1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40 
41 /**
42  * DOC: GPUVM
43  *
44  * GPUVM is similar to the legacy gart on older asics, however
45  * rather than there being a single global gart table
46  * for the entire GPU, there are multiple VM page tables active
47  * at any given time.  The VM page tables can contain a mix
48  * vram pages and system memory pages and system memory pages
49  * can be mapped as snooped (cached system pages) or unsnooped
50  * (uncached system pages).
51  * Each VM has an ID associated with it and there is a page table
52  * associated with each VMID.  When execting a command buffer,
53  * the kernel tells the the ring what VMID to use for that command
54  * buffer.  VMIDs are allocated dynamically as commands are submitted.
55  * The userspace drivers maintain their own address space and the kernel
56  * sets up their pages tables accordingly when they submit their
57  * command buffers and a VMID is assigned.
58  * Cayman/Trinity support up to 8 active VMs at any given time;
59  * SI supports 16.
60  */
61 
62 #define START(node) ((node)->start)
63 #define LAST(node) ((node)->last)
64 
65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66 		     START, LAST, static, amdgpu_vm_it)
67 
68 #undef START
69 #undef LAST
70 
71 /**
72  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73  */
74 struct amdgpu_prt_cb {
75 
76 	/**
77 	 * @adev: amdgpu device
78 	 */
79 	struct amdgpu_device *adev;
80 
81 	/**
82 	 * @cb: callback
83 	 */
84 	struct dma_fence_cb cb;
85 };
86 
87 /*
88  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89  * happens while holding this lock anywhere to prevent deadlocks when
90  * an MMU notifier runs in reclaim-FS context.
91  */
92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93 {
94 	mutex_lock(&vm->eviction_lock);
95 	vm->saved_flags = memalloc_nofs_save();
96 }
97 
98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99 {
100 	if (mutex_trylock(&vm->eviction_lock)) {
101 		vm->saved_flags = memalloc_nofs_save();
102 		return 1;
103 	}
104 	return 0;
105 }
106 
107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108 {
109 	memalloc_nofs_restore(vm->saved_flags);
110 	mutex_unlock(&vm->eviction_lock);
111 }
112 
113 /**
114  * amdgpu_vm_level_shift - return the addr shift for each level
115  *
116  * @adev: amdgpu_device pointer
117  * @level: VMPT level
118  *
119  * Returns:
120  * The number of bits the pfn needs to be right shifted for a level.
121  */
122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123 				      unsigned level)
124 {
125 	switch (level) {
126 	case AMDGPU_VM_PDB2:
127 	case AMDGPU_VM_PDB1:
128 	case AMDGPU_VM_PDB0:
129 		return 9 * (AMDGPU_VM_PDB0 - level) +
130 			adev->vm_manager.block_size;
131 	case AMDGPU_VM_PTB:
132 		return 0;
133 	default:
134 		return ~0;
135 	}
136 }
137 
138 /**
139  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140  *
141  * @adev: amdgpu_device pointer
142  * @level: VMPT level
143  *
144  * Returns:
145  * The number of entries in a page directory or page table.
146  */
147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148 				      unsigned level)
149 {
150 	unsigned shift = amdgpu_vm_level_shift(adev,
151 					       adev->vm_manager.root_level);
152 
153 	if (level == adev->vm_manager.root_level)
154 		/* For the root directory */
155 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156 			>> shift;
157 	else if (level != AMDGPU_VM_PTB)
158 		/* Everything in between */
159 		return 512;
160 	else
161 		/* For the page tables on the leaves */
162 		return AMDGPU_VM_PTE_COUNT(adev);
163 }
164 
165 /**
166  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167  *
168  * @adev: amdgpu_device pointer
169  *
170  * Returns:
171  * The number of entries in the root page directory which needs the ATS setting.
172  */
173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174 {
175 	unsigned shift;
176 
177 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179 }
180 
181 /**
182  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183  *
184  * @adev: amdgpu_device pointer
185  * @level: VMPT level
186  *
187  * Returns:
188  * The mask to extract the entry number of a PD/PT from an address.
189  */
190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191 				       unsigned int level)
192 {
193 	if (level <= adev->vm_manager.root_level)
194 		return 0xffffffff;
195 	else if (level != AMDGPU_VM_PTB)
196 		return 0x1ff;
197 	else
198 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
199 }
200 
201 /**
202  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203  *
204  * @adev: amdgpu_device pointer
205  * @level: VMPT level
206  *
207  * Returns:
208  * The size of the BO for a page directory or page table in bytes.
209  */
210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211 {
212 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213 }
214 
215 /**
216  * amdgpu_vm_bo_evicted - vm_bo is evicted
217  *
218  * @vm_bo: vm_bo which is evicted
219  *
220  * State for PDs/PTs and per VM BOs which are not at the location they should
221  * be.
222  */
223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224 {
225 	struct amdgpu_vm *vm = vm_bo->vm;
226 	struct amdgpu_bo *bo = vm_bo->bo;
227 
228 	vm_bo->moved = true;
229 	if (bo->tbo.type == ttm_bo_type_kernel)
230 		list_move(&vm_bo->vm_status, &vm->evicted);
231 	else
232 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
233 }
234 /**
235  * amdgpu_vm_bo_moved - vm_bo is moved
236  *
237  * @vm_bo: vm_bo which is moved
238  *
239  * State for per VM BOs which are moved, but that change is not yet reflected
240  * in the page tables.
241  */
242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243 {
244 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245 }
246 
247 /**
248  * amdgpu_vm_bo_idle - vm_bo is idle
249  *
250  * @vm_bo: vm_bo which is now idle
251  *
252  * State for PDs/PTs and per VM BOs which have gone through the state machine
253  * and are now idle.
254  */
255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256 {
257 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258 	vm_bo->moved = false;
259 }
260 
261 /**
262  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263  *
264  * @vm_bo: vm_bo which is now invalidated
265  *
266  * State for normal BOs which are invalidated and that change not yet reflected
267  * in the PTs.
268  */
269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270 {
271 	spin_lock(&vm_bo->vm->invalidated_lock);
272 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273 	spin_unlock(&vm_bo->vm->invalidated_lock);
274 }
275 
276 /**
277  * amdgpu_vm_bo_relocated - vm_bo is reloacted
278  *
279  * @vm_bo: vm_bo which is relocated
280  *
281  * State for PDs/PTs which needs to update their parent PD.
282  * For the root PD, just move to idle state.
283  */
284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285 {
286 	if (vm_bo->bo->parent)
287 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288 	else
289 		amdgpu_vm_bo_idle(vm_bo);
290 }
291 
292 /**
293  * amdgpu_vm_bo_done - vm_bo is done
294  *
295  * @vm_bo: vm_bo which is now done
296  *
297  * State for normal BOs which are invalidated and that change has been updated
298  * in the PTs.
299  */
300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301 {
302 	spin_lock(&vm_bo->vm->invalidated_lock);
303 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
304 	spin_unlock(&vm_bo->vm->invalidated_lock);
305 }
306 
307 /**
308  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309  *
310  * @base: base structure for tracking BO usage in a VM
311  * @vm: vm to which bo is to be added
312  * @bo: amdgpu buffer object
313  *
314  * Initialize a bo_va_base structure and add it to the appropriate lists
315  *
316  */
317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318 				   struct amdgpu_vm *vm,
319 				   struct amdgpu_bo *bo)
320 {
321 	base->vm = vm;
322 	base->bo = bo;
323 	base->next = NULL;
324 	INIT_LIST_HEAD(&base->vm_status);
325 
326 	if (!bo)
327 		return;
328 	base->next = bo->vm_bo;
329 	bo->vm_bo = base;
330 
331 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332 		return;
333 
334 	vm->bulk_moveable = false;
335 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336 		amdgpu_vm_bo_relocated(base);
337 	else
338 		amdgpu_vm_bo_idle(base);
339 
340 	if (bo->preferred_domains &
341 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342 		return;
343 
344 	/*
345 	 * we checked all the prerequisites, but it looks like this per vm bo
346 	 * is currently evicted. add the bo to the evicted list to make sure it
347 	 * is validated on next vm use to avoid fault.
348 	 * */
349 	amdgpu_vm_bo_evicted(base);
350 }
351 
352 /**
353  * amdgpu_vm_pt_parent - get the parent page directory
354  *
355  * @pt: child page table
356  *
357  * Helper to get the parent entry for the child page table. NULL if we are at
358  * the root page directory.
359  */
360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361 {
362 	struct amdgpu_bo *parent = pt->base.bo->parent;
363 
364 	if (!parent)
365 		return NULL;
366 
367 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368 }
369 
370 /*
371  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372  */
373 struct amdgpu_vm_pt_cursor {
374 	uint64_t pfn;
375 	struct amdgpu_vm_pt *parent;
376 	struct amdgpu_vm_pt *entry;
377 	unsigned level;
378 };
379 
380 /**
381  * amdgpu_vm_pt_start - start PD/PT walk
382  *
383  * @adev: amdgpu_device pointer
384  * @vm: amdgpu_vm structure
385  * @start: start address of the walk
386  * @cursor: state to initialize
387  *
388  * Initialize a amdgpu_vm_pt_cursor to start a walk.
389  */
390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391 			       struct amdgpu_vm *vm, uint64_t start,
392 			       struct amdgpu_vm_pt_cursor *cursor)
393 {
394 	cursor->pfn = start;
395 	cursor->parent = NULL;
396 	cursor->entry = &vm->root;
397 	cursor->level = adev->vm_manager.root_level;
398 }
399 
400 /**
401  * amdgpu_vm_pt_descendant - go to child node
402  *
403  * @adev: amdgpu_device pointer
404  * @cursor: current state
405  *
406  * Walk to the child node of the current node.
407  * Returns:
408  * True if the walk was possible, false otherwise.
409  */
410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411 				    struct amdgpu_vm_pt_cursor *cursor)
412 {
413 	unsigned mask, shift, idx;
414 
415 	if (!cursor->entry->entries)
416 		return false;
417 
418 	BUG_ON(!cursor->entry->base.bo);
419 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
420 	shift = amdgpu_vm_level_shift(adev, cursor->level);
421 
422 	++cursor->level;
423 	idx = (cursor->pfn >> shift) & mask;
424 	cursor->parent = cursor->entry;
425 	cursor->entry = &cursor->entry->entries[idx];
426 	return true;
427 }
428 
429 /**
430  * amdgpu_vm_pt_sibling - go to sibling node
431  *
432  * @adev: amdgpu_device pointer
433  * @cursor: current state
434  *
435  * Walk to the sibling node of the current node.
436  * Returns:
437  * True if the walk was possible, false otherwise.
438  */
439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440 				 struct amdgpu_vm_pt_cursor *cursor)
441 {
442 	unsigned shift, num_entries;
443 
444 	/* Root doesn't have a sibling */
445 	if (!cursor->parent)
446 		return false;
447 
448 	/* Go to our parents and see if we got a sibling */
449 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451 
452 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453 		return false;
454 
455 	cursor->pfn += 1ULL << shift;
456 	cursor->pfn &= ~((1ULL << shift) - 1);
457 	++cursor->entry;
458 	return true;
459 }
460 
461 /**
462  * amdgpu_vm_pt_ancestor - go to parent node
463  *
464  * @cursor: current state
465  *
466  * Walk to the parent node of the current node.
467  * Returns:
468  * True if the walk was possible, false otherwise.
469  */
470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471 {
472 	if (!cursor->parent)
473 		return false;
474 
475 	--cursor->level;
476 	cursor->entry = cursor->parent;
477 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478 	return true;
479 }
480 
481 /**
482  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483  *
484  * @adev: amdgpu_device pointer
485  * @cursor: current state
486  *
487  * Walk the PD/PT tree to the next node.
488  */
489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490 			      struct amdgpu_vm_pt_cursor *cursor)
491 {
492 	/* First try a newborn child */
493 	if (amdgpu_vm_pt_descendant(adev, cursor))
494 		return;
495 
496 	/* If that didn't worked try to find a sibling */
497 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498 		/* No sibling, go to our parents and grandparents */
499 		if (!amdgpu_vm_pt_ancestor(cursor)) {
500 			cursor->pfn = ~0ll;
501 			return;
502 		}
503 	}
504 }
505 
506 /**
507  * amdgpu_vm_pt_first_dfs - start a deep first search
508  *
509  * @adev: amdgpu_device structure
510  * @vm: amdgpu_vm structure
511  * @start: optional cursor to start with
512  * @cursor: state to initialize
513  *
514  * Starts a deep first traversal of the PD/PT tree.
515  */
516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517 				   struct amdgpu_vm *vm,
518 				   struct amdgpu_vm_pt_cursor *start,
519 				   struct amdgpu_vm_pt_cursor *cursor)
520 {
521 	if (start)
522 		*cursor = *start;
523 	else
524 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
525 	while (amdgpu_vm_pt_descendant(adev, cursor));
526 }
527 
528 /**
529  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530  *
531  * @start: starting point for the search
532  * @entry: current entry
533  *
534  * Returns:
535  * True when the search should continue, false otherwise.
536  */
537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538 				      struct amdgpu_vm_pt *entry)
539 {
540 	return entry && (!start || entry != start->entry);
541 }
542 
543 /**
544  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545  *
546  * @adev: amdgpu_device structure
547  * @cursor: current state
548  *
549  * Move the cursor to the next node in a deep first search.
550  */
551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552 				  struct amdgpu_vm_pt_cursor *cursor)
553 {
554 	if (!cursor->entry)
555 		return;
556 
557 	if (!cursor->parent)
558 		cursor->entry = NULL;
559 	else if (amdgpu_vm_pt_sibling(adev, cursor))
560 		while (amdgpu_vm_pt_descendant(adev, cursor));
561 	else
562 		amdgpu_vm_pt_ancestor(cursor);
563 }
564 
565 /*
566  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567  */
568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
569 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
570 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
572 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573 
574 /**
575  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576  *
577  * @vm: vm providing the BOs
578  * @validated: head of validation list
579  * @entry: entry to add
580  *
581  * Add the page directory to the list of BOs to
582  * validate for command submission.
583  */
584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585 			 struct list_head *validated,
586 			 struct amdgpu_bo_list_entry *entry)
587 {
588 	entry->priority = 0;
589 	entry->tv.bo = &vm->root.base.bo->tbo;
590 	/* Two for VM updates, one for TTM and one for the CS job */
591 	entry->tv.num_shared = 4;
592 	entry->user_pages = NULL;
593 	list_add(&entry->tv.head, validated);
594 }
595 
596 /**
597  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598  *
599  * @bo: BO which was removed from the LRU
600  *
601  * Make sure the bulk_moveable flag is updated when a BO is removed from the
602  * LRU.
603  */
604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605 {
606 	struct amdgpu_bo *abo;
607 	struct amdgpu_vm_bo_base *bo_base;
608 
609 	if (!amdgpu_bo_is_amdgpu_bo(bo))
610 		return;
611 
612 	if (bo->pin_count)
613 		return;
614 
615 	abo = ttm_to_amdgpu_bo(bo);
616 	if (!abo->parent)
617 		return;
618 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619 		struct amdgpu_vm *vm = bo_base->vm;
620 
621 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622 			vm->bulk_moveable = false;
623 	}
624 
625 }
626 /**
627  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628  *
629  * @adev: amdgpu device pointer
630  * @vm: vm providing the BOs
631  *
632  * Move all BOs to the end of LRU and remember their positions to put them
633  * together.
634  */
635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636 				struct amdgpu_vm *vm)
637 {
638 	struct amdgpu_vm_bo_base *bo_base;
639 
640 	if (vm->bulk_moveable) {
641 		spin_lock(&ttm_bo_glob.lru_lock);
642 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643 		spin_unlock(&ttm_bo_glob.lru_lock);
644 		return;
645 	}
646 
647 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648 
649 	spin_lock(&ttm_bo_glob.lru_lock);
650 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
651 		struct amdgpu_bo *bo = bo_base->bo;
652 
653 		if (!bo->parent)
654 			continue;
655 
656 		ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem,
657 					&vm->lru_bulk_move);
658 		if (bo->shadow)
659 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
660 						&bo->shadow->tbo.mem,
661 						&vm->lru_bulk_move);
662 	}
663 	spin_unlock(&ttm_bo_glob.lru_lock);
664 
665 	vm->bulk_moveable = true;
666 }
667 
668 /**
669  * amdgpu_vm_validate_pt_bos - validate the page table BOs
670  *
671  * @adev: amdgpu device pointer
672  * @vm: vm providing the BOs
673  * @validate: callback to do the validation
674  * @param: parameter for the validation callback
675  *
676  * Validate the page table BOs on command submission if neccessary.
677  *
678  * Returns:
679  * Validation result.
680  */
681 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
682 			      int (*validate)(void *p, struct amdgpu_bo *bo),
683 			      void *param)
684 {
685 	struct amdgpu_vm_bo_base *bo_base, *tmp;
686 	int r;
687 
688 	vm->bulk_moveable &= list_empty(&vm->evicted);
689 
690 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
691 		struct amdgpu_bo *bo = bo_base->bo;
692 
693 		r = validate(param, bo);
694 		if (r)
695 			return r;
696 
697 		if (bo->tbo.type != ttm_bo_type_kernel) {
698 			amdgpu_vm_bo_moved(bo_base);
699 		} else {
700 			vm->update_funcs->map_table(bo);
701 			amdgpu_vm_bo_relocated(bo_base);
702 		}
703 	}
704 
705 	amdgpu_vm_eviction_lock(vm);
706 	vm->evicting = false;
707 	amdgpu_vm_eviction_unlock(vm);
708 
709 	return 0;
710 }
711 
712 /**
713  * amdgpu_vm_ready - check VM is ready for updates
714  *
715  * @vm: VM to check
716  *
717  * Check if all VM PDs/PTs are ready for updates
718  *
719  * Returns:
720  * True if eviction list is empty.
721  */
722 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
723 {
724 	return list_empty(&vm->evicted);
725 }
726 
727 /**
728  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
729  *
730  * @adev: amdgpu_device pointer
731  * @vm: VM to clear BO from
732  * @bo: BO to clear
733  * @immediate: use an immediate update
734  *
735  * Root PD needs to be reserved when calling this.
736  *
737  * Returns:
738  * 0 on success, errno otherwise.
739  */
740 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
741 			      struct amdgpu_vm *vm,
742 			      struct amdgpu_bo *bo,
743 			      bool immediate)
744 {
745 	struct ttm_operation_ctx ctx = { true, false };
746 	unsigned level = adev->vm_manager.root_level;
747 	struct amdgpu_vm_update_params params;
748 	struct amdgpu_bo *ancestor = bo;
749 	unsigned entries, ats_entries;
750 	uint64_t addr;
751 	int r;
752 
753 	/* Figure out our place in the hierarchy */
754 	if (ancestor->parent) {
755 		++level;
756 		while (ancestor->parent->parent) {
757 			++level;
758 			ancestor = ancestor->parent;
759 		}
760 	}
761 
762 	entries = amdgpu_bo_size(bo) / 8;
763 	if (!vm->pte_support_ats) {
764 		ats_entries = 0;
765 
766 	} else if (!bo->parent) {
767 		ats_entries = amdgpu_vm_num_ats_entries(adev);
768 		ats_entries = min(ats_entries, entries);
769 		entries -= ats_entries;
770 
771 	} else {
772 		struct amdgpu_vm_pt *pt;
773 
774 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
775 		ats_entries = amdgpu_vm_num_ats_entries(adev);
776 		if ((pt - vm->root.entries) >= ats_entries) {
777 			ats_entries = 0;
778 		} else {
779 			ats_entries = entries;
780 			entries = 0;
781 		}
782 	}
783 
784 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
785 	if (r)
786 		return r;
787 
788 	if (bo->shadow) {
789 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
790 				    &ctx);
791 		if (r)
792 			return r;
793 	}
794 
795 	r = vm->update_funcs->map_table(bo);
796 	if (r)
797 		return r;
798 
799 	memset(&params, 0, sizeof(params));
800 	params.adev = adev;
801 	params.vm = vm;
802 	params.immediate = immediate;
803 
804 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
805 	if (r)
806 		return r;
807 
808 	addr = 0;
809 	if (ats_entries) {
810 		uint64_t value = 0, flags;
811 
812 		flags = AMDGPU_PTE_DEFAULT_ATC;
813 		if (level != AMDGPU_VM_PTB) {
814 			/* Handle leaf PDEs as PTEs */
815 			flags |= AMDGPU_PDE_PTE;
816 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
817 		}
818 
819 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
820 					     value, flags);
821 		if (r)
822 			return r;
823 
824 		addr += ats_entries * 8;
825 	}
826 
827 	if (entries) {
828 		uint64_t value = 0, flags = 0;
829 
830 		if (adev->asic_type >= CHIP_VEGA10) {
831 			if (level != AMDGPU_VM_PTB) {
832 				/* Handle leaf PDEs as PTEs */
833 				flags |= AMDGPU_PDE_PTE;
834 				amdgpu_gmc_get_vm_pde(adev, level,
835 						      &value, &flags);
836 			} else {
837 				/* Workaround for fault priority problem on GMC9 */
838 				flags = AMDGPU_PTE_EXECUTABLE;
839 			}
840 		}
841 
842 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
843 					     value, flags);
844 		if (r)
845 			return r;
846 	}
847 
848 	return vm->update_funcs->commit(&params, NULL);
849 }
850 
851 /**
852  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
853  *
854  * @adev: amdgpu_device pointer
855  * @vm: requesting vm
856  * @level: the page table level
857  * @immediate: use a immediate update
858  * @bp: resulting BO allocation parameters
859  */
860 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
861 			       int level, bool immediate,
862 			       struct amdgpu_bo_param *bp)
863 {
864 	memset(bp, 0, sizeof(*bp));
865 
866 	bp->size = amdgpu_vm_bo_size(adev, level);
867 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
868 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
869 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
870 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
871 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
872 	if (vm->use_cpu_for_update)
873 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
874 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
875 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
876 	bp->type = ttm_bo_type_kernel;
877 	bp->no_wait_gpu = immediate;
878 	if (vm->root.base.bo)
879 		bp->resv = vm->root.base.bo->tbo.base.resv;
880 }
881 
882 /**
883  * amdgpu_vm_alloc_pts - Allocate a specific page table
884  *
885  * @adev: amdgpu_device pointer
886  * @vm: VM to allocate page tables for
887  * @cursor: Which page table to allocate
888  * @immediate: use an immediate update
889  *
890  * Make sure a specific page table or directory is allocated.
891  *
892  * Returns:
893  * 1 if page table needed to be allocated, 0 if page table was already
894  * allocated, negative errno if an error occurred.
895  */
896 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
897 			       struct amdgpu_vm *vm,
898 			       struct amdgpu_vm_pt_cursor *cursor,
899 			       bool immediate)
900 {
901 	struct amdgpu_vm_pt *entry = cursor->entry;
902 	struct amdgpu_bo_param bp;
903 	struct amdgpu_bo *pt;
904 	int r;
905 
906 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
907 		unsigned num_entries;
908 
909 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
910 		entry->entries = kvmalloc_array(num_entries,
911 						sizeof(*entry->entries),
912 						GFP_KERNEL | __GFP_ZERO);
913 		if (!entry->entries)
914 			return -ENOMEM;
915 	}
916 
917 	if (entry->base.bo)
918 		return 0;
919 
920 	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
921 
922 	r = amdgpu_bo_create(adev, &bp, &pt);
923 	if (r)
924 		return r;
925 
926 	/* Keep a reference to the root directory to avoid
927 	 * freeing them up in the wrong order.
928 	 */
929 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
930 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
931 
932 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
933 	if (r)
934 		goto error_free_pt;
935 
936 	return 0;
937 
938 error_free_pt:
939 	amdgpu_bo_unref(&pt->shadow);
940 	amdgpu_bo_unref(&pt);
941 	return r;
942 }
943 
944 /**
945  * amdgpu_vm_free_table - fre one PD/PT
946  *
947  * @entry: PDE to free
948  */
949 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
950 {
951 	if (entry->base.bo) {
952 		entry->base.bo->vm_bo = NULL;
953 		list_del(&entry->base.vm_status);
954 		amdgpu_bo_unref(&entry->base.bo->shadow);
955 		amdgpu_bo_unref(&entry->base.bo);
956 	}
957 	kvfree(entry->entries);
958 	entry->entries = NULL;
959 }
960 
961 /**
962  * amdgpu_vm_free_pts - free PD/PT levels
963  *
964  * @adev: amdgpu device structure
965  * @vm: amdgpu vm structure
966  * @start: optional cursor where to start freeing PDs/PTs
967  *
968  * Free the page directory or page table level and all sub levels.
969  */
970 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
971 			       struct amdgpu_vm *vm,
972 			       struct amdgpu_vm_pt_cursor *start)
973 {
974 	struct amdgpu_vm_pt_cursor cursor;
975 	struct amdgpu_vm_pt *entry;
976 
977 	vm->bulk_moveable = false;
978 
979 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
980 		amdgpu_vm_free_table(entry);
981 
982 	if (start)
983 		amdgpu_vm_free_table(start->entry);
984 }
985 
986 /**
987  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
988  *
989  * @adev: amdgpu_device pointer
990  */
991 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
992 {
993 	const struct amdgpu_ip_block *ip_block;
994 	bool has_compute_vm_bug;
995 	struct amdgpu_ring *ring;
996 	int i;
997 
998 	has_compute_vm_bug = false;
999 
1000 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1001 	if (ip_block) {
1002 		/* Compute has a VM bug for GFX version < 7.
1003 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1004 		if (ip_block->version->major <= 7)
1005 			has_compute_vm_bug = true;
1006 		else if (ip_block->version->major == 8)
1007 			if (adev->gfx.mec_fw_version < 673)
1008 				has_compute_vm_bug = true;
1009 	}
1010 
1011 	for (i = 0; i < adev->num_rings; i++) {
1012 		ring = adev->rings[i];
1013 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1014 			/* only compute rings */
1015 			ring->has_compute_vm_bug = has_compute_vm_bug;
1016 		else
1017 			ring->has_compute_vm_bug = false;
1018 	}
1019 }
1020 
1021 /**
1022  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1023  *
1024  * @ring: ring on which the job will be submitted
1025  * @job: job to submit
1026  *
1027  * Returns:
1028  * True if sync is needed.
1029  */
1030 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1031 				  struct amdgpu_job *job)
1032 {
1033 	struct amdgpu_device *adev = ring->adev;
1034 	unsigned vmhub = ring->funcs->vmhub;
1035 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1036 	struct amdgpu_vmid *id;
1037 	bool gds_switch_needed;
1038 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1039 
1040 	if (job->vmid == 0)
1041 		return false;
1042 	id = &id_mgr->ids[job->vmid];
1043 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1044 		id->gds_base != job->gds_base ||
1045 		id->gds_size != job->gds_size ||
1046 		id->gws_base != job->gws_base ||
1047 		id->gws_size != job->gws_size ||
1048 		id->oa_base != job->oa_base ||
1049 		id->oa_size != job->oa_size);
1050 
1051 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1052 		return true;
1053 
1054 	return vm_flush_needed || gds_switch_needed;
1055 }
1056 
1057 /**
1058  * amdgpu_vm_flush - hardware flush the vm
1059  *
1060  * @ring: ring to use for flush
1061  * @job:  related job
1062  * @need_pipe_sync: is pipe sync needed
1063  *
1064  * Emit a VM flush when it is necessary.
1065  *
1066  * Returns:
1067  * 0 on success, errno otherwise.
1068  */
1069 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1070 		    bool need_pipe_sync)
1071 {
1072 	struct amdgpu_device *adev = ring->adev;
1073 	unsigned vmhub = ring->funcs->vmhub;
1074 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1075 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1076 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1077 		id->gds_base != job->gds_base ||
1078 		id->gds_size != job->gds_size ||
1079 		id->gws_base != job->gws_base ||
1080 		id->gws_size != job->gws_size ||
1081 		id->oa_base != job->oa_base ||
1082 		id->oa_size != job->oa_size);
1083 	bool vm_flush_needed = job->vm_needs_flush;
1084 	struct dma_fence *fence = NULL;
1085 	bool pasid_mapping_needed = false;
1086 	unsigned patch_offset = 0;
1087 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1088 	int r;
1089 
1090 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1091 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1092 
1093 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1094 		gds_switch_needed = true;
1095 		vm_flush_needed = true;
1096 		pasid_mapping_needed = true;
1097 	}
1098 
1099 	mutex_lock(&id_mgr->lock);
1100 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1101 	    !dma_fence_is_signaled(id->pasid_mapping))
1102 		pasid_mapping_needed = true;
1103 	mutex_unlock(&id_mgr->lock);
1104 
1105 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1106 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1107 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1108 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1109 		ring->funcs->emit_wreg;
1110 
1111 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1112 		return 0;
1113 
1114 	if (ring->funcs->init_cond_exec)
1115 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1116 
1117 	if (need_pipe_sync)
1118 		amdgpu_ring_emit_pipeline_sync(ring);
1119 
1120 	if (vm_flush_needed) {
1121 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1122 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1123 	}
1124 
1125 	if (pasid_mapping_needed)
1126 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1127 
1128 	if (vm_flush_needed || pasid_mapping_needed) {
1129 		r = amdgpu_fence_emit(ring, &fence, 0);
1130 		if (r)
1131 			return r;
1132 	}
1133 
1134 	if (vm_flush_needed) {
1135 		mutex_lock(&id_mgr->lock);
1136 		dma_fence_put(id->last_flush);
1137 		id->last_flush = dma_fence_get(fence);
1138 		id->current_gpu_reset_count =
1139 			atomic_read(&adev->gpu_reset_counter);
1140 		mutex_unlock(&id_mgr->lock);
1141 	}
1142 
1143 	if (pasid_mapping_needed) {
1144 		mutex_lock(&id_mgr->lock);
1145 		id->pasid = job->pasid;
1146 		dma_fence_put(id->pasid_mapping);
1147 		id->pasid_mapping = dma_fence_get(fence);
1148 		mutex_unlock(&id_mgr->lock);
1149 	}
1150 	dma_fence_put(fence);
1151 
1152 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1153 		id->gds_base = job->gds_base;
1154 		id->gds_size = job->gds_size;
1155 		id->gws_base = job->gws_base;
1156 		id->gws_size = job->gws_size;
1157 		id->oa_base = job->oa_base;
1158 		id->oa_size = job->oa_size;
1159 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1160 					    job->gds_size, job->gws_base,
1161 					    job->gws_size, job->oa_base,
1162 					    job->oa_size);
1163 	}
1164 
1165 	if (ring->funcs->patch_cond_exec)
1166 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1167 
1168 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1169 	if (ring->funcs->emit_switch_buffer) {
1170 		amdgpu_ring_emit_switch_buffer(ring);
1171 		amdgpu_ring_emit_switch_buffer(ring);
1172 	}
1173 	return 0;
1174 }
1175 
1176 /**
1177  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1178  *
1179  * @vm: requested vm
1180  * @bo: requested buffer object
1181  *
1182  * Find @bo inside the requested vm.
1183  * Search inside the @bos vm list for the requested vm
1184  * Returns the found bo_va or NULL if none is found
1185  *
1186  * Object has to be reserved!
1187  *
1188  * Returns:
1189  * Found bo_va or NULL.
1190  */
1191 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1192 				       struct amdgpu_bo *bo)
1193 {
1194 	struct amdgpu_vm_bo_base *base;
1195 
1196 	for (base = bo->vm_bo; base; base = base->next) {
1197 		if (base->vm != vm)
1198 			continue;
1199 
1200 		return container_of(base, struct amdgpu_bo_va, base);
1201 	}
1202 	return NULL;
1203 }
1204 
1205 /**
1206  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1207  *
1208  * @pages_addr: optional DMA address to use for lookup
1209  * @addr: the unmapped addr
1210  *
1211  * Look up the physical address of the page that the pte resolves
1212  * to.
1213  *
1214  * Returns:
1215  * The pointer for the page table entry.
1216  */
1217 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1218 {
1219 	uint64_t result;
1220 
1221 	/* page table offset */
1222 	result = pages_addr[addr >> PAGE_SHIFT];
1223 
1224 	/* in case cpu page size != gpu page size*/
1225 	result |= addr & (~PAGE_MASK);
1226 
1227 	result &= 0xFFFFFFFFFFFFF000ULL;
1228 
1229 	return result;
1230 }
1231 
1232 /**
1233  * amdgpu_vm_update_pde - update a single level in the hierarchy
1234  *
1235  * @params: parameters for the update
1236  * @vm: requested vm
1237  * @entry: entry to update
1238  *
1239  * Makes sure the requested entry in parent is up to date.
1240  */
1241 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1242 				struct amdgpu_vm *vm,
1243 				struct amdgpu_vm_pt *entry)
1244 {
1245 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1246 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1247 	uint64_t pde, pt, flags;
1248 	unsigned level;
1249 
1250 	for (level = 0, pbo = bo->parent; pbo; ++level)
1251 		pbo = pbo->parent;
1252 
1253 	level += params->adev->vm_manager.root_level;
1254 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1255 	pde = (entry - parent->entries) * 8;
1256 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1257 }
1258 
1259 /**
1260  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1261  *
1262  * @adev: amdgpu_device pointer
1263  * @vm: related vm
1264  *
1265  * Mark all PD level as invalid after an error.
1266  */
1267 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1268 				     struct amdgpu_vm *vm)
1269 {
1270 	struct amdgpu_vm_pt_cursor cursor;
1271 	struct amdgpu_vm_pt *entry;
1272 
1273 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1274 		if (entry->base.bo && !entry->base.moved)
1275 			amdgpu_vm_bo_relocated(&entry->base);
1276 }
1277 
1278 /**
1279  * amdgpu_vm_update_pdes - make sure that all directories are valid
1280  *
1281  * @adev: amdgpu_device pointer
1282  * @vm: requested vm
1283  * @immediate: submit immediately to the paging queue
1284  *
1285  * Makes sure all directories are up to date.
1286  *
1287  * Returns:
1288  * 0 for success, error for failure.
1289  */
1290 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1291 			  struct amdgpu_vm *vm, bool immediate)
1292 {
1293 	struct amdgpu_vm_update_params params;
1294 	int r;
1295 
1296 	if (list_empty(&vm->relocated))
1297 		return 0;
1298 
1299 	memset(&params, 0, sizeof(params));
1300 	params.adev = adev;
1301 	params.vm = vm;
1302 	params.immediate = immediate;
1303 
1304 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1305 	if (r)
1306 		return r;
1307 
1308 	while (!list_empty(&vm->relocated)) {
1309 		struct amdgpu_vm_pt *entry;
1310 
1311 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1312 					 base.vm_status);
1313 		amdgpu_vm_bo_idle(&entry->base);
1314 
1315 		r = amdgpu_vm_update_pde(&params, vm, entry);
1316 		if (r)
1317 			goto error;
1318 	}
1319 
1320 	r = vm->update_funcs->commit(&params, &vm->last_update);
1321 	if (r)
1322 		goto error;
1323 	return 0;
1324 
1325 error:
1326 	amdgpu_vm_invalidate_pds(adev, vm);
1327 	return r;
1328 }
1329 
1330 /*
1331  * amdgpu_vm_update_flags - figure out flags for PTE updates
1332  *
1333  * Make sure to set the right flags for the PTEs at the desired level.
1334  */
1335 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1336 				   struct amdgpu_bo *bo, unsigned level,
1337 				   uint64_t pe, uint64_t addr,
1338 				   unsigned count, uint32_t incr,
1339 				   uint64_t flags)
1340 
1341 {
1342 	if (level != AMDGPU_VM_PTB) {
1343 		flags |= AMDGPU_PDE_PTE;
1344 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1345 
1346 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1347 		   !(flags & AMDGPU_PTE_VALID) &&
1348 		   !(flags & AMDGPU_PTE_PRT)) {
1349 
1350 		/* Workaround for fault priority problem on GMC9 */
1351 		flags |= AMDGPU_PTE_EXECUTABLE;
1352 	}
1353 
1354 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1355 					 flags);
1356 }
1357 
1358 /**
1359  * amdgpu_vm_fragment - get fragment for PTEs
1360  *
1361  * @params: see amdgpu_vm_update_params definition
1362  * @start: first PTE to handle
1363  * @end: last PTE to handle
1364  * @flags: hw mapping flags
1365  * @frag: resulting fragment size
1366  * @frag_end: end of this fragment
1367  *
1368  * Returns the first possible fragment for the start and end address.
1369  */
1370 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1371 			       uint64_t start, uint64_t end, uint64_t flags,
1372 			       unsigned int *frag, uint64_t *frag_end)
1373 {
1374 	/**
1375 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1376 	 * field in the PTE. When this field is set to a non-zero value, page
1377 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1378 	 * flags are considered valid for all PTEs within the fragment range
1379 	 * and corresponding mappings are assumed to be physically contiguous.
1380 	 *
1381 	 * The L1 TLB can store a single PTE for the whole fragment,
1382 	 * significantly increasing the space available for translation
1383 	 * caching. This leads to large improvements in throughput when the
1384 	 * TLB is under pressure.
1385 	 *
1386 	 * The L2 TLB distributes small and large fragments into two
1387 	 * asymmetric partitions. The large fragment cache is significantly
1388 	 * larger. Thus, we try to use large fragments wherever possible.
1389 	 * Userspace can support this by aligning virtual base address and
1390 	 * allocation size to the fragment size.
1391 	 *
1392 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1393 	 * is now directly feed with small/huge/giant pages from the walker.
1394 	 */
1395 	unsigned max_frag;
1396 
1397 	if (params->adev->asic_type < CHIP_VEGA10)
1398 		max_frag = params->adev->vm_manager.fragment_size;
1399 	else
1400 		max_frag = 31;
1401 
1402 	/* system pages are non continuously */
1403 	if (params->pages_addr) {
1404 		*frag = 0;
1405 		*frag_end = end;
1406 		return;
1407 	}
1408 
1409 	/* This intentionally wraps around if no bit is set */
1410 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1411 	if (*frag >= max_frag) {
1412 		*frag = max_frag;
1413 		*frag_end = end & ~((1ULL << max_frag) - 1);
1414 	} else {
1415 		*frag_end = start + (1 << *frag);
1416 	}
1417 }
1418 
1419 /**
1420  * amdgpu_vm_update_ptes - make sure that page tables are valid
1421  *
1422  * @params: see amdgpu_vm_update_params definition
1423  * @start: start of GPU address range
1424  * @end: end of GPU address range
1425  * @dst: destination address to map to, the next dst inside the function
1426  * @flags: mapping flags
1427  *
1428  * Update the page tables in the range @start - @end.
1429  *
1430  * Returns:
1431  * 0 for success, -EINVAL for failure.
1432  */
1433 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1434 				 uint64_t start, uint64_t end,
1435 				 uint64_t dst, uint64_t flags)
1436 {
1437 	struct amdgpu_device *adev = params->adev;
1438 	struct amdgpu_vm_pt_cursor cursor;
1439 	uint64_t frag_start = start, frag_end;
1440 	unsigned int frag;
1441 	int r;
1442 
1443 	/* figure out the initial fragment */
1444 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1445 
1446 	/* walk over the address space and update the PTs */
1447 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1448 	while (cursor.pfn < end) {
1449 		unsigned shift, parent_shift, mask;
1450 		uint64_t incr, entry_end, pe_start;
1451 		struct amdgpu_bo *pt;
1452 
1453 		if (!params->unlocked) {
1454 			/* make sure that the page tables covering the
1455 			 * address range are actually allocated
1456 			 */
1457 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1458 						&cursor, params->immediate);
1459 			if (r)
1460 				return r;
1461 		}
1462 
1463 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1464 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1465 		if (params->unlocked) {
1466 			/* Unlocked updates are only allowed on the leaves */
1467 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1468 				continue;
1469 		} else if (adev->asic_type < CHIP_VEGA10 &&
1470 			   (flags & AMDGPU_PTE_VALID)) {
1471 			/* No huge page support before GMC v9 */
1472 			if (cursor.level != AMDGPU_VM_PTB) {
1473 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1474 					return -ENOENT;
1475 				continue;
1476 			}
1477 		} else if (frag < shift) {
1478 			/* We can't use this level when the fragment size is
1479 			 * smaller than the address shift. Go to the next
1480 			 * child entry and try again.
1481 			 */
1482 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1483 				continue;
1484 		} else if (frag >= parent_shift) {
1485 			/* If the fragment size is even larger than the parent
1486 			 * shift we should go up one level and check it again.
1487 			 */
1488 			if (!amdgpu_vm_pt_ancestor(&cursor))
1489 				return -EINVAL;
1490 			continue;
1491 		}
1492 
1493 		pt = cursor.entry->base.bo;
1494 		if (!pt) {
1495 			/* We need all PDs and PTs for mapping something, */
1496 			if (flags & AMDGPU_PTE_VALID)
1497 				return -ENOENT;
1498 
1499 			/* but unmapping something can happen at a higher
1500 			 * level.
1501 			 */
1502 			if (!amdgpu_vm_pt_ancestor(&cursor))
1503 				return -EINVAL;
1504 
1505 			pt = cursor.entry->base.bo;
1506 			shift = parent_shift;
1507 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1508 				   1ULL << shift));
1509 		}
1510 
1511 		/* Looks good so far, calculate parameters for the update */
1512 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1513 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1514 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1515 		entry_end = ((uint64_t)mask + 1) << shift;
1516 		entry_end += cursor.pfn & ~(entry_end - 1);
1517 		entry_end = min(entry_end, end);
1518 
1519 		do {
1520 			struct amdgpu_vm *vm = params->vm;
1521 			uint64_t upd_end = min(entry_end, frag_end);
1522 			unsigned nptes = (upd_end - frag_start) >> shift;
1523 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1524 
1525 			/* This can happen when we set higher level PDs to
1526 			 * silent to stop fault floods.
1527 			 */
1528 			nptes = max(nptes, 1u);
1529 
1530 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1531 						    nptes, dst, incr, upd_flags,
1532 						    vm->task_info.pid,
1533 						    vm->immediate.fence_context);
1534 			amdgpu_vm_update_flags(params, pt, cursor.level,
1535 					       pe_start, dst, nptes, incr,
1536 					       upd_flags);
1537 
1538 			pe_start += nptes * 8;
1539 			dst += nptes * incr;
1540 
1541 			frag_start = upd_end;
1542 			if (frag_start >= frag_end) {
1543 				/* figure out the next fragment */
1544 				amdgpu_vm_fragment(params, frag_start, end,
1545 						   flags, &frag, &frag_end);
1546 				if (frag < shift)
1547 					break;
1548 			}
1549 		} while (frag_start < entry_end);
1550 
1551 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1552 			/* Free all child entries.
1553 			 * Update the tables with the flags and addresses and free up subsequent
1554 			 * tables in the case of huge pages or freed up areas.
1555 			 * This is the maximum you can free, because all other page tables are not
1556 			 * completely covered by the range and so potentially still in use.
1557 			 */
1558 			while (cursor.pfn < frag_start) {
1559 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1560 				amdgpu_vm_pt_next(adev, &cursor);
1561 			}
1562 
1563 		} else if (frag >= shift) {
1564 			/* or just move on to the next on the same level. */
1565 			amdgpu_vm_pt_next(adev, &cursor);
1566 		}
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 /**
1573  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1574  *
1575  * @adev: amdgpu_device pointer of the VM
1576  * @bo_adev: amdgpu_device pointer of the mapped BO
1577  * @vm: requested vm
1578  * @immediate: immediate submission in a page fault
1579  * @unlocked: unlocked invalidation during MM callback
1580  * @resv: fences we need to sync to
1581  * @start: start of mapped range
1582  * @last: last mapped entry
1583  * @flags: flags for the entries
1584  * @offset: offset into nodes and pages_addr
1585  * @nodes: array of drm_mm_nodes with the MC addresses
1586  * @pages_addr: DMA addresses to use for mapping
1587  * @fence: optional resulting fence
1588  *
1589  * Fill in the page table entries between @start and @last.
1590  *
1591  * Returns:
1592  * 0 for success, -EINVAL for failure.
1593  */
1594 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1595 				       struct amdgpu_device *bo_adev,
1596 				       struct amdgpu_vm *vm, bool immediate,
1597 				       bool unlocked, struct dma_resv *resv,
1598 				       uint64_t start, uint64_t last,
1599 				       uint64_t flags, uint64_t offset,
1600 				       struct drm_mm_node *nodes,
1601 				       dma_addr_t *pages_addr,
1602 				       struct dma_fence **fence)
1603 {
1604 	struct amdgpu_vm_update_params params;
1605 	enum amdgpu_sync_mode sync_mode;
1606 	uint64_t pfn;
1607 	int r;
1608 
1609 	memset(&params, 0, sizeof(params));
1610 	params.adev = adev;
1611 	params.vm = vm;
1612 	params.immediate = immediate;
1613 	params.pages_addr = pages_addr;
1614 	params.unlocked = unlocked;
1615 
1616 	/* Implicitly sync to command submissions in the same VM before
1617 	 * unmapping. Sync to moving fences before mapping.
1618 	 */
1619 	if (!(flags & AMDGPU_PTE_VALID))
1620 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1621 	else
1622 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1623 
1624 	pfn = offset >> PAGE_SHIFT;
1625 	if (nodes) {
1626 		while (pfn >= nodes->size) {
1627 			pfn -= nodes->size;
1628 			++nodes;
1629 		}
1630 	}
1631 
1632 	amdgpu_vm_eviction_lock(vm);
1633 	if (vm->evicting) {
1634 		r = -EBUSY;
1635 		goto error_unlock;
1636 	}
1637 
1638 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1639 		struct dma_fence *tmp = dma_fence_get_stub();
1640 
1641 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1642 		swap(vm->last_unlocked, tmp);
1643 		dma_fence_put(tmp);
1644 	}
1645 
1646 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1647 	if (r)
1648 		goto error_unlock;
1649 
1650 	do {
1651 		uint64_t tmp, num_entries, addr;
1652 
1653 
1654 		num_entries = last - start + 1;
1655 		if (nodes) {
1656 			addr = nodes->start << PAGE_SHIFT;
1657 			num_entries = min((nodes->size - pfn) *
1658 				AMDGPU_GPU_PAGES_IN_CPU_PAGE, num_entries);
1659 		} else {
1660 			addr = 0;
1661 		}
1662 
1663 		if (pages_addr) {
1664 			bool contiguous = true;
1665 
1666 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1667 				uint64_t count;
1668 
1669 				contiguous = pages_addr[pfn + 1] ==
1670 					pages_addr[pfn] + PAGE_SIZE;
1671 
1672 				tmp = num_entries /
1673 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1674 				for (count = 2; count < tmp; ++count) {
1675 					uint64_t idx = pfn + count;
1676 
1677 					if (contiguous != (pages_addr[idx] ==
1678 					    pages_addr[idx - 1] + PAGE_SIZE))
1679 						break;
1680 				}
1681 				num_entries = count *
1682 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1683 			}
1684 
1685 			if (!contiguous) {
1686 				addr = pfn << PAGE_SHIFT;
1687 				params.pages_addr = pages_addr;
1688 			} else {
1689 				addr = pages_addr[pfn];
1690 				params.pages_addr = NULL;
1691 			}
1692 
1693 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1694 			addr += bo_adev->vm_manager.vram_base_offset;
1695 			addr += pfn << PAGE_SHIFT;
1696 		}
1697 
1698 		tmp = start + num_entries;
1699 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1700 		if (r)
1701 			goto error_unlock;
1702 
1703 		pfn += num_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1704 		if (nodes && nodes->size == pfn) {
1705 			pfn = 0;
1706 			++nodes;
1707 		}
1708 		start = tmp;
1709 
1710 	} while (unlikely(start != last + 1));
1711 
1712 	r = vm->update_funcs->commit(&params, fence);
1713 
1714 error_unlock:
1715 	amdgpu_vm_eviction_unlock(vm);
1716 	return r;
1717 }
1718 
1719 /**
1720  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1721  *
1722  * @adev: amdgpu_device pointer
1723  * @bo_va: requested BO and VM object
1724  * @clear: if true clear the entries
1725  *
1726  * Fill in the page table entries for @bo_va.
1727  *
1728  * Returns:
1729  * 0 for success, -EINVAL for failure.
1730  */
1731 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1732 			bool clear)
1733 {
1734 	struct amdgpu_bo *bo = bo_va->base.bo;
1735 	struct amdgpu_vm *vm = bo_va->base.vm;
1736 	struct amdgpu_bo_va_mapping *mapping;
1737 	dma_addr_t *pages_addr = NULL;
1738 	struct ttm_resource *mem;
1739 	struct drm_mm_node *nodes;
1740 	struct dma_fence **last_update;
1741 	struct dma_resv *resv;
1742 	uint64_t flags;
1743 	struct amdgpu_device *bo_adev = adev;
1744 	int r;
1745 
1746 	if (clear || !bo) {
1747 		mem = NULL;
1748 		nodes = NULL;
1749 		resv = vm->root.base.bo->tbo.base.resv;
1750 	} else {
1751 		struct drm_gem_object *obj = &bo->tbo.base;
1752 
1753 		resv = bo->tbo.base.resv;
1754 		if (obj->import_attach && bo_va->is_xgmi) {
1755 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1756 			struct drm_gem_object *gobj = dma_buf->priv;
1757 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1758 
1759 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1760 				bo = gem_to_amdgpu_bo(gobj);
1761 		}
1762 		mem = &bo->tbo.mem;
1763 		nodes = mem->mm_node;
1764 		if (mem->mem_type == TTM_PL_TT)
1765 			pages_addr = bo->tbo.ttm->dma_address;
1766 	}
1767 
1768 	if (bo) {
1769 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1770 
1771 		if (amdgpu_bo_encrypted(bo))
1772 			flags |= AMDGPU_PTE_TMZ;
1773 
1774 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1775 	} else {
1776 		flags = 0x0;
1777 	}
1778 
1779 	if (clear || (bo && bo->tbo.base.resv ==
1780 		      vm->root.base.bo->tbo.base.resv))
1781 		last_update = &vm->last_update;
1782 	else
1783 		last_update = &bo_va->last_pt_update;
1784 
1785 	if (!clear && bo_va->base.moved) {
1786 		bo_va->base.moved = false;
1787 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1788 
1789 	} else if (bo_va->cleared != clear) {
1790 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1791 	}
1792 
1793 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1794 		uint64_t update_flags = flags;
1795 
1796 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1797 		 * but in case of something, we filter the flags in first place
1798 		 */
1799 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1800 			update_flags &= ~AMDGPU_PTE_READABLE;
1801 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1802 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1803 
1804 		/* Apply ASIC specific mapping flags */
1805 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1806 
1807 		trace_amdgpu_vm_bo_update(mapping);
1808 
1809 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1810 						resv, mapping->start,
1811 						mapping->last, update_flags,
1812 						mapping->offset, nodes,
1813 						pages_addr, last_update);
1814 		if (r)
1815 			return r;
1816 	}
1817 
1818 	/* If the BO is not in its preferred location add it back to
1819 	 * the evicted list so that it gets validated again on the
1820 	 * next command submission.
1821 	 */
1822 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1823 		uint32_t mem_type = bo->tbo.mem.mem_type;
1824 
1825 		if (!(bo->preferred_domains &
1826 		      amdgpu_mem_type_to_domain(mem_type)))
1827 			amdgpu_vm_bo_evicted(&bo_va->base);
1828 		else
1829 			amdgpu_vm_bo_idle(&bo_va->base);
1830 	} else {
1831 		amdgpu_vm_bo_done(&bo_va->base);
1832 	}
1833 
1834 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1835 	bo_va->cleared = clear;
1836 
1837 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1838 		list_for_each_entry(mapping, &bo_va->valids, list)
1839 			trace_amdgpu_vm_bo_mapping(mapping);
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * amdgpu_vm_update_prt_state - update the global PRT state
1847  *
1848  * @adev: amdgpu_device pointer
1849  */
1850 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1851 {
1852 	unsigned long flags;
1853 	bool enable;
1854 
1855 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1856 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1857 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1858 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1859 }
1860 
1861 /**
1862  * amdgpu_vm_prt_get - add a PRT user
1863  *
1864  * @adev: amdgpu_device pointer
1865  */
1866 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1867 {
1868 	if (!adev->gmc.gmc_funcs->set_prt)
1869 		return;
1870 
1871 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1872 		amdgpu_vm_update_prt_state(adev);
1873 }
1874 
1875 /**
1876  * amdgpu_vm_prt_put - drop a PRT user
1877  *
1878  * @adev: amdgpu_device pointer
1879  */
1880 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1881 {
1882 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1883 		amdgpu_vm_update_prt_state(adev);
1884 }
1885 
1886 /**
1887  * amdgpu_vm_prt_cb - callback for updating the PRT status
1888  *
1889  * @fence: fence for the callback
1890  * @_cb: the callback function
1891  */
1892 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1893 {
1894 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1895 
1896 	amdgpu_vm_prt_put(cb->adev);
1897 	kfree(cb);
1898 }
1899 
1900 /**
1901  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1902  *
1903  * @adev: amdgpu_device pointer
1904  * @fence: fence for the callback
1905  */
1906 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1907 				 struct dma_fence *fence)
1908 {
1909 	struct amdgpu_prt_cb *cb;
1910 
1911 	if (!adev->gmc.gmc_funcs->set_prt)
1912 		return;
1913 
1914 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1915 	if (!cb) {
1916 		/* Last resort when we are OOM */
1917 		if (fence)
1918 			dma_fence_wait(fence, false);
1919 
1920 		amdgpu_vm_prt_put(adev);
1921 	} else {
1922 		cb->adev = adev;
1923 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1924 						     amdgpu_vm_prt_cb))
1925 			amdgpu_vm_prt_cb(fence, &cb->cb);
1926 	}
1927 }
1928 
1929 /**
1930  * amdgpu_vm_free_mapping - free a mapping
1931  *
1932  * @adev: amdgpu_device pointer
1933  * @vm: requested vm
1934  * @mapping: mapping to be freed
1935  * @fence: fence of the unmap operation
1936  *
1937  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1938  */
1939 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1940 				   struct amdgpu_vm *vm,
1941 				   struct amdgpu_bo_va_mapping *mapping,
1942 				   struct dma_fence *fence)
1943 {
1944 	if (mapping->flags & AMDGPU_PTE_PRT)
1945 		amdgpu_vm_add_prt_cb(adev, fence);
1946 	kfree(mapping);
1947 }
1948 
1949 /**
1950  * amdgpu_vm_prt_fini - finish all prt mappings
1951  *
1952  * @adev: amdgpu_device pointer
1953  * @vm: requested vm
1954  *
1955  * Register a cleanup callback to disable PRT support after VM dies.
1956  */
1957 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1958 {
1959 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1960 	struct dma_fence *excl, **shared;
1961 	unsigned i, shared_count;
1962 	int r;
1963 
1964 	r = dma_resv_get_fences_rcu(resv, &excl,
1965 					      &shared_count, &shared);
1966 	if (r) {
1967 		/* Not enough memory to grab the fence list, as last resort
1968 		 * block for all the fences to complete.
1969 		 */
1970 		dma_resv_wait_timeout_rcu(resv, true, false,
1971 						    MAX_SCHEDULE_TIMEOUT);
1972 		return;
1973 	}
1974 
1975 	/* Add a callback for each fence in the reservation object */
1976 	amdgpu_vm_prt_get(adev);
1977 	amdgpu_vm_add_prt_cb(adev, excl);
1978 
1979 	for (i = 0; i < shared_count; ++i) {
1980 		amdgpu_vm_prt_get(adev);
1981 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1982 	}
1983 
1984 	kfree(shared);
1985 }
1986 
1987 /**
1988  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1989  *
1990  * @adev: amdgpu_device pointer
1991  * @vm: requested vm
1992  * @fence: optional resulting fence (unchanged if no work needed to be done
1993  * or if an error occurred)
1994  *
1995  * Make sure all freed BOs are cleared in the PT.
1996  * PTs have to be reserved and mutex must be locked!
1997  *
1998  * Returns:
1999  * 0 for success.
2000  *
2001  */
2002 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2003 			  struct amdgpu_vm *vm,
2004 			  struct dma_fence **fence)
2005 {
2006 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2007 	struct amdgpu_bo_va_mapping *mapping;
2008 	uint64_t init_pte_value = 0;
2009 	struct dma_fence *f = NULL;
2010 	int r;
2011 
2012 	while (!list_empty(&vm->freed)) {
2013 		mapping = list_first_entry(&vm->freed,
2014 			struct amdgpu_bo_va_mapping, list);
2015 		list_del(&mapping->list);
2016 
2017 		if (vm->pte_support_ats &&
2018 		    mapping->start < AMDGPU_GMC_HOLE_START)
2019 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2020 
2021 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2022 						resv, mapping->start,
2023 						mapping->last, init_pte_value,
2024 						0, NULL, NULL, &f);
2025 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2026 		if (r) {
2027 			dma_fence_put(f);
2028 			return r;
2029 		}
2030 	}
2031 
2032 	if (fence && f) {
2033 		dma_fence_put(*fence);
2034 		*fence = f;
2035 	} else {
2036 		dma_fence_put(f);
2037 	}
2038 
2039 	return 0;
2040 
2041 }
2042 
2043 /**
2044  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2045  *
2046  * @adev: amdgpu_device pointer
2047  * @vm: requested vm
2048  *
2049  * Make sure all BOs which are moved are updated in the PTs.
2050  *
2051  * Returns:
2052  * 0 for success.
2053  *
2054  * PTs have to be reserved!
2055  */
2056 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2057 			   struct amdgpu_vm *vm)
2058 {
2059 	struct amdgpu_bo_va *bo_va, *tmp;
2060 	struct dma_resv *resv;
2061 	bool clear;
2062 	int r;
2063 
2064 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2065 		/* Per VM BOs never need to bo cleared in the page tables */
2066 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2067 		if (r)
2068 			return r;
2069 	}
2070 
2071 	spin_lock(&vm->invalidated_lock);
2072 	while (!list_empty(&vm->invalidated)) {
2073 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2074 					 base.vm_status);
2075 		resv = bo_va->base.bo->tbo.base.resv;
2076 		spin_unlock(&vm->invalidated_lock);
2077 
2078 		/* Try to reserve the BO to avoid clearing its ptes */
2079 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2080 			clear = false;
2081 		/* Somebody else is using the BO right now */
2082 		else
2083 			clear = true;
2084 
2085 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2086 		if (r)
2087 			return r;
2088 
2089 		if (!clear)
2090 			dma_resv_unlock(resv);
2091 		spin_lock(&vm->invalidated_lock);
2092 	}
2093 	spin_unlock(&vm->invalidated_lock);
2094 
2095 	return 0;
2096 }
2097 
2098 /**
2099  * amdgpu_vm_bo_add - add a bo to a specific vm
2100  *
2101  * @adev: amdgpu_device pointer
2102  * @vm: requested vm
2103  * @bo: amdgpu buffer object
2104  *
2105  * Add @bo into the requested vm.
2106  * Add @bo to the list of bos associated with the vm
2107  *
2108  * Returns:
2109  * Newly added bo_va or NULL for failure
2110  *
2111  * Object has to be reserved!
2112  */
2113 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2114 				      struct amdgpu_vm *vm,
2115 				      struct amdgpu_bo *bo)
2116 {
2117 	struct amdgpu_bo_va *bo_va;
2118 
2119 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2120 	if (bo_va == NULL) {
2121 		return NULL;
2122 	}
2123 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2124 
2125 	bo_va->ref_count = 1;
2126 	INIT_LIST_HEAD(&bo_va->valids);
2127 	INIT_LIST_HEAD(&bo_va->invalids);
2128 
2129 	if (!bo)
2130 		return bo_va;
2131 
2132 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2133 		bo_va->is_xgmi = true;
2134 		/* Power up XGMI if it can be potentially used */
2135 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2136 	}
2137 
2138 	return bo_va;
2139 }
2140 
2141 
2142 /**
2143  * amdgpu_vm_bo_insert_map - insert a new mapping
2144  *
2145  * @adev: amdgpu_device pointer
2146  * @bo_va: bo_va to store the address
2147  * @mapping: the mapping to insert
2148  *
2149  * Insert a new mapping into all structures.
2150  */
2151 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2152 				    struct amdgpu_bo_va *bo_va,
2153 				    struct amdgpu_bo_va_mapping *mapping)
2154 {
2155 	struct amdgpu_vm *vm = bo_va->base.vm;
2156 	struct amdgpu_bo *bo = bo_va->base.bo;
2157 
2158 	mapping->bo_va = bo_va;
2159 	list_add(&mapping->list, &bo_va->invalids);
2160 	amdgpu_vm_it_insert(mapping, &vm->va);
2161 
2162 	if (mapping->flags & AMDGPU_PTE_PRT)
2163 		amdgpu_vm_prt_get(adev);
2164 
2165 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2166 	    !bo_va->base.moved) {
2167 		list_move(&bo_va->base.vm_status, &vm->moved);
2168 	}
2169 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2170 }
2171 
2172 /**
2173  * amdgpu_vm_bo_map - map bo inside a vm
2174  *
2175  * @adev: amdgpu_device pointer
2176  * @bo_va: bo_va to store the address
2177  * @saddr: where to map the BO
2178  * @offset: requested offset in the BO
2179  * @size: BO size in bytes
2180  * @flags: attributes of pages (read/write/valid/etc.)
2181  *
2182  * Add a mapping of the BO at the specefied addr into the VM.
2183  *
2184  * Returns:
2185  * 0 for success, error for failure.
2186  *
2187  * Object has to be reserved and unreserved outside!
2188  */
2189 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2190 		     struct amdgpu_bo_va *bo_va,
2191 		     uint64_t saddr, uint64_t offset,
2192 		     uint64_t size, uint64_t flags)
2193 {
2194 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2195 	struct amdgpu_bo *bo = bo_va->base.bo;
2196 	struct amdgpu_vm *vm = bo_va->base.vm;
2197 	uint64_t eaddr;
2198 
2199 	/* validate the parameters */
2200 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2201 	    size == 0 || size & ~PAGE_MASK)
2202 		return -EINVAL;
2203 
2204 	/* make sure object fit at this offset */
2205 	eaddr = saddr + size - 1;
2206 	if (saddr >= eaddr ||
2207 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2208 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2209 		return -EINVAL;
2210 
2211 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2212 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2213 
2214 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2215 	if (tmp) {
2216 		/* bo and tmp overlap, invalid addr */
2217 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2218 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2219 			tmp->start, tmp->last + 1);
2220 		return -EINVAL;
2221 	}
2222 
2223 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2224 	if (!mapping)
2225 		return -ENOMEM;
2226 
2227 	mapping->start = saddr;
2228 	mapping->last = eaddr;
2229 	mapping->offset = offset;
2230 	mapping->flags = flags;
2231 
2232 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2233 
2234 	return 0;
2235 }
2236 
2237 /**
2238  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2239  *
2240  * @adev: amdgpu_device pointer
2241  * @bo_va: bo_va to store the address
2242  * @saddr: where to map the BO
2243  * @offset: requested offset in the BO
2244  * @size: BO size in bytes
2245  * @flags: attributes of pages (read/write/valid/etc.)
2246  *
2247  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2248  * mappings as we do so.
2249  *
2250  * Returns:
2251  * 0 for success, error for failure.
2252  *
2253  * Object has to be reserved and unreserved outside!
2254  */
2255 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2256 			     struct amdgpu_bo_va *bo_va,
2257 			     uint64_t saddr, uint64_t offset,
2258 			     uint64_t size, uint64_t flags)
2259 {
2260 	struct amdgpu_bo_va_mapping *mapping;
2261 	struct amdgpu_bo *bo = bo_va->base.bo;
2262 	uint64_t eaddr;
2263 	int r;
2264 
2265 	/* validate the parameters */
2266 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2267 	    size == 0 || size & ~PAGE_MASK)
2268 		return -EINVAL;
2269 
2270 	/* make sure object fit at this offset */
2271 	eaddr = saddr + size - 1;
2272 	if (saddr >= eaddr ||
2273 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2274 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2275 		return -EINVAL;
2276 
2277 	/* Allocate all the needed memory */
2278 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2279 	if (!mapping)
2280 		return -ENOMEM;
2281 
2282 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2283 	if (r) {
2284 		kfree(mapping);
2285 		return r;
2286 	}
2287 
2288 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2289 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2290 
2291 	mapping->start = saddr;
2292 	mapping->last = eaddr;
2293 	mapping->offset = offset;
2294 	mapping->flags = flags;
2295 
2296 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2297 
2298 	return 0;
2299 }
2300 
2301 /**
2302  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2303  *
2304  * @adev: amdgpu_device pointer
2305  * @bo_va: bo_va to remove the address from
2306  * @saddr: where to the BO is mapped
2307  *
2308  * Remove a mapping of the BO at the specefied addr from the VM.
2309  *
2310  * Returns:
2311  * 0 for success, error for failure.
2312  *
2313  * Object has to be reserved and unreserved outside!
2314  */
2315 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2316 		       struct amdgpu_bo_va *bo_va,
2317 		       uint64_t saddr)
2318 {
2319 	struct amdgpu_bo_va_mapping *mapping;
2320 	struct amdgpu_vm *vm = bo_va->base.vm;
2321 	bool valid = true;
2322 
2323 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2324 
2325 	list_for_each_entry(mapping, &bo_va->valids, list) {
2326 		if (mapping->start == saddr)
2327 			break;
2328 	}
2329 
2330 	if (&mapping->list == &bo_va->valids) {
2331 		valid = false;
2332 
2333 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2334 			if (mapping->start == saddr)
2335 				break;
2336 		}
2337 
2338 		if (&mapping->list == &bo_va->invalids)
2339 			return -ENOENT;
2340 	}
2341 
2342 	list_del(&mapping->list);
2343 	amdgpu_vm_it_remove(mapping, &vm->va);
2344 	mapping->bo_va = NULL;
2345 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2346 
2347 	if (valid)
2348 		list_add(&mapping->list, &vm->freed);
2349 	else
2350 		amdgpu_vm_free_mapping(adev, vm, mapping,
2351 				       bo_va->last_pt_update);
2352 
2353 	return 0;
2354 }
2355 
2356 /**
2357  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2358  *
2359  * @adev: amdgpu_device pointer
2360  * @vm: VM structure to use
2361  * @saddr: start of the range
2362  * @size: size of the range
2363  *
2364  * Remove all mappings in a range, split them as appropriate.
2365  *
2366  * Returns:
2367  * 0 for success, error for failure.
2368  */
2369 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2370 				struct amdgpu_vm *vm,
2371 				uint64_t saddr, uint64_t size)
2372 {
2373 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2374 	LIST_HEAD(removed);
2375 	uint64_t eaddr;
2376 
2377 	eaddr = saddr + size - 1;
2378 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2379 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2380 
2381 	/* Allocate all the needed memory */
2382 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2383 	if (!before)
2384 		return -ENOMEM;
2385 	INIT_LIST_HEAD(&before->list);
2386 
2387 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2388 	if (!after) {
2389 		kfree(before);
2390 		return -ENOMEM;
2391 	}
2392 	INIT_LIST_HEAD(&after->list);
2393 
2394 	/* Now gather all removed mappings */
2395 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2396 	while (tmp) {
2397 		/* Remember mapping split at the start */
2398 		if (tmp->start < saddr) {
2399 			before->start = tmp->start;
2400 			before->last = saddr - 1;
2401 			before->offset = tmp->offset;
2402 			before->flags = tmp->flags;
2403 			before->bo_va = tmp->bo_va;
2404 			list_add(&before->list, &tmp->bo_va->invalids);
2405 		}
2406 
2407 		/* Remember mapping split at the end */
2408 		if (tmp->last > eaddr) {
2409 			after->start = eaddr + 1;
2410 			after->last = tmp->last;
2411 			after->offset = tmp->offset;
2412 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2413 			after->flags = tmp->flags;
2414 			after->bo_va = tmp->bo_va;
2415 			list_add(&after->list, &tmp->bo_va->invalids);
2416 		}
2417 
2418 		list_del(&tmp->list);
2419 		list_add(&tmp->list, &removed);
2420 
2421 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2422 	}
2423 
2424 	/* And free them up */
2425 	list_for_each_entry_safe(tmp, next, &removed, list) {
2426 		amdgpu_vm_it_remove(tmp, &vm->va);
2427 		list_del(&tmp->list);
2428 
2429 		if (tmp->start < saddr)
2430 		    tmp->start = saddr;
2431 		if (tmp->last > eaddr)
2432 		    tmp->last = eaddr;
2433 
2434 		tmp->bo_va = NULL;
2435 		list_add(&tmp->list, &vm->freed);
2436 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2437 	}
2438 
2439 	/* Insert partial mapping before the range */
2440 	if (!list_empty(&before->list)) {
2441 		amdgpu_vm_it_insert(before, &vm->va);
2442 		if (before->flags & AMDGPU_PTE_PRT)
2443 			amdgpu_vm_prt_get(adev);
2444 	} else {
2445 		kfree(before);
2446 	}
2447 
2448 	/* Insert partial mapping after the range */
2449 	if (!list_empty(&after->list)) {
2450 		amdgpu_vm_it_insert(after, &vm->va);
2451 		if (after->flags & AMDGPU_PTE_PRT)
2452 			amdgpu_vm_prt_get(adev);
2453 	} else {
2454 		kfree(after);
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 /**
2461  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2462  *
2463  * @vm: the requested VM
2464  * @addr: the address
2465  *
2466  * Find a mapping by it's address.
2467  *
2468  * Returns:
2469  * The amdgpu_bo_va_mapping matching for addr or NULL
2470  *
2471  */
2472 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2473 							 uint64_t addr)
2474 {
2475 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2476 }
2477 
2478 /**
2479  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2480  *
2481  * @vm: the requested vm
2482  * @ticket: CS ticket
2483  *
2484  * Trace all mappings of BOs reserved during a command submission.
2485  */
2486 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2487 {
2488 	struct amdgpu_bo_va_mapping *mapping;
2489 
2490 	if (!trace_amdgpu_vm_bo_cs_enabled())
2491 		return;
2492 
2493 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2494 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2495 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2496 			struct amdgpu_bo *bo;
2497 
2498 			bo = mapping->bo_va->base.bo;
2499 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2500 			    ticket)
2501 				continue;
2502 		}
2503 
2504 		trace_amdgpu_vm_bo_cs(mapping);
2505 	}
2506 }
2507 
2508 /**
2509  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2510  *
2511  * @adev: amdgpu_device pointer
2512  * @bo_va: requested bo_va
2513  *
2514  * Remove @bo_va->bo from the requested vm.
2515  *
2516  * Object have to be reserved!
2517  */
2518 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2519 		      struct amdgpu_bo_va *bo_va)
2520 {
2521 	struct amdgpu_bo_va_mapping *mapping, *next;
2522 	struct amdgpu_bo *bo = bo_va->base.bo;
2523 	struct amdgpu_vm *vm = bo_va->base.vm;
2524 	struct amdgpu_vm_bo_base **base;
2525 
2526 	if (bo) {
2527 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2528 			vm->bulk_moveable = false;
2529 
2530 		for (base = &bo_va->base.bo->vm_bo; *base;
2531 		     base = &(*base)->next) {
2532 			if (*base != &bo_va->base)
2533 				continue;
2534 
2535 			*base = bo_va->base.next;
2536 			break;
2537 		}
2538 	}
2539 
2540 	spin_lock(&vm->invalidated_lock);
2541 	list_del(&bo_va->base.vm_status);
2542 	spin_unlock(&vm->invalidated_lock);
2543 
2544 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2545 		list_del(&mapping->list);
2546 		amdgpu_vm_it_remove(mapping, &vm->va);
2547 		mapping->bo_va = NULL;
2548 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2549 		list_add(&mapping->list, &vm->freed);
2550 	}
2551 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2552 		list_del(&mapping->list);
2553 		amdgpu_vm_it_remove(mapping, &vm->va);
2554 		amdgpu_vm_free_mapping(adev, vm, mapping,
2555 				       bo_va->last_pt_update);
2556 	}
2557 
2558 	dma_fence_put(bo_va->last_pt_update);
2559 
2560 	if (bo && bo_va->is_xgmi)
2561 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2562 
2563 	kfree(bo_va);
2564 }
2565 
2566 /**
2567  * amdgpu_vm_evictable - check if we can evict a VM
2568  *
2569  * @bo: A page table of the VM.
2570  *
2571  * Check if it is possible to evict a VM.
2572  */
2573 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2574 {
2575 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2576 
2577 	/* Page tables of a destroyed VM can go away immediately */
2578 	if (!bo_base || !bo_base->vm)
2579 		return true;
2580 
2581 	/* Don't evict VM page tables while they are busy */
2582 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2583 		return false;
2584 
2585 	/* Try to block ongoing updates */
2586 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2587 		return false;
2588 
2589 	/* Don't evict VM page tables while they are updated */
2590 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2591 		amdgpu_vm_eviction_unlock(bo_base->vm);
2592 		return false;
2593 	}
2594 
2595 	bo_base->vm->evicting = true;
2596 	amdgpu_vm_eviction_unlock(bo_base->vm);
2597 	return true;
2598 }
2599 
2600 /**
2601  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2602  *
2603  * @adev: amdgpu_device pointer
2604  * @bo: amdgpu buffer object
2605  * @evicted: is the BO evicted
2606  *
2607  * Mark @bo as invalid.
2608  */
2609 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2610 			     struct amdgpu_bo *bo, bool evicted)
2611 {
2612 	struct amdgpu_vm_bo_base *bo_base;
2613 
2614 	/* shadow bo doesn't have bo base, its validation needs its parent */
2615 	if (bo->parent && bo->parent->shadow == bo)
2616 		bo = bo->parent;
2617 
2618 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2619 		struct amdgpu_vm *vm = bo_base->vm;
2620 
2621 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2622 			amdgpu_vm_bo_evicted(bo_base);
2623 			continue;
2624 		}
2625 
2626 		if (bo_base->moved)
2627 			continue;
2628 		bo_base->moved = true;
2629 
2630 		if (bo->tbo.type == ttm_bo_type_kernel)
2631 			amdgpu_vm_bo_relocated(bo_base);
2632 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2633 			amdgpu_vm_bo_moved(bo_base);
2634 		else
2635 			amdgpu_vm_bo_invalidated(bo_base);
2636 	}
2637 }
2638 
2639 /**
2640  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2641  *
2642  * @vm_size: VM size
2643  *
2644  * Returns:
2645  * VM page table as power of two
2646  */
2647 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2648 {
2649 	/* Total bits covered by PD + PTs */
2650 	unsigned bits = ilog2(vm_size) + 18;
2651 
2652 	/* Make sure the PD is 4K in size up to 8GB address space.
2653 	   Above that split equal between PD and PTs */
2654 	if (vm_size <= 8)
2655 		return (bits - 9);
2656 	else
2657 		return ((bits + 3) / 2);
2658 }
2659 
2660 /**
2661  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2662  *
2663  * @adev: amdgpu_device pointer
2664  * @min_vm_size: the minimum vm size in GB if it's set auto
2665  * @fragment_size_default: Default PTE fragment size
2666  * @max_level: max VMPT level
2667  * @max_bits: max address space size in bits
2668  *
2669  */
2670 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2671 			   uint32_t fragment_size_default, unsigned max_level,
2672 			   unsigned max_bits)
2673 {
2674 	unsigned int max_size = 1 << (max_bits - 30);
2675 	unsigned int vm_size;
2676 	uint64_t tmp;
2677 
2678 	/* adjust vm size first */
2679 	if (amdgpu_vm_size != -1) {
2680 		vm_size = amdgpu_vm_size;
2681 		if (vm_size > max_size) {
2682 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2683 				 amdgpu_vm_size, max_size);
2684 			vm_size = max_size;
2685 		}
2686 	} else {
2687 		struct sysinfo si;
2688 		unsigned int phys_ram_gb;
2689 
2690 		/* Optimal VM size depends on the amount of physical
2691 		 * RAM available. Underlying requirements and
2692 		 * assumptions:
2693 		 *
2694 		 *  - Need to map system memory and VRAM from all GPUs
2695 		 *     - VRAM from other GPUs not known here
2696 		 *     - Assume VRAM <= system memory
2697 		 *  - On GFX8 and older, VM space can be segmented for
2698 		 *    different MTYPEs
2699 		 *  - Need to allow room for fragmentation, guard pages etc.
2700 		 *
2701 		 * This adds up to a rough guess of system memory x3.
2702 		 * Round up to power of two to maximize the available
2703 		 * VM size with the given page table size.
2704 		 */
2705 		si_meminfo(&si);
2706 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2707 			       (1 << 30) - 1) >> 30;
2708 		vm_size = roundup_pow_of_two(
2709 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2710 	}
2711 
2712 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2713 
2714 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2715 	if (amdgpu_vm_block_size != -1)
2716 		tmp >>= amdgpu_vm_block_size - 9;
2717 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2718 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2719 	switch (adev->vm_manager.num_level) {
2720 	case 3:
2721 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2722 		break;
2723 	case 2:
2724 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2725 		break;
2726 	case 1:
2727 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2728 		break;
2729 	default:
2730 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2731 	}
2732 	/* block size depends on vm size and hw setup*/
2733 	if (amdgpu_vm_block_size != -1)
2734 		adev->vm_manager.block_size =
2735 			min((unsigned)amdgpu_vm_block_size, max_bits
2736 			    - AMDGPU_GPU_PAGE_SHIFT
2737 			    - 9 * adev->vm_manager.num_level);
2738 	else if (adev->vm_manager.num_level > 1)
2739 		adev->vm_manager.block_size = 9;
2740 	else
2741 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2742 
2743 	if (amdgpu_vm_fragment_size == -1)
2744 		adev->vm_manager.fragment_size = fragment_size_default;
2745 	else
2746 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2747 
2748 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2749 		 vm_size, adev->vm_manager.num_level + 1,
2750 		 adev->vm_manager.block_size,
2751 		 adev->vm_manager.fragment_size);
2752 }
2753 
2754 /**
2755  * amdgpu_vm_wait_idle - wait for the VM to become idle
2756  *
2757  * @vm: VM object to wait for
2758  * @timeout: timeout to wait for VM to become idle
2759  */
2760 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2761 {
2762 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2763 					    true, true, timeout);
2764 	if (timeout <= 0)
2765 		return timeout;
2766 
2767 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2768 }
2769 
2770 /**
2771  * amdgpu_vm_init - initialize a vm instance
2772  *
2773  * @adev: amdgpu_device pointer
2774  * @vm: requested vm
2775  * @vm_context: Indicates if it GFX or Compute context
2776  * @pasid: Process address space identifier
2777  *
2778  * Init @vm fields.
2779  *
2780  * Returns:
2781  * 0 for success, error for failure.
2782  */
2783 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2784 		   int vm_context, u32 pasid)
2785 {
2786 	struct amdgpu_bo_param bp;
2787 	struct amdgpu_bo *root;
2788 	int r, i;
2789 
2790 	vm->va = RB_ROOT_CACHED;
2791 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2792 		vm->reserved_vmid[i] = NULL;
2793 	INIT_LIST_HEAD(&vm->evicted);
2794 	INIT_LIST_HEAD(&vm->relocated);
2795 	INIT_LIST_HEAD(&vm->moved);
2796 	INIT_LIST_HEAD(&vm->idle);
2797 	INIT_LIST_HEAD(&vm->invalidated);
2798 	spin_lock_init(&vm->invalidated_lock);
2799 	INIT_LIST_HEAD(&vm->freed);
2800 	INIT_LIST_HEAD(&vm->done);
2801 
2802 	/* create scheduler entities for page table updates */
2803 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2804 				  adev->vm_manager.vm_pte_scheds,
2805 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2806 	if (r)
2807 		return r;
2808 
2809 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2810 				  adev->vm_manager.vm_pte_scheds,
2811 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2812 	if (r)
2813 		goto error_free_immediate;
2814 
2815 	vm->pte_support_ats = false;
2816 	vm->is_compute_context = false;
2817 
2818 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2819 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2820 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2821 
2822 		if (adev->asic_type == CHIP_RAVEN)
2823 			vm->pte_support_ats = true;
2824 	} else {
2825 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2826 						AMDGPU_VM_USE_CPU_FOR_GFX);
2827 	}
2828 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2829 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2830 	WARN_ONCE((vm->use_cpu_for_update &&
2831 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2832 		  "CPU update of VM recommended only for large BAR system\n");
2833 
2834 	if (vm->use_cpu_for_update)
2835 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2836 	else
2837 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2838 	vm->last_update = NULL;
2839 	vm->last_unlocked = dma_fence_get_stub();
2840 
2841 	mutex_init(&vm->eviction_lock);
2842 	vm->evicting = false;
2843 
2844 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2845 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2846 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2847 	r = amdgpu_bo_create(adev, &bp, &root);
2848 	if (r)
2849 		goto error_free_delayed;
2850 
2851 	r = amdgpu_bo_reserve(root, true);
2852 	if (r)
2853 		goto error_free_root;
2854 
2855 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2856 	if (r)
2857 		goto error_unreserve;
2858 
2859 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2860 
2861 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2862 	if (r)
2863 		goto error_unreserve;
2864 
2865 	amdgpu_bo_unreserve(vm->root.base.bo);
2866 
2867 	if (pasid) {
2868 		unsigned long flags;
2869 
2870 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2871 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2872 			      GFP_ATOMIC);
2873 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2874 		if (r < 0)
2875 			goto error_free_root;
2876 
2877 		vm->pasid = pasid;
2878 	}
2879 
2880 	INIT_KFIFO(vm->faults);
2881 
2882 	return 0;
2883 
2884 error_unreserve:
2885 	amdgpu_bo_unreserve(vm->root.base.bo);
2886 
2887 error_free_root:
2888 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2889 	amdgpu_bo_unref(&vm->root.base.bo);
2890 	vm->root.base.bo = NULL;
2891 
2892 error_free_delayed:
2893 	dma_fence_put(vm->last_unlocked);
2894 	drm_sched_entity_destroy(&vm->delayed);
2895 
2896 error_free_immediate:
2897 	drm_sched_entity_destroy(&vm->immediate);
2898 
2899 	return r;
2900 }
2901 
2902 /**
2903  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2904  *
2905  * @adev: amdgpu_device pointer
2906  * @vm: the VM to check
2907  *
2908  * check all entries of the root PD, if any subsequent PDs are allocated,
2909  * it means there are page table creating and filling, and is no a clean
2910  * VM
2911  *
2912  * Returns:
2913  *	0 if this VM is clean
2914  */
2915 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2916 	struct amdgpu_vm *vm)
2917 {
2918 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2919 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2920 	unsigned int i = 0;
2921 
2922 	if (!(vm->root.entries))
2923 		return 0;
2924 
2925 	for (i = 0; i < entries; i++) {
2926 		if (vm->root.entries[i].base.bo)
2927 			return -EINVAL;
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 /**
2934  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2935  *
2936  * @adev: amdgpu_device pointer
2937  * @vm: requested vm
2938  * @pasid: pasid to use
2939  *
2940  * This only works on GFX VMs that don't have any BOs added and no
2941  * page tables allocated yet.
2942  *
2943  * Changes the following VM parameters:
2944  * - use_cpu_for_update
2945  * - pte_supports_ats
2946  * - pasid (old PASID is released, because compute manages its own PASIDs)
2947  *
2948  * Reinitializes the page directory to reflect the changed ATS
2949  * setting.
2950  *
2951  * Returns:
2952  * 0 for success, -errno for errors.
2953  */
2954 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2955 			   u32 pasid)
2956 {
2957 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2958 	int r;
2959 
2960 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2961 	if (r)
2962 		return r;
2963 
2964 	/* Sanity checks */
2965 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2966 	if (r)
2967 		goto unreserve_bo;
2968 
2969 	if (pasid) {
2970 		unsigned long flags;
2971 
2972 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2973 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2974 			      GFP_ATOMIC);
2975 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2976 
2977 		if (r == -ENOSPC)
2978 			goto unreserve_bo;
2979 		r = 0;
2980 	}
2981 
2982 	/* Check if PD needs to be reinitialized and do it before
2983 	 * changing any other state, in case it fails.
2984 	 */
2985 	if (pte_support_ats != vm->pte_support_ats) {
2986 		vm->pte_support_ats = pte_support_ats;
2987 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2988 		if (r)
2989 			goto free_idr;
2990 	}
2991 
2992 	/* Update VM state */
2993 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2994 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2995 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2996 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2997 	WARN_ONCE((vm->use_cpu_for_update &&
2998 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2999 		  "CPU update of VM recommended only for large BAR system\n");
3000 
3001 	if (vm->use_cpu_for_update) {
3002 		/* Sync with last SDMA update/clear before switching to CPU */
3003 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3004 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3005 		if (r)
3006 			goto free_idr;
3007 
3008 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3009 	} else {
3010 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3011 	}
3012 	dma_fence_put(vm->last_update);
3013 	vm->last_update = NULL;
3014 	vm->is_compute_context = true;
3015 
3016 	if (vm->pasid) {
3017 		unsigned long flags;
3018 
3019 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3020 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3021 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3022 
3023 		/* Free the original amdgpu allocated pasid
3024 		 * Will be replaced with kfd allocated pasid
3025 		 */
3026 		amdgpu_pasid_free(vm->pasid);
3027 		vm->pasid = 0;
3028 	}
3029 
3030 	/* Free the shadow bo for compute VM */
3031 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3032 
3033 	if (pasid)
3034 		vm->pasid = pasid;
3035 
3036 	goto unreserve_bo;
3037 
3038 free_idr:
3039 	if (pasid) {
3040 		unsigned long flags;
3041 
3042 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3043 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3044 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3045 	}
3046 unreserve_bo:
3047 	amdgpu_bo_unreserve(vm->root.base.bo);
3048 	return r;
3049 }
3050 
3051 /**
3052  * amdgpu_vm_release_compute - release a compute vm
3053  * @adev: amdgpu_device pointer
3054  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3055  *
3056  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3057  * pasid from vm. Compute should stop use of vm after this call.
3058  */
3059 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3060 {
3061 	if (vm->pasid) {
3062 		unsigned long flags;
3063 
3064 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3065 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3066 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3067 	}
3068 	vm->pasid = 0;
3069 	vm->is_compute_context = false;
3070 }
3071 
3072 /**
3073  * amdgpu_vm_fini - tear down a vm instance
3074  *
3075  * @adev: amdgpu_device pointer
3076  * @vm: requested vm
3077  *
3078  * Tear down @vm.
3079  * Unbind the VM and remove all bos from the vm bo list
3080  */
3081 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3082 {
3083 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3084 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3085 	struct amdgpu_bo *root;
3086 	int i;
3087 
3088 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3089 
3090 	root = amdgpu_bo_ref(vm->root.base.bo);
3091 	amdgpu_bo_reserve(root, true);
3092 	if (vm->pasid) {
3093 		unsigned long flags;
3094 
3095 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3096 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3097 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3098 		vm->pasid = 0;
3099 	}
3100 
3101 	dma_fence_wait(vm->last_unlocked, false);
3102 	dma_fence_put(vm->last_unlocked);
3103 
3104 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3105 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3106 			amdgpu_vm_prt_fini(adev, vm);
3107 			prt_fini_needed = false;
3108 		}
3109 
3110 		list_del(&mapping->list);
3111 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3112 	}
3113 
3114 	amdgpu_vm_free_pts(adev, vm, NULL);
3115 	amdgpu_bo_unreserve(root);
3116 	amdgpu_bo_unref(&root);
3117 	WARN_ON(vm->root.base.bo);
3118 
3119 	drm_sched_entity_destroy(&vm->immediate);
3120 	drm_sched_entity_destroy(&vm->delayed);
3121 
3122 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3123 		dev_err(adev->dev, "still active bo inside vm\n");
3124 	}
3125 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3126 					     &vm->va.rb_root, rb) {
3127 		/* Don't remove the mapping here, we don't want to trigger a
3128 		 * rebalance and the tree is about to be destroyed anyway.
3129 		 */
3130 		list_del(&mapping->list);
3131 		kfree(mapping);
3132 	}
3133 
3134 	dma_fence_put(vm->last_update);
3135 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3136 		amdgpu_vmid_free_reserved(adev, vm, i);
3137 }
3138 
3139 /**
3140  * amdgpu_vm_manager_init - init the VM manager
3141  *
3142  * @adev: amdgpu_device pointer
3143  *
3144  * Initialize the VM manager structures
3145  */
3146 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3147 {
3148 	unsigned i;
3149 
3150 	amdgpu_vmid_mgr_init(adev);
3151 
3152 	adev->vm_manager.fence_context =
3153 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3154 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3155 		adev->vm_manager.seqno[i] = 0;
3156 
3157 	spin_lock_init(&adev->vm_manager.prt_lock);
3158 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3159 
3160 	/* If not overridden by the user, by default, only in large BAR systems
3161 	 * Compute VM tables will be updated by CPU
3162 	 */
3163 #ifdef CONFIG_X86_64
3164 	if (amdgpu_vm_update_mode == -1) {
3165 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3166 			adev->vm_manager.vm_update_mode =
3167 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3168 		else
3169 			adev->vm_manager.vm_update_mode = 0;
3170 	} else
3171 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3172 #else
3173 	adev->vm_manager.vm_update_mode = 0;
3174 #endif
3175 
3176 	idr_init(&adev->vm_manager.pasid_idr);
3177 	spin_lock_init(&adev->vm_manager.pasid_lock);
3178 }
3179 
3180 /**
3181  * amdgpu_vm_manager_fini - cleanup VM manager
3182  *
3183  * @adev: amdgpu_device pointer
3184  *
3185  * Cleanup the VM manager and free resources.
3186  */
3187 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3188 {
3189 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3190 	idr_destroy(&adev->vm_manager.pasid_idr);
3191 
3192 	amdgpu_vmid_mgr_fini(adev);
3193 }
3194 
3195 /**
3196  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3197  *
3198  * @dev: drm device pointer
3199  * @data: drm_amdgpu_vm
3200  * @filp: drm file pointer
3201  *
3202  * Returns:
3203  * 0 for success, -errno for errors.
3204  */
3205 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3206 {
3207 	union drm_amdgpu_vm *args = data;
3208 	struct amdgpu_device *adev = drm_to_adev(dev);
3209 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3210 	long timeout = msecs_to_jiffies(2000);
3211 	int r;
3212 
3213 	switch (args->in.op) {
3214 	case AMDGPU_VM_OP_RESERVE_VMID:
3215 		/* We only have requirement to reserve vmid from gfxhub */
3216 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3217 					       AMDGPU_GFXHUB_0);
3218 		if (r)
3219 			return r;
3220 		break;
3221 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3222 		if (amdgpu_sriov_runtime(adev))
3223 			timeout = 8 * timeout;
3224 
3225 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3226 		 * not referenced anymore.
3227 		 */
3228 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3229 		if (r)
3230 			return r;
3231 
3232 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3233 		if (r < 0)
3234 			return r;
3235 
3236 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3237 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3238 		break;
3239 	default:
3240 		return -EINVAL;
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 /**
3247  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3248  *
3249  * @adev: drm device pointer
3250  * @pasid: PASID identifier for VM
3251  * @task_info: task_info to fill.
3252  */
3253 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3254 			 struct amdgpu_task_info *task_info)
3255 {
3256 	struct amdgpu_vm *vm;
3257 	unsigned long flags;
3258 
3259 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3260 
3261 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3262 	if (vm)
3263 		*task_info = vm->task_info;
3264 
3265 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3266 }
3267 
3268 /**
3269  * amdgpu_vm_set_task_info - Sets VMs task info.
3270  *
3271  * @vm: vm for which to set the info
3272  */
3273 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3274 {
3275 	if (vm->task_info.pid)
3276 		return;
3277 
3278 	vm->task_info.pid = current->pid;
3279 	get_task_comm(vm->task_info.task_name, current);
3280 
3281 	if (current->group_leader->mm != current->mm)
3282 		return;
3283 
3284 	vm->task_info.tgid = current->group_leader->pid;
3285 	get_task_comm(vm->task_info.process_name, current->group_leader);
3286 }
3287 
3288 /**
3289  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3290  * @adev: amdgpu device pointer
3291  * @pasid: PASID of the VM
3292  * @addr: Address of the fault
3293  *
3294  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3295  * shouldn't be reported any more.
3296  */
3297 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3298 			    uint64_t addr)
3299 {
3300 	struct amdgpu_bo *root;
3301 	uint64_t value, flags;
3302 	struct amdgpu_vm *vm;
3303 	long r;
3304 
3305 	spin_lock(&adev->vm_manager.pasid_lock);
3306 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3307 	if (vm)
3308 		root = amdgpu_bo_ref(vm->root.base.bo);
3309 	else
3310 		root = NULL;
3311 	spin_unlock(&adev->vm_manager.pasid_lock);
3312 
3313 	if (!root)
3314 		return false;
3315 
3316 	r = amdgpu_bo_reserve(root, true);
3317 	if (r)
3318 		goto error_unref;
3319 
3320 	/* Double check that the VM still exists */
3321 	spin_lock(&adev->vm_manager.pasid_lock);
3322 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3323 	if (vm && vm->root.base.bo != root)
3324 		vm = NULL;
3325 	spin_unlock(&adev->vm_manager.pasid_lock);
3326 	if (!vm)
3327 		goto error_unlock;
3328 
3329 	addr /= AMDGPU_GPU_PAGE_SIZE;
3330 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3331 		AMDGPU_PTE_SYSTEM;
3332 
3333 	if (vm->is_compute_context) {
3334 		/* Intentionally setting invalid PTE flag
3335 		 * combination to force a no-retry-fault
3336 		 */
3337 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3338 			AMDGPU_PTE_TF;
3339 		value = 0;
3340 
3341 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3342 		/* Redirect the access to the dummy page */
3343 		value = adev->dummy_page_addr;
3344 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3345 			AMDGPU_PTE_WRITEABLE;
3346 
3347 	} else {
3348 		/* Let the hw retry silently on the PTE */
3349 		value = 0;
3350 	}
3351 
3352 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3353 					addr, flags, value, NULL, NULL,
3354 					NULL);
3355 	if (r)
3356 		goto error_unlock;
3357 
3358 	r = amdgpu_vm_update_pdes(adev, vm, true);
3359 
3360 error_unlock:
3361 	amdgpu_bo_unreserve(root);
3362 	if (r < 0)
3363 		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3364 
3365 error_unref:
3366 	amdgpu_bo_unref(&root);
3367 
3368 	return false;
3369 }
3370 
3371 #if defined(CONFIG_DEBUG_FS)
3372 /**
3373  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3374  *
3375  * @vm: Requested VM for printing BO info
3376  * @m: debugfs file
3377  *
3378  * Print BO information in debugfs file for the VM
3379  */
3380 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3381 {
3382 	struct amdgpu_bo_va *bo_va, *tmp;
3383 	u64 total_idle = 0;
3384 	u64 total_evicted = 0;
3385 	u64 total_relocated = 0;
3386 	u64 total_moved = 0;
3387 	u64 total_invalidated = 0;
3388 	u64 total_done = 0;
3389 	unsigned int total_idle_objs = 0;
3390 	unsigned int total_evicted_objs = 0;
3391 	unsigned int total_relocated_objs = 0;
3392 	unsigned int total_moved_objs = 0;
3393 	unsigned int total_invalidated_objs = 0;
3394 	unsigned int total_done_objs = 0;
3395 	unsigned int id = 0;
3396 
3397 	seq_puts(m, "\tIdle BOs:\n");
3398 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3399 		if (!bo_va->base.bo)
3400 			continue;
3401 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3402 	}
3403 	total_idle_objs = id;
3404 	id = 0;
3405 
3406 	seq_puts(m, "\tEvicted BOs:\n");
3407 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3408 		if (!bo_va->base.bo)
3409 			continue;
3410 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3411 	}
3412 	total_evicted_objs = id;
3413 	id = 0;
3414 
3415 	seq_puts(m, "\tRelocated BOs:\n");
3416 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3417 		if (!bo_va->base.bo)
3418 			continue;
3419 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3420 	}
3421 	total_relocated_objs = id;
3422 	id = 0;
3423 
3424 	seq_puts(m, "\tMoved BOs:\n");
3425 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3426 		if (!bo_va->base.bo)
3427 			continue;
3428 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3429 	}
3430 	total_moved_objs = id;
3431 	id = 0;
3432 
3433 	seq_puts(m, "\tInvalidated BOs:\n");
3434 	spin_lock(&vm->invalidated_lock);
3435 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3436 		if (!bo_va->base.bo)
3437 			continue;
3438 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3439 	}
3440 	total_invalidated_objs = id;
3441 	id = 0;
3442 
3443 	seq_puts(m, "\tDone BOs:\n");
3444 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3445 		if (!bo_va->base.bo)
3446 			continue;
3447 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3448 	}
3449 	spin_unlock(&vm->invalidated_lock);
3450 	total_done_objs = id;
3451 
3452 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3453 		   total_idle_objs);
3454 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3455 		   total_evicted_objs);
3456 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3457 		   total_relocated_objs);
3458 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3459 		   total_moved_objs);
3460 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3461 		   total_invalidated_objs);
3462 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3463 		   total_done_objs);
3464 }
3465 #endif
3466