1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_level_shift - return the addr shift for each level 138 * 139 * @adev: amdgpu_device pointer 140 * @level: VMPT level 141 * 142 * Returns: 143 * The number of bits the pfn needs to be right shifted for a level. 144 */ 145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 146 unsigned level) 147 { 148 unsigned shift = 0xff; 149 150 switch (level) { 151 case AMDGPU_VM_PDB2: 152 case AMDGPU_VM_PDB1: 153 case AMDGPU_VM_PDB0: 154 shift = 9 * (AMDGPU_VM_PDB0 - level) + 155 adev->vm_manager.block_size; 156 break; 157 case AMDGPU_VM_PTB: 158 shift = 0; 159 break; 160 default: 161 dev_err(adev->dev, "the level%d isn't supported.\n", level); 162 } 163 164 return shift; 165 } 166 167 /** 168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 169 * 170 * @adev: amdgpu_device pointer 171 * @level: VMPT level 172 * 173 * Returns: 174 * The number of entries in a page directory or page table. 175 */ 176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 177 unsigned level) 178 { 179 unsigned shift = amdgpu_vm_level_shift(adev, 180 adev->vm_manager.root_level); 181 182 if (level == adev->vm_manager.root_level) 183 /* For the root directory */ 184 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 185 else if (level != AMDGPU_VM_PTB) 186 /* Everything in between */ 187 return 512; 188 else 189 /* For the page tables on the leaves */ 190 return AMDGPU_VM_PTE_COUNT(adev); 191 } 192 193 /** 194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 195 * 196 * @adev: amdgpu_device pointer 197 * @level: VMPT level 198 * 199 * Returns: 200 * The mask to extract the entry number of a PD/PT from an address. 201 */ 202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 203 unsigned int level) 204 { 205 if (level <= adev->vm_manager.root_level) 206 return 0xffffffff; 207 else if (level != AMDGPU_VM_PTB) 208 return 0x1ff; 209 else 210 return AMDGPU_VM_PTE_COUNT(adev) - 1; 211 } 212 213 /** 214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 215 * 216 * @adev: amdgpu_device pointer 217 * @level: VMPT level 218 * 219 * Returns: 220 * The size of the BO for a page directory or page table in bytes. 221 */ 222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 223 { 224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 225 } 226 227 /** 228 * amdgpu_vm_bo_evicted - vm_bo is evicted 229 * 230 * @vm_bo: vm_bo which is evicted 231 * 232 * State for PDs/PTs and per VM BOs which are not at the location they should 233 * be. 234 */ 235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 236 { 237 struct amdgpu_vm *vm = vm_bo->vm; 238 struct amdgpu_bo *bo = vm_bo->bo; 239 240 vm_bo->moved = true; 241 if (bo->tbo.type == ttm_bo_type_kernel) 242 list_move(&vm_bo->vm_status, &vm->evicted); 243 else 244 list_move_tail(&vm_bo->vm_status, &vm->evicted); 245 } 246 247 /** 248 * amdgpu_vm_bo_relocated - vm_bo is reloacted 249 * 250 * @vm_bo: vm_bo which is relocated 251 * 252 * State for PDs/PTs which needs to update their parent PD. 253 */ 254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 255 { 256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 257 } 258 259 /** 260 * amdgpu_vm_bo_moved - vm_bo is moved 261 * 262 * @vm_bo: vm_bo which is moved 263 * 264 * State for per VM BOs which are moved, but that change is not yet reflected 265 * in the page tables. 266 */ 267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 270 } 271 272 /** 273 * amdgpu_vm_bo_idle - vm_bo is idle 274 * 275 * @vm_bo: vm_bo which is now idle 276 * 277 * State for PDs/PTs and per VM BOs which have gone through the state machine 278 * and are now idle. 279 */ 280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 283 vm_bo->moved = false; 284 } 285 286 /** 287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 288 * 289 * @vm_bo: vm_bo which is now invalidated 290 * 291 * State for normal BOs which are invalidated and that change not yet reflected 292 * in the PTs. 293 */ 294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 295 { 296 spin_lock(&vm_bo->vm->invalidated_lock); 297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 298 spin_unlock(&vm_bo->vm->invalidated_lock); 299 } 300 301 /** 302 * amdgpu_vm_bo_done - vm_bo is done 303 * 304 * @vm_bo: vm_bo which is now done 305 * 306 * State for normal BOs which are invalidated and that change has been updated 307 * in the PTs. 308 */ 309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 spin_lock(&vm_bo->vm->invalidated_lock); 312 list_del_init(&vm_bo->vm_status); 313 spin_unlock(&vm_bo->vm->invalidated_lock); 314 } 315 316 /** 317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 318 * 319 * @base: base structure for tracking BO usage in a VM 320 * @vm: vm to which bo is to be added 321 * @bo: amdgpu buffer object 322 * 323 * Initialize a bo_va_base structure and add it to the appropriate lists 324 * 325 */ 326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 327 struct amdgpu_vm *vm, 328 struct amdgpu_bo *bo) 329 { 330 base->vm = vm; 331 base->bo = bo; 332 base->next = NULL; 333 INIT_LIST_HEAD(&base->vm_status); 334 335 if (!bo) 336 return; 337 base->next = bo->vm_bo; 338 bo->vm_bo = base; 339 340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 341 return; 342 343 vm->bulk_moveable = false; 344 if (bo->tbo.type == ttm_bo_type_kernel) 345 amdgpu_vm_bo_relocated(base); 346 else 347 amdgpu_vm_bo_idle(base); 348 349 if (bo->preferred_domains & 350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 351 return; 352 353 /* 354 * we checked all the prerequisites, but it looks like this per vm bo 355 * is currently evicted. add the bo to the evicted list to make sure it 356 * is validated on next vm use to avoid fault. 357 * */ 358 amdgpu_vm_bo_evicted(base); 359 } 360 361 /** 362 * amdgpu_vm_pt_parent - get the parent page directory 363 * 364 * @pt: child page table 365 * 366 * Helper to get the parent entry for the child page table. NULL if we are at 367 * the root page directory. 368 */ 369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 370 { 371 struct amdgpu_bo *parent = pt->base.bo->parent; 372 373 if (!parent) 374 return NULL; 375 376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 377 } 378 379 /** 380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 381 */ 382 struct amdgpu_vm_pt_cursor { 383 uint64_t pfn; 384 struct amdgpu_vm_pt *parent; 385 struct amdgpu_vm_pt *entry; 386 unsigned level; 387 }; 388 389 /** 390 * amdgpu_vm_pt_start - start PD/PT walk 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: amdgpu_vm structure 394 * @start: start address of the walk 395 * @cursor: state to initialize 396 * 397 * Initialize a amdgpu_vm_pt_cursor to start a walk. 398 */ 399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, uint64_t start, 401 struct amdgpu_vm_pt_cursor *cursor) 402 { 403 cursor->pfn = start; 404 cursor->parent = NULL; 405 cursor->entry = &vm->root; 406 cursor->level = adev->vm_manager.root_level; 407 } 408 409 /** 410 * amdgpu_vm_pt_descendant - go to child node 411 * 412 * @adev: amdgpu_device pointer 413 * @cursor: current state 414 * 415 * Walk to the child node of the current node. 416 * Returns: 417 * True if the walk was possible, false otherwise. 418 */ 419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 420 struct amdgpu_vm_pt_cursor *cursor) 421 { 422 unsigned mask, shift, idx; 423 424 if (!cursor->entry->entries) 425 return false; 426 427 BUG_ON(!cursor->entry->base.bo); 428 mask = amdgpu_vm_entries_mask(adev, cursor->level); 429 shift = amdgpu_vm_level_shift(adev, cursor->level); 430 431 ++cursor->level; 432 idx = (cursor->pfn >> shift) & mask; 433 cursor->parent = cursor->entry; 434 cursor->entry = &cursor->entry->entries[idx]; 435 return true; 436 } 437 438 /** 439 * amdgpu_vm_pt_sibling - go to sibling node 440 * 441 * @adev: amdgpu_device pointer 442 * @cursor: current state 443 * 444 * Walk to the sibling node of the current node. 445 * Returns: 446 * True if the walk was possible, false otherwise. 447 */ 448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 449 struct amdgpu_vm_pt_cursor *cursor) 450 { 451 unsigned shift, num_entries; 452 453 /* Root doesn't have a sibling */ 454 if (!cursor->parent) 455 return false; 456 457 /* Go to our parents and see if we got a sibling */ 458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 460 461 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 462 return false; 463 464 cursor->pfn += 1ULL << shift; 465 cursor->pfn &= ~((1ULL << shift) - 1); 466 ++cursor->entry; 467 return true; 468 } 469 470 /** 471 * amdgpu_vm_pt_ancestor - go to parent node 472 * 473 * @cursor: current state 474 * 475 * Walk to the parent node of the current node. 476 * Returns: 477 * True if the walk was possible, false otherwise. 478 */ 479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 480 { 481 if (!cursor->parent) 482 return false; 483 484 --cursor->level; 485 cursor->entry = cursor->parent; 486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 487 return true; 488 } 489 490 /** 491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 492 * 493 * @adev: amdgpu_device pointer 494 * @cursor: current state 495 * 496 * Walk the PD/PT tree to the next node. 497 */ 498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 499 struct amdgpu_vm_pt_cursor *cursor) 500 { 501 /* First try a newborn child */ 502 if (amdgpu_vm_pt_descendant(adev, cursor)) 503 return; 504 505 /* If that didn't worked try to find a sibling */ 506 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 507 /* No sibling, go to our parents and grandparents */ 508 if (!amdgpu_vm_pt_ancestor(cursor)) { 509 cursor->pfn = ~0ll; 510 return; 511 } 512 } 513 } 514 515 /** 516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 517 * 518 * @adev: amdgpu_device pointer 519 * @vm: amdgpu_vm structure 520 * @start: start addr of the walk 521 * @cursor: state to initialize 522 * 523 * Start a walk and go directly to the leaf node. 524 */ 525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 526 struct amdgpu_vm *vm, uint64_t start, 527 struct amdgpu_vm_pt_cursor *cursor) 528 { 529 amdgpu_vm_pt_start(adev, vm, start, cursor); 530 while (amdgpu_vm_pt_descendant(adev, cursor)); 531 } 532 533 /** 534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 535 * 536 * @adev: amdgpu_device pointer 537 * @cursor: current state 538 * 539 * Walk the PD/PT tree to the next leaf node. 540 */ 541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 542 struct amdgpu_vm_pt_cursor *cursor) 543 { 544 amdgpu_vm_pt_next(adev, cursor); 545 if (cursor->pfn != ~0ll) 546 while (amdgpu_vm_pt_descendant(adev, cursor)); 547 } 548 549 /** 550 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 551 */ 552 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 553 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 554 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 555 556 /** 557 * amdgpu_vm_pt_first_dfs - start a deep first search 558 * 559 * @adev: amdgpu_device structure 560 * @vm: amdgpu_vm structure 561 * @cursor: state to initialize 562 * 563 * Starts a deep first traversal of the PD/PT tree. 564 */ 565 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 566 struct amdgpu_vm *vm, 567 struct amdgpu_vm_pt_cursor *cursor) 568 { 569 amdgpu_vm_pt_start(adev, vm, 0, cursor); 570 while (amdgpu_vm_pt_descendant(adev, cursor)); 571 } 572 573 /** 574 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 575 * 576 * @adev: amdgpu_device structure 577 * @cursor: current state 578 * 579 * Move the cursor to the next node in a deep first search. 580 */ 581 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 582 struct amdgpu_vm_pt_cursor *cursor) 583 { 584 if (!cursor->entry) 585 return; 586 587 if (!cursor->parent) 588 cursor->entry = NULL; 589 else if (amdgpu_vm_pt_sibling(adev, cursor)) 590 while (amdgpu_vm_pt_descendant(adev, cursor)); 591 else 592 amdgpu_vm_pt_ancestor(cursor); 593 } 594 595 /** 596 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 597 */ 598 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 599 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 600 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 601 (entry); (entry) = (cursor).entry, \ 602 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 603 604 /** 605 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 606 * 607 * @vm: vm providing the BOs 608 * @validated: head of validation list 609 * @entry: entry to add 610 * 611 * Add the page directory to the list of BOs to 612 * validate for command submission. 613 */ 614 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 615 struct list_head *validated, 616 struct amdgpu_bo_list_entry *entry) 617 { 618 entry->priority = 0; 619 entry->tv.bo = &vm->root.base.bo->tbo; 620 /* One for the VM updates, one for TTM and one for the CS job */ 621 entry->tv.num_shared = 3; 622 entry->user_pages = NULL; 623 list_add(&entry->tv.head, validated); 624 } 625 626 /** 627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 628 * 629 * @adev: amdgpu device pointer 630 * @vm: vm providing the BOs 631 * 632 * Move all BOs to the end of LRU and remember their positions to put them 633 * together. 634 */ 635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 636 struct amdgpu_vm *vm) 637 { 638 struct ttm_bo_global *glob = adev->mman.bdev.glob; 639 struct amdgpu_vm_bo_base *bo_base; 640 641 #if 0 642 if (vm->bulk_moveable) { 643 spin_lock(&glob->lru_lock); 644 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 645 spin_unlock(&glob->lru_lock); 646 return; 647 } 648 #endif 649 650 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 651 652 spin_lock(&glob->lru_lock); 653 list_for_each_entry(bo_base, &vm->idle, vm_status) { 654 struct amdgpu_bo *bo = bo_base->bo; 655 656 if (!bo->parent) 657 continue; 658 659 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 660 if (bo->shadow) 661 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 662 &vm->lru_bulk_move); 663 } 664 spin_unlock(&glob->lru_lock); 665 666 vm->bulk_moveable = true; 667 } 668 669 /** 670 * amdgpu_vm_validate_pt_bos - validate the page table BOs 671 * 672 * @adev: amdgpu device pointer 673 * @vm: vm providing the BOs 674 * @validate: callback to do the validation 675 * @param: parameter for the validation callback 676 * 677 * Validate the page table BOs on command submission if neccessary. 678 * 679 * Returns: 680 * Validation result. 681 */ 682 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 683 int (*validate)(void *p, struct amdgpu_bo *bo), 684 void *param) 685 { 686 struct amdgpu_vm_bo_base *bo_base, *tmp; 687 int r = 0; 688 689 vm->bulk_moveable &= list_empty(&vm->evicted); 690 691 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 692 struct amdgpu_bo *bo = bo_base->bo; 693 694 r = validate(param, bo); 695 if (r) 696 break; 697 698 if (bo->tbo.type != ttm_bo_type_kernel) { 699 amdgpu_vm_bo_moved(bo_base); 700 } else { 701 if (vm->use_cpu_for_update) 702 r = amdgpu_bo_kmap(bo, NULL); 703 else 704 r = amdgpu_ttm_alloc_gart(&bo->tbo); 705 if (r) 706 break; 707 if (bo->shadow) { 708 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 709 if (r) 710 break; 711 } 712 amdgpu_vm_bo_relocated(bo_base); 713 } 714 } 715 716 return r; 717 } 718 719 /** 720 * amdgpu_vm_ready - check VM is ready for updates 721 * 722 * @vm: VM to check 723 * 724 * Check if all VM PDs/PTs are ready for updates 725 * 726 * Returns: 727 * True if eviction list is empty. 728 */ 729 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 730 { 731 return list_empty(&vm->evicted); 732 } 733 734 /** 735 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 736 * 737 * @adev: amdgpu_device pointer 738 * @vm: VM to clear BO from 739 * @bo: BO to clear 740 * @level: level this BO is at 741 * @pte_support_ats: indicate ATS support from PTE 742 * 743 * Root PD needs to be reserved when calling this. 744 * 745 * Returns: 746 * 0 on success, errno otherwise. 747 */ 748 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 749 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 750 unsigned level, bool pte_support_ats) 751 { 752 struct ttm_operation_ctx ctx = { true, false }; 753 struct dma_fence *fence = NULL; 754 unsigned entries, ats_entries; 755 struct amdgpu_ring *ring; 756 struct amdgpu_job *job; 757 uint64_t addr; 758 int r; 759 760 entries = amdgpu_bo_size(bo) / 8; 761 762 if (pte_support_ats) { 763 if (level == adev->vm_manager.root_level) { 764 ats_entries = amdgpu_vm_level_shift(adev, level); 765 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 766 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 767 ats_entries = min(ats_entries, entries); 768 entries -= ats_entries; 769 } else { 770 ats_entries = entries; 771 entries = 0; 772 } 773 } else { 774 ats_entries = 0; 775 } 776 777 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 778 779 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 780 if (r) 781 goto error; 782 783 r = amdgpu_ttm_alloc_gart(&bo->tbo); 784 if (r) 785 return r; 786 787 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 788 if (r) 789 goto error; 790 791 addr = amdgpu_bo_gpu_offset(bo); 792 if (ats_entries) { 793 uint64_t ats_value; 794 795 ats_value = AMDGPU_PTE_DEFAULT_ATC; 796 if (level != AMDGPU_VM_PTB) 797 ats_value |= AMDGPU_PDE_PTE; 798 799 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 800 ats_entries, 0, ats_value); 801 addr += ats_entries * 8; 802 } 803 804 if (entries) 805 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 806 entries, 0, 0); 807 808 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 809 810 WARN_ON(job->ibs[0].length_dw > 64); 811 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 812 AMDGPU_FENCE_OWNER_UNDEFINED, false); 813 if (r) 814 goto error_free; 815 816 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 817 &fence); 818 if (r) 819 goto error_free; 820 821 amdgpu_bo_fence(bo, fence, true); 822 dma_fence_put(fence); 823 824 if (bo->shadow) 825 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 826 level, pte_support_ats); 827 828 return 0; 829 830 error_free: 831 amdgpu_job_free(job); 832 833 error: 834 return r; 835 } 836 837 /** 838 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 839 * 840 * @adev: amdgpu_device pointer 841 * @vm: requesting vm 842 * @bp: resulting BO allocation parameters 843 */ 844 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 845 int level, struct amdgpu_bo_param *bp) 846 { 847 memset(bp, 0, sizeof(*bp)); 848 849 bp->size = amdgpu_vm_bo_size(adev, level); 850 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 851 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 852 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 853 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 854 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 855 if (vm->use_cpu_for_update) 856 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 857 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 858 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 859 bp->type = ttm_bo_type_kernel; 860 if (vm->root.base.bo) 861 bp->resv = vm->root.base.bo->tbo.resv; 862 } 863 864 /** 865 * amdgpu_vm_alloc_pts - Allocate page tables. 866 * 867 * @adev: amdgpu_device pointer 868 * @vm: VM to allocate page tables for 869 * @saddr: Start address which needs to be allocated 870 * @size: Size from start address we need. 871 * 872 * Make sure the page directories and page tables are allocated 873 * 874 * Returns: 875 * 0 on success, errno otherwise. 876 */ 877 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 878 struct amdgpu_vm *vm, 879 uint64_t saddr, uint64_t size) 880 { 881 struct amdgpu_vm_pt_cursor cursor; 882 struct amdgpu_bo *pt; 883 bool ats = false; 884 uint64_t eaddr; 885 int r; 886 887 /* validate the parameters */ 888 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 889 return -EINVAL; 890 891 eaddr = saddr + size - 1; 892 893 if (vm->pte_support_ats) 894 ats = saddr < AMDGPU_GMC_HOLE_START; 895 896 saddr /= AMDGPU_GPU_PAGE_SIZE; 897 eaddr /= AMDGPU_GPU_PAGE_SIZE; 898 899 if (eaddr >= adev->vm_manager.max_pfn) { 900 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 901 eaddr, adev->vm_manager.max_pfn); 902 return -EINVAL; 903 } 904 905 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 906 struct amdgpu_vm_pt *entry = cursor.entry; 907 struct amdgpu_bo_param bp; 908 909 if (cursor.level < AMDGPU_VM_PTB) { 910 unsigned num_entries; 911 912 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 913 entry->entries = kvmalloc_array(num_entries, 914 sizeof(*entry->entries), 915 GFP_KERNEL | 916 __GFP_ZERO); 917 if (!entry->entries) 918 return -ENOMEM; 919 } 920 921 922 if (entry->base.bo) 923 continue; 924 925 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 926 927 r = amdgpu_bo_create(adev, &bp, &pt); 928 if (r) 929 return r; 930 931 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 932 if (r) 933 goto error_free_pt; 934 935 if (vm->use_cpu_for_update) { 936 r = amdgpu_bo_kmap(pt, NULL); 937 if (r) 938 goto error_free_pt; 939 } 940 941 /* Keep a reference to the root directory to avoid 942 * freeing them up in the wrong order. 943 */ 944 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 945 946 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 947 } 948 949 return 0; 950 951 error_free_pt: 952 amdgpu_bo_unref(&pt->shadow); 953 amdgpu_bo_unref(&pt); 954 return r; 955 } 956 957 /** 958 * amdgpu_vm_free_pts - free PD/PT levels 959 * 960 * @adev: amdgpu device structure 961 * @vm: amdgpu vm structure 962 * 963 * Free the page directory or page table level and all sub levels. 964 */ 965 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 966 struct amdgpu_vm *vm) 967 { 968 struct amdgpu_vm_pt_cursor cursor; 969 struct amdgpu_vm_pt *entry; 970 971 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 972 973 if (entry->base.bo) { 974 entry->base.bo->vm_bo = NULL; 975 list_del(&entry->base.vm_status); 976 amdgpu_bo_unref(&entry->base.bo->shadow); 977 amdgpu_bo_unref(&entry->base.bo); 978 } 979 kvfree(entry->entries); 980 } 981 982 BUG_ON(vm->root.base.bo); 983 } 984 985 /** 986 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 987 * 988 * @adev: amdgpu_device pointer 989 */ 990 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 991 { 992 const struct amdgpu_ip_block *ip_block; 993 bool has_compute_vm_bug; 994 struct amdgpu_ring *ring; 995 int i; 996 997 has_compute_vm_bug = false; 998 999 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1000 if (ip_block) { 1001 /* Compute has a VM bug for GFX version < 7. 1002 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1003 if (ip_block->version->major <= 7) 1004 has_compute_vm_bug = true; 1005 else if (ip_block->version->major == 8) 1006 if (adev->gfx.mec_fw_version < 673) 1007 has_compute_vm_bug = true; 1008 } 1009 1010 for (i = 0; i < adev->num_rings; i++) { 1011 ring = adev->rings[i]; 1012 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1013 /* only compute rings */ 1014 ring->has_compute_vm_bug = has_compute_vm_bug; 1015 else 1016 ring->has_compute_vm_bug = false; 1017 } 1018 } 1019 1020 /** 1021 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1022 * 1023 * @ring: ring on which the job will be submitted 1024 * @job: job to submit 1025 * 1026 * Returns: 1027 * True if sync is needed. 1028 */ 1029 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1030 struct amdgpu_job *job) 1031 { 1032 struct amdgpu_device *adev = ring->adev; 1033 unsigned vmhub = ring->funcs->vmhub; 1034 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1035 struct amdgpu_vmid *id; 1036 bool gds_switch_needed; 1037 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1038 1039 if (job->vmid == 0) 1040 return false; 1041 id = &id_mgr->ids[job->vmid]; 1042 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1043 id->gds_base != job->gds_base || 1044 id->gds_size != job->gds_size || 1045 id->gws_base != job->gws_base || 1046 id->gws_size != job->gws_size || 1047 id->oa_base != job->oa_base || 1048 id->oa_size != job->oa_size); 1049 1050 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1051 return true; 1052 1053 return vm_flush_needed || gds_switch_needed; 1054 } 1055 1056 /** 1057 * amdgpu_vm_flush - hardware flush the vm 1058 * 1059 * @ring: ring to use for flush 1060 * @job: related job 1061 * @need_pipe_sync: is pipe sync needed 1062 * 1063 * Emit a VM flush when it is necessary. 1064 * 1065 * Returns: 1066 * 0 on success, errno otherwise. 1067 */ 1068 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1069 { 1070 struct amdgpu_device *adev = ring->adev; 1071 unsigned vmhub = ring->funcs->vmhub; 1072 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1073 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1074 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1075 id->gds_base != job->gds_base || 1076 id->gds_size != job->gds_size || 1077 id->gws_base != job->gws_base || 1078 id->gws_size != job->gws_size || 1079 id->oa_base != job->oa_base || 1080 id->oa_size != job->oa_size); 1081 bool vm_flush_needed = job->vm_needs_flush; 1082 bool pasid_mapping_needed = id->pasid != job->pasid || 1083 !id->pasid_mapping || 1084 !dma_fence_is_signaled(id->pasid_mapping); 1085 struct dma_fence *fence = NULL; 1086 unsigned patch_offset = 0; 1087 int r; 1088 1089 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1090 gds_switch_needed = true; 1091 vm_flush_needed = true; 1092 pasid_mapping_needed = true; 1093 } 1094 1095 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1096 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1097 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1098 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1099 ring->funcs->emit_wreg; 1100 1101 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1102 return 0; 1103 1104 if (ring->funcs->init_cond_exec) 1105 patch_offset = amdgpu_ring_init_cond_exec(ring); 1106 1107 if (need_pipe_sync) 1108 amdgpu_ring_emit_pipeline_sync(ring); 1109 1110 if (vm_flush_needed) { 1111 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1112 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1113 } 1114 1115 if (pasid_mapping_needed) 1116 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1117 1118 if (vm_flush_needed || pasid_mapping_needed) { 1119 r = amdgpu_fence_emit(ring, &fence, 0); 1120 if (r) 1121 return r; 1122 } 1123 1124 if (vm_flush_needed) { 1125 mutex_lock(&id_mgr->lock); 1126 dma_fence_put(id->last_flush); 1127 id->last_flush = dma_fence_get(fence); 1128 id->current_gpu_reset_count = 1129 atomic_read(&adev->gpu_reset_counter); 1130 mutex_unlock(&id_mgr->lock); 1131 } 1132 1133 if (pasid_mapping_needed) { 1134 id->pasid = job->pasid; 1135 dma_fence_put(id->pasid_mapping); 1136 id->pasid_mapping = dma_fence_get(fence); 1137 } 1138 dma_fence_put(fence); 1139 1140 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1141 id->gds_base = job->gds_base; 1142 id->gds_size = job->gds_size; 1143 id->gws_base = job->gws_base; 1144 id->gws_size = job->gws_size; 1145 id->oa_base = job->oa_base; 1146 id->oa_size = job->oa_size; 1147 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1148 job->gds_size, job->gws_base, 1149 job->gws_size, job->oa_base, 1150 job->oa_size); 1151 } 1152 1153 if (ring->funcs->patch_cond_exec) 1154 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1155 1156 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1157 if (ring->funcs->emit_switch_buffer) { 1158 amdgpu_ring_emit_switch_buffer(ring); 1159 amdgpu_ring_emit_switch_buffer(ring); 1160 } 1161 return 0; 1162 } 1163 1164 /** 1165 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1166 * 1167 * @vm: requested vm 1168 * @bo: requested buffer object 1169 * 1170 * Find @bo inside the requested vm. 1171 * Search inside the @bos vm list for the requested vm 1172 * Returns the found bo_va or NULL if none is found 1173 * 1174 * Object has to be reserved! 1175 * 1176 * Returns: 1177 * Found bo_va or NULL. 1178 */ 1179 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1180 struct amdgpu_bo *bo) 1181 { 1182 struct amdgpu_vm_bo_base *base; 1183 1184 for (base = bo->vm_bo; base; base = base->next) { 1185 if (base->vm != vm) 1186 continue; 1187 1188 return container_of(base, struct amdgpu_bo_va, base); 1189 } 1190 return NULL; 1191 } 1192 1193 /** 1194 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1195 * 1196 * @params: see amdgpu_pte_update_params definition 1197 * @bo: PD/PT to update 1198 * @pe: addr of the page entry 1199 * @addr: dst addr to write into pe 1200 * @count: number of page entries to update 1201 * @incr: increase next addr by incr bytes 1202 * @flags: hw access flags 1203 * 1204 * Traces the parameters and calls the right asic functions 1205 * to setup the page table using the DMA. 1206 */ 1207 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1208 struct amdgpu_bo *bo, 1209 uint64_t pe, uint64_t addr, 1210 unsigned count, uint32_t incr, 1211 uint64_t flags) 1212 { 1213 pe += amdgpu_bo_gpu_offset(bo); 1214 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1215 1216 if (count < 3) { 1217 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1218 addr | flags, count, incr); 1219 1220 } else { 1221 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1222 count, incr, flags); 1223 } 1224 } 1225 1226 /** 1227 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1228 * 1229 * @params: see amdgpu_pte_update_params definition 1230 * @bo: PD/PT to update 1231 * @pe: addr of the page entry 1232 * @addr: dst addr to write into pe 1233 * @count: number of page entries to update 1234 * @incr: increase next addr by incr bytes 1235 * @flags: hw access flags 1236 * 1237 * Traces the parameters and calls the DMA function to copy the PTEs. 1238 */ 1239 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1240 struct amdgpu_bo *bo, 1241 uint64_t pe, uint64_t addr, 1242 unsigned count, uint32_t incr, 1243 uint64_t flags) 1244 { 1245 uint64_t src = (params->src + (addr >> 12) * 8); 1246 1247 pe += amdgpu_bo_gpu_offset(bo); 1248 trace_amdgpu_vm_copy_ptes(pe, src, count); 1249 1250 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1251 } 1252 1253 /** 1254 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1255 * 1256 * @pages_addr: optional DMA address to use for lookup 1257 * @addr: the unmapped addr 1258 * 1259 * Look up the physical address of the page that the pte resolves 1260 * to. 1261 * 1262 * Returns: 1263 * The pointer for the page table entry. 1264 */ 1265 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1266 { 1267 uint64_t result; 1268 1269 /* page table offset */ 1270 result = pages_addr[addr >> PAGE_SHIFT]; 1271 1272 /* in case cpu page size != gpu page size*/ 1273 result |= addr & (~PAGE_MASK); 1274 1275 result &= 0xFFFFFFFFFFFFF000ULL; 1276 1277 return result; 1278 } 1279 1280 /** 1281 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1282 * 1283 * @params: see amdgpu_pte_update_params definition 1284 * @bo: PD/PT to update 1285 * @pe: kmap addr of the page entry 1286 * @addr: dst addr to write into pe 1287 * @count: number of page entries to update 1288 * @incr: increase next addr by incr bytes 1289 * @flags: hw access flags 1290 * 1291 * Write count number of PT/PD entries directly. 1292 */ 1293 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1294 struct amdgpu_bo *bo, 1295 uint64_t pe, uint64_t addr, 1296 unsigned count, uint32_t incr, 1297 uint64_t flags) 1298 { 1299 unsigned int i; 1300 uint64_t value; 1301 1302 pe += (unsigned long)amdgpu_bo_kptr(bo); 1303 1304 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1305 1306 for (i = 0; i < count; i++) { 1307 value = params->pages_addr ? 1308 amdgpu_vm_map_gart(params->pages_addr, addr) : 1309 addr; 1310 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1311 i, value, flags); 1312 addr += incr; 1313 } 1314 } 1315 1316 1317 /** 1318 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1319 * 1320 * @adev: amdgpu_device pointer 1321 * @vm: related vm 1322 * @owner: fence owner 1323 * 1324 * Returns: 1325 * 0 on success, errno otherwise. 1326 */ 1327 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1328 void *owner) 1329 { 1330 struct amdgpu_sync sync; 1331 int r; 1332 1333 amdgpu_sync_create(&sync); 1334 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1335 r = amdgpu_sync_wait(&sync, true); 1336 amdgpu_sync_free(&sync); 1337 1338 return r; 1339 } 1340 1341 /** 1342 * amdgpu_vm_update_func - helper to call update function 1343 * 1344 * Calls the update function for both the given BO as well as its shadow. 1345 */ 1346 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1347 struct amdgpu_bo *bo, 1348 uint64_t pe, uint64_t addr, 1349 unsigned count, uint32_t incr, 1350 uint64_t flags) 1351 { 1352 if (bo->shadow) 1353 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1354 params->func(params, bo, pe, addr, count, incr, flags); 1355 } 1356 1357 /* 1358 * amdgpu_vm_update_pde - update a single level in the hierarchy 1359 * 1360 * @param: parameters for the update 1361 * @vm: requested vm 1362 * @parent: parent directory 1363 * @entry: entry to update 1364 * 1365 * Makes sure the requested entry in parent is up to date. 1366 */ 1367 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1368 struct amdgpu_vm *vm, 1369 struct amdgpu_vm_pt *parent, 1370 struct amdgpu_vm_pt *entry) 1371 { 1372 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1373 uint64_t pde, pt, flags; 1374 unsigned level; 1375 1376 /* Don't update huge pages here */ 1377 if (entry->huge) 1378 return; 1379 1380 for (level = 0, pbo = bo->parent; pbo; ++level) 1381 pbo = pbo->parent; 1382 1383 level += params->adev->vm_manager.root_level; 1384 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1385 pde = (entry - parent->entries) * 8; 1386 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1387 } 1388 1389 /* 1390 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1391 * 1392 * @adev: amdgpu_device pointer 1393 * @vm: related vm 1394 * 1395 * Mark all PD level as invalid after an error. 1396 */ 1397 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1398 struct amdgpu_vm *vm) 1399 { 1400 struct amdgpu_vm_pt_cursor cursor; 1401 struct amdgpu_vm_pt *entry; 1402 1403 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1404 if (entry->base.bo && !entry->base.moved) 1405 amdgpu_vm_bo_relocated(&entry->base); 1406 } 1407 1408 /* 1409 * amdgpu_vm_update_directories - make sure that all directories are valid 1410 * 1411 * @adev: amdgpu_device pointer 1412 * @vm: requested vm 1413 * 1414 * Makes sure all directories are up to date. 1415 * 1416 * Returns: 1417 * 0 for success, error for failure. 1418 */ 1419 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1420 struct amdgpu_vm *vm) 1421 { 1422 struct amdgpu_pte_update_params params; 1423 struct amdgpu_job *job; 1424 unsigned ndw = 0; 1425 int r = 0; 1426 1427 if (list_empty(&vm->relocated)) 1428 return 0; 1429 1430 restart: 1431 memset(¶ms, 0, sizeof(params)); 1432 params.adev = adev; 1433 1434 if (vm->use_cpu_for_update) { 1435 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1436 if (unlikely(r)) 1437 return r; 1438 1439 params.func = amdgpu_vm_cpu_set_ptes; 1440 } else { 1441 ndw = 512 * 8; 1442 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1443 if (r) 1444 return r; 1445 1446 params.ib = &job->ibs[0]; 1447 params.func = amdgpu_vm_do_set_ptes; 1448 } 1449 1450 while (!list_empty(&vm->relocated)) { 1451 struct amdgpu_vm_pt *pt, *entry; 1452 1453 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1454 base.vm_status); 1455 amdgpu_vm_bo_idle(&entry->base); 1456 1457 pt = amdgpu_vm_pt_parent(entry); 1458 if (!pt) 1459 continue; 1460 1461 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1462 1463 if (!vm->use_cpu_for_update && 1464 (ndw - params.ib->length_dw) < 32) 1465 break; 1466 } 1467 1468 if (vm->use_cpu_for_update) { 1469 /* Flush HDP */ 1470 mb(); 1471 amdgpu_asic_flush_hdp(adev, NULL); 1472 } else if (params.ib->length_dw == 0) { 1473 amdgpu_job_free(job); 1474 } else { 1475 struct amdgpu_bo *root = vm->root.base.bo; 1476 struct amdgpu_ring *ring; 1477 struct dma_fence *fence; 1478 1479 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1480 sched); 1481 1482 amdgpu_ring_pad_ib(ring, params.ib); 1483 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1484 AMDGPU_FENCE_OWNER_VM, false); 1485 WARN_ON(params.ib->length_dw > ndw); 1486 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1487 &fence); 1488 if (r) 1489 goto error; 1490 1491 amdgpu_bo_fence(root, fence, true); 1492 dma_fence_put(vm->last_update); 1493 vm->last_update = fence; 1494 } 1495 1496 if (!list_empty(&vm->relocated)) 1497 goto restart; 1498 1499 return 0; 1500 1501 error: 1502 amdgpu_vm_invalidate_pds(adev, vm); 1503 amdgpu_job_free(job); 1504 return r; 1505 } 1506 1507 /** 1508 * amdgpu_vm_update_huge - figure out parameters for PTE updates 1509 * 1510 * Make sure to set the right flags for the PTEs at the desired level. 1511 */ 1512 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params, 1513 struct amdgpu_bo *bo, unsigned level, 1514 uint64_t pe, uint64_t addr, 1515 unsigned count, uint32_t incr, 1516 uint64_t flags) 1517 1518 { 1519 if (level != AMDGPU_VM_PTB) { 1520 flags |= AMDGPU_PDE_PTE; 1521 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1522 } 1523 1524 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1525 } 1526 1527 /** 1528 * amdgpu_vm_fragment - get fragment for PTEs 1529 * 1530 * @params: see amdgpu_pte_update_params definition 1531 * @start: first PTE to handle 1532 * @end: last PTE to handle 1533 * @flags: hw mapping flags 1534 * @frag: resulting fragment size 1535 * @frag_end: end of this fragment 1536 * 1537 * Returns the first possible fragment for the start and end address. 1538 */ 1539 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1540 uint64_t start, uint64_t end, uint64_t flags, 1541 unsigned int *frag, uint64_t *frag_end) 1542 { 1543 /** 1544 * The MC L1 TLB supports variable sized pages, based on a fragment 1545 * field in the PTE. When this field is set to a non-zero value, page 1546 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1547 * flags are considered valid for all PTEs within the fragment range 1548 * and corresponding mappings are assumed to be physically contiguous. 1549 * 1550 * The L1 TLB can store a single PTE for the whole fragment, 1551 * significantly increasing the space available for translation 1552 * caching. This leads to large improvements in throughput when the 1553 * TLB is under pressure. 1554 * 1555 * The L2 TLB distributes small and large fragments into two 1556 * asymmetric partitions. The large fragment cache is significantly 1557 * larger. Thus, we try to use large fragments wherever possible. 1558 * Userspace can support this by aligning virtual base address and 1559 * allocation size to the fragment size. 1560 * 1561 * Starting with Vega10 the fragment size only controls the L1. The L2 1562 * is now directly feed with small/huge/giant pages from the walker. 1563 */ 1564 unsigned max_frag; 1565 1566 if (params->adev->asic_type < CHIP_VEGA10) 1567 max_frag = params->adev->vm_manager.fragment_size; 1568 else 1569 max_frag = 31; 1570 1571 /* system pages are non continuously */ 1572 if (params->src) { 1573 *frag = 0; 1574 *frag_end = end; 1575 return; 1576 } 1577 1578 /* This intentionally wraps around if no bit is set */ 1579 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1580 if (*frag >= max_frag) { 1581 *frag = max_frag; 1582 *frag_end = end & ~((1ULL << max_frag) - 1); 1583 } else { 1584 *frag_end = start + (1 << *frag); 1585 } 1586 } 1587 1588 /** 1589 * amdgpu_vm_update_ptes - make sure that page tables are valid 1590 * 1591 * @params: see amdgpu_pte_update_params definition 1592 * @start: start of GPU address range 1593 * @end: end of GPU address range 1594 * @dst: destination address to map to, the next dst inside the function 1595 * @flags: mapping flags 1596 * 1597 * Update the page tables in the range @start - @end. 1598 * 1599 * Returns: 1600 * 0 for success, -EINVAL for failure. 1601 */ 1602 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1603 uint64_t start, uint64_t end, 1604 uint64_t dst, uint64_t flags) 1605 { 1606 struct amdgpu_device *adev = params->adev; 1607 struct amdgpu_vm_pt_cursor cursor; 1608 uint64_t frag_start = start, frag_end; 1609 unsigned int frag; 1610 1611 /* figure out the initial fragment */ 1612 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1613 1614 /* walk over the address space and update the PTs */ 1615 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1616 while (cursor.pfn < end) { 1617 struct amdgpu_bo *pt = cursor.entry->base.bo; 1618 unsigned shift, parent_shift, mask; 1619 uint64_t incr, entry_end, pe_start; 1620 1621 if (!pt) 1622 return -ENOENT; 1623 1624 /* The root level can't be a huge page */ 1625 if (cursor.level == adev->vm_manager.root_level) { 1626 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1627 return -ENOENT; 1628 continue; 1629 } 1630 1631 /* If it isn't already handled it can't be a huge page */ 1632 if (cursor.entry->huge) { 1633 /* Add the entry to the relocated list to update it. */ 1634 cursor.entry->huge = false; 1635 amdgpu_vm_bo_relocated(&cursor.entry->base); 1636 } 1637 1638 shift = amdgpu_vm_level_shift(adev, cursor.level); 1639 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1640 if (adev->asic_type < CHIP_VEGA10) { 1641 /* No huge page support before GMC v9 */ 1642 if (cursor.level != AMDGPU_VM_PTB) { 1643 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1644 return -ENOENT; 1645 continue; 1646 } 1647 } else if (frag < shift) { 1648 /* We can't use this level when the fragment size is 1649 * smaller than the address shift. Go to the next 1650 * child entry and try again. 1651 */ 1652 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1653 return -ENOENT; 1654 continue; 1655 } else if (frag >= parent_shift && 1656 cursor.level - 1 != adev->vm_manager.root_level) { 1657 /* If the fragment size is even larger than the parent 1658 * shift we should go up one level and check it again 1659 * unless one level up is the root level. 1660 */ 1661 if (!amdgpu_vm_pt_ancestor(&cursor)) 1662 return -ENOENT; 1663 continue; 1664 } 1665 1666 /* Looks good so far, calculate parameters for the update */ 1667 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1668 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1669 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1670 entry_end = (uint64_t)(mask + 1) << shift; 1671 entry_end += cursor.pfn & ~(entry_end - 1); 1672 entry_end = min(entry_end, end); 1673 1674 do { 1675 uint64_t upd_end = min(entry_end, frag_end); 1676 unsigned nptes = (upd_end - frag_start) >> shift; 1677 1678 amdgpu_vm_update_huge(params, pt, cursor.level, 1679 pe_start, dst, nptes, incr, 1680 flags | AMDGPU_PTE_FRAG(frag)); 1681 1682 pe_start += nptes * 8; 1683 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1684 1685 frag_start = upd_end; 1686 if (frag_start >= frag_end) { 1687 /* figure out the next fragment */ 1688 amdgpu_vm_fragment(params, frag_start, end, 1689 flags, &frag, &frag_end); 1690 if (frag < shift) 1691 break; 1692 } 1693 } while (frag_start < entry_end); 1694 1695 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1696 /* Mark all child entries as huge */ 1697 while (cursor.pfn < frag_start) { 1698 cursor.entry->huge = true; 1699 amdgpu_vm_pt_next(adev, &cursor); 1700 } 1701 1702 } else if (frag >= shift) { 1703 /* or just move on to the next on the same level. */ 1704 amdgpu_vm_pt_next(adev, &cursor); 1705 } 1706 } 1707 1708 return 0; 1709 } 1710 1711 /** 1712 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1713 * 1714 * @adev: amdgpu_device pointer 1715 * @exclusive: fence we need to sync to 1716 * @pages_addr: DMA addresses to use for mapping 1717 * @vm: requested vm 1718 * @start: start of mapped range 1719 * @last: last mapped entry 1720 * @flags: flags for the entries 1721 * @addr: addr to set the area to 1722 * @fence: optional resulting fence 1723 * 1724 * Fill in the page table entries between @start and @last. 1725 * 1726 * Returns: 1727 * 0 for success, -EINVAL for failure. 1728 */ 1729 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1730 struct dma_fence *exclusive, 1731 dma_addr_t *pages_addr, 1732 struct amdgpu_vm *vm, 1733 uint64_t start, uint64_t last, 1734 uint64_t flags, uint64_t addr, 1735 struct dma_fence **fence) 1736 { 1737 struct amdgpu_ring *ring; 1738 void *owner = AMDGPU_FENCE_OWNER_VM; 1739 unsigned nptes, ncmds, ndw; 1740 struct amdgpu_job *job; 1741 struct amdgpu_pte_update_params params; 1742 struct dma_fence *f = NULL; 1743 int r; 1744 1745 memset(¶ms, 0, sizeof(params)); 1746 params.adev = adev; 1747 params.vm = vm; 1748 1749 /* sync to everything on unmapping */ 1750 if (!(flags & AMDGPU_PTE_VALID)) 1751 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1752 1753 if (vm->use_cpu_for_update) { 1754 /* params.src is used as flag to indicate system Memory */ 1755 if (pages_addr) 1756 params.src = ~0; 1757 1758 /* Wait for PT BOs to be free. PTs share the same resv. object 1759 * as the root PD BO 1760 */ 1761 r = amdgpu_vm_wait_pd(adev, vm, owner); 1762 if (unlikely(r)) 1763 return r; 1764 1765 params.func = amdgpu_vm_cpu_set_ptes; 1766 params.pages_addr = pages_addr; 1767 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1768 addr, flags); 1769 } 1770 1771 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1772 1773 nptes = last - start + 1; 1774 1775 /* 1776 * reserve space for two commands every (1 << BLOCK_SIZE) 1777 * entries or 2k dwords (whatever is smaller) 1778 * 1779 * The second command is for the shadow pagetables. 1780 */ 1781 if (vm->root.base.bo->shadow) 1782 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1783 else 1784 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1785 1786 /* padding, etc. */ 1787 ndw = 64; 1788 1789 if (pages_addr) { 1790 /* copy commands needed */ 1791 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1792 1793 /* and also PTEs */ 1794 ndw += nptes * 2; 1795 1796 params.func = amdgpu_vm_do_copy_ptes; 1797 1798 } else { 1799 /* set page commands needed */ 1800 ndw += ncmds * 10; 1801 1802 /* extra commands for begin/end fragments */ 1803 if (vm->root.base.bo->shadow) 1804 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1805 else 1806 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1807 1808 params.func = amdgpu_vm_do_set_ptes; 1809 } 1810 1811 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1812 if (r) 1813 return r; 1814 1815 params.ib = &job->ibs[0]; 1816 1817 if (pages_addr) { 1818 uint64_t *pte; 1819 unsigned i; 1820 1821 /* Put the PTEs at the end of the IB. */ 1822 i = ndw - nptes * 2; 1823 pte= (uint64_t *)&(job->ibs->ptr[i]); 1824 params.src = job->ibs->gpu_addr + i * 4; 1825 1826 for (i = 0; i < nptes; ++i) { 1827 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1828 AMDGPU_GPU_PAGE_SIZE); 1829 pte[i] |= flags; 1830 } 1831 addr = 0; 1832 } 1833 1834 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1835 if (r) 1836 goto error_free; 1837 1838 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1839 owner, false); 1840 if (r) 1841 goto error_free; 1842 1843 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1844 if (r) 1845 goto error_free; 1846 1847 amdgpu_ring_pad_ib(ring, params.ib); 1848 WARN_ON(params.ib->length_dw > ndw); 1849 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1850 if (r) 1851 goto error_free; 1852 1853 amdgpu_bo_fence(vm->root.base.bo, f, true); 1854 dma_fence_put(*fence); 1855 *fence = f; 1856 return 0; 1857 1858 error_free: 1859 amdgpu_job_free(job); 1860 return r; 1861 } 1862 1863 /** 1864 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1865 * 1866 * @adev: amdgpu_device pointer 1867 * @exclusive: fence we need to sync to 1868 * @pages_addr: DMA addresses to use for mapping 1869 * @vm: requested vm 1870 * @mapping: mapped range and flags to use for the update 1871 * @flags: HW flags for the mapping 1872 * @nodes: array of drm_mm_nodes with the MC addresses 1873 * @fence: optional resulting fence 1874 * 1875 * Split the mapping into smaller chunks so that each update fits 1876 * into a SDMA IB. 1877 * 1878 * Returns: 1879 * 0 for success, -EINVAL for failure. 1880 */ 1881 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1882 struct dma_fence *exclusive, 1883 dma_addr_t *pages_addr, 1884 struct amdgpu_vm *vm, 1885 struct amdgpu_bo_va_mapping *mapping, 1886 uint64_t flags, 1887 struct drm_mm_node *nodes, 1888 struct dma_fence **fence) 1889 { 1890 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1891 uint64_t pfn, start = mapping->start; 1892 int r; 1893 1894 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1895 * but in case of something, we filter the flags in first place 1896 */ 1897 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1898 flags &= ~AMDGPU_PTE_READABLE; 1899 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1900 flags &= ~AMDGPU_PTE_WRITEABLE; 1901 1902 flags &= ~AMDGPU_PTE_EXECUTABLE; 1903 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1904 1905 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1906 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1907 1908 if ((mapping->flags & AMDGPU_PTE_PRT) && 1909 (adev->asic_type >= CHIP_VEGA10)) { 1910 flags |= AMDGPU_PTE_PRT; 1911 flags &= ~AMDGPU_PTE_VALID; 1912 } 1913 1914 trace_amdgpu_vm_bo_update(mapping); 1915 1916 pfn = mapping->offset >> PAGE_SHIFT; 1917 if (nodes) { 1918 while (pfn >= nodes->size) { 1919 pfn -= nodes->size; 1920 ++nodes; 1921 } 1922 } 1923 1924 do { 1925 dma_addr_t *dma_addr = NULL; 1926 uint64_t max_entries; 1927 uint64_t addr, last; 1928 1929 if (nodes) { 1930 addr = nodes->start << PAGE_SHIFT; 1931 max_entries = (nodes->size - pfn) * 1932 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1933 } else { 1934 addr = 0; 1935 max_entries = S64_MAX; 1936 } 1937 1938 if (pages_addr) { 1939 uint64_t count; 1940 1941 max_entries = min(max_entries, 16ull * 1024ull); 1942 for (count = 1; 1943 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1944 ++count) { 1945 uint64_t idx = pfn + count; 1946 1947 if (pages_addr[idx] != 1948 (pages_addr[idx - 1] + PAGE_SIZE)) 1949 break; 1950 } 1951 1952 if (count < min_linear_pages) { 1953 addr = pfn << PAGE_SHIFT; 1954 dma_addr = pages_addr; 1955 } else { 1956 addr = pages_addr[pfn]; 1957 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1958 } 1959 1960 } else if (flags & AMDGPU_PTE_VALID) { 1961 addr += adev->vm_manager.vram_base_offset; 1962 addr += pfn << PAGE_SHIFT; 1963 } 1964 1965 last = min((uint64_t)mapping->last, start + max_entries - 1); 1966 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1967 start, last, flags, addr, 1968 fence); 1969 if (r) 1970 return r; 1971 1972 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1973 if (nodes && nodes->size == pfn) { 1974 pfn = 0; 1975 ++nodes; 1976 } 1977 start = last + 1; 1978 1979 } while (unlikely(start != mapping->last + 1)); 1980 1981 return 0; 1982 } 1983 1984 /** 1985 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1986 * 1987 * @adev: amdgpu_device pointer 1988 * @bo_va: requested BO and VM object 1989 * @clear: if true clear the entries 1990 * 1991 * Fill in the page table entries for @bo_va. 1992 * 1993 * Returns: 1994 * 0 for success, -EINVAL for failure. 1995 */ 1996 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1997 struct amdgpu_bo_va *bo_va, 1998 bool clear) 1999 { 2000 struct amdgpu_bo *bo = bo_va->base.bo; 2001 struct amdgpu_vm *vm = bo_va->base.vm; 2002 struct amdgpu_bo_va_mapping *mapping; 2003 dma_addr_t *pages_addr = NULL; 2004 struct ttm_mem_reg *mem; 2005 struct drm_mm_node *nodes; 2006 struct dma_fence *exclusive, **last_update; 2007 uint64_t flags; 2008 int r; 2009 2010 if (clear || !bo) { 2011 mem = NULL; 2012 nodes = NULL; 2013 exclusive = NULL; 2014 } else { 2015 struct ttm_dma_tt *ttm; 2016 2017 mem = &bo->tbo.mem; 2018 nodes = mem->mm_node; 2019 if (mem->mem_type == TTM_PL_TT) { 2020 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2021 pages_addr = ttm->dma_address; 2022 } 2023 exclusive = reservation_object_get_excl(bo->tbo.resv); 2024 } 2025 2026 if (bo) 2027 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2028 else 2029 flags = 0x0; 2030 2031 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2032 last_update = &vm->last_update; 2033 else 2034 last_update = &bo_va->last_pt_update; 2035 2036 if (!clear && bo_va->base.moved) { 2037 bo_va->base.moved = false; 2038 list_splice_init(&bo_va->valids, &bo_va->invalids); 2039 2040 } else if (bo_va->cleared != clear) { 2041 list_splice_init(&bo_va->valids, &bo_va->invalids); 2042 } 2043 2044 list_for_each_entry(mapping, &bo_va->invalids, list) { 2045 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2046 mapping, flags, nodes, 2047 last_update); 2048 if (r) 2049 return r; 2050 } 2051 2052 if (vm->use_cpu_for_update) { 2053 /* Flush HDP */ 2054 mb(); 2055 amdgpu_asic_flush_hdp(adev, NULL); 2056 } 2057 2058 /* If the BO is not in its preferred location add it back to 2059 * the evicted list so that it gets validated again on the 2060 * next command submission. 2061 */ 2062 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2063 uint32_t mem_type = bo->tbo.mem.mem_type; 2064 2065 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2066 amdgpu_vm_bo_evicted(&bo_va->base); 2067 else 2068 amdgpu_vm_bo_idle(&bo_va->base); 2069 } else { 2070 amdgpu_vm_bo_done(&bo_va->base); 2071 } 2072 2073 list_splice_init(&bo_va->invalids, &bo_va->valids); 2074 bo_va->cleared = clear; 2075 2076 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2077 list_for_each_entry(mapping, &bo_va->valids, list) 2078 trace_amdgpu_vm_bo_mapping(mapping); 2079 } 2080 2081 return 0; 2082 } 2083 2084 /** 2085 * amdgpu_vm_update_prt_state - update the global PRT state 2086 * 2087 * @adev: amdgpu_device pointer 2088 */ 2089 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2090 { 2091 unsigned long flags; 2092 bool enable; 2093 2094 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2095 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2096 adev->gmc.gmc_funcs->set_prt(adev, enable); 2097 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2098 } 2099 2100 /** 2101 * amdgpu_vm_prt_get - add a PRT user 2102 * 2103 * @adev: amdgpu_device pointer 2104 */ 2105 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2106 { 2107 if (!adev->gmc.gmc_funcs->set_prt) 2108 return; 2109 2110 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2111 amdgpu_vm_update_prt_state(adev); 2112 } 2113 2114 /** 2115 * amdgpu_vm_prt_put - drop a PRT user 2116 * 2117 * @adev: amdgpu_device pointer 2118 */ 2119 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2120 { 2121 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2122 amdgpu_vm_update_prt_state(adev); 2123 } 2124 2125 /** 2126 * amdgpu_vm_prt_cb - callback for updating the PRT status 2127 * 2128 * @fence: fence for the callback 2129 * @_cb: the callback function 2130 */ 2131 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2132 { 2133 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2134 2135 amdgpu_vm_prt_put(cb->adev); 2136 kfree(cb); 2137 } 2138 2139 /** 2140 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2141 * 2142 * @adev: amdgpu_device pointer 2143 * @fence: fence for the callback 2144 */ 2145 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2146 struct dma_fence *fence) 2147 { 2148 struct amdgpu_prt_cb *cb; 2149 2150 if (!adev->gmc.gmc_funcs->set_prt) 2151 return; 2152 2153 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2154 if (!cb) { 2155 /* Last resort when we are OOM */ 2156 if (fence) 2157 dma_fence_wait(fence, false); 2158 2159 amdgpu_vm_prt_put(adev); 2160 } else { 2161 cb->adev = adev; 2162 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2163 amdgpu_vm_prt_cb)) 2164 amdgpu_vm_prt_cb(fence, &cb->cb); 2165 } 2166 } 2167 2168 /** 2169 * amdgpu_vm_free_mapping - free a mapping 2170 * 2171 * @adev: amdgpu_device pointer 2172 * @vm: requested vm 2173 * @mapping: mapping to be freed 2174 * @fence: fence of the unmap operation 2175 * 2176 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2177 */ 2178 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2179 struct amdgpu_vm *vm, 2180 struct amdgpu_bo_va_mapping *mapping, 2181 struct dma_fence *fence) 2182 { 2183 if (mapping->flags & AMDGPU_PTE_PRT) 2184 amdgpu_vm_add_prt_cb(adev, fence); 2185 kfree(mapping); 2186 } 2187 2188 /** 2189 * amdgpu_vm_prt_fini - finish all prt mappings 2190 * 2191 * @adev: amdgpu_device pointer 2192 * @vm: requested vm 2193 * 2194 * Register a cleanup callback to disable PRT support after VM dies. 2195 */ 2196 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2197 { 2198 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2199 struct dma_fence *excl, **shared; 2200 unsigned i, shared_count; 2201 int r; 2202 2203 r = reservation_object_get_fences_rcu(resv, &excl, 2204 &shared_count, &shared); 2205 if (r) { 2206 /* Not enough memory to grab the fence list, as last resort 2207 * block for all the fences to complete. 2208 */ 2209 reservation_object_wait_timeout_rcu(resv, true, false, 2210 MAX_SCHEDULE_TIMEOUT); 2211 return; 2212 } 2213 2214 /* Add a callback for each fence in the reservation object */ 2215 amdgpu_vm_prt_get(adev); 2216 amdgpu_vm_add_prt_cb(adev, excl); 2217 2218 for (i = 0; i < shared_count; ++i) { 2219 amdgpu_vm_prt_get(adev); 2220 amdgpu_vm_add_prt_cb(adev, shared[i]); 2221 } 2222 2223 kfree(shared); 2224 } 2225 2226 /** 2227 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2228 * 2229 * @adev: amdgpu_device pointer 2230 * @vm: requested vm 2231 * @fence: optional resulting fence (unchanged if no work needed to be done 2232 * or if an error occurred) 2233 * 2234 * Make sure all freed BOs are cleared in the PT. 2235 * PTs have to be reserved and mutex must be locked! 2236 * 2237 * Returns: 2238 * 0 for success. 2239 * 2240 */ 2241 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2242 struct amdgpu_vm *vm, 2243 struct dma_fence **fence) 2244 { 2245 struct amdgpu_bo_va_mapping *mapping; 2246 uint64_t init_pte_value = 0; 2247 struct dma_fence *f = NULL; 2248 int r; 2249 2250 while (!list_empty(&vm->freed)) { 2251 mapping = list_first_entry(&vm->freed, 2252 struct amdgpu_bo_va_mapping, list); 2253 list_del(&mapping->list); 2254 2255 if (vm->pte_support_ats && 2256 mapping->start < AMDGPU_GMC_HOLE_START) 2257 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2258 2259 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2260 mapping->start, mapping->last, 2261 init_pte_value, 0, &f); 2262 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2263 if (r) { 2264 dma_fence_put(f); 2265 return r; 2266 } 2267 } 2268 2269 if (fence && f) { 2270 dma_fence_put(*fence); 2271 *fence = f; 2272 } else { 2273 dma_fence_put(f); 2274 } 2275 2276 return 0; 2277 2278 } 2279 2280 /** 2281 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2282 * 2283 * @adev: amdgpu_device pointer 2284 * @vm: requested vm 2285 * 2286 * Make sure all BOs which are moved are updated in the PTs. 2287 * 2288 * Returns: 2289 * 0 for success. 2290 * 2291 * PTs have to be reserved! 2292 */ 2293 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2294 struct amdgpu_vm *vm) 2295 { 2296 struct amdgpu_bo_va *bo_va, *tmp; 2297 struct reservation_object *resv; 2298 bool clear; 2299 int r; 2300 2301 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2302 /* Per VM BOs never need to bo cleared in the page tables */ 2303 r = amdgpu_vm_bo_update(adev, bo_va, false); 2304 if (r) 2305 return r; 2306 } 2307 2308 spin_lock(&vm->invalidated_lock); 2309 while (!list_empty(&vm->invalidated)) { 2310 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2311 base.vm_status); 2312 resv = bo_va->base.bo->tbo.resv; 2313 spin_unlock(&vm->invalidated_lock); 2314 2315 /* Try to reserve the BO to avoid clearing its ptes */ 2316 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2317 clear = false; 2318 /* Somebody else is using the BO right now */ 2319 else 2320 clear = true; 2321 2322 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2323 if (r) 2324 return r; 2325 2326 if (!clear) 2327 reservation_object_unlock(resv); 2328 spin_lock(&vm->invalidated_lock); 2329 } 2330 spin_unlock(&vm->invalidated_lock); 2331 2332 return 0; 2333 } 2334 2335 /** 2336 * amdgpu_vm_bo_add - add a bo to a specific vm 2337 * 2338 * @adev: amdgpu_device pointer 2339 * @vm: requested vm 2340 * @bo: amdgpu buffer object 2341 * 2342 * Add @bo into the requested vm. 2343 * Add @bo to the list of bos associated with the vm 2344 * 2345 * Returns: 2346 * Newly added bo_va or NULL for failure 2347 * 2348 * Object has to be reserved! 2349 */ 2350 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2351 struct amdgpu_vm *vm, 2352 struct amdgpu_bo *bo) 2353 { 2354 struct amdgpu_bo_va *bo_va; 2355 2356 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2357 if (bo_va == NULL) { 2358 return NULL; 2359 } 2360 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2361 2362 bo_va->ref_count = 1; 2363 INIT_LIST_HEAD(&bo_va->valids); 2364 INIT_LIST_HEAD(&bo_va->invalids); 2365 2366 return bo_va; 2367 } 2368 2369 2370 /** 2371 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2372 * 2373 * @adev: amdgpu_device pointer 2374 * @bo_va: bo_va to store the address 2375 * @mapping: the mapping to insert 2376 * 2377 * Insert a new mapping into all structures. 2378 */ 2379 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2380 struct amdgpu_bo_va *bo_va, 2381 struct amdgpu_bo_va_mapping *mapping) 2382 { 2383 struct amdgpu_vm *vm = bo_va->base.vm; 2384 struct amdgpu_bo *bo = bo_va->base.bo; 2385 2386 mapping->bo_va = bo_va; 2387 list_add(&mapping->list, &bo_va->invalids); 2388 amdgpu_vm_it_insert(mapping, &vm->va); 2389 2390 if (mapping->flags & AMDGPU_PTE_PRT) 2391 amdgpu_vm_prt_get(adev); 2392 2393 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2394 !bo_va->base.moved) { 2395 list_move(&bo_va->base.vm_status, &vm->moved); 2396 } 2397 trace_amdgpu_vm_bo_map(bo_va, mapping); 2398 } 2399 2400 /** 2401 * amdgpu_vm_bo_map - map bo inside a vm 2402 * 2403 * @adev: amdgpu_device pointer 2404 * @bo_va: bo_va to store the address 2405 * @saddr: where to map the BO 2406 * @offset: requested offset in the BO 2407 * @size: BO size in bytes 2408 * @flags: attributes of pages (read/write/valid/etc.) 2409 * 2410 * Add a mapping of the BO at the specefied addr into the VM. 2411 * 2412 * Returns: 2413 * 0 for success, error for failure. 2414 * 2415 * Object has to be reserved and unreserved outside! 2416 */ 2417 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2418 struct amdgpu_bo_va *bo_va, 2419 uint64_t saddr, uint64_t offset, 2420 uint64_t size, uint64_t flags) 2421 { 2422 struct amdgpu_bo_va_mapping *mapping, *tmp; 2423 struct amdgpu_bo *bo = bo_va->base.bo; 2424 struct amdgpu_vm *vm = bo_va->base.vm; 2425 uint64_t eaddr; 2426 2427 /* validate the parameters */ 2428 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2429 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2430 return -EINVAL; 2431 2432 /* make sure object fit at this offset */ 2433 eaddr = saddr + size - 1; 2434 if (saddr >= eaddr || 2435 (bo && offset + size > amdgpu_bo_size(bo))) 2436 return -EINVAL; 2437 2438 saddr /= AMDGPU_GPU_PAGE_SIZE; 2439 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2440 2441 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2442 if (tmp) { 2443 /* bo and tmp overlap, invalid addr */ 2444 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2445 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2446 tmp->start, tmp->last + 1); 2447 return -EINVAL; 2448 } 2449 2450 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2451 if (!mapping) 2452 return -ENOMEM; 2453 2454 mapping->start = saddr; 2455 mapping->last = eaddr; 2456 mapping->offset = offset; 2457 mapping->flags = flags; 2458 2459 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2460 2461 return 0; 2462 } 2463 2464 /** 2465 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2466 * 2467 * @adev: amdgpu_device pointer 2468 * @bo_va: bo_va to store the address 2469 * @saddr: where to map the BO 2470 * @offset: requested offset in the BO 2471 * @size: BO size in bytes 2472 * @flags: attributes of pages (read/write/valid/etc.) 2473 * 2474 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2475 * mappings as we do so. 2476 * 2477 * Returns: 2478 * 0 for success, error for failure. 2479 * 2480 * Object has to be reserved and unreserved outside! 2481 */ 2482 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2483 struct amdgpu_bo_va *bo_va, 2484 uint64_t saddr, uint64_t offset, 2485 uint64_t size, uint64_t flags) 2486 { 2487 struct amdgpu_bo_va_mapping *mapping; 2488 struct amdgpu_bo *bo = bo_va->base.bo; 2489 uint64_t eaddr; 2490 int r; 2491 2492 /* validate the parameters */ 2493 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2494 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2495 return -EINVAL; 2496 2497 /* make sure object fit at this offset */ 2498 eaddr = saddr + size - 1; 2499 if (saddr >= eaddr || 2500 (bo && offset + size > amdgpu_bo_size(bo))) 2501 return -EINVAL; 2502 2503 /* Allocate all the needed memory */ 2504 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2505 if (!mapping) 2506 return -ENOMEM; 2507 2508 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2509 if (r) { 2510 kfree(mapping); 2511 return r; 2512 } 2513 2514 saddr /= AMDGPU_GPU_PAGE_SIZE; 2515 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2516 2517 mapping->start = saddr; 2518 mapping->last = eaddr; 2519 mapping->offset = offset; 2520 mapping->flags = flags; 2521 2522 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2523 2524 return 0; 2525 } 2526 2527 /** 2528 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2529 * 2530 * @adev: amdgpu_device pointer 2531 * @bo_va: bo_va to remove the address from 2532 * @saddr: where to the BO is mapped 2533 * 2534 * Remove a mapping of the BO at the specefied addr from the VM. 2535 * 2536 * Returns: 2537 * 0 for success, error for failure. 2538 * 2539 * Object has to be reserved and unreserved outside! 2540 */ 2541 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2542 struct amdgpu_bo_va *bo_va, 2543 uint64_t saddr) 2544 { 2545 struct amdgpu_bo_va_mapping *mapping; 2546 struct amdgpu_vm *vm = bo_va->base.vm; 2547 bool valid = true; 2548 2549 saddr /= AMDGPU_GPU_PAGE_SIZE; 2550 2551 list_for_each_entry(mapping, &bo_va->valids, list) { 2552 if (mapping->start == saddr) 2553 break; 2554 } 2555 2556 if (&mapping->list == &bo_va->valids) { 2557 valid = false; 2558 2559 list_for_each_entry(mapping, &bo_va->invalids, list) { 2560 if (mapping->start == saddr) 2561 break; 2562 } 2563 2564 if (&mapping->list == &bo_va->invalids) 2565 return -ENOENT; 2566 } 2567 2568 list_del(&mapping->list); 2569 amdgpu_vm_it_remove(mapping, &vm->va); 2570 mapping->bo_va = NULL; 2571 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2572 2573 if (valid) 2574 list_add(&mapping->list, &vm->freed); 2575 else 2576 amdgpu_vm_free_mapping(adev, vm, mapping, 2577 bo_va->last_pt_update); 2578 2579 return 0; 2580 } 2581 2582 /** 2583 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2584 * 2585 * @adev: amdgpu_device pointer 2586 * @vm: VM structure to use 2587 * @saddr: start of the range 2588 * @size: size of the range 2589 * 2590 * Remove all mappings in a range, split them as appropriate. 2591 * 2592 * Returns: 2593 * 0 for success, error for failure. 2594 */ 2595 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2596 struct amdgpu_vm *vm, 2597 uint64_t saddr, uint64_t size) 2598 { 2599 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2600 LIST_HEAD(removed); 2601 uint64_t eaddr; 2602 2603 eaddr = saddr + size - 1; 2604 saddr /= AMDGPU_GPU_PAGE_SIZE; 2605 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2606 2607 /* Allocate all the needed memory */ 2608 before = kzalloc(sizeof(*before), GFP_KERNEL); 2609 if (!before) 2610 return -ENOMEM; 2611 INIT_LIST_HEAD(&before->list); 2612 2613 after = kzalloc(sizeof(*after), GFP_KERNEL); 2614 if (!after) { 2615 kfree(before); 2616 return -ENOMEM; 2617 } 2618 INIT_LIST_HEAD(&after->list); 2619 2620 /* Now gather all removed mappings */ 2621 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2622 while (tmp) { 2623 /* Remember mapping split at the start */ 2624 if (tmp->start < saddr) { 2625 before->start = tmp->start; 2626 before->last = saddr - 1; 2627 before->offset = tmp->offset; 2628 before->flags = tmp->flags; 2629 before->bo_va = tmp->bo_va; 2630 list_add(&before->list, &tmp->bo_va->invalids); 2631 } 2632 2633 /* Remember mapping split at the end */ 2634 if (tmp->last > eaddr) { 2635 after->start = eaddr + 1; 2636 after->last = tmp->last; 2637 after->offset = tmp->offset; 2638 after->offset += after->start - tmp->start; 2639 after->flags = tmp->flags; 2640 after->bo_va = tmp->bo_va; 2641 list_add(&after->list, &tmp->bo_va->invalids); 2642 } 2643 2644 list_del(&tmp->list); 2645 list_add(&tmp->list, &removed); 2646 2647 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2648 } 2649 2650 /* And free them up */ 2651 list_for_each_entry_safe(tmp, next, &removed, list) { 2652 amdgpu_vm_it_remove(tmp, &vm->va); 2653 list_del(&tmp->list); 2654 2655 if (tmp->start < saddr) 2656 tmp->start = saddr; 2657 if (tmp->last > eaddr) 2658 tmp->last = eaddr; 2659 2660 tmp->bo_va = NULL; 2661 list_add(&tmp->list, &vm->freed); 2662 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2663 } 2664 2665 /* Insert partial mapping before the range */ 2666 if (!list_empty(&before->list)) { 2667 amdgpu_vm_it_insert(before, &vm->va); 2668 if (before->flags & AMDGPU_PTE_PRT) 2669 amdgpu_vm_prt_get(adev); 2670 } else { 2671 kfree(before); 2672 } 2673 2674 /* Insert partial mapping after the range */ 2675 if (!list_empty(&after->list)) { 2676 amdgpu_vm_it_insert(after, &vm->va); 2677 if (after->flags & AMDGPU_PTE_PRT) 2678 amdgpu_vm_prt_get(adev); 2679 } else { 2680 kfree(after); 2681 } 2682 2683 return 0; 2684 } 2685 2686 /** 2687 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2688 * 2689 * @vm: the requested VM 2690 * @addr: the address 2691 * 2692 * Find a mapping by it's address. 2693 * 2694 * Returns: 2695 * The amdgpu_bo_va_mapping matching for addr or NULL 2696 * 2697 */ 2698 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2699 uint64_t addr) 2700 { 2701 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2702 } 2703 2704 /** 2705 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2706 * 2707 * @vm: the requested vm 2708 * @ticket: CS ticket 2709 * 2710 * Trace all mappings of BOs reserved during a command submission. 2711 */ 2712 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2713 { 2714 struct amdgpu_bo_va_mapping *mapping; 2715 2716 if (!trace_amdgpu_vm_bo_cs_enabled()) 2717 return; 2718 2719 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2720 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2721 if (mapping->bo_va && mapping->bo_va->base.bo) { 2722 struct amdgpu_bo *bo; 2723 2724 bo = mapping->bo_va->base.bo; 2725 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2726 continue; 2727 } 2728 2729 trace_amdgpu_vm_bo_cs(mapping); 2730 } 2731 } 2732 2733 /** 2734 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2735 * 2736 * @adev: amdgpu_device pointer 2737 * @bo_va: requested bo_va 2738 * 2739 * Remove @bo_va->bo from the requested vm. 2740 * 2741 * Object have to be reserved! 2742 */ 2743 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2744 struct amdgpu_bo_va *bo_va) 2745 { 2746 struct amdgpu_bo_va_mapping *mapping, *next; 2747 struct amdgpu_bo *bo = bo_va->base.bo; 2748 struct amdgpu_vm *vm = bo_va->base.vm; 2749 struct amdgpu_vm_bo_base **base; 2750 2751 if (bo) { 2752 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2753 vm->bulk_moveable = false; 2754 2755 for (base = &bo_va->base.bo->vm_bo; *base; 2756 base = &(*base)->next) { 2757 if (*base != &bo_va->base) 2758 continue; 2759 2760 *base = bo_va->base.next; 2761 break; 2762 } 2763 } 2764 2765 spin_lock(&vm->invalidated_lock); 2766 list_del(&bo_va->base.vm_status); 2767 spin_unlock(&vm->invalidated_lock); 2768 2769 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2770 list_del(&mapping->list); 2771 amdgpu_vm_it_remove(mapping, &vm->va); 2772 mapping->bo_va = NULL; 2773 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2774 list_add(&mapping->list, &vm->freed); 2775 } 2776 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2777 list_del(&mapping->list); 2778 amdgpu_vm_it_remove(mapping, &vm->va); 2779 amdgpu_vm_free_mapping(adev, vm, mapping, 2780 bo_va->last_pt_update); 2781 } 2782 2783 dma_fence_put(bo_va->last_pt_update); 2784 kfree(bo_va); 2785 } 2786 2787 /** 2788 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2789 * 2790 * @adev: amdgpu_device pointer 2791 * @bo: amdgpu buffer object 2792 * @evicted: is the BO evicted 2793 * 2794 * Mark @bo as invalid. 2795 */ 2796 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2797 struct amdgpu_bo *bo, bool evicted) 2798 { 2799 struct amdgpu_vm_bo_base *bo_base; 2800 2801 /* shadow bo doesn't have bo base, its validation needs its parent */ 2802 if (bo->parent && bo->parent->shadow == bo) 2803 bo = bo->parent; 2804 2805 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2806 struct amdgpu_vm *vm = bo_base->vm; 2807 2808 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2809 amdgpu_vm_bo_evicted(bo_base); 2810 continue; 2811 } 2812 2813 if (bo_base->moved) 2814 continue; 2815 bo_base->moved = true; 2816 2817 if (bo->tbo.type == ttm_bo_type_kernel) 2818 amdgpu_vm_bo_relocated(bo_base); 2819 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2820 amdgpu_vm_bo_moved(bo_base); 2821 else 2822 amdgpu_vm_bo_invalidated(bo_base); 2823 } 2824 } 2825 2826 /** 2827 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2828 * 2829 * @vm_size: VM size 2830 * 2831 * Returns: 2832 * VM page table as power of two 2833 */ 2834 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2835 { 2836 /* Total bits covered by PD + PTs */ 2837 unsigned bits = ilog2(vm_size) + 18; 2838 2839 /* Make sure the PD is 4K in size up to 8GB address space. 2840 Above that split equal between PD and PTs */ 2841 if (vm_size <= 8) 2842 return (bits - 9); 2843 else 2844 return ((bits + 3) / 2); 2845 } 2846 2847 /** 2848 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2849 * 2850 * @adev: amdgpu_device pointer 2851 * @min_vm_size: the minimum vm size in GB if it's set auto 2852 * @fragment_size_default: Default PTE fragment size 2853 * @max_level: max VMPT level 2854 * @max_bits: max address space size in bits 2855 * 2856 */ 2857 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2858 uint32_t fragment_size_default, unsigned max_level, 2859 unsigned max_bits) 2860 { 2861 unsigned int max_size = 1 << (max_bits - 30); 2862 unsigned int vm_size; 2863 uint64_t tmp; 2864 2865 /* adjust vm size first */ 2866 if (amdgpu_vm_size != -1) { 2867 vm_size = amdgpu_vm_size; 2868 if (vm_size > max_size) { 2869 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2870 amdgpu_vm_size, max_size); 2871 vm_size = max_size; 2872 } 2873 } else { 2874 struct sysinfo si; 2875 unsigned int phys_ram_gb; 2876 2877 /* Optimal VM size depends on the amount of physical 2878 * RAM available. Underlying requirements and 2879 * assumptions: 2880 * 2881 * - Need to map system memory and VRAM from all GPUs 2882 * - VRAM from other GPUs not known here 2883 * - Assume VRAM <= system memory 2884 * - On GFX8 and older, VM space can be segmented for 2885 * different MTYPEs 2886 * - Need to allow room for fragmentation, guard pages etc. 2887 * 2888 * This adds up to a rough guess of system memory x3. 2889 * Round up to power of two to maximize the available 2890 * VM size with the given page table size. 2891 */ 2892 si_meminfo(&si); 2893 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2894 (1 << 30) - 1) >> 30; 2895 vm_size = roundup_pow_of_two( 2896 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2897 } 2898 2899 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2900 2901 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2902 if (amdgpu_vm_block_size != -1) 2903 tmp >>= amdgpu_vm_block_size - 9; 2904 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2905 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2906 switch (adev->vm_manager.num_level) { 2907 case 3: 2908 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2909 break; 2910 case 2: 2911 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2912 break; 2913 case 1: 2914 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2915 break; 2916 default: 2917 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2918 } 2919 /* block size depends on vm size and hw setup*/ 2920 if (amdgpu_vm_block_size != -1) 2921 adev->vm_manager.block_size = 2922 min((unsigned)amdgpu_vm_block_size, max_bits 2923 - AMDGPU_GPU_PAGE_SHIFT 2924 - 9 * adev->vm_manager.num_level); 2925 else if (adev->vm_manager.num_level > 1) 2926 adev->vm_manager.block_size = 9; 2927 else 2928 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2929 2930 if (amdgpu_vm_fragment_size == -1) 2931 adev->vm_manager.fragment_size = fragment_size_default; 2932 else 2933 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2934 2935 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2936 vm_size, adev->vm_manager.num_level + 1, 2937 adev->vm_manager.block_size, 2938 adev->vm_manager.fragment_size); 2939 } 2940 2941 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2942 { 2943 struct amdgpu_retryfault_hashtable *fault_hash; 2944 2945 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2946 if (!fault_hash) 2947 return fault_hash; 2948 2949 INIT_CHASH_TABLE(fault_hash->hash, 2950 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2951 spin_lock_init(&fault_hash->lock); 2952 fault_hash->count = 0; 2953 2954 return fault_hash; 2955 } 2956 2957 /** 2958 * amdgpu_vm_init - initialize a vm instance 2959 * 2960 * @adev: amdgpu_device pointer 2961 * @vm: requested vm 2962 * @vm_context: Indicates if it GFX or Compute context 2963 * @pasid: Process address space identifier 2964 * 2965 * Init @vm fields. 2966 * 2967 * Returns: 2968 * 0 for success, error for failure. 2969 */ 2970 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2971 int vm_context, unsigned int pasid) 2972 { 2973 struct amdgpu_bo_param bp; 2974 struct amdgpu_bo *root; 2975 int r, i; 2976 2977 vm->va = RB_ROOT_CACHED; 2978 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2979 vm->reserved_vmid[i] = NULL; 2980 INIT_LIST_HEAD(&vm->evicted); 2981 INIT_LIST_HEAD(&vm->relocated); 2982 INIT_LIST_HEAD(&vm->moved); 2983 INIT_LIST_HEAD(&vm->idle); 2984 INIT_LIST_HEAD(&vm->invalidated); 2985 spin_lock_init(&vm->invalidated_lock); 2986 INIT_LIST_HEAD(&vm->freed); 2987 2988 /* create scheduler entity for page table updates */ 2989 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2990 adev->vm_manager.vm_pte_num_rqs, NULL); 2991 if (r) 2992 return r; 2993 2994 vm->pte_support_ats = false; 2995 2996 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2997 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2998 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2999 3000 if (adev->asic_type == CHIP_RAVEN) 3001 vm->pte_support_ats = true; 3002 } else { 3003 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3004 AMDGPU_VM_USE_CPU_FOR_GFX); 3005 } 3006 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3007 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3008 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3009 "CPU update of VM recommended only for large BAR system\n"); 3010 vm->last_update = NULL; 3011 3012 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3013 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3014 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3015 r = amdgpu_bo_create(adev, &bp, &root); 3016 if (r) 3017 goto error_free_sched_entity; 3018 3019 r = amdgpu_bo_reserve(root, true); 3020 if (r) 3021 goto error_free_root; 3022 3023 r = reservation_object_reserve_shared(root->tbo.resv, 1); 3024 if (r) 3025 goto error_unreserve; 3026 3027 r = amdgpu_vm_clear_bo(adev, vm, root, 3028 adev->vm_manager.root_level, 3029 vm->pte_support_ats); 3030 if (r) 3031 goto error_unreserve; 3032 3033 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3034 amdgpu_bo_unreserve(vm->root.base.bo); 3035 3036 if (pasid) { 3037 unsigned long flags; 3038 3039 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3040 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3041 GFP_ATOMIC); 3042 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3043 if (r < 0) 3044 goto error_free_root; 3045 3046 vm->pasid = pasid; 3047 } 3048 3049 vm->fault_hash = init_fault_hash(); 3050 if (!vm->fault_hash) { 3051 r = -ENOMEM; 3052 goto error_free_root; 3053 } 3054 3055 INIT_KFIFO(vm->faults); 3056 3057 return 0; 3058 3059 error_unreserve: 3060 amdgpu_bo_unreserve(vm->root.base.bo); 3061 3062 error_free_root: 3063 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3064 amdgpu_bo_unref(&vm->root.base.bo); 3065 vm->root.base.bo = NULL; 3066 3067 error_free_sched_entity: 3068 drm_sched_entity_destroy(&vm->entity); 3069 3070 return r; 3071 } 3072 3073 /** 3074 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3075 * 3076 * @adev: amdgpu_device pointer 3077 * @vm: requested vm 3078 * 3079 * This only works on GFX VMs that don't have any BOs added and no 3080 * page tables allocated yet. 3081 * 3082 * Changes the following VM parameters: 3083 * - use_cpu_for_update 3084 * - pte_supports_ats 3085 * - pasid (old PASID is released, because compute manages its own PASIDs) 3086 * 3087 * Reinitializes the page directory to reflect the changed ATS 3088 * setting. 3089 * 3090 * Returns: 3091 * 0 for success, -errno for errors. 3092 */ 3093 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3094 { 3095 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3096 int r; 3097 3098 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3099 if (r) 3100 return r; 3101 3102 /* Sanity checks */ 3103 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3104 r = -EINVAL; 3105 goto unreserve_bo; 3106 } 3107 3108 if (pasid) { 3109 unsigned long flags; 3110 3111 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3112 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3113 GFP_ATOMIC); 3114 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3115 3116 if (r == -ENOSPC) 3117 goto unreserve_bo; 3118 r = 0; 3119 } 3120 3121 /* Check if PD needs to be reinitialized and do it before 3122 * changing any other state, in case it fails. 3123 */ 3124 if (pte_support_ats != vm->pte_support_ats) { 3125 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3126 adev->vm_manager.root_level, 3127 pte_support_ats); 3128 if (r) 3129 goto free_idr; 3130 } 3131 3132 /* Update VM state */ 3133 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3134 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3135 vm->pte_support_ats = pte_support_ats; 3136 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3137 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3138 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3139 "CPU update of VM recommended only for large BAR system\n"); 3140 3141 if (vm->pasid) { 3142 unsigned long flags; 3143 3144 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3145 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3146 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3147 3148 /* Free the original amdgpu allocated pasid 3149 * Will be replaced with kfd allocated pasid 3150 */ 3151 amdgpu_pasid_free(vm->pasid); 3152 vm->pasid = 0; 3153 } 3154 3155 /* Free the shadow bo for compute VM */ 3156 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3157 3158 if (pasid) 3159 vm->pasid = pasid; 3160 3161 goto unreserve_bo; 3162 3163 free_idr: 3164 if (pasid) { 3165 unsigned long flags; 3166 3167 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3168 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3169 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3170 } 3171 unreserve_bo: 3172 amdgpu_bo_unreserve(vm->root.base.bo); 3173 return r; 3174 } 3175 3176 /** 3177 * amdgpu_vm_release_compute - release a compute vm 3178 * @adev: amdgpu_device pointer 3179 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3180 * 3181 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3182 * pasid from vm. Compute should stop use of vm after this call. 3183 */ 3184 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3185 { 3186 if (vm->pasid) { 3187 unsigned long flags; 3188 3189 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3190 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3191 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3192 } 3193 vm->pasid = 0; 3194 } 3195 3196 /** 3197 * amdgpu_vm_fini - tear down a vm instance 3198 * 3199 * @adev: amdgpu_device pointer 3200 * @vm: requested vm 3201 * 3202 * Tear down @vm. 3203 * Unbind the VM and remove all bos from the vm bo list 3204 */ 3205 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3206 { 3207 struct amdgpu_bo_va_mapping *mapping, *tmp; 3208 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3209 struct amdgpu_bo *root; 3210 u64 fault; 3211 int i, r; 3212 3213 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3214 3215 /* Clear pending page faults from IH when the VM is destroyed */ 3216 while (kfifo_get(&vm->faults, &fault)) 3217 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3218 3219 if (vm->pasid) { 3220 unsigned long flags; 3221 3222 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3223 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3224 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3225 } 3226 3227 kfree(vm->fault_hash); 3228 vm->fault_hash = NULL; 3229 3230 drm_sched_entity_destroy(&vm->entity); 3231 3232 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3233 dev_err(adev->dev, "still active bo inside vm\n"); 3234 } 3235 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3236 &vm->va.rb_root, rb) { 3237 /* Don't remove the mapping here, we don't want to trigger a 3238 * rebalance and the tree is about to be destroyed anyway. 3239 */ 3240 list_del(&mapping->list); 3241 kfree(mapping); 3242 } 3243 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3244 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3245 amdgpu_vm_prt_fini(adev, vm); 3246 prt_fini_needed = false; 3247 } 3248 3249 list_del(&mapping->list); 3250 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3251 } 3252 3253 root = amdgpu_bo_ref(vm->root.base.bo); 3254 r = amdgpu_bo_reserve(root, true); 3255 if (r) { 3256 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3257 } else { 3258 amdgpu_vm_free_pts(adev, vm); 3259 amdgpu_bo_unreserve(root); 3260 } 3261 amdgpu_bo_unref(&root); 3262 dma_fence_put(vm->last_update); 3263 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3264 amdgpu_vmid_free_reserved(adev, vm, i); 3265 } 3266 3267 /** 3268 * amdgpu_vm_manager_init - init the VM manager 3269 * 3270 * @adev: amdgpu_device pointer 3271 * 3272 * Initialize the VM manager structures 3273 */ 3274 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3275 { 3276 unsigned i; 3277 3278 amdgpu_vmid_mgr_init(adev); 3279 3280 adev->vm_manager.fence_context = 3281 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3282 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3283 adev->vm_manager.seqno[i] = 0; 3284 3285 spin_lock_init(&adev->vm_manager.prt_lock); 3286 atomic_set(&adev->vm_manager.num_prt_users, 0); 3287 3288 /* If not overridden by the user, by default, only in large BAR systems 3289 * Compute VM tables will be updated by CPU 3290 */ 3291 #ifdef CONFIG_X86_64 3292 if (amdgpu_vm_update_mode == -1) { 3293 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3294 adev->vm_manager.vm_update_mode = 3295 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3296 else 3297 adev->vm_manager.vm_update_mode = 0; 3298 } else 3299 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3300 #else 3301 adev->vm_manager.vm_update_mode = 0; 3302 #endif 3303 3304 idr_init(&adev->vm_manager.pasid_idr); 3305 spin_lock_init(&adev->vm_manager.pasid_lock); 3306 } 3307 3308 /** 3309 * amdgpu_vm_manager_fini - cleanup VM manager 3310 * 3311 * @adev: amdgpu_device pointer 3312 * 3313 * Cleanup the VM manager and free resources. 3314 */ 3315 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3316 { 3317 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3318 idr_destroy(&adev->vm_manager.pasid_idr); 3319 3320 amdgpu_vmid_mgr_fini(adev); 3321 } 3322 3323 /** 3324 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3325 * 3326 * @dev: drm device pointer 3327 * @data: drm_amdgpu_vm 3328 * @filp: drm file pointer 3329 * 3330 * Returns: 3331 * 0 for success, -errno for errors. 3332 */ 3333 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3334 { 3335 union drm_amdgpu_vm *args = data; 3336 struct amdgpu_device *adev = dev->dev_private; 3337 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3338 int r; 3339 3340 switch (args->in.op) { 3341 case AMDGPU_VM_OP_RESERVE_VMID: 3342 /* current, we only have requirement to reserve vmid from gfxhub */ 3343 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3344 if (r) 3345 return r; 3346 break; 3347 case AMDGPU_VM_OP_UNRESERVE_VMID: 3348 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3349 break; 3350 default: 3351 return -EINVAL; 3352 } 3353 3354 return 0; 3355 } 3356 3357 /** 3358 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3359 * 3360 * @adev: drm device pointer 3361 * @pasid: PASID identifier for VM 3362 * @task_info: task_info to fill. 3363 */ 3364 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3365 struct amdgpu_task_info *task_info) 3366 { 3367 struct amdgpu_vm *vm; 3368 unsigned long flags; 3369 3370 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3371 3372 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3373 if (vm) 3374 *task_info = vm->task_info; 3375 3376 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3377 } 3378 3379 /** 3380 * amdgpu_vm_set_task_info - Sets VMs task info. 3381 * 3382 * @vm: vm for which to set the info 3383 */ 3384 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3385 { 3386 if (!vm->task_info.pid) { 3387 vm->task_info.pid = current->pid; 3388 get_task_comm(vm->task_info.task_name, current); 3389 3390 if (current->group_leader->mm == current->mm) { 3391 vm->task_info.tgid = current->group_leader->pid; 3392 get_task_comm(vm->task_info.process_name, current->group_leader); 3393 } 3394 } 3395 } 3396 3397 /** 3398 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3399 * 3400 * @fault_hash: fault hash table 3401 * @key: 64-bit encoding of PASID and address 3402 * 3403 * This should be called when a retry page fault interrupt is 3404 * received. If this is a new page fault, it will be added to a hash 3405 * table. The return value indicates whether this is a new fault, or 3406 * a fault that was already known and is already being handled. 3407 * 3408 * If there are too many pending page faults, this will fail. Retry 3409 * interrupts should be ignored in this case until there is enough 3410 * free space. 3411 * 3412 * Returns 0 if the fault was added, 1 if the fault was already known, 3413 * -ENOSPC if there are too many pending faults. 3414 */ 3415 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3416 { 3417 unsigned long flags; 3418 int r = -ENOSPC; 3419 3420 if (WARN_ON_ONCE(!fault_hash)) 3421 /* Should be allocated in amdgpu_vm_init 3422 */ 3423 return r; 3424 3425 spin_lock_irqsave(&fault_hash->lock, flags); 3426 3427 /* Only let the hash table fill up to 50% for best performance */ 3428 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3429 goto unlock_out; 3430 3431 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3432 if (!r) 3433 fault_hash->count++; 3434 3435 /* chash_table_copy_in should never fail unless we're losing count */ 3436 WARN_ON_ONCE(r < 0); 3437 3438 unlock_out: 3439 spin_unlock_irqrestore(&fault_hash->lock, flags); 3440 return r; 3441 } 3442 3443 /** 3444 * amdgpu_vm_clear_fault - Remove a page fault record 3445 * 3446 * @fault_hash: fault hash table 3447 * @key: 64-bit encoding of PASID and address 3448 * 3449 * This should be called when a page fault has been handled. Any 3450 * future interrupt with this key will be processed as a new 3451 * page fault. 3452 */ 3453 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3454 { 3455 unsigned long flags; 3456 int r; 3457 3458 if (!fault_hash) 3459 return; 3460 3461 spin_lock_irqsave(&fault_hash->lock, flags); 3462 3463 r = chash_table_remove(&fault_hash->hash, key, NULL); 3464 if (!WARN_ON_ONCE(r < 0)) { 3465 fault_hash->count--; 3466 WARN_ON_ONCE(fault_hash->count < 0); 3467 } 3468 3469 spin_unlock_irqrestore(&fault_hash->lock, flags); 3470 } 3471