1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /**
54  * amdgpu_vm_num_pde - return the number of page directory entries
55  *
56  * @adev: amdgpu_device pointer
57  *
58  * Calculate the number of page directory entries (cayman+).
59  */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64 
65 /**
66  * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67  *
68  * @adev: amdgpu_device pointer
69  *
70  * Calculate the size of the page directory in bytes (cayman+).
71  */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76 
77 /**
78  * amdgpu_vm_get_bos - add the vm BOs to a validation list
79  *
80  * @vm: vm providing the BOs
81  * @head: head of validation list
82  *
83  * Add the page directory to the list of BOs to
84  * validate for command submission (cayman+).
85  */
86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
87 					  struct amdgpu_vm *vm,
88 					  struct list_head *head)
89 {
90 	struct amdgpu_bo_list_entry *list;
91 	unsigned i, idx;
92 
93 	mutex_lock(&vm->mutex);
94 	list = drm_malloc_ab(vm->max_pde_used + 2,
95 			     sizeof(struct amdgpu_bo_list_entry));
96 	if (!list) {
97 		mutex_unlock(&vm->mutex);
98 		return NULL;
99 	}
100 
101 	/* add the vm page table to the list */
102 	list[0].robj = vm->page_directory;
103 	list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
104 	list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
105 	list[0].priority = 0;
106 	list[0].tv.bo = &vm->page_directory->tbo;
107 	list[0].tv.shared = true;
108 	list_add(&list[0].tv.head, head);
109 
110 	for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
111 		if (!vm->page_tables[i].bo)
112 			continue;
113 
114 		list[idx].robj = vm->page_tables[i].bo;
115 		list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
116 		list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
117 		list[idx].priority = 0;
118 		list[idx].tv.bo = &list[idx].robj->tbo;
119 		list[idx].tv.shared = true;
120 		list_add(&list[idx++].tv.head, head);
121 	}
122 	mutex_unlock(&vm->mutex);
123 
124 	return list;
125 }
126 
127 /**
128  * amdgpu_vm_grab_id - allocate the next free VMID
129  *
130  * @vm: vm to allocate id for
131  * @ring: ring we want to submit job to
132  * @sync: sync object where we add dependencies
133  *
134  * Allocate an id for the vm, adding fences to the sync obj as necessary.
135  *
136  * Global mutex must be locked!
137  */
138 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
139 		      struct amdgpu_sync *sync)
140 {
141 	struct amdgpu_fence *best[AMDGPU_MAX_RINGS] = {};
142 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
143 	struct amdgpu_device *adev = ring->adev;
144 
145 	unsigned choices[2] = {};
146 	unsigned i;
147 
148 	/* check if the id is still valid */
149 	if (vm_id->id && vm_id->last_id_use &&
150 	    vm_id->last_id_use == adev->vm_manager.active[vm_id->id])
151 		return 0;
152 
153 	/* we definately need to flush */
154 	vm_id->pd_gpu_addr = ~0ll;
155 
156 	/* skip over VMID 0, since it is the system VM */
157 	for (i = 1; i < adev->vm_manager.nvm; ++i) {
158 		struct amdgpu_fence *fence = adev->vm_manager.active[i];
159 
160 		if (fence == NULL) {
161 			/* found a free one */
162 			vm_id->id = i;
163 			trace_amdgpu_vm_grab_id(i, ring->idx);
164 			return 0;
165 		}
166 
167 		if (amdgpu_fence_is_earlier(fence, best[fence->ring->idx])) {
168 			best[fence->ring->idx] = fence;
169 			choices[fence->ring == ring ? 0 : 1] = i;
170 		}
171 	}
172 
173 	for (i = 0; i < 2; ++i) {
174 		if (choices[i]) {
175 			struct amdgpu_fence *fence;
176 
177 			fence  = adev->vm_manager.active[choices[i]];
178 			vm_id->id = choices[i];
179 
180 			trace_amdgpu_vm_grab_id(choices[i], ring->idx);
181 			return amdgpu_sync_fence(ring->adev, sync, &fence->base);
182 		}
183 	}
184 
185 	/* should never happen */
186 	BUG();
187 	return -EINVAL;
188 }
189 
190 /**
191  * amdgpu_vm_flush - hardware flush the vm
192  *
193  * @ring: ring to use for flush
194  * @vm: vm we want to flush
195  * @updates: last vm update that we waited for
196  *
197  * Flush the vm (cayman+).
198  *
199  * Global and local mutex must be locked!
200  */
201 void amdgpu_vm_flush(struct amdgpu_ring *ring,
202 		     struct amdgpu_vm *vm,
203 		     struct fence *updates)
204 {
205 	uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
206 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
207 	struct fence *flushed_updates = vm_id->flushed_updates;
208 	bool is_earlier = false;
209 
210 	if (flushed_updates && updates) {
211 		BUG_ON(flushed_updates->context != updates->context);
212 		is_earlier = (updates->seqno - flushed_updates->seqno <=
213 			      INT_MAX) ? true : false;
214 	}
215 
216 	if (pd_addr != vm_id->pd_gpu_addr || !flushed_updates ||
217 	    is_earlier) {
218 
219 		trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
220 		if (is_earlier) {
221 			vm_id->flushed_updates = fence_get(updates);
222 			fence_put(flushed_updates);
223 		}
224 		if (!flushed_updates)
225 			vm_id->flushed_updates = fence_get(updates);
226 		vm_id->pd_gpu_addr = pd_addr;
227 		amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
228 	}
229 }
230 
231 /**
232  * amdgpu_vm_fence - remember fence for vm
233  *
234  * @adev: amdgpu_device pointer
235  * @vm: vm we want to fence
236  * @fence: fence to remember
237  *
238  * Fence the vm (cayman+).
239  * Set the fence used to protect page table and id.
240  *
241  * Global and local mutex must be locked!
242  */
243 void amdgpu_vm_fence(struct amdgpu_device *adev,
244 		     struct amdgpu_vm *vm,
245 		     struct amdgpu_fence *fence)
246 {
247 	unsigned ridx = fence->ring->idx;
248 	unsigned vm_id = vm->ids[ridx].id;
249 
250 	amdgpu_fence_unref(&adev->vm_manager.active[vm_id]);
251 	adev->vm_manager.active[vm_id] = amdgpu_fence_ref(fence);
252 
253 	amdgpu_fence_unref(&vm->ids[ridx].last_id_use);
254 	vm->ids[ridx].last_id_use = amdgpu_fence_ref(fence);
255 }
256 
257 /**
258  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
259  *
260  * @vm: requested vm
261  * @bo: requested buffer object
262  *
263  * Find @bo inside the requested vm (cayman+).
264  * Search inside the @bos vm list for the requested vm
265  * Returns the found bo_va or NULL if none is found
266  *
267  * Object has to be reserved!
268  */
269 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
270 				       struct amdgpu_bo *bo)
271 {
272 	struct amdgpu_bo_va *bo_va;
273 
274 	list_for_each_entry(bo_va, &bo->va, bo_list) {
275 		if (bo_va->vm == vm) {
276 			return bo_va;
277 		}
278 	}
279 	return NULL;
280 }
281 
282 /**
283  * amdgpu_vm_update_pages - helper to call the right asic function
284  *
285  * @adev: amdgpu_device pointer
286  * @ib: indirect buffer to fill with commands
287  * @pe: addr of the page entry
288  * @addr: dst addr to write into pe
289  * @count: number of page entries to update
290  * @incr: increase next addr by incr bytes
291  * @flags: hw access flags
292  * @gtt_flags: GTT hw access flags
293  *
294  * Traces the parameters and calls the right asic functions
295  * to setup the page table using the DMA.
296  */
297 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
298 				   struct amdgpu_ib *ib,
299 				   uint64_t pe, uint64_t addr,
300 				   unsigned count, uint32_t incr,
301 				   uint32_t flags, uint32_t gtt_flags)
302 {
303 	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
304 
305 	if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
306 		uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
307 		amdgpu_vm_copy_pte(adev, ib, pe, src, count);
308 
309 	} else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
310 		amdgpu_vm_write_pte(adev, ib, pe, addr,
311 				      count, incr, flags);
312 
313 	} else {
314 		amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
315 				      count, incr, flags);
316 	}
317 }
318 
319 int amdgpu_vm_free_job(struct amdgpu_job *sched_job)
320 {
321 	int i;
322 	for (i = 0; i < sched_job->num_ibs; i++)
323 		amdgpu_ib_free(sched_job->adev, &sched_job->ibs[i]);
324 	kfree(sched_job->ibs);
325 	return 0;
326 }
327 
328 /**
329  * amdgpu_vm_clear_bo - initially clear the page dir/table
330  *
331  * @adev: amdgpu_device pointer
332  * @bo: bo to clear
333  */
334 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
335 			      struct amdgpu_bo *bo)
336 {
337 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
338 	struct fence *fence = NULL;
339 	struct amdgpu_ib *ib;
340 	unsigned entries;
341 	uint64_t addr;
342 	int r;
343 
344 	r = amdgpu_bo_reserve(bo, false);
345 	if (r)
346 		return r;
347 
348 	r = reservation_object_reserve_shared(bo->tbo.resv);
349 	if (r)
350 		return r;
351 
352 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
353 	if (r)
354 		goto error_unreserve;
355 
356 	addr = amdgpu_bo_gpu_offset(bo);
357 	entries = amdgpu_bo_size(bo) / 8;
358 
359 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
360 	if (!ib)
361 		goto error_unreserve;
362 
363 	r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
364 	if (r)
365 		goto error_free;
366 
367 	ib->length_dw = 0;
368 
369 	amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
370 	amdgpu_vm_pad_ib(adev, ib);
371 	WARN_ON(ib->length_dw > 64);
372 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
373 						 &amdgpu_vm_free_job,
374 						 AMDGPU_FENCE_OWNER_VM,
375 						 &fence);
376 	if (!r)
377 		amdgpu_bo_fence(bo, fence, true);
378 	fence_put(fence);
379 	if (amdgpu_enable_scheduler) {
380 		amdgpu_bo_unreserve(bo);
381 		return 0;
382 	}
383 error_free:
384 	amdgpu_ib_free(adev, ib);
385 	kfree(ib);
386 
387 error_unreserve:
388 	amdgpu_bo_unreserve(bo);
389 	return r;
390 }
391 
392 /**
393  * amdgpu_vm_map_gart - get the physical address of a gart page
394  *
395  * @adev: amdgpu_device pointer
396  * @addr: the unmapped addr
397  *
398  * Look up the physical address of the page that the pte resolves
399  * to (cayman+).
400  * Returns the physical address of the page.
401  */
402 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
403 {
404 	uint64_t result;
405 
406 	/* page table offset */
407 	result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
408 
409 	/* in case cpu page size != gpu page size*/
410 	result |= addr & (~PAGE_MASK);
411 
412 	return result;
413 }
414 
415 /**
416  * amdgpu_vm_update_pdes - make sure that page directory is valid
417  *
418  * @adev: amdgpu_device pointer
419  * @vm: requested vm
420  * @start: start of GPU address range
421  * @end: end of GPU address range
422  *
423  * Allocates new page tables if necessary
424  * and updates the page directory (cayman+).
425  * Returns 0 for success, error for failure.
426  *
427  * Global and local mutex must be locked!
428  */
429 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
430 				    struct amdgpu_vm *vm)
431 {
432 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
433 	struct amdgpu_bo *pd = vm->page_directory;
434 	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
435 	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
436 	uint64_t last_pde = ~0, last_pt = ~0;
437 	unsigned count = 0, pt_idx, ndw;
438 	struct amdgpu_ib *ib;
439 	struct fence *fence = NULL;
440 
441 	int r;
442 
443 	/* padding, etc. */
444 	ndw = 64;
445 
446 	/* assume the worst case */
447 	ndw += vm->max_pde_used * 6;
448 
449 	/* update too big for an IB */
450 	if (ndw > 0xfffff)
451 		return -ENOMEM;
452 
453 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
454 	if (!ib)
455 		return -ENOMEM;
456 
457 	r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
458 	if (r)
459 		return r;
460 	ib->length_dw = 0;
461 
462 	/* walk over the address space and update the page directory */
463 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
464 		struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
465 		uint64_t pde, pt;
466 
467 		if (bo == NULL)
468 			continue;
469 
470 		pt = amdgpu_bo_gpu_offset(bo);
471 		if (vm->page_tables[pt_idx].addr == pt)
472 			continue;
473 		vm->page_tables[pt_idx].addr = pt;
474 
475 		pde = pd_addr + pt_idx * 8;
476 		if (((last_pde + 8 * count) != pde) ||
477 		    ((last_pt + incr * count) != pt)) {
478 
479 			if (count) {
480 				amdgpu_vm_update_pages(adev, ib, last_pde,
481 						       last_pt, count, incr,
482 						       AMDGPU_PTE_VALID, 0);
483 			}
484 
485 			count = 1;
486 			last_pde = pde;
487 			last_pt = pt;
488 		} else {
489 			++count;
490 		}
491 	}
492 
493 	if (count)
494 		amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
495 				       incr, AMDGPU_PTE_VALID, 0);
496 
497 	if (ib->length_dw != 0) {
498 		amdgpu_vm_pad_ib(adev, ib);
499 		amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
500 		WARN_ON(ib->length_dw > ndw);
501 		r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
502 							 &amdgpu_vm_free_job,
503 							 AMDGPU_FENCE_OWNER_VM,
504 							 &fence);
505 		if (r)
506 			goto error_free;
507 
508 		amdgpu_bo_fence(pd, fence, true);
509 		fence_put(vm->page_directory_fence);
510 		vm->page_directory_fence = fence_get(fence);
511 		fence_put(fence);
512 	}
513 
514 	if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
515 		amdgpu_ib_free(adev, ib);
516 		kfree(ib);
517 	}
518 
519 	return 0;
520 
521 error_free:
522 	amdgpu_ib_free(adev, ib);
523 	kfree(ib);
524 	return r;
525 }
526 
527 /**
528  * amdgpu_vm_frag_ptes - add fragment information to PTEs
529  *
530  * @adev: amdgpu_device pointer
531  * @ib: IB for the update
532  * @pe_start: first PTE to handle
533  * @pe_end: last PTE to handle
534  * @addr: addr those PTEs should point to
535  * @flags: hw mapping flags
536  * @gtt_flags: GTT hw mapping flags
537  *
538  * Global and local mutex must be locked!
539  */
540 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
541 				struct amdgpu_ib *ib,
542 				uint64_t pe_start, uint64_t pe_end,
543 				uint64_t addr, uint32_t flags,
544 				uint32_t gtt_flags)
545 {
546 	/**
547 	 * The MC L1 TLB supports variable sized pages, based on a fragment
548 	 * field in the PTE. When this field is set to a non-zero value, page
549 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
550 	 * flags are considered valid for all PTEs within the fragment range
551 	 * and corresponding mappings are assumed to be physically contiguous.
552 	 *
553 	 * The L1 TLB can store a single PTE for the whole fragment,
554 	 * significantly increasing the space available for translation
555 	 * caching. This leads to large improvements in throughput when the
556 	 * TLB is under pressure.
557 	 *
558 	 * The L2 TLB distributes small and large fragments into two
559 	 * asymmetric partitions. The large fragment cache is significantly
560 	 * larger. Thus, we try to use large fragments wherever possible.
561 	 * Userspace can support this by aligning virtual base address and
562 	 * allocation size to the fragment size.
563 	 */
564 
565 	/* SI and newer are optimized for 64KB */
566 	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
567 	uint64_t frag_align = 0x80;
568 
569 	uint64_t frag_start = ALIGN(pe_start, frag_align);
570 	uint64_t frag_end = pe_end & ~(frag_align - 1);
571 
572 	unsigned count;
573 
574 	/* system pages are non continuously */
575 	if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
576 	    (frag_start >= frag_end)) {
577 
578 		count = (pe_end - pe_start) / 8;
579 		amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
580 				       AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
581 		return;
582 	}
583 
584 	/* handle the 4K area at the beginning */
585 	if (pe_start != frag_start) {
586 		count = (frag_start - pe_start) / 8;
587 		amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
588 				       AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
589 		addr += AMDGPU_GPU_PAGE_SIZE * count;
590 	}
591 
592 	/* handle the area in the middle */
593 	count = (frag_end - frag_start) / 8;
594 	amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
595 			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
596 			       gtt_flags);
597 
598 	/* handle the 4K area at the end */
599 	if (frag_end != pe_end) {
600 		addr += AMDGPU_GPU_PAGE_SIZE * count;
601 		count = (pe_end - frag_end) / 8;
602 		amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
603 				       AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
604 	}
605 }
606 
607 /**
608  * amdgpu_vm_update_ptes - make sure that page tables are valid
609  *
610  * @adev: amdgpu_device pointer
611  * @vm: requested vm
612  * @start: start of GPU address range
613  * @end: end of GPU address range
614  * @dst: destination address to map to
615  * @flags: mapping flags
616  *
617  * Update the page tables in the range @start - @end (cayman+).
618  *
619  * Global and local mutex must be locked!
620  */
621 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
622 				 struct amdgpu_vm *vm,
623 				 struct amdgpu_ib *ib,
624 				 uint64_t start, uint64_t end,
625 				 uint64_t dst, uint32_t flags,
626 				 uint32_t gtt_flags)
627 {
628 	uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
629 	uint64_t last_pte = ~0, last_dst = ~0;
630 	void *owner = AMDGPU_FENCE_OWNER_VM;
631 	unsigned count = 0;
632 	uint64_t addr;
633 
634 	/* sync to everything on unmapping */
635 	if (!(flags & AMDGPU_PTE_VALID))
636 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
637 
638 	/* walk over the address space and update the page tables */
639 	for (addr = start; addr < end; ) {
640 		uint64_t pt_idx = addr >> amdgpu_vm_block_size;
641 		struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
642 		unsigned nptes;
643 		uint64_t pte;
644 		int r;
645 
646 		amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
647 		r = reservation_object_reserve_shared(pt->tbo.resv);
648 		if (r)
649 			return r;
650 
651 		if ((addr & ~mask) == (end & ~mask))
652 			nptes = end - addr;
653 		else
654 			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
655 
656 		pte = amdgpu_bo_gpu_offset(pt);
657 		pte += (addr & mask) * 8;
658 
659 		if ((last_pte + 8 * count) != pte) {
660 
661 			if (count) {
662 				amdgpu_vm_frag_ptes(adev, ib, last_pte,
663 						    last_pte + 8 * count,
664 						    last_dst, flags,
665 						    gtt_flags);
666 			}
667 
668 			count = nptes;
669 			last_pte = pte;
670 			last_dst = dst;
671 		} else {
672 			count += nptes;
673 		}
674 
675 		addr += nptes;
676 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
677 	}
678 
679 	if (count) {
680 		amdgpu_vm_frag_ptes(adev, ib, last_pte,
681 				    last_pte + 8 * count,
682 				    last_dst, flags, gtt_flags);
683 	}
684 
685 	return 0;
686 }
687 
688 /**
689  * amdgpu_vm_fence_pts - fence page tables after an update
690  *
691  * @vm: requested vm
692  * @start: start of GPU address range
693  * @end: end of GPU address range
694  * @fence: fence to use
695  *
696  * Fence the page tables in the range @start - @end (cayman+).
697  *
698  * Global and local mutex must be locked!
699  */
700 static void amdgpu_vm_fence_pts(struct amdgpu_vm *vm,
701 				uint64_t start, uint64_t end,
702 				struct fence *fence)
703 {
704 	unsigned i;
705 
706 	start >>= amdgpu_vm_block_size;
707 	end >>= amdgpu_vm_block_size;
708 
709 	for (i = start; i <= end; ++i)
710 		amdgpu_bo_fence(vm->page_tables[i].bo, fence, true);
711 }
712 
713 /**
714  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
715  *
716  * @adev: amdgpu_device pointer
717  * @vm: requested vm
718  * @mapping: mapped range and flags to use for the update
719  * @addr: addr to set the area to
720  * @gtt_flags: flags as they are used for GTT
721  * @fence: optional resulting fence
722  *
723  * Fill in the page table entries for @mapping.
724  * Returns 0 for success, -EINVAL for failure.
725  *
726  * Object have to be reserved and mutex must be locked!
727  */
728 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
729 				       struct amdgpu_vm *vm,
730 				       struct amdgpu_bo_va_mapping *mapping,
731 				       uint64_t addr, uint32_t gtt_flags,
732 				       struct fence **fence)
733 {
734 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
735 	unsigned nptes, ncmds, ndw;
736 	uint32_t flags = gtt_flags;
737 	struct amdgpu_ib *ib;
738 	struct fence *f = NULL;
739 	int r;
740 
741 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
742 	 * but in case of something, we filter the flags in first place
743 	 */
744 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
745 		flags &= ~AMDGPU_PTE_READABLE;
746 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
747 		flags &= ~AMDGPU_PTE_WRITEABLE;
748 
749 	trace_amdgpu_vm_bo_update(mapping);
750 
751 	nptes = mapping->it.last - mapping->it.start + 1;
752 
753 	/*
754 	 * reserve space for one command every (1 << BLOCK_SIZE)
755 	 *  entries or 2k dwords (whatever is smaller)
756 	 */
757 	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
758 
759 	/* padding, etc. */
760 	ndw = 64;
761 
762 	if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
763 		/* only copy commands needed */
764 		ndw += ncmds * 7;
765 
766 	} else if (flags & AMDGPU_PTE_SYSTEM) {
767 		/* header for write data commands */
768 		ndw += ncmds * 4;
769 
770 		/* body of write data command */
771 		ndw += nptes * 2;
772 
773 	} else {
774 		/* set page commands needed */
775 		ndw += ncmds * 10;
776 
777 		/* two extra commands for begin/end of fragment */
778 		ndw += 2 * 10;
779 	}
780 
781 	/* update too big for an IB */
782 	if (ndw > 0xfffff)
783 		return -ENOMEM;
784 
785 	ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
786 	if (!ib)
787 		return -ENOMEM;
788 
789 	r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
790 	if (r) {
791 		kfree(ib);
792 		return r;
793 	}
794 
795 	ib->length_dw = 0;
796 
797 	r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
798 				  mapping->it.last + 1, addr + mapping->offset,
799 				  flags, gtt_flags);
800 
801 	if (r) {
802 		amdgpu_ib_free(adev, ib);
803 		kfree(ib);
804 		return r;
805 	}
806 
807 	amdgpu_vm_pad_ib(adev, ib);
808 	WARN_ON(ib->length_dw > ndw);
809 	r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
810 						 &amdgpu_vm_free_job,
811 						 AMDGPU_FENCE_OWNER_VM,
812 						 &f);
813 	if (r)
814 		goto error_free;
815 
816 	amdgpu_vm_fence_pts(vm, mapping->it.start,
817 			    mapping->it.last + 1, f);
818 	if (fence) {
819 		fence_put(*fence);
820 		*fence = fence_get(f);
821 	}
822 	fence_put(f);
823 	if (!amdgpu_enable_scheduler) {
824 		amdgpu_ib_free(adev, ib);
825 		kfree(ib);
826 	}
827 	return 0;
828 
829 error_free:
830 	amdgpu_ib_free(adev, ib);
831 	kfree(ib);
832 	return r;
833 }
834 
835 /**
836  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
837  *
838  * @adev: amdgpu_device pointer
839  * @bo_va: requested BO and VM object
840  * @mem: ttm mem
841  *
842  * Fill in the page table entries for @bo_va.
843  * Returns 0 for success, -EINVAL for failure.
844  *
845  * Object have to be reserved and mutex must be locked!
846  */
847 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
848 			struct amdgpu_bo_va *bo_va,
849 			struct ttm_mem_reg *mem)
850 {
851 	struct amdgpu_vm *vm = bo_va->vm;
852 	struct amdgpu_bo_va_mapping *mapping;
853 	uint32_t flags;
854 	uint64_t addr;
855 	int r;
856 
857 	if (mem) {
858 		addr = mem->start << PAGE_SHIFT;
859 		if (mem->mem_type != TTM_PL_TT)
860 			addr += adev->vm_manager.vram_base_offset;
861 	} else {
862 		addr = 0;
863 	}
864 
865 	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
866 
867 	spin_lock(&vm->status_lock);
868 	if (!list_empty(&bo_va->vm_status))
869 		list_splice_init(&bo_va->valids, &bo_va->invalids);
870 	spin_unlock(&vm->status_lock);
871 
872 	list_for_each_entry(mapping, &bo_va->invalids, list) {
873 		r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
874 						flags, &bo_va->last_pt_update);
875 		if (r)
876 			return r;
877 	}
878 
879 	spin_lock(&vm->status_lock);
880 	list_splice_init(&bo_va->invalids, &bo_va->valids);
881 	list_del_init(&bo_va->vm_status);
882 	if (!mem)
883 		list_add(&bo_va->vm_status, &vm->cleared);
884 	spin_unlock(&vm->status_lock);
885 
886 	return 0;
887 }
888 
889 /**
890  * amdgpu_vm_clear_freed - clear freed BOs in the PT
891  *
892  * @adev: amdgpu_device pointer
893  * @vm: requested vm
894  *
895  * Make sure all freed BOs are cleared in the PT.
896  * Returns 0 for success.
897  *
898  * PTs have to be reserved and mutex must be locked!
899  */
900 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
901 			  struct amdgpu_vm *vm)
902 {
903 	struct amdgpu_bo_va_mapping *mapping;
904 	int r;
905 
906 	while (!list_empty(&vm->freed)) {
907 		mapping = list_first_entry(&vm->freed,
908 			struct amdgpu_bo_va_mapping, list);
909 		list_del(&mapping->list);
910 
911 		r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
912 		kfree(mapping);
913 		if (r)
914 			return r;
915 
916 	}
917 	return 0;
918 
919 }
920 
921 /**
922  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
923  *
924  * @adev: amdgpu_device pointer
925  * @vm: requested vm
926  *
927  * Make sure all invalidated BOs are cleared in the PT.
928  * Returns 0 for success.
929  *
930  * PTs have to be reserved and mutex must be locked!
931  */
932 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
933 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
934 {
935 	struct amdgpu_bo_va *bo_va = NULL;
936 	int r = 0;
937 
938 	spin_lock(&vm->status_lock);
939 	while (!list_empty(&vm->invalidated)) {
940 		bo_va = list_first_entry(&vm->invalidated,
941 			struct amdgpu_bo_va, vm_status);
942 		spin_unlock(&vm->status_lock);
943 
944 		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
945 		if (r)
946 			return r;
947 
948 		spin_lock(&vm->status_lock);
949 	}
950 	spin_unlock(&vm->status_lock);
951 
952 	if (bo_va)
953 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
954 
955 	return r;
956 }
957 
958 /**
959  * amdgpu_vm_bo_add - add a bo to a specific vm
960  *
961  * @adev: amdgpu_device pointer
962  * @vm: requested vm
963  * @bo: amdgpu buffer object
964  *
965  * Add @bo into the requested vm (cayman+).
966  * Add @bo to the list of bos associated with the vm
967  * Returns newly added bo_va or NULL for failure
968  *
969  * Object has to be reserved!
970  */
971 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
972 				      struct amdgpu_vm *vm,
973 				      struct amdgpu_bo *bo)
974 {
975 	struct amdgpu_bo_va *bo_va;
976 
977 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
978 	if (bo_va == NULL) {
979 		return NULL;
980 	}
981 	bo_va->vm = vm;
982 	bo_va->bo = bo;
983 	bo_va->ref_count = 1;
984 	INIT_LIST_HEAD(&bo_va->bo_list);
985 	INIT_LIST_HEAD(&bo_va->valids);
986 	INIT_LIST_HEAD(&bo_va->invalids);
987 	INIT_LIST_HEAD(&bo_va->vm_status);
988 
989 	mutex_lock(&vm->mutex);
990 	list_add_tail(&bo_va->bo_list, &bo->va);
991 	mutex_unlock(&vm->mutex);
992 
993 	return bo_va;
994 }
995 
996 /**
997  * amdgpu_vm_bo_map - map bo inside a vm
998  *
999  * @adev: amdgpu_device pointer
1000  * @bo_va: bo_va to store the address
1001  * @saddr: where to map the BO
1002  * @offset: requested offset in the BO
1003  * @flags: attributes of pages (read/write/valid/etc.)
1004  *
1005  * Add a mapping of the BO at the specefied addr into the VM.
1006  * Returns 0 for success, error for failure.
1007  *
1008  * Object has to be reserved and gets unreserved by this function!
1009  */
1010 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1011 		     struct amdgpu_bo_va *bo_va,
1012 		     uint64_t saddr, uint64_t offset,
1013 		     uint64_t size, uint32_t flags)
1014 {
1015 	struct amdgpu_bo_va_mapping *mapping;
1016 	struct amdgpu_vm *vm = bo_va->vm;
1017 	struct interval_tree_node *it;
1018 	unsigned last_pfn, pt_idx;
1019 	uint64_t eaddr;
1020 	int r;
1021 
1022 	/* validate the parameters */
1023 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1024 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK) {
1025 		amdgpu_bo_unreserve(bo_va->bo);
1026 		return -EINVAL;
1027 	}
1028 
1029 	/* make sure object fit at this offset */
1030 	eaddr = saddr + size;
1031 	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) {
1032 		amdgpu_bo_unreserve(bo_va->bo);
1033 		return -EINVAL;
1034 	}
1035 
1036 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1037 	if (last_pfn > adev->vm_manager.max_pfn) {
1038 		dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n",
1039 			last_pfn, adev->vm_manager.max_pfn);
1040 		amdgpu_bo_unreserve(bo_va->bo);
1041 		return -EINVAL;
1042 	}
1043 
1044 	mutex_lock(&vm->mutex);
1045 
1046 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1047 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1048 
1049 	it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1);
1050 	if (it) {
1051 		struct amdgpu_bo_va_mapping *tmp;
1052 		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1053 		/* bo and tmp overlap, invalid addr */
1054 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1055 			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1056 			tmp->it.start, tmp->it.last + 1);
1057 		amdgpu_bo_unreserve(bo_va->bo);
1058 		r = -EINVAL;
1059 		goto error_unlock;
1060 	}
1061 
1062 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1063 	if (!mapping) {
1064 		amdgpu_bo_unreserve(bo_va->bo);
1065 		r = -ENOMEM;
1066 		goto error_unlock;
1067 	}
1068 
1069 	INIT_LIST_HEAD(&mapping->list);
1070 	mapping->it.start = saddr;
1071 	mapping->it.last = eaddr - 1;
1072 	mapping->offset = offset;
1073 	mapping->flags = flags;
1074 
1075 	list_add(&mapping->list, &bo_va->invalids);
1076 	interval_tree_insert(&mapping->it, &vm->va);
1077 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1078 
1079 	/* Make sure the page tables are allocated */
1080 	saddr >>= amdgpu_vm_block_size;
1081 	eaddr >>= amdgpu_vm_block_size;
1082 
1083 	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1084 
1085 	if (eaddr > vm->max_pde_used)
1086 		vm->max_pde_used = eaddr;
1087 
1088 	amdgpu_bo_unreserve(bo_va->bo);
1089 
1090 	/* walk over the address space and allocate the page tables */
1091 	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1092 		struct amdgpu_bo *pt;
1093 
1094 		if (vm->page_tables[pt_idx].bo)
1095 			continue;
1096 
1097 		/* drop mutex to allocate and clear page table */
1098 		mutex_unlock(&vm->mutex);
1099 
1100 		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1101 				     AMDGPU_GPU_PAGE_SIZE, true,
1102 				     AMDGPU_GEM_DOMAIN_VRAM,
1103 				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1104 				     NULL, &pt);
1105 		if (r)
1106 			goto error_free;
1107 
1108 		r = amdgpu_vm_clear_bo(adev, pt);
1109 		if (r) {
1110 			amdgpu_bo_unref(&pt);
1111 			goto error_free;
1112 		}
1113 
1114 		/* aquire mutex again */
1115 		mutex_lock(&vm->mutex);
1116 		if (vm->page_tables[pt_idx].bo) {
1117 			/* someone else allocated the pt in the meantime */
1118 			mutex_unlock(&vm->mutex);
1119 			amdgpu_bo_unref(&pt);
1120 			mutex_lock(&vm->mutex);
1121 			continue;
1122 		}
1123 
1124 		vm->page_tables[pt_idx].addr = 0;
1125 		vm->page_tables[pt_idx].bo = pt;
1126 	}
1127 
1128 	mutex_unlock(&vm->mutex);
1129 	return 0;
1130 
1131 error_free:
1132 	mutex_lock(&vm->mutex);
1133 	list_del(&mapping->list);
1134 	interval_tree_remove(&mapping->it, &vm->va);
1135 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1136 	kfree(mapping);
1137 
1138 error_unlock:
1139 	mutex_unlock(&vm->mutex);
1140 	return r;
1141 }
1142 
1143 /**
1144  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1145  *
1146  * @adev: amdgpu_device pointer
1147  * @bo_va: bo_va to remove the address from
1148  * @saddr: where to the BO is mapped
1149  *
1150  * Remove a mapping of the BO at the specefied addr from the VM.
1151  * Returns 0 for success, error for failure.
1152  *
1153  * Object has to be reserved and gets unreserved by this function!
1154  */
1155 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1156 		       struct amdgpu_bo_va *bo_va,
1157 		       uint64_t saddr)
1158 {
1159 	struct amdgpu_bo_va_mapping *mapping;
1160 	struct amdgpu_vm *vm = bo_va->vm;
1161 	bool valid = true;
1162 
1163 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1164 
1165 	list_for_each_entry(mapping, &bo_va->valids, list) {
1166 		if (mapping->it.start == saddr)
1167 			break;
1168 	}
1169 
1170 	if (&mapping->list == &bo_va->valids) {
1171 		valid = false;
1172 
1173 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1174 			if (mapping->it.start == saddr)
1175 				break;
1176 		}
1177 
1178 		if (&mapping->list == &bo_va->invalids) {
1179 			amdgpu_bo_unreserve(bo_va->bo);
1180 			return -ENOENT;
1181 		}
1182 	}
1183 
1184 	mutex_lock(&vm->mutex);
1185 	list_del(&mapping->list);
1186 	interval_tree_remove(&mapping->it, &vm->va);
1187 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1188 
1189 	if (valid)
1190 		list_add(&mapping->list, &vm->freed);
1191 	else
1192 		kfree(mapping);
1193 	mutex_unlock(&vm->mutex);
1194 	amdgpu_bo_unreserve(bo_va->bo);
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1201  *
1202  * @adev: amdgpu_device pointer
1203  * @bo_va: requested bo_va
1204  *
1205  * Remove @bo_va->bo from the requested vm (cayman+).
1206  *
1207  * Object have to be reserved!
1208  */
1209 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1210 		      struct amdgpu_bo_va *bo_va)
1211 {
1212 	struct amdgpu_bo_va_mapping *mapping, *next;
1213 	struct amdgpu_vm *vm = bo_va->vm;
1214 
1215 	list_del(&bo_va->bo_list);
1216 
1217 	mutex_lock(&vm->mutex);
1218 
1219 	spin_lock(&vm->status_lock);
1220 	list_del(&bo_va->vm_status);
1221 	spin_unlock(&vm->status_lock);
1222 
1223 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1224 		list_del(&mapping->list);
1225 		interval_tree_remove(&mapping->it, &vm->va);
1226 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1227 		list_add(&mapping->list, &vm->freed);
1228 	}
1229 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1230 		list_del(&mapping->list);
1231 		interval_tree_remove(&mapping->it, &vm->va);
1232 		kfree(mapping);
1233 	}
1234 
1235 	fence_put(bo_va->last_pt_update);
1236 	kfree(bo_va);
1237 
1238 	mutex_unlock(&vm->mutex);
1239 }
1240 
1241 /**
1242  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1243  *
1244  * @adev: amdgpu_device pointer
1245  * @vm: requested vm
1246  * @bo: amdgpu buffer object
1247  *
1248  * Mark @bo as invalid (cayman+).
1249  */
1250 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1251 			     struct amdgpu_bo *bo)
1252 {
1253 	struct amdgpu_bo_va *bo_va;
1254 
1255 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1256 		spin_lock(&bo_va->vm->status_lock);
1257 		if (list_empty(&bo_va->vm_status))
1258 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1259 		spin_unlock(&bo_va->vm->status_lock);
1260 	}
1261 }
1262 
1263 /**
1264  * amdgpu_vm_init - initialize a vm instance
1265  *
1266  * @adev: amdgpu_device pointer
1267  * @vm: requested vm
1268  *
1269  * Init @vm fields (cayman+).
1270  */
1271 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1272 {
1273 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1274 		AMDGPU_VM_PTE_COUNT * 8);
1275 	unsigned pd_size, pd_entries, pts_size;
1276 	int i, r;
1277 
1278 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1279 		vm->ids[i].id = 0;
1280 		vm->ids[i].flushed_updates = NULL;
1281 		vm->ids[i].last_id_use = NULL;
1282 	}
1283 	mutex_init(&vm->mutex);
1284 	vm->va = RB_ROOT;
1285 	spin_lock_init(&vm->status_lock);
1286 	INIT_LIST_HEAD(&vm->invalidated);
1287 	INIT_LIST_HEAD(&vm->cleared);
1288 	INIT_LIST_HEAD(&vm->freed);
1289 
1290 	pd_size = amdgpu_vm_directory_size(adev);
1291 	pd_entries = amdgpu_vm_num_pdes(adev);
1292 
1293 	/* allocate page table array */
1294 	pts_size = pd_entries * sizeof(struct amdgpu_vm_pt);
1295 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1296 	if (vm->page_tables == NULL) {
1297 		DRM_ERROR("Cannot allocate memory for page table array\n");
1298 		return -ENOMEM;
1299 	}
1300 
1301 	vm->page_directory_fence = NULL;
1302 
1303 	r = amdgpu_bo_create(adev, pd_size, align, true,
1304 			     AMDGPU_GEM_DOMAIN_VRAM,
1305 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1306 			     NULL, &vm->page_directory);
1307 	if (r)
1308 		return r;
1309 
1310 	r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1311 	if (r) {
1312 		amdgpu_bo_unref(&vm->page_directory);
1313 		vm->page_directory = NULL;
1314 		return r;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * amdgpu_vm_fini - tear down a vm instance
1322  *
1323  * @adev: amdgpu_device pointer
1324  * @vm: requested vm
1325  *
1326  * Tear down @vm (cayman+).
1327  * Unbind the VM and remove all bos from the vm bo list
1328  */
1329 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1330 {
1331 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1332 	int i;
1333 
1334 	if (!RB_EMPTY_ROOT(&vm->va)) {
1335 		dev_err(adev->dev, "still active bo inside vm\n");
1336 	}
1337 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1338 		list_del(&mapping->list);
1339 		interval_tree_remove(&mapping->it, &vm->va);
1340 		kfree(mapping);
1341 	}
1342 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1343 		list_del(&mapping->list);
1344 		kfree(mapping);
1345 	}
1346 
1347 	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1348 		amdgpu_bo_unref(&vm->page_tables[i].bo);
1349 	kfree(vm->page_tables);
1350 
1351 	amdgpu_bo_unref(&vm->page_directory);
1352 	fence_put(vm->page_directory_fence);
1353 
1354 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1355 		fence_put(vm->ids[i].flushed_updates);
1356 		amdgpu_fence_unref(&vm->ids[i].last_id_use);
1357 	}
1358 
1359 	mutex_destroy(&vm->mutex);
1360 }
1361