1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 37 /* 38 * GPUVM 39 * GPUVM is similar to the legacy gart on older asics, however 40 * rather than there being a single global gart table 41 * for the entire GPU, there are multiple VM page tables active 42 * at any given time. The VM page tables can contain a mix 43 * vram pages and system memory pages and system memory pages 44 * can be mapped as snooped (cached system pages) or unsnooped 45 * (uncached system pages). 46 * Each VM has an ID associated with it and there is a page table 47 * associated with each VMID. When execting a command buffer, 48 * the kernel tells the the ring what VMID to use for that command 49 * buffer. VMIDs are allocated dynamically as commands are submitted. 50 * The userspace drivers maintain their own address space and the kernel 51 * sets up their pages tables accordingly when they submit their 52 * command buffers and a VMID is assigned. 53 * Cayman/Trinity support up to 8 active VMs at any given time; 54 * SI supports 16. 55 */ 56 57 #define START(node) ((node)->start) 58 #define LAST(node) ((node)->last) 59 60 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 61 START, LAST, static, amdgpu_vm_it) 62 63 #undef START 64 #undef LAST 65 66 /* Local structure. Encapsulate some VM table update parameters to reduce 67 * the number of function parameters 68 */ 69 struct amdgpu_pte_update_params { 70 /* amdgpu device we do this update for */ 71 struct amdgpu_device *adev; 72 /* optional amdgpu_vm we do this update for */ 73 struct amdgpu_vm *vm; 74 /* address where to copy page table entries from */ 75 uint64_t src; 76 /* indirect buffer to fill with commands */ 77 struct amdgpu_ib *ib; 78 /* Function which actually does the update */ 79 void (*func)(struct amdgpu_pte_update_params *params, 80 struct amdgpu_bo *bo, uint64_t pe, 81 uint64_t addr, unsigned count, uint32_t incr, 82 uint64_t flags); 83 /* The next two are used during VM update by CPU 84 * DMA addresses to use for mapping 85 * Kernel pointer of PD/PT BO that needs to be updated 86 */ 87 dma_addr_t *pages_addr; 88 void *kptr; 89 }; 90 91 /* Helper to disable partial resident texture feature from a fence callback */ 92 struct amdgpu_prt_cb { 93 struct amdgpu_device *adev; 94 struct dma_fence_cb cb; 95 }; 96 97 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 98 struct amdgpu_vm *vm, 99 struct amdgpu_bo *bo) 100 { 101 base->vm = vm; 102 base->bo = bo; 103 INIT_LIST_HEAD(&base->bo_list); 104 INIT_LIST_HEAD(&base->vm_status); 105 106 if (!bo) 107 return; 108 list_add_tail(&base->bo_list, &bo->va); 109 110 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 111 return; 112 113 if (bo->preferred_domains & 114 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 115 return; 116 117 /* 118 * we checked all the prerequisites, but it looks like this per vm bo 119 * is currently evicted. add the bo to the evicted list to make sure it 120 * is validated on next vm use to avoid fault. 121 * */ 122 list_move_tail(&base->vm_status, &vm->evicted); 123 } 124 125 /** 126 * amdgpu_vm_level_shift - return the addr shift for each level 127 * 128 * @adev: amdgpu_device pointer 129 * 130 * Returns the number of bits the pfn needs to be right shifted for a level. 131 */ 132 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 133 unsigned level) 134 { 135 unsigned shift = 0xff; 136 137 switch (level) { 138 case AMDGPU_VM_PDB2: 139 case AMDGPU_VM_PDB1: 140 case AMDGPU_VM_PDB0: 141 shift = 9 * (AMDGPU_VM_PDB0 - level) + 142 adev->vm_manager.block_size; 143 break; 144 case AMDGPU_VM_PTB: 145 shift = 0; 146 break; 147 default: 148 dev_err(adev->dev, "the level%d isn't supported.\n", level); 149 } 150 151 return shift; 152 } 153 154 /** 155 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 156 * 157 * @adev: amdgpu_device pointer 158 * 159 * Calculate the number of entries in a page directory or page table. 160 */ 161 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 162 unsigned level) 163 { 164 unsigned shift = amdgpu_vm_level_shift(adev, 165 adev->vm_manager.root_level); 166 167 if (level == adev->vm_manager.root_level) 168 /* For the root directory */ 169 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 170 else if (level != AMDGPU_VM_PTB) 171 /* Everything in between */ 172 return 512; 173 else 174 /* For the page tables on the leaves */ 175 return AMDGPU_VM_PTE_COUNT(adev); 176 } 177 178 /** 179 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 180 * 181 * @adev: amdgpu_device pointer 182 * 183 * Calculate the size of the BO for a page directory or page table in bytes. 184 */ 185 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 186 { 187 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 188 } 189 190 /** 191 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 192 * 193 * @vm: vm providing the BOs 194 * @validated: head of validation list 195 * @entry: entry to add 196 * 197 * Add the page directory to the list of BOs to 198 * validate for command submission. 199 */ 200 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 201 struct list_head *validated, 202 struct amdgpu_bo_list_entry *entry) 203 { 204 entry->robj = vm->root.base.bo; 205 entry->priority = 0; 206 entry->tv.bo = &entry->robj->tbo; 207 entry->tv.shared = true; 208 entry->user_pages = NULL; 209 list_add(&entry->tv.head, validated); 210 } 211 212 /** 213 * amdgpu_vm_validate_pt_bos - validate the page table BOs 214 * 215 * @adev: amdgpu device pointer 216 * @vm: vm providing the BOs 217 * @validate: callback to do the validation 218 * @param: parameter for the validation callback 219 * 220 * Validate the page table BOs on command submission if neccessary. 221 */ 222 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 223 int (*validate)(void *p, struct amdgpu_bo *bo), 224 void *param) 225 { 226 struct ttm_bo_global *glob = adev->mman.bdev.glob; 227 struct amdgpu_vm_bo_base *bo_base, *tmp; 228 int r = 0; 229 230 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 231 struct amdgpu_bo *bo = bo_base->bo; 232 233 if (bo->parent) { 234 r = validate(param, bo); 235 if (r) 236 break; 237 238 spin_lock(&glob->lru_lock); 239 ttm_bo_move_to_lru_tail(&bo->tbo); 240 if (bo->shadow) 241 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 242 spin_unlock(&glob->lru_lock); 243 } 244 245 if (bo->tbo.type != ttm_bo_type_kernel) { 246 spin_lock(&vm->moved_lock); 247 list_move(&bo_base->vm_status, &vm->moved); 248 spin_unlock(&vm->moved_lock); 249 } else { 250 list_move(&bo_base->vm_status, &vm->relocated); 251 } 252 } 253 254 spin_lock(&glob->lru_lock); 255 list_for_each_entry(bo_base, &vm->idle, vm_status) { 256 struct amdgpu_bo *bo = bo_base->bo; 257 258 if (!bo->parent) 259 continue; 260 261 ttm_bo_move_to_lru_tail(&bo->tbo); 262 if (bo->shadow) 263 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 264 } 265 spin_unlock(&glob->lru_lock); 266 267 return r; 268 } 269 270 /** 271 * amdgpu_vm_ready - check VM is ready for updates 272 * 273 * @vm: VM to check 274 * 275 * Check if all VM PDs/PTs are ready for updates 276 */ 277 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 278 { 279 return list_empty(&vm->evicted); 280 } 281 282 /** 283 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 284 * 285 * @adev: amdgpu_device pointer 286 * @bo: BO to clear 287 * @level: level this BO is at 288 * 289 * Root PD needs to be reserved when calling this. 290 */ 291 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 292 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 293 unsigned level, bool pte_support_ats) 294 { 295 struct ttm_operation_ctx ctx = { true, false }; 296 struct dma_fence *fence = NULL; 297 unsigned entries, ats_entries; 298 struct amdgpu_ring *ring; 299 struct amdgpu_job *job; 300 uint64_t addr; 301 int r; 302 303 addr = amdgpu_bo_gpu_offset(bo); 304 entries = amdgpu_bo_size(bo) / 8; 305 306 if (pte_support_ats) { 307 if (level == adev->vm_manager.root_level) { 308 ats_entries = amdgpu_vm_level_shift(adev, level); 309 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 310 ats_entries = AMDGPU_VA_HOLE_START >> ats_entries; 311 ats_entries = min(ats_entries, entries); 312 entries -= ats_entries; 313 } else { 314 ats_entries = entries; 315 entries = 0; 316 } 317 } else { 318 ats_entries = 0; 319 } 320 321 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 322 323 r = reservation_object_reserve_shared(bo->tbo.resv); 324 if (r) 325 return r; 326 327 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 328 if (r) 329 goto error; 330 331 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 332 if (r) 333 goto error; 334 335 if (ats_entries) { 336 uint64_t ats_value; 337 338 ats_value = AMDGPU_PTE_DEFAULT_ATC; 339 if (level != AMDGPU_VM_PTB) 340 ats_value |= AMDGPU_PDE_PTE; 341 342 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 343 ats_entries, 0, ats_value); 344 addr += ats_entries * 8; 345 } 346 347 if (entries) 348 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 349 entries, 0, 0); 350 351 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 352 353 WARN_ON(job->ibs[0].length_dw > 64); 354 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 355 AMDGPU_FENCE_OWNER_UNDEFINED, false); 356 if (r) 357 goto error_free; 358 359 r = amdgpu_job_submit(job, ring, &vm->entity, 360 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 361 if (r) 362 goto error_free; 363 364 amdgpu_bo_fence(bo, fence, true); 365 dma_fence_put(fence); 366 367 if (bo->shadow) 368 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 369 level, pte_support_ats); 370 371 return 0; 372 373 error_free: 374 amdgpu_job_free(job); 375 376 error: 377 return r; 378 } 379 380 /** 381 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 382 * 383 * @adev: amdgpu_device pointer 384 * @vm: requested vm 385 * @saddr: start of the address range 386 * @eaddr: end of the address range 387 * 388 * Make sure the page directories and page tables are allocated 389 */ 390 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 391 struct amdgpu_vm *vm, 392 struct amdgpu_vm_pt *parent, 393 uint64_t saddr, uint64_t eaddr, 394 unsigned level, bool ats) 395 { 396 unsigned shift = amdgpu_vm_level_shift(adev, level); 397 unsigned pt_idx, from, to; 398 u64 flags; 399 int r; 400 401 if (!parent->entries) { 402 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 403 404 parent->entries = kvmalloc_array(num_entries, 405 sizeof(struct amdgpu_vm_pt), 406 GFP_KERNEL | __GFP_ZERO); 407 if (!parent->entries) 408 return -ENOMEM; 409 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 410 } 411 412 from = saddr >> shift; 413 to = eaddr >> shift; 414 if (from >= amdgpu_vm_num_entries(adev, level) || 415 to >= amdgpu_vm_num_entries(adev, level)) 416 return -EINVAL; 417 418 ++level; 419 saddr = saddr & ((1 << shift) - 1); 420 eaddr = eaddr & ((1 << shift) - 1); 421 422 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 423 if (vm->use_cpu_for_update) 424 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 425 else 426 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 427 AMDGPU_GEM_CREATE_SHADOW); 428 429 /* walk over the address space and allocate the page tables */ 430 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 431 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 432 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 433 struct amdgpu_bo *pt; 434 435 if (!entry->base.bo) { 436 struct amdgpu_bo_param bp; 437 438 memset(&bp, 0, sizeof(bp)); 439 bp.size = amdgpu_vm_bo_size(adev, level); 440 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 441 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 442 bp.flags = flags; 443 bp.type = ttm_bo_type_kernel; 444 bp.resv = resv; 445 r = amdgpu_bo_create(adev, &bp, &pt); 446 if (r) 447 return r; 448 449 r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats); 450 if (r) { 451 amdgpu_bo_unref(&pt->shadow); 452 amdgpu_bo_unref(&pt); 453 return r; 454 } 455 456 if (vm->use_cpu_for_update) { 457 r = amdgpu_bo_kmap(pt, NULL); 458 if (r) { 459 amdgpu_bo_unref(&pt->shadow); 460 amdgpu_bo_unref(&pt); 461 return r; 462 } 463 } 464 465 /* Keep a reference to the root directory to avoid 466 * freeing them up in the wrong order. 467 */ 468 pt->parent = amdgpu_bo_ref(parent->base.bo); 469 470 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 471 list_move(&entry->base.vm_status, &vm->relocated); 472 } 473 474 if (level < AMDGPU_VM_PTB) { 475 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 476 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 477 ((1 << shift) - 1); 478 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 479 sub_eaddr, level, ats); 480 if (r) 481 return r; 482 } 483 } 484 485 return 0; 486 } 487 488 /** 489 * amdgpu_vm_alloc_pts - Allocate page tables. 490 * 491 * @adev: amdgpu_device pointer 492 * @vm: VM to allocate page tables for 493 * @saddr: Start address which needs to be allocated 494 * @size: Size from start address we need. 495 * 496 * Make sure the page tables are allocated. 497 */ 498 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 499 struct amdgpu_vm *vm, 500 uint64_t saddr, uint64_t size) 501 { 502 uint64_t eaddr; 503 bool ats = false; 504 505 /* validate the parameters */ 506 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 507 return -EINVAL; 508 509 eaddr = saddr + size - 1; 510 511 if (vm->pte_support_ats) 512 ats = saddr < AMDGPU_VA_HOLE_START; 513 514 saddr /= AMDGPU_GPU_PAGE_SIZE; 515 eaddr /= AMDGPU_GPU_PAGE_SIZE; 516 517 if (eaddr >= adev->vm_manager.max_pfn) { 518 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 519 eaddr, adev->vm_manager.max_pfn); 520 return -EINVAL; 521 } 522 523 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 524 adev->vm_manager.root_level, ats); 525 } 526 527 /** 528 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 529 * 530 * @adev: amdgpu_device pointer 531 */ 532 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 533 { 534 const struct amdgpu_ip_block *ip_block; 535 bool has_compute_vm_bug; 536 struct amdgpu_ring *ring; 537 int i; 538 539 has_compute_vm_bug = false; 540 541 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 542 if (ip_block) { 543 /* Compute has a VM bug for GFX version < 7. 544 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 545 if (ip_block->version->major <= 7) 546 has_compute_vm_bug = true; 547 else if (ip_block->version->major == 8) 548 if (adev->gfx.mec_fw_version < 673) 549 has_compute_vm_bug = true; 550 } 551 552 for (i = 0; i < adev->num_rings; i++) { 553 ring = adev->rings[i]; 554 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 555 /* only compute rings */ 556 ring->has_compute_vm_bug = has_compute_vm_bug; 557 else 558 ring->has_compute_vm_bug = false; 559 } 560 } 561 562 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 563 struct amdgpu_job *job) 564 { 565 struct amdgpu_device *adev = ring->adev; 566 unsigned vmhub = ring->funcs->vmhub; 567 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 568 struct amdgpu_vmid *id; 569 bool gds_switch_needed; 570 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 571 572 if (job->vmid == 0) 573 return false; 574 id = &id_mgr->ids[job->vmid]; 575 gds_switch_needed = ring->funcs->emit_gds_switch && ( 576 id->gds_base != job->gds_base || 577 id->gds_size != job->gds_size || 578 id->gws_base != job->gws_base || 579 id->gws_size != job->gws_size || 580 id->oa_base != job->oa_base || 581 id->oa_size != job->oa_size); 582 583 if (amdgpu_vmid_had_gpu_reset(adev, id)) 584 return true; 585 586 return vm_flush_needed || gds_switch_needed; 587 } 588 589 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev) 590 { 591 return (adev->gmc.real_vram_size == adev->gmc.visible_vram_size); 592 } 593 594 /** 595 * amdgpu_vm_flush - hardware flush the vm 596 * 597 * @ring: ring to use for flush 598 * @vmid: vmid number to use 599 * @pd_addr: address of the page directory 600 * 601 * Emit a VM flush when it is necessary. 602 */ 603 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 604 { 605 struct amdgpu_device *adev = ring->adev; 606 unsigned vmhub = ring->funcs->vmhub; 607 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 608 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 609 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 610 id->gds_base != job->gds_base || 611 id->gds_size != job->gds_size || 612 id->gws_base != job->gws_base || 613 id->gws_size != job->gws_size || 614 id->oa_base != job->oa_base || 615 id->oa_size != job->oa_size); 616 bool vm_flush_needed = job->vm_needs_flush; 617 bool pasid_mapping_needed = id->pasid != job->pasid || 618 !id->pasid_mapping || 619 !dma_fence_is_signaled(id->pasid_mapping); 620 struct dma_fence *fence = NULL; 621 unsigned patch_offset = 0; 622 int r; 623 624 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 625 gds_switch_needed = true; 626 vm_flush_needed = true; 627 pasid_mapping_needed = true; 628 } 629 630 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 631 vm_flush_needed &= !!ring->funcs->emit_vm_flush; 632 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 633 ring->funcs->emit_wreg; 634 635 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 636 return 0; 637 638 if (ring->funcs->init_cond_exec) 639 patch_offset = amdgpu_ring_init_cond_exec(ring); 640 641 if (need_pipe_sync) 642 amdgpu_ring_emit_pipeline_sync(ring); 643 644 if (vm_flush_needed) { 645 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 646 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 647 } 648 649 if (pasid_mapping_needed) 650 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 651 652 if (vm_flush_needed || pasid_mapping_needed) { 653 r = amdgpu_fence_emit(ring, &fence, 0); 654 if (r) 655 return r; 656 } 657 658 if (vm_flush_needed) { 659 mutex_lock(&id_mgr->lock); 660 dma_fence_put(id->last_flush); 661 id->last_flush = dma_fence_get(fence); 662 id->current_gpu_reset_count = 663 atomic_read(&adev->gpu_reset_counter); 664 mutex_unlock(&id_mgr->lock); 665 } 666 667 if (pasid_mapping_needed) { 668 id->pasid = job->pasid; 669 dma_fence_put(id->pasid_mapping); 670 id->pasid_mapping = dma_fence_get(fence); 671 } 672 dma_fence_put(fence); 673 674 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 675 id->gds_base = job->gds_base; 676 id->gds_size = job->gds_size; 677 id->gws_base = job->gws_base; 678 id->gws_size = job->gws_size; 679 id->oa_base = job->oa_base; 680 id->oa_size = job->oa_size; 681 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 682 job->gds_size, job->gws_base, 683 job->gws_size, job->oa_base, 684 job->oa_size); 685 } 686 687 if (ring->funcs->patch_cond_exec) 688 amdgpu_ring_patch_cond_exec(ring, patch_offset); 689 690 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 691 if (ring->funcs->emit_switch_buffer) { 692 amdgpu_ring_emit_switch_buffer(ring); 693 amdgpu_ring_emit_switch_buffer(ring); 694 } 695 return 0; 696 } 697 698 /** 699 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 700 * 701 * @vm: requested vm 702 * @bo: requested buffer object 703 * 704 * Find @bo inside the requested vm. 705 * Search inside the @bos vm list for the requested vm 706 * Returns the found bo_va or NULL if none is found 707 * 708 * Object has to be reserved! 709 */ 710 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 711 struct amdgpu_bo *bo) 712 { 713 struct amdgpu_bo_va *bo_va; 714 715 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 716 if (bo_va->base.vm == vm) { 717 return bo_va; 718 } 719 } 720 return NULL; 721 } 722 723 /** 724 * amdgpu_vm_do_set_ptes - helper to call the right asic function 725 * 726 * @params: see amdgpu_pte_update_params definition 727 * @bo: PD/PT to update 728 * @pe: addr of the page entry 729 * @addr: dst addr to write into pe 730 * @count: number of page entries to update 731 * @incr: increase next addr by incr bytes 732 * @flags: hw access flags 733 * 734 * Traces the parameters and calls the right asic functions 735 * to setup the page table using the DMA. 736 */ 737 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 738 struct amdgpu_bo *bo, 739 uint64_t pe, uint64_t addr, 740 unsigned count, uint32_t incr, 741 uint64_t flags) 742 { 743 pe += amdgpu_bo_gpu_offset(bo); 744 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 745 746 if (count < 3) { 747 amdgpu_vm_write_pte(params->adev, params->ib, pe, 748 addr | flags, count, incr); 749 750 } else { 751 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 752 count, incr, flags); 753 } 754 } 755 756 /** 757 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 758 * 759 * @params: see amdgpu_pte_update_params definition 760 * @bo: PD/PT to update 761 * @pe: addr of the page entry 762 * @addr: dst addr to write into pe 763 * @count: number of page entries to update 764 * @incr: increase next addr by incr bytes 765 * @flags: hw access flags 766 * 767 * Traces the parameters and calls the DMA function to copy the PTEs. 768 */ 769 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 770 struct amdgpu_bo *bo, 771 uint64_t pe, uint64_t addr, 772 unsigned count, uint32_t incr, 773 uint64_t flags) 774 { 775 uint64_t src = (params->src + (addr >> 12) * 8); 776 777 pe += amdgpu_bo_gpu_offset(bo); 778 trace_amdgpu_vm_copy_ptes(pe, src, count); 779 780 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 781 } 782 783 /** 784 * amdgpu_vm_map_gart - Resolve gart mapping of addr 785 * 786 * @pages_addr: optional DMA address to use for lookup 787 * @addr: the unmapped addr 788 * 789 * Look up the physical address of the page that the pte resolves 790 * to and return the pointer for the page table entry. 791 */ 792 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 793 { 794 uint64_t result; 795 796 /* page table offset */ 797 result = pages_addr[addr >> PAGE_SHIFT]; 798 799 /* in case cpu page size != gpu page size*/ 800 result |= addr & (~PAGE_MASK); 801 802 result &= 0xFFFFFFFFFFFFF000ULL; 803 804 return result; 805 } 806 807 /** 808 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 809 * 810 * @params: see amdgpu_pte_update_params definition 811 * @bo: PD/PT to update 812 * @pe: kmap addr of the page entry 813 * @addr: dst addr to write into pe 814 * @count: number of page entries to update 815 * @incr: increase next addr by incr bytes 816 * @flags: hw access flags 817 * 818 * Write count number of PT/PD entries directly. 819 */ 820 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 821 struct amdgpu_bo *bo, 822 uint64_t pe, uint64_t addr, 823 unsigned count, uint32_t incr, 824 uint64_t flags) 825 { 826 unsigned int i; 827 uint64_t value; 828 829 pe += (unsigned long)amdgpu_bo_kptr(bo); 830 831 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 832 833 for (i = 0; i < count; i++) { 834 value = params->pages_addr ? 835 amdgpu_vm_map_gart(params->pages_addr, addr) : 836 addr; 837 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 838 i, value, flags); 839 addr += incr; 840 } 841 } 842 843 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 844 void *owner) 845 { 846 struct amdgpu_sync sync; 847 int r; 848 849 amdgpu_sync_create(&sync); 850 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 851 r = amdgpu_sync_wait(&sync, true); 852 amdgpu_sync_free(&sync); 853 854 return r; 855 } 856 857 /* 858 * amdgpu_vm_update_pde - update a single level in the hierarchy 859 * 860 * @param: parameters for the update 861 * @vm: requested vm 862 * @parent: parent directory 863 * @entry: entry to update 864 * 865 * Makes sure the requested entry in parent is up to date. 866 */ 867 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 868 struct amdgpu_vm *vm, 869 struct amdgpu_vm_pt *parent, 870 struct amdgpu_vm_pt *entry) 871 { 872 struct amdgpu_bo *bo = parent->base.bo, *pbo; 873 uint64_t pde, pt, flags; 874 unsigned level; 875 876 /* Don't update huge pages here */ 877 if (entry->huge) 878 return; 879 880 for (level = 0, pbo = bo->parent; pbo; ++level) 881 pbo = pbo->parent; 882 883 level += params->adev->vm_manager.root_level; 884 pt = amdgpu_bo_gpu_offset(entry->base.bo); 885 flags = AMDGPU_PTE_VALID; 886 amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags); 887 pde = (entry - parent->entries) * 8; 888 if (bo->shadow) 889 params->func(params, bo->shadow, pde, pt, 1, 0, flags); 890 params->func(params, bo, pde, pt, 1, 0, flags); 891 } 892 893 /* 894 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 895 * 896 * @parent: parent PD 897 * 898 * Mark all PD level as invalid after an error. 899 */ 900 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev, 901 struct amdgpu_vm *vm, 902 struct amdgpu_vm_pt *parent, 903 unsigned level) 904 { 905 unsigned pt_idx, num_entries; 906 907 /* 908 * Recurse into the subdirectories. This recursion is harmless because 909 * we only have a maximum of 5 layers. 910 */ 911 num_entries = amdgpu_vm_num_entries(adev, level); 912 for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) { 913 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 914 915 if (!entry->base.bo) 916 continue; 917 918 if (!entry->base.moved) 919 list_move(&entry->base.vm_status, &vm->relocated); 920 amdgpu_vm_invalidate_level(adev, vm, entry, level + 1); 921 } 922 } 923 924 /* 925 * amdgpu_vm_update_directories - make sure that all directories are valid 926 * 927 * @adev: amdgpu_device pointer 928 * @vm: requested vm 929 * 930 * Makes sure all directories are up to date. 931 * Returns 0 for success, error for failure. 932 */ 933 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 934 struct amdgpu_vm *vm) 935 { 936 struct amdgpu_pte_update_params params; 937 struct amdgpu_job *job; 938 unsigned ndw = 0; 939 int r = 0; 940 941 if (list_empty(&vm->relocated)) 942 return 0; 943 944 restart: 945 memset(¶ms, 0, sizeof(params)); 946 params.adev = adev; 947 948 if (vm->use_cpu_for_update) { 949 struct amdgpu_vm_bo_base *bo_base; 950 951 list_for_each_entry(bo_base, &vm->relocated, vm_status) { 952 r = amdgpu_bo_kmap(bo_base->bo, NULL); 953 if (unlikely(r)) 954 return r; 955 } 956 957 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 958 if (unlikely(r)) 959 return r; 960 961 params.func = amdgpu_vm_cpu_set_ptes; 962 } else { 963 ndw = 512 * 8; 964 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 965 if (r) 966 return r; 967 968 params.ib = &job->ibs[0]; 969 params.func = amdgpu_vm_do_set_ptes; 970 } 971 972 while (!list_empty(&vm->relocated)) { 973 struct amdgpu_vm_bo_base *bo_base, *parent; 974 struct amdgpu_vm_pt *pt, *entry; 975 struct amdgpu_bo *bo; 976 977 bo_base = list_first_entry(&vm->relocated, 978 struct amdgpu_vm_bo_base, 979 vm_status); 980 bo_base->moved = false; 981 list_move(&bo_base->vm_status, &vm->idle); 982 983 bo = bo_base->bo->parent; 984 if (!bo) 985 continue; 986 987 parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, 988 bo_list); 989 pt = container_of(parent, struct amdgpu_vm_pt, base); 990 entry = container_of(bo_base, struct amdgpu_vm_pt, base); 991 992 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 993 994 if (!vm->use_cpu_for_update && 995 (ndw - params.ib->length_dw) < 32) 996 break; 997 } 998 999 if (vm->use_cpu_for_update) { 1000 /* Flush HDP */ 1001 mb(); 1002 amdgpu_asic_flush_hdp(adev, NULL); 1003 } else if (params.ib->length_dw == 0) { 1004 amdgpu_job_free(job); 1005 } else { 1006 struct amdgpu_bo *root = vm->root.base.bo; 1007 struct amdgpu_ring *ring; 1008 struct dma_fence *fence; 1009 1010 ring = container_of(vm->entity.sched, struct amdgpu_ring, 1011 sched); 1012 1013 amdgpu_ring_pad_ib(ring, params.ib); 1014 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1015 AMDGPU_FENCE_OWNER_VM, false); 1016 WARN_ON(params.ib->length_dw > ndw); 1017 r = amdgpu_job_submit(job, ring, &vm->entity, 1018 AMDGPU_FENCE_OWNER_VM, &fence); 1019 if (r) 1020 goto error; 1021 1022 amdgpu_bo_fence(root, fence, true); 1023 dma_fence_put(vm->last_update); 1024 vm->last_update = fence; 1025 } 1026 1027 if (!list_empty(&vm->relocated)) 1028 goto restart; 1029 1030 return 0; 1031 1032 error: 1033 amdgpu_vm_invalidate_level(adev, vm, &vm->root, 1034 adev->vm_manager.root_level); 1035 amdgpu_job_free(job); 1036 return r; 1037 } 1038 1039 /** 1040 * amdgpu_vm_find_entry - find the entry for an address 1041 * 1042 * @p: see amdgpu_pte_update_params definition 1043 * @addr: virtual address in question 1044 * @entry: resulting entry or NULL 1045 * @parent: parent entry 1046 * 1047 * Find the vm_pt entry and it's parent for the given address. 1048 */ 1049 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1050 struct amdgpu_vm_pt **entry, 1051 struct amdgpu_vm_pt **parent) 1052 { 1053 unsigned level = p->adev->vm_manager.root_level; 1054 1055 *parent = NULL; 1056 *entry = &p->vm->root; 1057 while ((*entry)->entries) { 1058 unsigned shift = amdgpu_vm_level_shift(p->adev, level++); 1059 1060 *parent = *entry; 1061 *entry = &(*entry)->entries[addr >> shift]; 1062 addr &= (1ULL << shift) - 1; 1063 } 1064 1065 if (level != AMDGPU_VM_PTB) 1066 *entry = NULL; 1067 } 1068 1069 /** 1070 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1071 * 1072 * @p: see amdgpu_pte_update_params definition 1073 * @entry: vm_pt entry to check 1074 * @parent: parent entry 1075 * @nptes: number of PTEs updated with this operation 1076 * @dst: destination address where the PTEs should point to 1077 * @flags: access flags fro the PTEs 1078 * 1079 * Check if we can update the PD with a huge page. 1080 */ 1081 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1082 struct amdgpu_vm_pt *entry, 1083 struct amdgpu_vm_pt *parent, 1084 unsigned nptes, uint64_t dst, 1085 uint64_t flags) 1086 { 1087 uint64_t pde; 1088 1089 /* In the case of a mixed PT the PDE must point to it*/ 1090 if (p->adev->asic_type >= CHIP_VEGA10 && !p->src && 1091 nptes == AMDGPU_VM_PTE_COUNT(p->adev)) { 1092 /* Set the huge page flag to stop scanning at this PDE */ 1093 flags |= AMDGPU_PDE_PTE; 1094 } 1095 1096 if (!(flags & AMDGPU_PDE_PTE)) { 1097 if (entry->huge) { 1098 /* Add the entry to the relocated list to update it. */ 1099 entry->huge = false; 1100 list_move(&entry->base.vm_status, &p->vm->relocated); 1101 } 1102 return; 1103 } 1104 1105 entry->huge = true; 1106 amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags); 1107 1108 pde = (entry - parent->entries) * 8; 1109 if (parent->base.bo->shadow) 1110 p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags); 1111 p->func(p, parent->base.bo, pde, dst, 1, 0, flags); 1112 } 1113 1114 /** 1115 * amdgpu_vm_update_ptes - make sure that page tables are valid 1116 * 1117 * @params: see amdgpu_pte_update_params definition 1118 * @vm: requested vm 1119 * @start: start of GPU address range 1120 * @end: end of GPU address range 1121 * @dst: destination address to map to, the next dst inside the function 1122 * @flags: mapping flags 1123 * 1124 * Update the page tables in the range @start - @end. 1125 * Returns 0 for success, -EINVAL for failure. 1126 */ 1127 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1128 uint64_t start, uint64_t end, 1129 uint64_t dst, uint64_t flags) 1130 { 1131 struct amdgpu_device *adev = params->adev; 1132 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1133 1134 uint64_t addr, pe_start; 1135 struct amdgpu_bo *pt; 1136 unsigned nptes; 1137 1138 /* walk over the address space and update the page tables */ 1139 for (addr = start; addr < end; addr += nptes, 1140 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1141 struct amdgpu_vm_pt *entry, *parent; 1142 1143 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1144 if (!entry) 1145 return -ENOENT; 1146 1147 if ((addr & ~mask) == (end & ~mask)) 1148 nptes = end - addr; 1149 else 1150 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1151 1152 amdgpu_vm_handle_huge_pages(params, entry, parent, 1153 nptes, dst, flags); 1154 /* We don't need to update PTEs for huge pages */ 1155 if (entry->huge) 1156 continue; 1157 1158 pt = entry->base.bo; 1159 pe_start = (addr & mask) * 8; 1160 if (pt->shadow) 1161 params->func(params, pt->shadow, pe_start, dst, nptes, 1162 AMDGPU_GPU_PAGE_SIZE, flags); 1163 params->func(params, pt, pe_start, dst, nptes, 1164 AMDGPU_GPU_PAGE_SIZE, flags); 1165 } 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1172 * 1173 * @params: see amdgpu_pte_update_params definition 1174 * @vm: requested vm 1175 * @start: first PTE to handle 1176 * @end: last PTE to handle 1177 * @dst: addr those PTEs should point to 1178 * @flags: hw mapping flags 1179 * Returns 0 for success, -EINVAL for failure. 1180 */ 1181 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1182 uint64_t start, uint64_t end, 1183 uint64_t dst, uint64_t flags) 1184 { 1185 /** 1186 * The MC L1 TLB supports variable sized pages, based on a fragment 1187 * field in the PTE. When this field is set to a non-zero value, page 1188 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1189 * flags are considered valid for all PTEs within the fragment range 1190 * and corresponding mappings are assumed to be physically contiguous. 1191 * 1192 * The L1 TLB can store a single PTE for the whole fragment, 1193 * significantly increasing the space available for translation 1194 * caching. This leads to large improvements in throughput when the 1195 * TLB is under pressure. 1196 * 1197 * The L2 TLB distributes small and large fragments into two 1198 * asymmetric partitions. The large fragment cache is significantly 1199 * larger. Thus, we try to use large fragments wherever possible. 1200 * Userspace can support this by aligning virtual base address and 1201 * allocation size to the fragment size. 1202 */ 1203 unsigned max_frag = params->adev->vm_manager.fragment_size; 1204 int r; 1205 1206 /* system pages are non continuously */ 1207 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1208 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1209 1210 while (start != end) { 1211 uint64_t frag_flags, frag_end; 1212 unsigned frag; 1213 1214 /* This intentionally wraps around if no bit is set */ 1215 frag = min((unsigned)ffs(start) - 1, 1216 (unsigned)fls64(end - start) - 1); 1217 if (frag >= max_frag) { 1218 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1219 frag_end = end & ~((1ULL << max_frag) - 1); 1220 } else { 1221 frag_flags = AMDGPU_PTE_FRAG(frag); 1222 frag_end = start + (1 << frag); 1223 } 1224 1225 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1226 flags | frag_flags); 1227 if (r) 1228 return r; 1229 1230 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1231 start = frag_end; 1232 } 1233 1234 return 0; 1235 } 1236 1237 /** 1238 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1239 * 1240 * @adev: amdgpu_device pointer 1241 * @exclusive: fence we need to sync to 1242 * @pages_addr: DMA addresses to use for mapping 1243 * @vm: requested vm 1244 * @start: start of mapped range 1245 * @last: last mapped entry 1246 * @flags: flags for the entries 1247 * @addr: addr to set the area to 1248 * @fence: optional resulting fence 1249 * 1250 * Fill in the page table entries between @start and @last. 1251 * Returns 0 for success, -EINVAL for failure. 1252 */ 1253 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1254 struct dma_fence *exclusive, 1255 dma_addr_t *pages_addr, 1256 struct amdgpu_vm *vm, 1257 uint64_t start, uint64_t last, 1258 uint64_t flags, uint64_t addr, 1259 struct dma_fence **fence) 1260 { 1261 struct amdgpu_ring *ring; 1262 void *owner = AMDGPU_FENCE_OWNER_VM; 1263 unsigned nptes, ncmds, ndw; 1264 struct amdgpu_job *job; 1265 struct amdgpu_pte_update_params params; 1266 struct dma_fence *f = NULL; 1267 int r; 1268 1269 memset(¶ms, 0, sizeof(params)); 1270 params.adev = adev; 1271 params.vm = vm; 1272 1273 /* sync to everything on unmapping */ 1274 if (!(flags & AMDGPU_PTE_VALID)) 1275 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1276 1277 if (vm->use_cpu_for_update) { 1278 /* params.src is used as flag to indicate system Memory */ 1279 if (pages_addr) 1280 params.src = ~0; 1281 1282 /* Wait for PT BOs to be free. PTs share the same resv. object 1283 * as the root PD BO 1284 */ 1285 r = amdgpu_vm_wait_pd(adev, vm, owner); 1286 if (unlikely(r)) 1287 return r; 1288 1289 params.func = amdgpu_vm_cpu_set_ptes; 1290 params.pages_addr = pages_addr; 1291 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1292 addr, flags); 1293 } 1294 1295 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1296 1297 nptes = last - start + 1; 1298 1299 /* 1300 * reserve space for two commands every (1 << BLOCK_SIZE) 1301 * entries or 2k dwords (whatever is smaller) 1302 * 1303 * The second command is for the shadow pagetables. 1304 */ 1305 if (vm->root.base.bo->shadow) 1306 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1307 else 1308 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1309 1310 /* padding, etc. */ 1311 ndw = 64; 1312 1313 if (pages_addr) { 1314 /* copy commands needed */ 1315 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1316 1317 /* and also PTEs */ 1318 ndw += nptes * 2; 1319 1320 params.func = amdgpu_vm_do_copy_ptes; 1321 1322 } else { 1323 /* set page commands needed */ 1324 ndw += ncmds * 10; 1325 1326 /* extra commands for begin/end fragments */ 1327 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1328 1329 params.func = amdgpu_vm_do_set_ptes; 1330 } 1331 1332 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1333 if (r) 1334 return r; 1335 1336 params.ib = &job->ibs[0]; 1337 1338 if (pages_addr) { 1339 uint64_t *pte; 1340 unsigned i; 1341 1342 /* Put the PTEs at the end of the IB. */ 1343 i = ndw - nptes * 2; 1344 pte= (uint64_t *)&(job->ibs->ptr[i]); 1345 params.src = job->ibs->gpu_addr + i * 4; 1346 1347 for (i = 0; i < nptes; ++i) { 1348 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1349 AMDGPU_GPU_PAGE_SIZE); 1350 pte[i] |= flags; 1351 } 1352 addr = 0; 1353 } 1354 1355 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1356 if (r) 1357 goto error_free; 1358 1359 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1360 owner, false); 1361 if (r) 1362 goto error_free; 1363 1364 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1365 if (r) 1366 goto error_free; 1367 1368 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1369 if (r) 1370 goto error_free; 1371 1372 amdgpu_ring_pad_ib(ring, params.ib); 1373 WARN_ON(params.ib->length_dw > ndw); 1374 r = amdgpu_job_submit(job, ring, &vm->entity, 1375 AMDGPU_FENCE_OWNER_VM, &f); 1376 if (r) 1377 goto error_free; 1378 1379 amdgpu_bo_fence(vm->root.base.bo, f, true); 1380 dma_fence_put(*fence); 1381 *fence = f; 1382 return 0; 1383 1384 error_free: 1385 amdgpu_job_free(job); 1386 return r; 1387 } 1388 1389 /** 1390 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1391 * 1392 * @adev: amdgpu_device pointer 1393 * @exclusive: fence we need to sync to 1394 * @pages_addr: DMA addresses to use for mapping 1395 * @vm: requested vm 1396 * @mapping: mapped range and flags to use for the update 1397 * @flags: HW flags for the mapping 1398 * @nodes: array of drm_mm_nodes with the MC addresses 1399 * @fence: optional resulting fence 1400 * 1401 * Split the mapping into smaller chunks so that each update fits 1402 * into a SDMA IB. 1403 * Returns 0 for success, -EINVAL for failure. 1404 */ 1405 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1406 struct dma_fence *exclusive, 1407 dma_addr_t *pages_addr, 1408 struct amdgpu_vm *vm, 1409 struct amdgpu_bo_va_mapping *mapping, 1410 uint64_t flags, 1411 struct drm_mm_node *nodes, 1412 struct dma_fence **fence) 1413 { 1414 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1415 uint64_t pfn, start = mapping->start; 1416 int r; 1417 1418 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1419 * but in case of something, we filter the flags in first place 1420 */ 1421 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1422 flags &= ~AMDGPU_PTE_READABLE; 1423 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1424 flags &= ~AMDGPU_PTE_WRITEABLE; 1425 1426 flags &= ~AMDGPU_PTE_EXECUTABLE; 1427 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1428 1429 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1430 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1431 1432 if ((mapping->flags & AMDGPU_PTE_PRT) && 1433 (adev->asic_type >= CHIP_VEGA10)) { 1434 flags |= AMDGPU_PTE_PRT; 1435 flags &= ~AMDGPU_PTE_VALID; 1436 } 1437 1438 trace_amdgpu_vm_bo_update(mapping); 1439 1440 pfn = mapping->offset >> PAGE_SHIFT; 1441 if (nodes) { 1442 while (pfn >= nodes->size) { 1443 pfn -= nodes->size; 1444 ++nodes; 1445 } 1446 } 1447 1448 do { 1449 dma_addr_t *dma_addr = NULL; 1450 uint64_t max_entries; 1451 uint64_t addr, last; 1452 1453 if (nodes) { 1454 addr = nodes->start << PAGE_SHIFT; 1455 max_entries = (nodes->size - pfn) * 1456 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1457 } else { 1458 addr = 0; 1459 max_entries = S64_MAX; 1460 } 1461 1462 if (pages_addr) { 1463 uint64_t count; 1464 1465 max_entries = min(max_entries, 16ull * 1024ull); 1466 for (count = 1; 1467 count < max_entries / (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1468 ++count) { 1469 uint64_t idx = pfn + count; 1470 1471 if (pages_addr[idx] != 1472 (pages_addr[idx - 1] + PAGE_SIZE)) 1473 break; 1474 } 1475 1476 if (count < min_linear_pages) { 1477 addr = pfn << PAGE_SHIFT; 1478 dma_addr = pages_addr; 1479 } else { 1480 addr = pages_addr[pfn]; 1481 max_entries = count * (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1482 } 1483 1484 } else if (flags & AMDGPU_PTE_VALID) { 1485 addr += adev->vm_manager.vram_base_offset; 1486 addr += pfn << PAGE_SHIFT; 1487 } 1488 1489 last = min((uint64_t)mapping->last, start + max_entries - 1); 1490 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1491 start, last, flags, addr, 1492 fence); 1493 if (r) 1494 return r; 1495 1496 pfn += (last - start + 1) / (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1497 if (nodes && nodes->size == pfn) { 1498 pfn = 0; 1499 ++nodes; 1500 } 1501 start = last + 1; 1502 1503 } while (unlikely(start != mapping->last + 1)); 1504 1505 return 0; 1506 } 1507 1508 /** 1509 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1510 * 1511 * @adev: amdgpu_device pointer 1512 * @bo_va: requested BO and VM object 1513 * @clear: if true clear the entries 1514 * 1515 * Fill in the page table entries for @bo_va. 1516 * Returns 0 for success, -EINVAL for failure. 1517 */ 1518 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1519 struct amdgpu_bo_va *bo_va, 1520 bool clear) 1521 { 1522 struct amdgpu_bo *bo = bo_va->base.bo; 1523 struct amdgpu_vm *vm = bo_va->base.vm; 1524 struct amdgpu_bo_va_mapping *mapping; 1525 dma_addr_t *pages_addr = NULL; 1526 struct ttm_mem_reg *mem; 1527 struct drm_mm_node *nodes; 1528 struct dma_fence *exclusive, **last_update; 1529 uint64_t flags; 1530 int r; 1531 1532 if (clear || !bo_va->base.bo) { 1533 mem = NULL; 1534 nodes = NULL; 1535 exclusive = NULL; 1536 } else { 1537 struct ttm_dma_tt *ttm; 1538 1539 mem = &bo_va->base.bo->tbo.mem; 1540 nodes = mem->mm_node; 1541 if (mem->mem_type == TTM_PL_TT) { 1542 ttm = container_of(bo_va->base.bo->tbo.ttm, 1543 struct ttm_dma_tt, ttm); 1544 pages_addr = ttm->dma_address; 1545 } 1546 exclusive = reservation_object_get_excl(bo->tbo.resv); 1547 } 1548 1549 if (bo) 1550 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1551 else 1552 flags = 0x0; 1553 1554 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1555 last_update = &vm->last_update; 1556 else 1557 last_update = &bo_va->last_pt_update; 1558 1559 if (!clear && bo_va->base.moved) { 1560 bo_va->base.moved = false; 1561 list_splice_init(&bo_va->valids, &bo_va->invalids); 1562 1563 } else if (bo_va->cleared != clear) { 1564 list_splice_init(&bo_va->valids, &bo_va->invalids); 1565 } 1566 1567 list_for_each_entry(mapping, &bo_va->invalids, list) { 1568 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1569 mapping, flags, nodes, 1570 last_update); 1571 if (r) 1572 return r; 1573 } 1574 1575 if (vm->use_cpu_for_update) { 1576 /* Flush HDP */ 1577 mb(); 1578 amdgpu_asic_flush_hdp(adev, NULL); 1579 } 1580 1581 spin_lock(&vm->moved_lock); 1582 list_del_init(&bo_va->base.vm_status); 1583 spin_unlock(&vm->moved_lock); 1584 1585 /* If the BO is not in its preferred location add it back to 1586 * the evicted list so that it gets validated again on the 1587 * next command submission. 1588 */ 1589 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1590 uint32_t mem_type = bo->tbo.mem.mem_type; 1591 1592 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 1593 list_add_tail(&bo_va->base.vm_status, &vm->evicted); 1594 else 1595 list_add(&bo_va->base.vm_status, &vm->idle); 1596 } 1597 1598 list_splice_init(&bo_va->invalids, &bo_va->valids); 1599 bo_va->cleared = clear; 1600 1601 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1602 list_for_each_entry(mapping, &bo_va->valids, list) 1603 trace_amdgpu_vm_bo_mapping(mapping); 1604 } 1605 1606 return 0; 1607 } 1608 1609 /** 1610 * amdgpu_vm_update_prt_state - update the global PRT state 1611 */ 1612 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1613 { 1614 unsigned long flags; 1615 bool enable; 1616 1617 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1618 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1619 adev->gmc.gmc_funcs->set_prt(adev, enable); 1620 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1621 } 1622 1623 /** 1624 * amdgpu_vm_prt_get - add a PRT user 1625 */ 1626 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1627 { 1628 if (!adev->gmc.gmc_funcs->set_prt) 1629 return; 1630 1631 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1632 amdgpu_vm_update_prt_state(adev); 1633 } 1634 1635 /** 1636 * amdgpu_vm_prt_put - drop a PRT user 1637 */ 1638 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1639 { 1640 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1641 amdgpu_vm_update_prt_state(adev); 1642 } 1643 1644 /** 1645 * amdgpu_vm_prt_cb - callback for updating the PRT status 1646 */ 1647 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1648 { 1649 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1650 1651 amdgpu_vm_prt_put(cb->adev); 1652 kfree(cb); 1653 } 1654 1655 /** 1656 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1657 */ 1658 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1659 struct dma_fence *fence) 1660 { 1661 struct amdgpu_prt_cb *cb; 1662 1663 if (!adev->gmc.gmc_funcs->set_prt) 1664 return; 1665 1666 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1667 if (!cb) { 1668 /* Last resort when we are OOM */ 1669 if (fence) 1670 dma_fence_wait(fence, false); 1671 1672 amdgpu_vm_prt_put(adev); 1673 } else { 1674 cb->adev = adev; 1675 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1676 amdgpu_vm_prt_cb)) 1677 amdgpu_vm_prt_cb(fence, &cb->cb); 1678 } 1679 } 1680 1681 /** 1682 * amdgpu_vm_free_mapping - free a mapping 1683 * 1684 * @adev: amdgpu_device pointer 1685 * @vm: requested vm 1686 * @mapping: mapping to be freed 1687 * @fence: fence of the unmap operation 1688 * 1689 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1690 */ 1691 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1692 struct amdgpu_vm *vm, 1693 struct amdgpu_bo_va_mapping *mapping, 1694 struct dma_fence *fence) 1695 { 1696 if (mapping->flags & AMDGPU_PTE_PRT) 1697 amdgpu_vm_add_prt_cb(adev, fence); 1698 kfree(mapping); 1699 } 1700 1701 /** 1702 * amdgpu_vm_prt_fini - finish all prt mappings 1703 * 1704 * @adev: amdgpu_device pointer 1705 * @vm: requested vm 1706 * 1707 * Register a cleanup callback to disable PRT support after VM dies. 1708 */ 1709 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1710 { 1711 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1712 struct dma_fence *excl, **shared; 1713 unsigned i, shared_count; 1714 int r; 1715 1716 r = reservation_object_get_fences_rcu(resv, &excl, 1717 &shared_count, &shared); 1718 if (r) { 1719 /* Not enough memory to grab the fence list, as last resort 1720 * block for all the fences to complete. 1721 */ 1722 reservation_object_wait_timeout_rcu(resv, true, false, 1723 MAX_SCHEDULE_TIMEOUT); 1724 return; 1725 } 1726 1727 /* Add a callback for each fence in the reservation object */ 1728 amdgpu_vm_prt_get(adev); 1729 amdgpu_vm_add_prt_cb(adev, excl); 1730 1731 for (i = 0; i < shared_count; ++i) { 1732 amdgpu_vm_prt_get(adev); 1733 amdgpu_vm_add_prt_cb(adev, shared[i]); 1734 } 1735 1736 kfree(shared); 1737 } 1738 1739 /** 1740 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1741 * 1742 * @adev: amdgpu_device pointer 1743 * @vm: requested vm 1744 * @fence: optional resulting fence (unchanged if no work needed to be done 1745 * or if an error occurred) 1746 * 1747 * Make sure all freed BOs are cleared in the PT. 1748 * Returns 0 for success. 1749 * 1750 * PTs have to be reserved and mutex must be locked! 1751 */ 1752 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1753 struct amdgpu_vm *vm, 1754 struct dma_fence **fence) 1755 { 1756 struct amdgpu_bo_va_mapping *mapping; 1757 uint64_t init_pte_value = 0; 1758 struct dma_fence *f = NULL; 1759 int r; 1760 1761 while (!list_empty(&vm->freed)) { 1762 mapping = list_first_entry(&vm->freed, 1763 struct amdgpu_bo_va_mapping, list); 1764 list_del(&mapping->list); 1765 1766 if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START) 1767 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1768 1769 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1770 mapping->start, mapping->last, 1771 init_pte_value, 0, &f); 1772 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1773 if (r) { 1774 dma_fence_put(f); 1775 return r; 1776 } 1777 } 1778 1779 if (fence && f) { 1780 dma_fence_put(*fence); 1781 *fence = f; 1782 } else { 1783 dma_fence_put(f); 1784 } 1785 1786 return 0; 1787 1788 } 1789 1790 /** 1791 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1792 * 1793 * @adev: amdgpu_device pointer 1794 * @vm: requested vm 1795 * @sync: sync object to add fences to 1796 * 1797 * Make sure all BOs which are moved are updated in the PTs. 1798 * Returns 0 for success. 1799 * 1800 * PTs have to be reserved! 1801 */ 1802 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1803 struct amdgpu_vm *vm) 1804 { 1805 struct amdgpu_bo_va *bo_va, *tmp; 1806 struct list_head moved; 1807 bool clear; 1808 int r; 1809 1810 INIT_LIST_HEAD(&moved); 1811 spin_lock(&vm->moved_lock); 1812 list_splice_init(&vm->moved, &moved); 1813 spin_unlock(&vm->moved_lock); 1814 1815 list_for_each_entry_safe(bo_va, tmp, &moved, base.vm_status) { 1816 struct reservation_object *resv = bo_va->base.bo->tbo.resv; 1817 1818 /* Per VM BOs never need to bo cleared in the page tables */ 1819 if (resv == vm->root.base.bo->tbo.resv) 1820 clear = false; 1821 /* Try to reserve the BO to avoid clearing its ptes */ 1822 else if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 1823 clear = false; 1824 /* Somebody else is using the BO right now */ 1825 else 1826 clear = true; 1827 1828 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1829 if (r) { 1830 spin_lock(&vm->moved_lock); 1831 list_splice(&moved, &vm->moved); 1832 spin_unlock(&vm->moved_lock); 1833 return r; 1834 } 1835 1836 if (!clear && resv != vm->root.base.bo->tbo.resv) 1837 reservation_object_unlock(resv); 1838 1839 } 1840 1841 return 0; 1842 } 1843 1844 /** 1845 * amdgpu_vm_bo_add - add a bo to a specific vm 1846 * 1847 * @adev: amdgpu_device pointer 1848 * @vm: requested vm 1849 * @bo: amdgpu buffer object 1850 * 1851 * Add @bo into the requested vm. 1852 * Add @bo to the list of bos associated with the vm 1853 * Returns newly added bo_va or NULL for failure 1854 * 1855 * Object has to be reserved! 1856 */ 1857 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1858 struct amdgpu_vm *vm, 1859 struct amdgpu_bo *bo) 1860 { 1861 struct amdgpu_bo_va *bo_va; 1862 1863 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1864 if (bo_va == NULL) { 1865 return NULL; 1866 } 1867 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1868 1869 bo_va->ref_count = 1; 1870 INIT_LIST_HEAD(&bo_va->valids); 1871 INIT_LIST_HEAD(&bo_va->invalids); 1872 1873 return bo_va; 1874 } 1875 1876 1877 /** 1878 * amdgpu_vm_bo_insert_mapping - insert a new mapping 1879 * 1880 * @adev: amdgpu_device pointer 1881 * @bo_va: bo_va to store the address 1882 * @mapping: the mapping to insert 1883 * 1884 * Insert a new mapping into all structures. 1885 */ 1886 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1887 struct amdgpu_bo_va *bo_va, 1888 struct amdgpu_bo_va_mapping *mapping) 1889 { 1890 struct amdgpu_vm *vm = bo_va->base.vm; 1891 struct amdgpu_bo *bo = bo_va->base.bo; 1892 1893 mapping->bo_va = bo_va; 1894 list_add(&mapping->list, &bo_va->invalids); 1895 amdgpu_vm_it_insert(mapping, &vm->va); 1896 1897 if (mapping->flags & AMDGPU_PTE_PRT) 1898 amdgpu_vm_prt_get(adev); 1899 1900 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 1901 !bo_va->base.moved) { 1902 spin_lock(&vm->moved_lock); 1903 list_move(&bo_va->base.vm_status, &vm->moved); 1904 spin_unlock(&vm->moved_lock); 1905 } 1906 trace_amdgpu_vm_bo_map(bo_va, mapping); 1907 } 1908 1909 /** 1910 * amdgpu_vm_bo_map - map bo inside a vm 1911 * 1912 * @adev: amdgpu_device pointer 1913 * @bo_va: bo_va to store the address 1914 * @saddr: where to map the BO 1915 * @offset: requested offset in the BO 1916 * @flags: attributes of pages (read/write/valid/etc.) 1917 * 1918 * Add a mapping of the BO at the specefied addr into the VM. 1919 * Returns 0 for success, error for failure. 1920 * 1921 * Object has to be reserved and unreserved outside! 1922 */ 1923 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1924 struct amdgpu_bo_va *bo_va, 1925 uint64_t saddr, uint64_t offset, 1926 uint64_t size, uint64_t flags) 1927 { 1928 struct amdgpu_bo_va_mapping *mapping, *tmp; 1929 struct amdgpu_bo *bo = bo_va->base.bo; 1930 struct amdgpu_vm *vm = bo_va->base.vm; 1931 uint64_t eaddr; 1932 1933 /* validate the parameters */ 1934 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1935 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1936 return -EINVAL; 1937 1938 /* make sure object fit at this offset */ 1939 eaddr = saddr + size - 1; 1940 if (saddr >= eaddr || 1941 (bo && offset + size > amdgpu_bo_size(bo))) 1942 return -EINVAL; 1943 1944 saddr /= AMDGPU_GPU_PAGE_SIZE; 1945 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1946 1947 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1948 if (tmp) { 1949 /* bo and tmp overlap, invalid addr */ 1950 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1951 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1952 tmp->start, tmp->last + 1); 1953 return -EINVAL; 1954 } 1955 1956 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1957 if (!mapping) 1958 return -ENOMEM; 1959 1960 mapping->start = saddr; 1961 mapping->last = eaddr; 1962 mapping->offset = offset; 1963 mapping->flags = flags; 1964 1965 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1966 1967 return 0; 1968 } 1969 1970 /** 1971 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1972 * 1973 * @adev: amdgpu_device pointer 1974 * @bo_va: bo_va to store the address 1975 * @saddr: where to map the BO 1976 * @offset: requested offset in the BO 1977 * @flags: attributes of pages (read/write/valid/etc.) 1978 * 1979 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1980 * mappings as we do so. 1981 * Returns 0 for success, error for failure. 1982 * 1983 * Object has to be reserved and unreserved outside! 1984 */ 1985 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1986 struct amdgpu_bo_va *bo_va, 1987 uint64_t saddr, uint64_t offset, 1988 uint64_t size, uint64_t flags) 1989 { 1990 struct amdgpu_bo_va_mapping *mapping; 1991 struct amdgpu_bo *bo = bo_va->base.bo; 1992 uint64_t eaddr; 1993 int r; 1994 1995 /* validate the parameters */ 1996 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1997 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1998 return -EINVAL; 1999 2000 /* make sure object fit at this offset */ 2001 eaddr = saddr + size - 1; 2002 if (saddr >= eaddr || 2003 (bo && offset + size > amdgpu_bo_size(bo))) 2004 return -EINVAL; 2005 2006 /* Allocate all the needed memory */ 2007 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2008 if (!mapping) 2009 return -ENOMEM; 2010 2011 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2012 if (r) { 2013 kfree(mapping); 2014 return r; 2015 } 2016 2017 saddr /= AMDGPU_GPU_PAGE_SIZE; 2018 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2019 2020 mapping->start = saddr; 2021 mapping->last = eaddr; 2022 mapping->offset = offset; 2023 mapping->flags = flags; 2024 2025 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2026 2027 return 0; 2028 } 2029 2030 /** 2031 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2032 * 2033 * @adev: amdgpu_device pointer 2034 * @bo_va: bo_va to remove the address from 2035 * @saddr: where to the BO is mapped 2036 * 2037 * Remove a mapping of the BO at the specefied addr from the VM. 2038 * Returns 0 for success, error for failure. 2039 * 2040 * Object has to be reserved and unreserved outside! 2041 */ 2042 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2043 struct amdgpu_bo_va *bo_va, 2044 uint64_t saddr) 2045 { 2046 struct amdgpu_bo_va_mapping *mapping; 2047 struct amdgpu_vm *vm = bo_va->base.vm; 2048 bool valid = true; 2049 2050 saddr /= AMDGPU_GPU_PAGE_SIZE; 2051 2052 list_for_each_entry(mapping, &bo_va->valids, list) { 2053 if (mapping->start == saddr) 2054 break; 2055 } 2056 2057 if (&mapping->list == &bo_va->valids) { 2058 valid = false; 2059 2060 list_for_each_entry(mapping, &bo_va->invalids, list) { 2061 if (mapping->start == saddr) 2062 break; 2063 } 2064 2065 if (&mapping->list == &bo_va->invalids) 2066 return -ENOENT; 2067 } 2068 2069 list_del(&mapping->list); 2070 amdgpu_vm_it_remove(mapping, &vm->va); 2071 mapping->bo_va = NULL; 2072 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2073 2074 if (valid) 2075 list_add(&mapping->list, &vm->freed); 2076 else 2077 amdgpu_vm_free_mapping(adev, vm, mapping, 2078 bo_va->last_pt_update); 2079 2080 return 0; 2081 } 2082 2083 /** 2084 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2085 * 2086 * @adev: amdgpu_device pointer 2087 * @vm: VM structure to use 2088 * @saddr: start of the range 2089 * @size: size of the range 2090 * 2091 * Remove all mappings in a range, split them as appropriate. 2092 * Returns 0 for success, error for failure. 2093 */ 2094 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2095 struct amdgpu_vm *vm, 2096 uint64_t saddr, uint64_t size) 2097 { 2098 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2099 LIST_HEAD(removed); 2100 uint64_t eaddr; 2101 2102 eaddr = saddr + size - 1; 2103 saddr /= AMDGPU_GPU_PAGE_SIZE; 2104 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2105 2106 /* Allocate all the needed memory */ 2107 before = kzalloc(sizeof(*before), GFP_KERNEL); 2108 if (!before) 2109 return -ENOMEM; 2110 INIT_LIST_HEAD(&before->list); 2111 2112 after = kzalloc(sizeof(*after), GFP_KERNEL); 2113 if (!after) { 2114 kfree(before); 2115 return -ENOMEM; 2116 } 2117 INIT_LIST_HEAD(&after->list); 2118 2119 /* Now gather all removed mappings */ 2120 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2121 while (tmp) { 2122 /* Remember mapping split at the start */ 2123 if (tmp->start < saddr) { 2124 before->start = tmp->start; 2125 before->last = saddr - 1; 2126 before->offset = tmp->offset; 2127 before->flags = tmp->flags; 2128 before->bo_va = tmp->bo_va; 2129 list_add(&before->list, &tmp->bo_va->invalids); 2130 } 2131 2132 /* Remember mapping split at the end */ 2133 if (tmp->last > eaddr) { 2134 after->start = eaddr + 1; 2135 after->last = tmp->last; 2136 after->offset = tmp->offset; 2137 after->offset += after->start - tmp->start; 2138 after->flags = tmp->flags; 2139 after->bo_va = tmp->bo_va; 2140 list_add(&after->list, &tmp->bo_va->invalids); 2141 } 2142 2143 list_del(&tmp->list); 2144 list_add(&tmp->list, &removed); 2145 2146 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2147 } 2148 2149 /* And free them up */ 2150 list_for_each_entry_safe(tmp, next, &removed, list) { 2151 amdgpu_vm_it_remove(tmp, &vm->va); 2152 list_del(&tmp->list); 2153 2154 if (tmp->start < saddr) 2155 tmp->start = saddr; 2156 if (tmp->last > eaddr) 2157 tmp->last = eaddr; 2158 2159 tmp->bo_va = NULL; 2160 list_add(&tmp->list, &vm->freed); 2161 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2162 } 2163 2164 /* Insert partial mapping before the range */ 2165 if (!list_empty(&before->list)) { 2166 amdgpu_vm_it_insert(before, &vm->va); 2167 if (before->flags & AMDGPU_PTE_PRT) 2168 amdgpu_vm_prt_get(adev); 2169 } else { 2170 kfree(before); 2171 } 2172 2173 /* Insert partial mapping after the range */ 2174 if (!list_empty(&after->list)) { 2175 amdgpu_vm_it_insert(after, &vm->va); 2176 if (after->flags & AMDGPU_PTE_PRT) 2177 amdgpu_vm_prt_get(adev); 2178 } else { 2179 kfree(after); 2180 } 2181 2182 return 0; 2183 } 2184 2185 /** 2186 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2187 * 2188 * @vm: the requested VM 2189 * 2190 * Find a mapping by it's address. 2191 */ 2192 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2193 uint64_t addr) 2194 { 2195 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2196 } 2197 2198 /** 2199 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2200 * 2201 * @adev: amdgpu_device pointer 2202 * @bo_va: requested bo_va 2203 * 2204 * Remove @bo_va->bo from the requested vm. 2205 * 2206 * Object have to be reserved! 2207 */ 2208 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2209 struct amdgpu_bo_va *bo_va) 2210 { 2211 struct amdgpu_bo_va_mapping *mapping, *next; 2212 struct amdgpu_vm *vm = bo_va->base.vm; 2213 2214 list_del(&bo_va->base.bo_list); 2215 2216 spin_lock(&vm->moved_lock); 2217 list_del(&bo_va->base.vm_status); 2218 spin_unlock(&vm->moved_lock); 2219 2220 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2221 list_del(&mapping->list); 2222 amdgpu_vm_it_remove(mapping, &vm->va); 2223 mapping->bo_va = NULL; 2224 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2225 list_add(&mapping->list, &vm->freed); 2226 } 2227 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2228 list_del(&mapping->list); 2229 amdgpu_vm_it_remove(mapping, &vm->va); 2230 amdgpu_vm_free_mapping(adev, vm, mapping, 2231 bo_va->last_pt_update); 2232 } 2233 2234 dma_fence_put(bo_va->last_pt_update); 2235 kfree(bo_va); 2236 } 2237 2238 /** 2239 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2240 * 2241 * @adev: amdgpu_device pointer 2242 * @vm: requested vm 2243 * @bo: amdgpu buffer object 2244 * 2245 * Mark @bo as invalid. 2246 */ 2247 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2248 struct amdgpu_bo *bo, bool evicted) 2249 { 2250 struct amdgpu_vm_bo_base *bo_base; 2251 2252 /* shadow bo doesn't have bo base, its validation needs its parent */ 2253 if (bo->parent && bo->parent->shadow == bo) 2254 bo = bo->parent; 2255 2256 list_for_each_entry(bo_base, &bo->va, bo_list) { 2257 struct amdgpu_vm *vm = bo_base->vm; 2258 bool was_moved = bo_base->moved; 2259 2260 bo_base->moved = true; 2261 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2262 if (bo->tbo.type == ttm_bo_type_kernel) 2263 list_move(&bo_base->vm_status, &vm->evicted); 2264 else 2265 list_move_tail(&bo_base->vm_status, 2266 &vm->evicted); 2267 continue; 2268 } 2269 2270 if (was_moved) 2271 continue; 2272 2273 if (bo->tbo.type == ttm_bo_type_kernel) { 2274 list_move(&bo_base->vm_status, &vm->relocated); 2275 } else { 2276 spin_lock(&bo_base->vm->moved_lock); 2277 list_move(&bo_base->vm_status, &vm->moved); 2278 spin_unlock(&bo_base->vm->moved_lock); 2279 } 2280 } 2281 } 2282 2283 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2284 { 2285 /* Total bits covered by PD + PTs */ 2286 unsigned bits = ilog2(vm_size) + 18; 2287 2288 /* Make sure the PD is 4K in size up to 8GB address space. 2289 Above that split equal between PD and PTs */ 2290 if (vm_size <= 8) 2291 return (bits - 9); 2292 else 2293 return ((bits + 3) / 2); 2294 } 2295 2296 /** 2297 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2298 * 2299 * @adev: amdgpu_device pointer 2300 * @vm_size: the default vm size if it's set auto 2301 */ 2302 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size, 2303 uint32_t fragment_size_default, unsigned max_level, 2304 unsigned max_bits) 2305 { 2306 uint64_t tmp; 2307 2308 /* adjust vm size first */ 2309 if (amdgpu_vm_size != -1) { 2310 unsigned max_size = 1 << (max_bits - 30); 2311 2312 vm_size = amdgpu_vm_size; 2313 if (vm_size > max_size) { 2314 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2315 amdgpu_vm_size, max_size); 2316 vm_size = max_size; 2317 } 2318 } 2319 2320 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2321 2322 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2323 if (amdgpu_vm_block_size != -1) 2324 tmp >>= amdgpu_vm_block_size - 9; 2325 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2326 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2327 switch (adev->vm_manager.num_level) { 2328 case 3: 2329 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2330 break; 2331 case 2: 2332 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2333 break; 2334 case 1: 2335 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2336 break; 2337 default: 2338 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2339 } 2340 /* block size depends on vm size and hw setup*/ 2341 if (amdgpu_vm_block_size != -1) 2342 adev->vm_manager.block_size = 2343 min((unsigned)amdgpu_vm_block_size, max_bits 2344 - AMDGPU_GPU_PAGE_SHIFT 2345 - 9 * adev->vm_manager.num_level); 2346 else if (adev->vm_manager.num_level > 1) 2347 adev->vm_manager.block_size = 9; 2348 else 2349 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2350 2351 if (amdgpu_vm_fragment_size == -1) 2352 adev->vm_manager.fragment_size = fragment_size_default; 2353 else 2354 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2355 2356 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2357 vm_size, adev->vm_manager.num_level + 1, 2358 adev->vm_manager.block_size, 2359 adev->vm_manager.fragment_size); 2360 } 2361 2362 /** 2363 * amdgpu_vm_init - initialize a vm instance 2364 * 2365 * @adev: amdgpu_device pointer 2366 * @vm: requested vm 2367 * @vm_context: Indicates if it GFX or Compute context 2368 * 2369 * Init @vm fields. 2370 */ 2371 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2372 int vm_context, unsigned int pasid) 2373 { 2374 struct amdgpu_bo_param bp; 2375 struct amdgpu_bo *root; 2376 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2377 AMDGPU_VM_PTE_COUNT(adev) * 8); 2378 unsigned ring_instance; 2379 struct amdgpu_ring *ring; 2380 struct drm_sched_rq *rq; 2381 unsigned long size; 2382 uint64_t flags; 2383 int r, i; 2384 2385 vm->va = RB_ROOT_CACHED; 2386 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2387 vm->reserved_vmid[i] = NULL; 2388 INIT_LIST_HEAD(&vm->evicted); 2389 INIT_LIST_HEAD(&vm->relocated); 2390 spin_lock_init(&vm->moved_lock); 2391 INIT_LIST_HEAD(&vm->moved); 2392 INIT_LIST_HEAD(&vm->idle); 2393 INIT_LIST_HEAD(&vm->freed); 2394 2395 /* create scheduler entity for page table updates */ 2396 2397 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2398 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2399 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2400 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 2401 r = drm_sched_entity_init(&ring->sched, &vm->entity, 2402 rq, NULL); 2403 if (r) 2404 return r; 2405 2406 vm->pte_support_ats = false; 2407 2408 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2409 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2410 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2411 2412 if (adev->asic_type == CHIP_RAVEN) 2413 vm->pte_support_ats = true; 2414 } else { 2415 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2416 AMDGPU_VM_USE_CPU_FOR_GFX); 2417 } 2418 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2419 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2420 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), 2421 "CPU update of VM recommended only for large BAR system\n"); 2422 vm->last_update = NULL; 2423 2424 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 2425 if (vm->use_cpu_for_update) 2426 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2427 else 2428 flags |= AMDGPU_GEM_CREATE_SHADOW; 2429 2430 size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level); 2431 memset(&bp, 0, sizeof(bp)); 2432 bp.size = size; 2433 bp.byte_align = align; 2434 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 2435 bp.flags = flags; 2436 bp.type = ttm_bo_type_kernel; 2437 bp.resv = NULL; 2438 r = amdgpu_bo_create(adev, &bp, &root); 2439 if (r) 2440 goto error_free_sched_entity; 2441 2442 r = amdgpu_bo_reserve(root, true); 2443 if (r) 2444 goto error_free_root; 2445 2446 r = amdgpu_vm_clear_bo(adev, vm, root, 2447 adev->vm_manager.root_level, 2448 vm->pte_support_ats); 2449 if (r) 2450 goto error_unreserve; 2451 2452 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2453 amdgpu_bo_unreserve(vm->root.base.bo); 2454 2455 if (pasid) { 2456 unsigned long flags; 2457 2458 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2459 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2460 GFP_ATOMIC); 2461 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2462 if (r < 0) 2463 goto error_free_root; 2464 2465 vm->pasid = pasid; 2466 } 2467 2468 INIT_KFIFO(vm->faults); 2469 vm->fault_credit = 16; 2470 2471 return 0; 2472 2473 error_unreserve: 2474 amdgpu_bo_unreserve(vm->root.base.bo); 2475 2476 error_free_root: 2477 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2478 amdgpu_bo_unref(&vm->root.base.bo); 2479 vm->root.base.bo = NULL; 2480 2481 error_free_sched_entity: 2482 drm_sched_entity_fini(&ring->sched, &vm->entity); 2483 2484 return r; 2485 } 2486 2487 /** 2488 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2489 * 2490 * This only works on GFX VMs that don't have any BOs added and no 2491 * page tables allocated yet. 2492 * 2493 * Changes the following VM parameters: 2494 * - use_cpu_for_update 2495 * - pte_supports_ats 2496 * - pasid (old PASID is released, because compute manages its own PASIDs) 2497 * 2498 * Reinitializes the page directory to reflect the changed ATS 2499 * setting. May leave behind an unused shadow BO for the page 2500 * directory when switching from SDMA updates to CPU updates. 2501 * 2502 * Returns 0 for success, -errno for errors. 2503 */ 2504 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2505 { 2506 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2507 int r; 2508 2509 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2510 if (r) 2511 return r; 2512 2513 /* Sanity checks */ 2514 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 2515 r = -EINVAL; 2516 goto error; 2517 } 2518 2519 /* Check if PD needs to be reinitialized and do it before 2520 * changing any other state, in case it fails. 2521 */ 2522 if (pte_support_ats != vm->pte_support_ats) { 2523 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 2524 adev->vm_manager.root_level, 2525 pte_support_ats); 2526 if (r) 2527 goto error; 2528 } 2529 2530 /* Update VM state */ 2531 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2532 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2533 vm->pte_support_ats = pte_support_ats; 2534 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2535 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2536 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), 2537 "CPU update of VM recommended only for large BAR system\n"); 2538 2539 if (vm->pasid) { 2540 unsigned long flags; 2541 2542 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2543 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2544 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2545 2546 vm->pasid = 0; 2547 } 2548 2549 error: 2550 amdgpu_bo_unreserve(vm->root.base.bo); 2551 return r; 2552 } 2553 2554 /** 2555 * amdgpu_vm_free_levels - free PD/PT levels 2556 * 2557 * @adev: amdgpu device structure 2558 * @parent: PD/PT starting level to free 2559 * @level: level of parent structure 2560 * 2561 * Free the page directory or page table level and all sub levels. 2562 */ 2563 static void amdgpu_vm_free_levels(struct amdgpu_device *adev, 2564 struct amdgpu_vm_pt *parent, 2565 unsigned level) 2566 { 2567 unsigned i, num_entries = amdgpu_vm_num_entries(adev, level); 2568 2569 if (parent->base.bo) { 2570 list_del(&parent->base.bo_list); 2571 list_del(&parent->base.vm_status); 2572 amdgpu_bo_unref(&parent->base.bo->shadow); 2573 amdgpu_bo_unref(&parent->base.bo); 2574 } 2575 2576 if (parent->entries) 2577 for (i = 0; i < num_entries; i++) 2578 amdgpu_vm_free_levels(adev, &parent->entries[i], 2579 level + 1); 2580 2581 kvfree(parent->entries); 2582 } 2583 2584 /** 2585 * amdgpu_vm_fini - tear down a vm instance 2586 * 2587 * @adev: amdgpu_device pointer 2588 * @vm: requested vm 2589 * 2590 * Tear down @vm. 2591 * Unbind the VM and remove all bos from the vm bo list 2592 */ 2593 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2594 { 2595 struct amdgpu_bo_va_mapping *mapping, *tmp; 2596 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2597 struct amdgpu_bo *root; 2598 u64 fault; 2599 int i, r; 2600 2601 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2602 2603 /* Clear pending page faults from IH when the VM is destroyed */ 2604 while (kfifo_get(&vm->faults, &fault)) 2605 amdgpu_ih_clear_fault(adev, fault); 2606 2607 if (vm->pasid) { 2608 unsigned long flags; 2609 2610 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2611 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2612 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2613 } 2614 2615 drm_sched_entity_fini(vm->entity.sched, &vm->entity); 2616 2617 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2618 dev_err(adev->dev, "still active bo inside vm\n"); 2619 } 2620 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2621 &vm->va.rb_root, rb) { 2622 list_del(&mapping->list); 2623 amdgpu_vm_it_remove(mapping, &vm->va); 2624 kfree(mapping); 2625 } 2626 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2627 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2628 amdgpu_vm_prt_fini(adev, vm); 2629 prt_fini_needed = false; 2630 } 2631 2632 list_del(&mapping->list); 2633 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2634 } 2635 2636 root = amdgpu_bo_ref(vm->root.base.bo); 2637 r = amdgpu_bo_reserve(root, true); 2638 if (r) { 2639 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2640 } else { 2641 amdgpu_vm_free_levels(adev, &vm->root, 2642 adev->vm_manager.root_level); 2643 amdgpu_bo_unreserve(root); 2644 } 2645 amdgpu_bo_unref(&root); 2646 dma_fence_put(vm->last_update); 2647 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2648 amdgpu_vmid_free_reserved(adev, vm, i); 2649 } 2650 2651 /** 2652 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2653 * 2654 * @adev: amdgpu_device pointer 2655 * @pasid: PASID do identify the VM 2656 * 2657 * This function is expected to be called in interrupt context. Returns 2658 * true if there was fault credit, false otherwise 2659 */ 2660 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2661 unsigned int pasid) 2662 { 2663 struct amdgpu_vm *vm; 2664 2665 spin_lock(&adev->vm_manager.pasid_lock); 2666 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2667 if (!vm) { 2668 /* VM not found, can't track fault credit */ 2669 spin_unlock(&adev->vm_manager.pasid_lock); 2670 return true; 2671 } 2672 2673 /* No lock needed. only accessed by IRQ handler */ 2674 if (!vm->fault_credit) { 2675 /* Too many faults in this VM */ 2676 spin_unlock(&adev->vm_manager.pasid_lock); 2677 return false; 2678 } 2679 2680 vm->fault_credit--; 2681 spin_unlock(&adev->vm_manager.pasid_lock); 2682 return true; 2683 } 2684 2685 /** 2686 * amdgpu_vm_manager_init - init the VM manager 2687 * 2688 * @adev: amdgpu_device pointer 2689 * 2690 * Initialize the VM manager structures 2691 */ 2692 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2693 { 2694 unsigned i; 2695 2696 amdgpu_vmid_mgr_init(adev); 2697 2698 adev->vm_manager.fence_context = 2699 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2700 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2701 adev->vm_manager.seqno[i] = 0; 2702 2703 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2704 spin_lock_init(&adev->vm_manager.prt_lock); 2705 atomic_set(&adev->vm_manager.num_prt_users, 0); 2706 2707 /* If not overridden by the user, by default, only in large BAR systems 2708 * Compute VM tables will be updated by CPU 2709 */ 2710 #ifdef CONFIG_X86_64 2711 if (amdgpu_vm_update_mode == -1) { 2712 if (amdgpu_vm_is_large_bar(adev)) 2713 adev->vm_manager.vm_update_mode = 2714 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2715 else 2716 adev->vm_manager.vm_update_mode = 0; 2717 } else 2718 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2719 #else 2720 adev->vm_manager.vm_update_mode = 0; 2721 #endif 2722 2723 idr_init(&adev->vm_manager.pasid_idr); 2724 spin_lock_init(&adev->vm_manager.pasid_lock); 2725 } 2726 2727 /** 2728 * amdgpu_vm_manager_fini - cleanup VM manager 2729 * 2730 * @adev: amdgpu_device pointer 2731 * 2732 * Cleanup the VM manager and free resources. 2733 */ 2734 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2735 { 2736 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 2737 idr_destroy(&adev->vm_manager.pasid_idr); 2738 2739 amdgpu_vmid_mgr_fini(adev); 2740 } 2741 2742 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2743 { 2744 union drm_amdgpu_vm *args = data; 2745 struct amdgpu_device *adev = dev->dev_private; 2746 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2747 int r; 2748 2749 switch (args->in.op) { 2750 case AMDGPU_VM_OP_RESERVE_VMID: 2751 /* current, we only have requirement to reserve vmid from gfxhub */ 2752 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2753 if (r) 2754 return r; 2755 break; 2756 case AMDGPU_VM_OP_UNRESERVE_VMID: 2757 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2758 break; 2759 default: 2760 return -EINVAL; 2761 } 2762 2763 return 0; 2764 } 2765