { 2195 struct amdgpu_bo_va_mapping *mapping, *tmp; 2196 struct amdgpu_bo *bo = bo_va->base.bo; 2197 struct amdgpu_vm *vm = bo_va->base.vm; 2198 uint64_t eaddr; 2199 2200 /* validate the parameters */ 2201 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2202 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2203 return -EINVAL; 2204 2205 /* make sure object fit at this offset */ 2206 eaddr = saddr + size - 1; 2207 if (saddr >= eaddr || 2208 (bo && offset + size > amdgpu_bo_size(bo)) || 2209 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2210 return -EINVAL; 2211 2212 saddr /= AMDGPU_GPU_PAGE_SIZE; 2213 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2214 2215 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2216 if (tmp) { 2217 /* bo and tmp overlap, invalid addr */ 2218 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2219 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2220 tmp->start, tmp->last + 1); 2221 return -EINVAL; 2222 } 2223 2224 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2225 if (!mapping) 2226 return -ENOMEM; 2227 2228 mapping->start = saddr; 2229 mapping->last = eaddr; 2230 mapping->offset = offset; 2231 mapping->flags = flags; 2232 2233 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2234 2235 return 0; 2236 } 2237 2238 /** 2239 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2240 * 2241 * @adev: amdgpu_device pointer 2242 * @bo_va: bo_va to store the address 2243 * @saddr: where to map the BO 2244 * @offset: requested offset in the BO 2245 * @size: BO size in bytes 2246 * @flags: attributes of pages (read/write/valid/etc.) 2247 * 2248 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2249 * mappings as we do so. 2250 * 2251 * Returns: 2252 * 0 for success, error for failure. 2253 * 2254 * Object has to be reserved and unreserved outside! 2255 */ 2256 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2257 struct amdgpu_bo_va *bo_va, 2258 uint64_t saddr, uint64_t offset, 2259 uint64_t size, uint64_t flags) 2260 { 2261 struct amdgpu_bo_va_mapping *mapping; 2262 struct amdgpu_bo *bo = bo_va->base.bo; 2263 uint64_t eaddr; 2264 int r; 2265 2266 /* validate the parameters */ 2267 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2268 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2269 return -EINVAL; 2270 2271 /* make sure object fit at this offset */ 2272 eaddr = saddr + size - 1; 2273 if (saddr >= eaddr || 2274 (bo && offset + size > amdgpu_bo_size(bo)) || 2275 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2276 return -EINVAL; 2277 2278 /* Allocate all the needed memory */ 2279 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2280 if (!mapping) 2281 return -ENOMEM; 2282 2283 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2284 if (r) { 2285 kfree(mapping); 2286 return r; 2287 } 2288 2289 saddr /= AMDGPU_GPU_PAGE_SIZE; 2290 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2291 2292 mapping->start = saddr; 2293 mapping->last = eaddr; 2294 mapping->offset = offset; 2295 mapping->flags = flags; 2296 2297 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2298 2299 return 0; 2300 } 2301 2302 /** 2303 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2304 * 2305 * @adev: amdgpu_device pointer 2306 * @bo_va: bo_va to remove the address from 2307 * @saddr: where to the BO is mapped 2308 * 2309 * Remove a mapping of the BO at the specefied addr from the VM. 2310 * 2311 * Returns: 2312 * 0 for success, error for failure. 2313 * 2314 * Object has to be reserved and unreserved outside! 2315 */ 2316 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2317 struct amdgpu_bo_va *bo_va, 2318 uint64_t saddr) 2319 { 2320 struct amdgpu_bo_va_mapping *mapping; 2321 struct amdgpu_vm *vm = bo_va->base.vm; 2322 bool valid = true; 2323 2324 saddr /= AMDGPU_GPU_PAGE_SIZE; 2325 2326 list_for_each_entry(mapping, &bo_va->valids, list) { 2327 if (mapping->start == saddr) 2328 break; 2329 } 2330 2331 if (&mapping->list == &bo_va->valids) { 2332 valid = false; 2333 2334 list_for_each_entry(mapping, &bo_va->invalids, list) { 2335 if (mapping->start == saddr) 2336 break; 2337 } 2338 2339 if (&mapping->list == &bo_va->invalids) 2340 return -ENOENT; 2341 } 2342 2343 list_del(&mapping->list); 2344 amdgpu_vm_it_remove(mapping, &vm->va); 2345 mapping->bo_va = NULL; 2346 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2347 2348 if (valid) 2349 list_add(&mapping->list, &vm->freed); 2350 else 2351 amdgpu_vm_free_mapping(adev, vm, mapping, 2352 bo_va->last_pt_update); 2353 2354 return 0; 2355 } 2356 2357 /** 2358 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2359 * 2360 * @adev: amdgpu_device pointer 2361 * @vm: VM structure to use 2362 * @saddr: start of the range 2363 * @size: size of the range 2364 * 2365 * Remove all mappings in a range, split them as appropriate. 2366 * 2367 * Returns: 2368 * 0 for success, error for failure. 2369 */ 2370 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2371 struct amdgpu_vm *vm, 2372 uint64_t saddr, uint64_t size) 2373 { 2374 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2375 LIST_HEAD(removed); 2376 uint64_t eaddr; 2377 2378 eaddr = saddr + size - 1; 2379 saddr /= AMDGPU_GPU_PAGE_SIZE; 2380 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2381 2382 /* Allocate all the needed memory */ 2383 before = kzalloc(sizeof(*before), GFP_KERNEL); 2384 if (!before) 2385 return -ENOMEM; 2386 INIT_LIST_HEAD(&before->list); 2387 2388 after = kzalloc(sizeof(*after), GFP_KERNEL); 2389 if (!after) { 2390 kfree(before); 2391 return -ENOMEM; 2392 } 2393 INIT_LIST_HEAD(&after->list); 2394 2395 /* Now gather all removed mappings */ 2396 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2397 while (tmp) { 2398 /* Remember mapping split at the start */ 2399 if (tmp->start < saddr) { 2400 before->start = tmp->start; 2401 before->last = saddr - 1; 2402 before->offset = tmp->offset; 2403 before->flags = tmp->flags; 2404 before->bo_va = tmp->bo_va; 2405 list_add(&before->list, &tmp->bo_va->invalids); 2406 } 2407 2408 /* Remember mapping split at the end */ 2409 if (tmp->last > eaddr) { 2410 after->start = eaddr + 1; 2411 after->last = tmp->last; 2412 after->offset = tmp->offset; 2413 after->offset += after->start - tmp->start; 2414 after->flags = tmp->flags; 2415 after->bo_va = tmp->bo_va; 2416 list_add(&after->list, &tmp->bo_va->invalids); 2417 } 2418 2419 list_del(&tmp->list); 2420 list_add(&tmp->list, &removed); 2421 2422 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2423 } 2424 2425 /* And free them up */ 2426 list_for_each_entry_safe(tmp, next, &removed, list) { 2427 amdgpu_vm_it_remove(tmp, &vm->va); 2428 list_del(&tmp->list); 2429 2430 if (tmp->start < saddr) 2431 tmp->start = saddr; 2432 if (tmp->last > eaddr) 2433 tmp->last = eaddr; 2434 2435 tmp->bo_va = NULL; 2436 list_add(&tmp->list, &vm->freed); 2437 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2438 } 2439 2440 /* Insert partial mapping before the range */ 2441 if (!list_empty(&before->list)) { 2442 amdgpu_vm_it_insert(before, &vm->va); 2443 if (before->flags & AMDGPU_PTE_PRT) 2444 amdgpu_vm_prt_get(adev); 2445 } else { 2446 kfree(before); 2447 } 2448 2449 /* Insert partial mapping after the range */ 2450 if (!list_empty(&after->list)) { 2451 amdgpu_vm_it_insert(after, &vm->va); 2452 if (after->flags & AMDGPU_PTE_PRT) 2453 amdgpu_vm_prt_get(adev); 2454 } else { 2455 kfree(after); 2456 } 2457 2458 return 0; 2459 } 2460 2461 /** 2462 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2463 * 2464 * @vm: the requested VM 2465 * @addr: the address 2466 * 2467 * Find a mapping by it's address. 2468 * 2469 * Returns: 2470 * The amdgpu_bo_va_mapping matching for addr or NULL 2471 * 2472 */ 2473 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2474 uint64_t addr) 2475 { 2476 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2477 } 2478 2479 /** 2480 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2481 * 2482 * @vm: the requested vm 2483 * @ticket: CS ticket 2484 * 2485 * Trace all mappings of BOs reserved during a command submission. 2486 */ 2487 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2488 { 2489 struct amdgpu_bo_va_mapping *mapping; 2490 2491 if (!trace_amdgpu_vm_bo_cs_enabled()) 2492 return; 2493 2494 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2495 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2496 if (mapping->bo_va && mapping->bo_va->base.bo) { 2497 struct amdgpu_bo *bo; 2498 2499 bo = mapping->bo_va->base.bo; 2500 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2501 ticket) 2502 continue; 2503 } 2504 2505 trace_amdgpu_vm_bo_cs(mapping); 2506 } 2507 } 2508 2509 /** 2510 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2511 * 2512 * @adev: amdgpu_device pointer 2513 * @bo_va: requested bo_va 2514 * 2515 * Remove @bo_va->bo from the requested vm. 2516 * 2517 * Object have to be reserved! 2518 */ 2519 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2520 struct amdgpu_bo_va *bo_va) 2521 { 2522 struct amdgpu_bo_va_mapping *mapping, *next; 2523 struct amdgpu_bo *bo = bo_va->base.bo; 2524 struct amdgpu_vm *vm = bo_va->base.vm; 2525 struct amdgpu_vm_bo_base **base; 2526 2527 if (bo) { 2528 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2529 vm->bulk_moveable = false; 2530 2531 for (base = &bo_va->base.bo->vm_bo; *base; 2532 base = &(*base)->next) { 2533 if (*base != &bo_va->base) 2534 continue; 2535 2536 *base = bo_va->base.next; 2537 break; 2538 } 2539 } 2540 2541 spin_lock(&vm->invalidated_lock); 2542 list_del(&bo_va->base.vm_status); 2543 spin_unlock(&vm->invalidated_lock); 2544 2545 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2546 list_del(&mapping->list); 2547 amdgpu_vm_it_remove(mapping, &vm->va); 2548 mapping->bo_va = NULL; 2549 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2550 list_add(&mapping->list, &vm->freed); 2551 } 2552 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2553 list_del(&mapping->list); 2554 amdgpu_vm_it_remove(mapping, &vm->va); 2555 amdgpu_vm_free_mapping(adev, vm, mapping, 2556 bo_va->last_pt_update); 2557 } 2558 2559 dma_fence_put(bo_va->last_pt_update); 2560 2561 if (bo && bo_va->is_xgmi) 2562 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2563 2564 kfree(bo_va); 2565 } 2566 2567 /** 2568 * amdgpu_vm_evictable - check if we can evict a VM 2569 * 2570 * @bo: A page table of the VM. 2571 * 2572 * Check if it is possible to evict a VM. 2573 */ 2574 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2575 { 2576 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2577 2578 /* Page tables of a destroyed VM can go away immediately */ 2579 if (!bo_base || !bo_base->vm) 2580 return true; 2581 2582 /* Don't evict VM page tables while they are busy */ 2583 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2584 return false; 2585 2586 /* Try to block ongoing updates */ 2587 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2588 return false; 2589 2590 /* Don't evict VM page tables while they are updated */ 2591 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2592 amdgpu_vm_eviction_unlock(bo_base->vm); 2593 return false; 2594 } 2595 2596 bo_base->vm->evicting = true; 2597 amdgpu_vm_eviction_unlock(bo_base->vm); 2598 return true; 2599 } 2600 2601 /** 2602 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2603 * 2604 * @adev: amdgpu_device pointer 2605 * @bo: amdgpu buffer object 2606 * @evicted: is the BO evicted 2607 * 2608 * Mark @bo as invalid. 2609 */ 2610 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2611 struct amdgpu_bo *bo, bool evicted) 2612 { 2613 struct amdgpu_vm_bo_base *bo_base; 2614 2615 /* shadow bo doesn't have bo base, its validation needs its parent */ 2616 if (bo->parent && bo->parent->shadow == bo) 2617 bo = bo->parent; 2618 2619 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2620 struct amdgpu_vm *vm = bo_base->vm; 2621 2622 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2623 amdgpu_vm_bo_evicted(bo_base); 2624 continue; 2625 } 2626 2627 if (bo_base->moved) 2628 continue; 2629 bo_base->moved = true; 2630 2631 if (bo->tbo.type == ttm_bo_type_kernel) 2632 amdgpu_vm_bo_relocated(bo_base); 2633 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2634 amdgpu_vm_bo_moved(bo_base); 2635 else 2636 amdgpu_vm_bo_invalidated(bo_base); 2637 } 2638 } 2639 2640 /** 2641 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2642 * 2643 * @vm_size: VM size 2644 * 2645 * Returns: 2646 * VM page table as power of two 2647 */ 2648 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2649 { 2650 /* Total bits covered by PD + PTs */ 2651 unsigned bits = ilog2(vm_size) + 18; 2652 2653 /* Make sure the PD is 4K in size up to 8GB address space. 2654 Above that split equal between PD and PTs */ 2655 if (vm_size <= 8) 2656 return (bits - 9); 2657 else 2658 return ((bits + 3) / 2); 2659 } 2660 2661 /** 2662 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2663 * 2664 * @adev: amdgpu_device pointer 2665 * @min_vm_size: the minimum vm size in GB if it's set auto 2666 * @fragment_size_default: Default PTE fragment size 2667 * @max_level: max VMPT level 2668 * @max_bits: max address space size in bits 2669 * 2670 */ 2671 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2672 uint32_t fragment_size_default, unsigned max_level, 2673 unsigned max_bits) 2674 { 2675 unsigned int max_size = 1 << (max_bits - 30); 2676 unsigned int vm_size; 2677 uint64_t tmp; 2678 2679 /* adjust vm size first */ 2680 if (amdgpu_vm_size != -1) { 2681 vm_size = amdgpu_vm_size; 2682 if (vm_size > max_size) { 2683 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2684 amdgpu_vm_size, max_size); 2685 vm_size = max_size; 2686 } 2687 } else { 2688 struct sysinfo si; 2689 unsigned int phys_ram_gb; 2690 2691 /* Optimal VM size depends on the amount of physical 2692 * RAM available. Underlying requirements and 2693 * assumptions: 2694 * 2695 * - Need to map system memory and VRAM from all GPUs 2696 * - VRAM from other GPUs not known here 2697 * - Assume VRAM <= system memory 2698 * - On GFX8 and older, VM space can be segmented for 2699 * different MTYPEs 2700 * - Need to allow room for fragmentation, guard pages etc. 2701 * 2702 * This adds up to a rough guess of system memory x3. 2703 * Round up to power of two to maximize the available 2704 * VM size with the given page table size. 2705 */ 2706 si_meminfo(&si); 2707 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2708 (1 << 30) - 1) >> 30; 2709 vm_size = roundup_pow_of_two( 2710 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2711 } 2712 2713 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2714 2715 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2716 if (amdgpu_vm_block_size != -1) 2717 tmp >>= amdgpu_vm_block_size - 9; 2718 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2719 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2720 switch (adev->vm_manager.num_level) { 2721 case 3: 2722 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2723 break; 2724 case 2: 2725 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2726 break; 2727 case 1: 2728 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2729 break; 2730 default: 2731 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2732 } 2733 /* block size depends on vm size and hw setup*/ 2734 if (amdgpu_vm_block_size != -1) 2735 adev->vm_manager.block_size = 2736 min((unsigned)amdgpu_vm_block_size, max_bits 2737 - AMDGPU_GPU_PAGE_SHIFT 2738 - 9 * adev->vm_manager.num_level); 2739 else if (adev->vm_manager.num_level > 1) 2740 adev->vm_manager.block_size = 9; 2741 else 2742 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2743 2744 if (amdgpu_vm_fragment_size == -1) 2745 adev->vm_manager.fragment_size = fragment_size_default; 2746 else 2747 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2748 2749 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2750 vm_size, adev->vm_manager.num_level + 1, 2751 adev->vm_manager.block_size, 2752 adev->vm_manager.fragment_size); 2753 } 2754 2755 /** 2756 * amdgpu_vm_wait_idle - wait for the VM to become idle 2757 * 2758 * @vm: VM object to wait for 2759 * @timeout: timeout to wait for VM to become idle 2760 */ 2761 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2762 { 2763 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2764 true, true, timeout); 2765 if (timeout <= 0) 2766 return timeout; 2767 2768 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2769 } 2770 2771 /** 2772 * amdgpu_vm_init - initialize a vm instance 2773 * 2774 * @adev: amdgpu_device pointer 2775 * @vm: requested vm 2776 * @vm_context: Indicates if it GFX or Compute context 2777 * @pasid: Process address space identifier 2778 * 2779 * Init @vm fields. 2780 * 2781 * Returns: 2782 * 0 for success, error for failure. 2783 */ 2784 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2785 int vm_context, unsigned int pasid) 2786 { 2787 struct amdgpu_bo_param bp; 2788 struct amdgpu_bo *root; 2789 int r, i; 2790 2791 vm->va = RB_ROOT_CACHED; 2792 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2793 vm->reserved_vmid[i] = NULL; 2794 INIT_LIST_HEAD(&vm->evicted); 2795 INIT_LIST_HEAD(&vm->relocated); 2796 INIT_LIST_HEAD(&vm->moved); 2797 INIT_LIST_HEAD(&vm->idle); 2798 INIT_LIST_HEAD(&vm->invalidated); 2799 spin_lock_init(&vm->invalidated_lock); 2800 INIT_LIST_HEAD(&vm->freed); 2801 INIT_LIST_HEAD(&vm->done); 2802 2803 /* create scheduler entities for page table updates */ 2804 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2805 adev->vm_manager.vm_pte_scheds, 2806 adev->vm_manager.vm_pte_num_scheds, NULL); 2807 if (r) 2808 return r; 2809 2810 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2811 adev->vm_manager.vm_pte_scheds, 2812 adev->vm_manager.vm_pte_num_scheds, NULL); 2813 if (r) 2814 goto error_free_immediate; 2815 2816 vm->pte_support_ats = false; 2817 vm->is_compute_context = false; 2818 2819 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2820 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2821 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2822 2823 if (adev->asic_type == CHIP_RAVEN) 2824 vm->pte_support_ats = true; 2825 } else { 2826 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2827 AMDGPU_VM_USE_CPU_FOR_GFX); 2828 } 2829 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2830 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2831 WARN_ONCE((vm->use_cpu_for_update && 2832 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2833 "CPU update of VM recommended only for large BAR system\n"); 2834 2835 if (vm->use_cpu_for_update) 2836 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2837 else 2838 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2839 vm->last_update = NULL; 2840 vm->last_unlocked = dma_fence_get_stub(); 2841 2842 mutex_init(&vm->eviction_lock); 2843 vm->evicting = false; 2844 2845 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2846 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2847 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2848 r = amdgpu_bo_create(adev, &bp, &root); 2849 if (r) 2850 goto error_free_delayed; 2851 2852 r = amdgpu_bo_reserve(root, true); 2853 if (r) 2854 goto error_free_root; 2855 2856 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2857 if (r) 2858 goto error_unreserve; 2859 2860 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2861 2862 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2863 if (r) 2864 goto error_unreserve; 2865 2866 amdgpu_bo_unreserve(vm->root.base.bo); 2867 2868 if (pasid) { 2869 unsigned long flags; 2870 2871 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2872 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2873 GFP_ATOMIC); 2874 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2875 if (r < 0) 2876 goto error_free_root; 2877 2878 vm->pasid = pasid; 2879 } 2880 2881 INIT_KFIFO(vm->faults); 2882 2883 return 0; 2884 2885 error_unreserve: 2886 amdgpu_bo_unreserve(vm->root.base.bo); 2887 2888 error_free_root: 2889 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2890 amdgpu_bo_unref(&vm->root.base.bo); 2891 vm->root.base.bo = NULL; 2892 2893 error_free_delayed: 2894 dma_fence_put(vm->last_unlocked); 2895 drm_sched_entity_destroy(&vm->delayed); 2896 2897 error_free_immediate: 2898 drm_sched_entity_destroy(&vm->immediate); 2899 2900 return r; 2901 } 2902 2903 /** 2904 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2905 * 2906 * @adev: amdgpu_device pointer 2907 * @vm: the VM to check 2908 * 2909 * check all entries of the root PD, if any subsequent PDs are allocated, 2910 * it means there are page table creating and filling, and is no a clean 2911 * VM 2912 * 2913 * Returns: 2914 * 0 if this VM is clean 2915 */ 2916 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2917 struct amdgpu_vm *vm) 2918 { 2919 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2920 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2921 unsigned int i = 0; 2922 2923 if (!(vm->root.entries)) 2924 return 0; 2925 2926 for (i = 0; i < entries; i++) { 2927 if (vm->root.entries[i].base.bo) 2928 return -EINVAL; 2929 } 2930 2931 return 0; 2932 } 2933 2934 /** 2935 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2936 * 2937 * @adev: amdgpu_device pointer 2938 * @vm: requested vm 2939 * @pasid: pasid to use 2940 * 2941 * This only works on GFX VMs that don't have any BOs added and no 2942 * page tables allocated yet. 2943 * 2944 * Changes the following VM parameters: 2945 * - use_cpu_for_update 2946 * - pte_supports_ats 2947 * - pasid (old PASID is released, because compute manages its own PASIDs) 2948 * 2949 * Reinitializes the page directory to reflect the changed ATS 2950 * setting. 2951 * 2952 * Returns: 2953 * 0 for success, -errno for errors. 2954 */ 2955 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2956 unsigned int pasid) 2957 { 2958 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2959 int r; 2960 2961 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2962 if (r) 2963 return r; 2964 2965 /* Sanity checks */ 2966 r = amdgpu_vm_check_clean_reserved(adev, vm); 2967 if (r) 2968 goto unreserve_bo; 2969 2970 if (pasid) { 2971 unsigned long flags; 2972 2973 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2974 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2975 GFP_ATOMIC); 2976 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2977 2978 if (r == -ENOSPC) 2979 goto unreserve_bo; 2980 r = 0; 2981 } 2982 2983 /* Check if PD needs to be reinitialized and do it before 2984 * changing any other state, in case it fails. 2985 */ 2986 if (pte_support_ats != vm->pte_support_ats) { 2987 vm->pte_support_ats = pte_support_ats; 2988 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 2989 if (r) 2990 goto free_idr; 2991 } 2992 2993 /* Update VM state */ 2994 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2995 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2996 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2997 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2998 WARN_ONCE((vm->use_cpu_for_update && 2999 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3000 "CPU update of VM recommended only for large BAR system\n"); 3001 3002 if (vm->use_cpu_for_update) { 3003 /* Sync with last SDMA update/clear before switching to CPU */ 3004 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3005 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3006 if (r) 3007 goto free_idr; 3008 3009 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3010 } else { 3011 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3012 } 3013 dma_fence_put(vm->last_update); 3014 vm->last_update = NULL; 3015 vm->is_compute_context = true; 3016 3017 if (vm->pasid) { 3018 unsigned long flags; 3019 3020 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3021 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3022 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3023 3024 /* Free the original amdgpu allocated pasid 3025 * Will be replaced with kfd allocated pasid 3026 */ 3027 amdgpu_pasid_free(vm->pasid); 3028 vm->pasid = 0; 3029 } 3030 3031 /* Free the shadow bo for compute VM */ 3032 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3033 3034 if (pasid) 3035 vm->pasid = pasid; 3036 3037 goto unreserve_bo; 3038 3039 free_idr: 3040 if (pasid) { 3041 unsigned long flags; 3042 3043 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3044 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3045 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3046 } 3047 unreserve_bo: 3048 amdgpu_bo_unreserve(vm->root.base.bo); 3049 return r; 3050 } 3051 3052 /** 3053 * amdgpu_vm_release_compute - release a compute vm 3054 * @adev: amdgpu_device pointer 3055 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3056 * 3057 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3058 * pasid from vm. Compute should stop use of vm after this call. 3059 */ 3060 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3061 { 3062 if (vm->pasid) { 3063 unsigned long flags; 3064 3065 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3066 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3067 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3068 } 3069 vm->pasid = 0; 3070 vm->is_compute_context = false; 3071 } 3072 3073 /** 3074 * amdgpu_vm_fini - tear down a vm instance 3075 * 3076 * @adev: amdgpu_device pointer 3077 * @vm: requested vm 3078 * 3079 * Tear down @vm. 3080 * Unbind the VM and remove all bos from the vm bo list 3081 */ 3082 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3083 { 3084 struct amdgpu_bo_va_mapping *mapping, *tmp; 3085 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3086 struct amdgpu_bo *root; 3087 int i; 3088 3089 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3090 3091 root = amdgpu_bo_ref(vm->root.base.bo); 3092 amdgpu_bo_reserve(root, true); 3093 if (vm->pasid) { 3094 unsigned long flags; 3095 3096 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3097 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3098 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3099 vm->pasid = 0; 3100 } 3101 3102 dma_fence_wait(vm->last_unlocked, false); 3103 dma_fence_put(vm->last_unlocked); 3104 3105 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3106 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3107 amdgpu_vm_prt_fini(adev, vm); 3108 prt_fini_needed = false; 3109 } 3110 3111 list_del(&mapping->list); 3112 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3113 } 3114 3115 amdgpu_vm_free_pts(adev, vm, NULL); 3116 amdgpu_bo_unreserve(root); 3117 amdgpu_bo_unref(&root); 3118 WARN_ON(vm->root.base.bo); 3119 3120 drm_sched_entity_destroy(&vm->immediate); 3121 drm_sched_entity_destroy(&vm->delayed); 3122 3123 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3124 dev_err(adev->dev, "still active bo inside vm\n"); 3125 } 3126 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3127 &vm->va.rb_root, rb) { 3128 /* Don't remove the mapping here, we don't want to trigger a 3129 * rebalance and the tree is about to be destroyed anyway. 3130 */ 3131 list_del(&mapping->list); 3132 kfree(mapping); 3133 } 3134 3135 dma_fence_put(vm->last_update); 3136 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3137 amdgpu_vmid_free_reserved(adev, vm, i); 3138 } 3139 3140 /** 3141 * amdgpu_vm_manager_init - init the VM manager 3142 * 3143 * @adev: amdgpu_device pointer 3144 * 3145 * Initialize the VM manager structures 3146 */ 3147 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3148 { 3149 unsigned i; 3150 3151 amdgpu_vmid_mgr_init(adev); 3152 3153 adev->vm_manager.fence_context = 3154 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3155 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3156 adev->vm_manager.seqno[i] = 0; 3157 3158 spin_lock_init(&adev->vm_manager.prt_lock); 3159 atomic_set(&adev->vm_manager.num_prt_users, 0); 3160 3161 /* If not overridden by the user, by default, only in large BAR systems 3162 * Compute VM tables will be updated by CPU 3163 */ 3164 #ifdef CONFIG_X86_64 3165 if (amdgpu_vm_update_mode == -1) { 3166 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3167 adev->vm_manager.vm_update_mode = 3168 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3169 else 3170 adev->vm_manager.vm_update_mode = 0; 3171 } else 3172 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3173 #else 3174 adev->vm_manager.vm_update_mode = 0; 3175 #endif 3176 3177 idr_init(&adev->vm_manager.pasid_idr); 3178 spin_lock_init(&adev->vm_manager.pasid_lock); 3179 } 3180 3181 /** 3182 * amdgpu_vm_manager_fini - cleanup VM manager 3183 * 3184 * @adev: amdgpu_device pointer 3185 * 3186 * Cleanup the VM manager and free resources. 3187 */ 3188 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3189 { 3190 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3191 idr_destroy(&adev->vm_manager.pasid_idr); 3192 3193 amdgpu_vmid_mgr_fini(adev); 3194 } 3195 3196 /** 3197 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3198 * 3199 * @dev: drm device pointer 3200 * @data: drm_amdgpu_vm 3201 * @filp: drm file pointer 3202 * 3203 * Returns: 3204 * 0 for success, -errno for errors. 3205 */ 3206 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3207 { 3208 union drm_amdgpu_vm *args = data; 3209 struct amdgpu_device *adev = drm_to_adev(dev); 3210 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3211 long timeout = msecs_to_jiffies(2000); 3212 int r; 3213 3214 switch (args->in.op) { 3215 case AMDGPU_VM_OP_RESERVE_VMID: 3216 /* We only have requirement to reserve vmid from gfxhub */ 3217 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3218 AMDGPU_GFXHUB_0); 3219 if (r) 3220 return r; 3221 break; 3222 case AMDGPU_VM_OP_UNRESERVE_VMID: 3223 if (amdgpu_sriov_runtime(adev)) 3224 timeout = 8 * timeout; 3225 3226 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3227 * not referenced anymore. 3228 */ 3229 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3230 if (r) 3231 return r; 3232 3233 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3234 if (r < 0) 3235 return r; 3236 3237 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3238 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3239 break; 3240 default: 3241 return -EINVAL; 3242 } 3243 3244 return 0; 3245 } 3246 3247 /** 3248 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3249 * 3250 * @adev: drm device pointer 3251 * @pasid: PASID identifier for VM 3252 * @task_info: task_info to fill. 3253 */ 3254 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3255 struct amdgpu_task_info *task_info) 3256 { 3257 struct amdgpu_vm *vm; 3258 unsigned long flags; 3259 3260 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3261 3262 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3263 if (vm) 3264 *task_info = vm->task_info; 3265 3266 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3267 } 3268 3269 /** 3270 * amdgpu_vm_set_task_info - Sets VMs task info. 3271 * 3272 * @vm: vm for which to set the info 3273 */ 3274 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3275 { 3276 if (vm->task_info.pid) 3277 return; 3278 3279 vm->task_info.pid = current->pid; 3280 get_task_comm(vm->task_info.task_name, current); 3281 3282 if (current->group_leader->mm != current->mm) 3283 return; 3284 3285 vm->task_info.tgid = current->group_leader->pid; 3286 get_task_comm(vm->task_info.process_name, current->group_leader); 3287 } 3288 3289 /** 3290 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3291 * @adev: amdgpu device pointer 3292 * @pasid: PASID of the VM 3293 * @addr: Address of the fault 3294 * 3295 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3296 * shouldn't be reported any more. 3297 */ 3298 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid, 3299 uint64_t addr) 3300 { 3301 struct amdgpu_bo *root; 3302 uint64_t value, flags; 3303 struct amdgpu_vm *vm; 3304 long r; 3305 3306 spin_lock(&adev->vm_manager.pasid_lock); 3307 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3308 if (vm) 3309 root = amdgpu_bo_ref(vm->root.base.bo); 3310 else 3311 root = NULL; 3312 spin_unlock(&adev->vm_manager.pasid_lock); 3313 3314 if (!root) 3315 return false; 3316 3317 r = amdgpu_bo_reserve(root, true); 3318 if (r) 3319 goto error_unref; 3320 3321 /* Double check that the VM still exists */ 3322 spin_lock(&adev->vm_manager.pasid_lock); 3323 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3324 if (vm && vm->root.base.bo != root) 3325 vm = NULL; 3326 spin_unlock(&adev->vm_manager.pasid_lock); 3327 if (!vm) 3328 goto error_unlock; 3329 3330 addr /= AMDGPU_GPU_PAGE_SIZE; 3331 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3332 AMDGPU_PTE_SYSTEM; 3333 3334 if (vm->is_compute_context) { 3335 /* Intentionally setting invalid PTE flag 3336 * combination to force a no-retry-fault 3337 */ 3338 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3339 AMDGPU_PTE_TF; 3340 value = 0; 3341 3342 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3343 /* Redirect the access to the dummy page */ 3344 value = adev->dummy_page_addr; 3345 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3346 AMDGPU_PTE_WRITEABLE; 3347 3348 } else { 3349 /* Let the hw retry silently on the PTE */ 3350 value = 0; 3351 } 3352 3353 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3354 addr + 1, flags, value, NULL, NULL, 3355 NULL); 3356 if (r) 3357 goto error_unlock; 3358 3359 r = amdgpu_vm_update_pdes(adev, vm, true); 3360 3361 error_unlock: 3362 amdgpu_bo_unreserve(root); 3363 if (r < 0) 3364 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3365 3366 error_unref: 3367 amdgpu_bo_unref(&root); 3368 3369 return false; 3370 } 3371 3372 #if defined(CONFIG_DEBUG_FS) 3373 /** 3374 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3375 * 3376 * @vm: Requested VM for printing BO info 3377 * @m: debugfs file 3378 * 3379 * Print BO information in debugfs file for the VM 3380 */ 3381 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3382 { 3383 struct amdgpu_bo_va *bo_va, *tmp; 3384 u64 total_idle = 0; 3385 u64 total_evicted = 0; 3386 u64 total_relocated = 0; 3387 u64 total_moved = 0; 3388 u64 total_invalidated = 0; 3389 u64 total_done = 0; 3390 unsigned int total_idle_objs = 0; 3391 unsigned int total_evicted_objs = 0; 3392 unsigned int total_relocated_objs = 0; 3393 unsigned int total_moved_objs = 0; 3394 unsigned int total_invalidated_objs = 0; 3395 unsigned int total_done_objs = 0; 3396 unsigned int id = 0; 3397 3398 seq_puts(m, "\tIdle BOs:\n"); 3399 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3400 if (!bo_va->base.bo) 3401 continue; 3402 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3403 } 3404 total_idle_objs = id; 3405 id = 0; 3406 3407 seq_puts(m, "\tEvicted BOs:\n"); 3408 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3409 if (!bo_va->base.bo) 3410 continue; 3411 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3412 } 3413 total_evicted_objs = id; 3414 id = 0; 3415 3416 seq_puts(m, "\tRelocated BOs:\n"); 3417 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3418 if (!bo_va->base.bo) 3419 continue; 3420 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3421 } 3422 total_relocated_objs = id; 3423 id = 0; 3424 3425 seq_puts(m, "\tMoved BOs:\n"); 3426 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3427 if (!bo_va->base.bo) 3428 continue; 3429 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3430 } 3431 total_moved_objs = id; 3432 id = 0; 3433 3434 seq_puts(m, "\tInvalidated BOs:\n"); 3435 spin_lock(&vm->invalidated_lock); 3436 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3437 if (!bo_va->base.bo) 3438 continue; 3439 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3440 } 3441 total_invalidated_objs = id; 3442 id = 0; 3443 3444 seq_puts(m, "\tDone BOs:\n"); 3445 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3446 if (!bo_va->base.bo) 3447 continue; 3448 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3449 } 3450 spin_unlock(&vm->invalidated_lock); 3451 total_done_objs = id; 3452 3453 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3454 total_idle_objs); 3455 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3456 total_evicted_objs); 3457 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3458 total_relocated_objs); 3459 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3460 total_moved_objs); 3461 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3462 total_invalidated_objs); 3463 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3464 total_done_objs); 3465 } 3466 #endif 3467