1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 }; 111 112 /** 113 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 114 */ 115 struct amdgpu_prt_cb { 116 117 /** 118 * @adev: amdgpu device 119 */ 120 struct amdgpu_device *adev; 121 122 /** 123 * @cb: callback 124 */ 125 struct dma_fence_cb cb; 126 }; 127 128 /** 129 * amdgpu_vm_level_shift - return the addr shift for each level 130 * 131 * @adev: amdgpu_device pointer 132 * @level: VMPT level 133 * 134 * Returns: 135 * The number of bits the pfn needs to be right shifted for a level. 136 */ 137 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 138 unsigned level) 139 { 140 unsigned shift = 0xff; 141 142 switch (level) { 143 case AMDGPU_VM_PDB2: 144 case AMDGPU_VM_PDB1: 145 case AMDGPU_VM_PDB0: 146 shift = 9 * (AMDGPU_VM_PDB0 - level) + 147 adev->vm_manager.block_size; 148 break; 149 case AMDGPU_VM_PTB: 150 shift = 0; 151 break; 152 default: 153 dev_err(adev->dev, "the level%d isn't supported.\n", level); 154 } 155 156 return shift; 157 } 158 159 /** 160 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 161 * 162 * @adev: amdgpu_device pointer 163 * @level: VMPT level 164 * 165 * Returns: 166 * The number of entries in a page directory or page table. 167 */ 168 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 169 unsigned level) 170 { 171 unsigned shift = amdgpu_vm_level_shift(adev, 172 adev->vm_manager.root_level); 173 174 if (level == adev->vm_manager.root_level) 175 /* For the root directory */ 176 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 177 else if (level != AMDGPU_VM_PTB) 178 /* Everything in between */ 179 return 512; 180 else 181 /* For the page tables on the leaves */ 182 return AMDGPU_VM_PTE_COUNT(adev); 183 } 184 185 /** 186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 187 * 188 * @adev: amdgpu_device pointer 189 * @level: VMPT level 190 * 191 * Returns: 192 * The mask to extract the entry number of a PD/PT from an address. 193 */ 194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 195 unsigned int level) 196 { 197 if (level <= adev->vm_manager.root_level) 198 return 0xffffffff; 199 else if (level != AMDGPU_VM_PTB) 200 return 0x1ff; 201 else 202 return AMDGPU_VM_PTE_COUNT(adev) - 1; 203 } 204 205 /** 206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 207 * 208 * @adev: amdgpu_device pointer 209 * @level: VMPT level 210 * 211 * Returns: 212 * The size of the BO for a page directory or page table in bytes. 213 */ 214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 215 { 216 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 217 } 218 219 /** 220 * amdgpu_vm_bo_evicted - vm_bo is evicted 221 * 222 * @vm_bo: vm_bo which is evicted 223 * 224 * State for PDs/PTs and per VM BOs which are not at the location they should 225 * be. 226 */ 227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 228 { 229 struct amdgpu_vm *vm = vm_bo->vm; 230 struct amdgpu_bo *bo = vm_bo->bo; 231 232 vm_bo->moved = true; 233 if (bo->tbo.type == ttm_bo_type_kernel) 234 list_move(&vm_bo->vm_status, &vm->evicted); 235 else 236 list_move_tail(&vm_bo->vm_status, &vm->evicted); 237 } 238 239 /** 240 * amdgpu_vm_bo_relocated - vm_bo is reloacted 241 * 242 * @vm_bo: vm_bo which is relocated 243 * 244 * State for PDs/PTs which needs to update their parent PD. 245 */ 246 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 247 { 248 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 249 } 250 251 /** 252 * amdgpu_vm_bo_moved - vm_bo is moved 253 * 254 * @vm_bo: vm_bo which is moved 255 * 256 * State for per VM BOs which are moved, but that change is not yet reflected 257 * in the page tables. 258 */ 259 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 260 { 261 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 262 } 263 264 /** 265 * amdgpu_vm_bo_idle - vm_bo is idle 266 * 267 * @vm_bo: vm_bo which is now idle 268 * 269 * State for PDs/PTs and per VM BOs which have gone through the state machine 270 * and are now idle. 271 */ 272 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 273 { 274 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 275 vm_bo->moved = false; 276 } 277 278 /** 279 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 280 * 281 * @vm_bo: vm_bo which is now invalidated 282 * 283 * State for normal BOs which are invalidated and that change not yet reflected 284 * in the PTs. 285 */ 286 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 spin_lock(&vm_bo->vm->invalidated_lock); 289 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 290 spin_unlock(&vm_bo->vm->invalidated_lock); 291 } 292 293 /** 294 * amdgpu_vm_bo_done - vm_bo is done 295 * 296 * @vm_bo: vm_bo which is now done 297 * 298 * State for normal BOs which are invalidated and that change has been updated 299 * in the PTs. 300 */ 301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 302 { 303 spin_lock(&vm_bo->vm->invalidated_lock); 304 list_del_init(&vm_bo->vm_status); 305 spin_unlock(&vm_bo->vm->invalidated_lock); 306 } 307 308 /** 309 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 310 * 311 * @base: base structure for tracking BO usage in a VM 312 * @vm: vm to which bo is to be added 313 * @bo: amdgpu buffer object 314 * 315 * Initialize a bo_va_base structure and add it to the appropriate lists 316 * 317 */ 318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 319 struct amdgpu_vm *vm, 320 struct amdgpu_bo *bo) 321 { 322 base->vm = vm; 323 base->bo = bo; 324 base->next = NULL; 325 INIT_LIST_HEAD(&base->vm_status); 326 327 if (!bo) 328 return; 329 base->next = bo->vm_bo; 330 bo->vm_bo = base; 331 332 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 333 return; 334 335 vm->bulk_moveable = false; 336 if (bo->tbo.type == ttm_bo_type_kernel) 337 amdgpu_vm_bo_relocated(base); 338 else 339 amdgpu_vm_bo_idle(base); 340 341 if (bo->preferred_domains & 342 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 343 return; 344 345 /* 346 * we checked all the prerequisites, but it looks like this per vm bo 347 * is currently evicted. add the bo to the evicted list to make sure it 348 * is validated on next vm use to avoid fault. 349 * */ 350 amdgpu_vm_bo_evicted(base); 351 } 352 353 /** 354 * amdgpu_vm_pt_parent - get the parent page directory 355 * 356 * @pt: child page table 357 * 358 * Helper to get the parent entry for the child page table. NULL if we are at 359 * the root page directory. 360 */ 361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 362 { 363 struct amdgpu_bo *parent = pt->base.bo->parent; 364 365 if (!parent) 366 return NULL; 367 368 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 369 } 370 371 /** 372 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 373 */ 374 struct amdgpu_vm_pt_cursor { 375 uint64_t pfn; 376 struct amdgpu_vm_pt *parent; 377 struct amdgpu_vm_pt *entry; 378 unsigned level; 379 }; 380 381 /** 382 * amdgpu_vm_pt_start - start PD/PT walk 383 * 384 * @adev: amdgpu_device pointer 385 * @vm: amdgpu_vm structure 386 * @start: start address of the walk 387 * @cursor: state to initialize 388 * 389 * Initialize a amdgpu_vm_pt_cursor to start a walk. 390 */ 391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 392 struct amdgpu_vm *vm, uint64_t start, 393 struct amdgpu_vm_pt_cursor *cursor) 394 { 395 cursor->pfn = start; 396 cursor->parent = NULL; 397 cursor->entry = &vm->root; 398 cursor->level = adev->vm_manager.root_level; 399 } 400 401 /** 402 * amdgpu_vm_pt_descendant - go to child node 403 * 404 * @adev: amdgpu_device pointer 405 * @cursor: current state 406 * 407 * Walk to the child node of the current node. 408 * Returns: 409 * True if the walk was possible, false otherwise. 410 */ 411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 412 struct amdgpu_vm_pt_cursor *cursor) 413 { 414 unsigned mask, shift, idx; 415 416 if (!cursor->entry->entries) 417 return false; 418 419 BUG_ON(!cursor->entry->base.bo); 420 mask = amdgpu_vm_entries_mask(adev, cursor->level); 421 shift = amdgpu_vm_level_shift(adev, cursor->level); 422 423 ++cursor->level; 424 idx = (cursor->pfn >> shift) & mask; 425 cursor->parent = cursor->entry; 426 cursor->entry = &cursor->entry->entries[idx]; 427 return true; 428 } 429 430 /** 431 * amdgpu_vm_pt_sibling - go to sibling node 432 * 433 * @adev: amdgpu_device pointer 434 * @cursor: current state 435 * 436 * Walk to the sibling node of the current node. 437 * Returns: 438 * True if the walk was possible, false otherwise. 439 */ 440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 441 struct amdgpu_vm_pt_cursor *cursor) 442 { 443 unsigned shift, num_entries; 444 445 /* Root doesn't have a sibling */ 446 if (!cursor->parent) 447 return false; 448 449 /* Go to our parents and see if we got a sibling */ 450 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 451 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 452 453 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 454 return false; 455 456 cursor->pfn += 1ULL << shift; 457 cursor->pfn &= ~((1ULL << shift) - 1); 458 ++cursor->entry; 459 return true; 460 } 461 462 /** 463 * amdgpu_vm_pt_ancestor - go to parent node 464 * 465 * @cursor: current state 466 * 467 * Walk to the parent node of the current node. 468 * Returns: 469 * True if the walk was possible, false otherwise. 470 */ 471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 472 { 473 if (!cursor->parent) 474 return false; 475 476 --cursor->level; 477 cursor->entry = cursor->parent; 478 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 479 return true; 480 } 481 482 /** 483 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 484 * 485 * @adev: amdgpu_device pointer 486 * @cursor: current state 487 * 488 * Walk the PD/PT tree to the next node. 489 */ 490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 491 struct amdgpu_vm_pt_cursor *cursor) 492 { 493 /* First try a newborn child */ 494 if (amdgpu_vm_pt_descendant(adev, cursor)) 495 return; 496 497 /* If that didn't worked try to find a sibling */ 498 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 499 /* No sibling, go to our parents and grandparents */ 500 if (!amdgpu_vm_pt_ancestor(cursor)) { 501 cursor->pfn = ~0ll; 502 return; 503 } 504 } 505 } 506 507 /** 508 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 509 * 510 * @adev: amdgpu_device pointer 511 * @vm: amdgpu_vm structure 512 * @start: start addr of the walk 513 * @cursor: state to initialize 514 * 515 * Start a walk and go directly to the leaf node. 516 */ 517 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 518 struct amdgpu_vm *vm, uint64_t start, 519 struct amdgpu_vm_pt_cursor *cursor) 520 { 521 amdgpu_vm_pt_start(adev, vm, start, cursor); 522 while (amdgpu_vm_pt_descendant(adev, cursor)); 523 } 524 525 /** 526 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 527 * 528 * @adev: amdgpu_device pointer 529 * @cursor: current state 530 * 531 * Walk the PD/PT tree to the next leaf node. 532 */ 533 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 534 struct amdgpu_vm_pt_cursor *cursor) 535 { 536 amdgpu_vm_pt_next(adev, cursor); 537 if (cursor->pfn != ~0ll) 538 while (amdgpu_vm_pt_descendant(adev, cursor)); 539 } 540 541 /** 542 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 543 */ 544 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 545 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 546 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 547 548 /** 549 * amdgpu_vm_pt_first_dfs - start a deep first search 550 * 551 * @adev: amdgpu_device structure 552 * @vm: amdgpu_vm structure 553 * @cursor: state to initialize 554 * 555 * Starts a deep first traversal of the PD/PT tree. 556 */ 557 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 558 struct amdgpu_vm *vm, 559 struct amdgpu_vm_pt_cursor *cursor) 560 { 561 amdgpu_vm_pt_start(adev, vm, 0, cursor); 562 while (amdgpu_vm_pt_descendant(adev, cursor)); 563 } 564 565 /** 566 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 567 * 568 * @adev: amdgpu_device structure 569 * @cursor: current state 570 * 571 * Move the cursor to the next node in a deep first search. 572 */ 573 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 574 struct amdgpu_vm_pt_cursor *cursor) 575 { 576 if (!cursor->entry) 577 return; 578 579 if (!cursor->parent) 580 cursor->entry = NULL; 581 else if (amdgpu_vm_pt_sibling(adev, cursor)) 582 while (amdgpu_vm_pt_descendant(adev, cursor)); 583 else 584 amdgpu_vm_pt_ancestor(cursor); 585 } 586 587 /** 588 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 589 */ 590 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 591 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 592 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 593 (entry); (entry) = (cursor).entry, \ 594 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 595 596 /** 597 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 598 * 599 * @vm: vm providing the BOs 600 * @validated: head of validation list 601 * @entry: entry to add 602 * 603 * Add the page directory to the list of BOs to 604 * validate for command submission. 605 */ 606 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 607 struct list_head *validated, 608 struct amdgpu_bo_list_entry *entry) 609 { 610 entry->priority = 0; 611 entry->tv.bo = &vm->root.base.bo->tbo; 612 /* One for the VM updates, one for TTM and one for the CS job */ 613 entry->tv.num_shared = 3; 614 entry->user_pages = NULL; 615 list_add(&entry->tv.head, validated); 616 } 617 618 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 619 { 620 struct amdgpu_bo *abo; 621 struct amdgpu_vm_bo_base *bo_base; 622 623 if (!amdgpu_bo_is_amdgpu_bo(bo)) 624 return; 625 626 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 627 return; 628 629 abo = ttm_to_amdgpu_bo(bo); 630 if (!abo->parent) 631 return; 632 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 633 struct amdgpu_vm *vm = bo_base->vm; 634 635 if (abo->tbo.resv == vm->root.base.bo->tbo.resv) 636 vm->bulk_moveable = false; 637 } 638 639 } 640 /** 641 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 642 * 643 * @adev: amdgpu device pointer 644 * @vm: vm providing the BOs 645 * 646 * Move all BOs to the end of LRU and remember their positions to put them 647 * together. 648 */ 649 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 650 struct amdgpu_vm *vm) 651 { 652 struct ttm_bo_global *glob = adev->mman.bdev.glob; 653 struct amdgpu_vm_bo_base *bo_base; 654 655 #if 0 656 if (vm->bulk_moveable) { 657 spin_lock(&glob->lru_lock); 658 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 659 spin_unlock(&glob->lru_lock); 660 return; 661 } 662 #endif 663 664 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 665 666 spin_lock(&glob->lru_lock); 667 list_for_each_entry(bo_base, &vm->idle, vm_status) { 668 struct amdgpu_bo *bo = bo_base->bo; 669 670 if (!bo->parent) 671 continue; 672 673 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 674 if (bo->shadow) 675 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 676 &vm->lru_bulk_move); 677 } 678 spin_unlock(&glob->lru_lock); 679 680 vm->bulk_moveable = true; 681 } 682 683 /** 684 * amdgpu_vm_validate_pt_bos - validate the page table BOs 685 * 686 * @adev: amdgpu device pointer 687 * @vm: vm providing the BOs 688 * @validate: callback to do the validation 689 * @param: parameter for the validation callback 690 * 691 * Validate the page table BOs on command submission if neccessary. 692 * 693 * Returns: 694 * Validation result. 695 */ 696 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 697 int (*validate)(void *p, struct amdgpu_bo *bo), 698 void *param) 699 { 700 struct amdgpu_vm_bo_base *bo_base, *tmp; 701 int r = 0; 702 703 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 704 struct amdgpu_bo *bo = bo_base->bo; 705 706 r = validate(param, bo); 707 if (r) 708 break; 709 710 if (bo->tbo.type != ttm_bo_type_kernel) { 711 amdgpu_vm_bo_moved(bo_base); 712 } else { 713 if (vm->use_cpu_for_update) 714 r = amdgpu_bo_kmap(bo, NULL); 715 else 716 r = amdgpu_ttm_alloc_gart(&bo->tbo); 717 if (r) 718 break; 719 if (bo->shadow) { 720 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 721 if (r) 722 break; 723 } 724 amdgpu_vm_bo_relocated(bo_base); 725 } 726 } 727 728 return r; 729 } 730 731 /** 732 * amdgpu_vm_ready - check VM is ready for updates 733 * 734 * @vm: VM to check 735 * 736 * Check if all VM PDs/PTs are ready for updates 737 * 738 * Returns: 739 * True if eviction list is empty. 740 */ 741 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 742 { 743 return list_empty(&vm->evicted); 744 } 745 746 /** 747 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 748 * 749 * @adev: amdgpu_device pointer 750 * @vm: VM to clear BO from 751 * @bo: BO to clear 752 * @level: level this BO is at 753 * @pte_support_ats: indicate ATS support from PTE 754 * 755 * Root PD needs to be reserved when calling this. 756 * 757 * Returns: 758 * 0 on success, errno otherwise. 759 */ 760 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 761 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 762 unsigned level, bool pte_support_ats) 763 { 764 struct ttm_operation_ctx ctx = { true, false }; 765 struct dma_fence *fence = NULL; 766 unsigned entries, ats_entries; 767 struct amdgpu_ring *ring; 768 struct amdgpu_job *job; 769 uint64_t addr; 770 int r; 771 772 entries = amdgpu_bo_size(bo) / 8; 773 774 if (pte_support_ats) { 775 if (level == adev->vm_manager.root_level) { 776 ats_entries = amdgpu_vm_level_shift(adev, level); 777 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 778 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 779 ats_entries = min(ats_entries, entries); 780 entries -= ats_entries; 781 } else { 782 ats_entries = entries; 783 entries = 0; 784 } 785 } else { 786 ats_entries = 0; 787 } 788 789 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 790 791 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 792 if (r) 793 goto error; 794 795 r = amdgpu_ttm_alloc_gart(&bo->tbo); 796 if (r) 797 return r; 798 799 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 800 if (r) 801 goto error; 802 803 addr = amdgpu_bo_gpu_offset(bo); 804 if (ats_entries) { 805 uint64_t ats_value; 806 807 ats_value = AMDGPU_PTE_DEFAULT_ATC; 808 if (level != AMDGPU_VM_PTB) 809 ats_value |= AMDGPU_PDE_PTE; 810 811 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 812 ats_entries, 0, ats_value); 813 addr += ats_entries * 8; 814 } 815 816 if (entries) { 817 uint64_t value = 0; 818 819 /* Workaround for fault priority problem on GMC9 */ 820 if (level == AMDGPU_VM_PTB && adev->asic_type >= CHIP_VEGA10) 821 value = AMDGPU_PTE_EXECUTABLE; 822 823 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 824 entries, 0, value); 825 } 826 827 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 828 829 WARN_ON(job->ibs[0].length_dw > 64); 830 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 831 AMDGPU_FENCE_OWNER_KFD, false); 832 if (r) 833 goto error_free; 834 835 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 836 &fence); 837 if (r) 838 goto error_free; 839 840 amdgpu_bo_fence(bo, fence, true); 841 dma_fence_put(fence); 842 843 if (bo->shadow) 844 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 845 level, pte_support_ats); 846 847 return 0; 848 849 error_free: 850 amdgpu_job_free(job); 851 852 error: 853 return r; 854 } 855 856 /** 857 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 858 * 859 * @adev: amdgpu_device pointer 860 * @vm: requesting vm 861 * @bp: resulting BO allocation parameters 862 */ 863 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 864 int level, struct amdgpu_bo_param *bp) 865 { 866 memset(bp, 0, sizeof(*bp)); 867 868 bp->size = amdgpu_vm_bo_size(adev, level); 869 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 870 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 871 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 872 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 873 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 874 if (vm->use_cpu_for_update) 875 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 876 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 877 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 878 bp->type = ttm_bo_type_kernel; 879 if (vm->root.base.bo) 880 bp->resv = vm->root.base.bo->tbo.resv; 881 } 882 883 /** 884 * amdgpu_vm_alloc_pts - Allocate page tables. 885 * 886 * @adev: amdgpu_device pointer 887 * @vm: VM to allocate page tables for 888 * @saddr: Start address which needs to be allocated 889 * @size: Size from start address we need. 890 * 891 * Make sure the page directories and page tables are allocated 892 * 893 * Returns: 894 * 0 on success, errno otherwise. 895 */ 896 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 897 struct amdgpu_vm *vm, 898 uint64_t saddr, uint64_t size) 899 { 900 struct amdgpu_vm_pt_cursor cursor; 901 struct amdgpu_bo *pt; 902 bool ats = false; 903 uint64_t eaddr; 904 int r; 905 906 /* validate the parameters */ 907 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 908 return -EINVAL; 909 910 eaddr = saddr + size - 1; 911 912 if (vm->pte_support_ats) 913 ats = saddr < AMDGPU_GMC_HOLE_START; 914 915 saddr /= AMDGPU_GPU_PAGE_SIZE; 916 eaddr /= AMDGPU_GPU_PAGE_SIZE; 917 918 if (eaddr >= adev->vm_manager.max_pfn) { 919 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 920 eaddr, adev->vm_manager.max_pfn); 921 return -EINVAL; 922 } 923 924 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 925 struct amdgpu_vm_pt *entry = cursor.entry; 926 struct amdgpu_bo_param bp; 927 928 if (cursor.level < AMDGPU_VM_PTB) { 929 unsigned num_entries; 930 931 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 932 entry->entries = kvmalloc_array(num_entries, 933 sizeof(*entry->entries), 934 GFP_KERNEL | 935 __GFP_ZERO); 936 if (!entry->entries) 937 return -ENOMEM; 938 } 939 940 941 if (entry->base.bo) 942 continue; 943 944 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 945 946 r = amdgpu_bo_create(adev, &bp, &pt); 947 if (r) 948 return r; 949 950 if (vm->use_cpu_for_update) { 951 r = amdgpu_bo_kmap(pt, NULL); 952 if (r) 953 goto error_free_pt; 954 } 955 956 /* Keep a reference to the root directory to avoid 957 * freeing them up in the wrong order. 958 */ 959 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 960 961 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 962 963 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 964 if (r) 965 goto error_free_pt; 966 } 967 968 return 0; 969 970 error_free_pt: 971 amdgpu_bo_unref(&pt->shadow); 972 amdgpu_bo_unref(&pt); 973 return r; 974 } 975 976 /** 977 * amdgpu_vm_free_pts - free PD/PT levels 978 * 979 * @adev: amdgpu device structure 980 * @vm: amdgpu vm structure 981 * 982 * Free the page directory or page table level and all sub levels. 983 */ 984 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 985 struct amdgpu_vm *vm) 986 { 987 struct amdgpu_vm_pt_cursor cursor; 988 struct amdgpu_vm_pt *entry; 989 990 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 991 992 if (entry->base.bo) { 993 entry->base.bo->vm_bo = NULL; 994 list_del(&entry->base.vm_status); 995 amdgpu_bo_unref(&entry->base.bo->shadow); 996 amdgpu_bo_unref(&entry->base.bo); 997 } 998 kvfree(entry->entries); 999 } 1000 1001 BUG_ON(vm->root.base.bo); 1002 } 1003 1004 /** 1005 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1006 * 1007 * @adev: amdgpu_device pointer 1008 */ 1009 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1010 { 1011 const struct amdgpu_ip_block *ip_block; 1012 bool has_compute_vm_bug; 1013 struct amdgpu_ring *ring; 1014 int i; 1015 1016 has_compute_vm_bug = false; 1017 1018 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1019 if (ip_block) { 1020 /* Compute has a VM bug for GFX version < 7. 1021 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1022 if (ip_block->version->major <= 7) 1023 has_compute_vm_bug = true; 1024 else if (ip_block->version->major == 8) 1025 if (adev->gfx.mec_fw_version < 673) 1026 has_compute_vm_bug = true; 1027 } 1028 1029 for (i = 0; i < adev->num_rings; i++) { 1030 ring = adev->rings[i]; 1031 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1032 /* only compute rings */ 1033 ring->has_compute_vm_bug = has_compute_vm_bug; 1034 else 1035 ring->has_compute_vm_bug = false; 1036 } 1037 } 1038 1039 /** 1040 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1041 * 1042 * @ring: ring on which the job will be submitted 1043 * @job: job to submit 1044 * 1045 * Returns: 1046 * True if sync is needed. 1047 */ 1048 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1049 struct amdgpu_job *job) 1050 { 1051 struct amdgpu_device *adev = ring->adev; 1052 unsigned vmhub = ring->funcs->vmhub; 1053 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1054 struct amdgpu_vmid *id; 1055 bool gds_switch_needed; 1056 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1057 1058 if (job->vmid == 0) 1059 return false; 1060 id = &id_mgr->ids[job->vmid]; 1061 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1062 id->gds_base != job->gds_base || 1063 id->gds_size != job->gds_size || 1064 id->gws_base != job->gws_base || 1065 id->gws_size != job->gws_size || 1066 id->oa_base != job->oa_base || 1067 id->oa_size != job->oa_size); 1068 1069 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1070 return true; 1071 1072 return vm_flush_needed || gds_switch_needed; 1073 } 1074 1075 /** 1076 * amdgpu_vm_flush - hardware flush the vm 1077 * 1078 * @ring: ring to use for flush 1079 * @job: related job 1080 * @need_pipe_sync: is pipe sync needed 1081 * 1082 * Emit a VM flush when it is necessary. 1083 * 1084 * Returns: 1085 * 0 on success, errno otherwise. 1086 */ 1087 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1088 { 1089 struct amdgpu_device *adev = ring->adev; 1090 unsigned vmhub = ring->funcs->vmhub; 1091 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1092 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1093 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1094 id->gds_base != job->gds_base || 1095 id->gds_size != job->gds_size || 1096 id->gws_base != job->gws_base || 1097 id->gws_size != job->gws_size || 1098 id->oa_base != job->oa_base || 1099 id->oa_size != job->oa_size); 1100 bool vm_flush_needed = job->vm_needs_flush; 1101 bool pasid_mapping_needed = id->pasid != job->pasid || 1102 !id->pasid_mapping || 1103 !dma_fence_is_signaled(id->pasid_mapping); 1104 struct dma_fence *fence = NULL; 1105 unsigned patch_offset = 0; 1106 int r; 1107 1108 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1109 gds_switch_needed = true; 1110 vm_flush_needed = true; 1111 pasid_mapping_needed = true; 1112 } 1113 1114 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1115 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1116 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1117 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1118 ring->funcs->emit_wreg; 1119 1120 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1121 return 0; 1122 1123 if (ring->funcs->init_cond_exec) 1124 patch_offset = amdgpu_ring_init_cond_exec(ring); 1125 1126 if (need_pipe_sync) 1127 amdgpu_ring_emit_pipeline_sync(ring); 1128 1129 if (vm_flush_needed) { 1130 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1131 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1132 } 1133 1134 if (pasid_mapping_needed) 1135 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1136 1137 if (vm_flush_needed || pasid_mapping_needed) { 1138 r = amdgpu_fence_emit(ring, &fence, 0); 1139 if (r) 1140 return r; 1141 } 1142 1143 if (vm_flush_needed) { 1144 mutex_lock(&id_mgr->lock); 1145 dma_fence_put(id->last_flush); 1146 id->last_flush = dma_fence_get(fence); 1147 id->current_gpu_reset_count = 1148 atomic_read(&adev->gpu_reset_counter); 1149 mutex_unlock(&id_mgr->lock); 1150 } 1151 1152 if (pasid_mapping_needed) { 1153 id->pasid = job->pasid; 1154 dma_fence_put(id->pasid_mapping); 1155 id->pasid_mapping = dma_fence_get(fence); 1156 } 1157 dma_fence_put(fence); 1158 1159 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1160 id->gds_base = job->gds_base; 1161 id->gds_size = job->gds_size; 1162 id->gws_base = job->gws_base; 1163 id->gws_size = job->gws_size; 1164 id->oa_base = job->oa_base; 1165 id->oa_size = job->oa_size; 1166 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1167 job->gds_size, job->gws_base, 1168 job->gws_size, job->oa_base, 1169 job->oa_size); 1170 } 1171 1172 if (ring->funcs->patch_cond_exec) 1173 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1174 1175 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1176 if (ring->funcs->emit_switch_buffer) { 1177 amdgpu_ring_emit_switch_buffer(ring); 1178 amdgpu_ring_emit_switch_buffer(ring); 1179 } 1180 return 0; 1181 } 1182 1183 /** 1184 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1185 * 1186 * @vm: requested vm 1187 * @bo: requested buffer object 1188 * 1189 * Find @bo inside the requested vm. 1190 * Search inside the @bos vm list for the requested vm 1191 * Returns the found bo_va or NULL if none is found 1192 * 1193 * Object has to be reserved! 1194 * 1195 * Returns: 1196 * Found bo_va or NULL. 1197 */ 1198 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1199 struct amdgpu_bo *bo) 1200 { 1201 struct amdgpu_vm_bo_base *base; 1202 1203 for (base = bo->vm_bo; base; base = base->next) { 1204 if (base->vm != vm) 1205 continue; 1206 1207 return container_of(base, struct amdgpu_bo_va, base); 1208 } 1209 return NULL; 1210 } 1211 1212 /** 1213 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1214 * 1215 * @params: see amdgpu_pte_update_params definition 1216 * @bo: PD/PT to update 1217 * @pe: addr of the page entry 1218 * @addr: dst addr to write into pe 1219 * @count: number of page entries to update 1220 * @incr: increase next addr by incr bytes 1221 * @flags: hw access flags 1222 * 1223 * Traces the parameters and calls the right asic functions 1224 * to setup the page table using the DMA. 1225 */ 1226 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1227 struct amdgpu_bo *bo, 1228 uint64_t pe, uint64_t addr, 1229 unsigned count, uint32_t incr, 1230 uint64_t flags) 1231 { 1232 pe += amdgpu_bo_gpu_offset(bo); 1233 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1234 1235 if (count < 3) { 1236 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1237 addr | flags, count, incr); 1238 1239 } else { 1240 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1241 count, incr, flags); 1242 } 1243 } 1244 1245 /** 1246 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1247 * 1248 * @params: see amdgpu_pte_update_params definition 1249 * @bo: PD/PT to update 1250 * @pe: addr of the page entry 1251 * @addr: dst addr to write into pe 1252 * @count: number of page entries to update 1253 * @incr: increase next addr by incr bytes 1254 * @flags: hw access flags 1255 * 1256 * Traces the parameters and calls the DMA function to copy the PTEs. 1257 */ 1258 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1259 struct amdgpu_bo *bo, 1260 uint64_t pe, uint64_t addr, 1261 unsigned count, uint32_t incr, 1262 uint64_t flags) 1263 { 1264 uint64_t src = (params->src + (addr >> 12) * 8); 1265 1266 pe += amdgpu_bo_gpu_offset(bo); 1267 trace_amdgpu_vm_copy_ptes(pe, src, count); 1268 1269 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1270 } 1271 1272 /** 1273 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1274 * 1275 * @pages_addr: optional DMA address to use for lookup 1276 * @addr: the unmapped addr 1277 * 1278 * Look up the physical address of the page that the pte resolves 1279 * to. 1280 * 1281 * Returns: 1282 * The pointer for the page table entry. 1283 */ 1284 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1285 { 1286 uint64_t result; 1287 1288 /* page table offset */ 1289 result = pages_addr[addr >> PAGE_SHIFT]; 1290 1291 /* in case cpu page size != gpu page size*/ 1292 result |= addr & (~PAGE_MASK); 1293 1294 result &= 0xFFFFFFFFFFFFF000ULL; 1295 1296 return result; 1297 } 1298 1299 /** 1300 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1301 * 1302 * @params: see amdgpu_pte_update_params definition 1303 * @bo: PD/PT to update 1304 * @pe: kmap addr of the page entry 1305 * @addr: dst addr to write into pe 1306 * @count: number of page entries to update 1307 * @incr: increase next addr by incr bytes 1308 * @flags: hw access flags 1309 * 1310 * Write count number of PT/PD entries directly. 1311 */ 1312 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1313 struct amdgpu_bo *bo, 1314 uint64_t pe, uint64_t addr, 1315 unsigned count, uint32_t incr, 1316 uint64_t flags) 1317 { 1318 unsigned int i; 1319 uint64_t value; 1320 1321 pe += (unsigned long)amdgpu_bo_kptr(bo); 1322 1323 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1324 1325 for (i = 0; i < count; i++) { 1326 value = params->pages_addr ? 1327 amdgpu_vm_map_gart(params->pages_addr, addr) : 1328 addr; 1329 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1330 i, value, flags); 1331 addr += incr; 1332 } 1333 } 1334 1335 /** 1336 * amdgpu_vm_update_func - helper to call update function 1337 * 1338 * Calls the update function for both the given BO as well as its shadow. 1339 */ 1340 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1341 struct amdgpu_bo *bo, 1342 uint64_t pe, uint64_t addr, 1343 unsigned count, uint32_t incr, 1344 uint64_t flags) 1345 { 1346 if (bo->shadow) 1347 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1348 params->func(params, bo, pe, addr, count, incr, flags); 1349 } 1350 1351 /* 1352 * amdgpu_vm_update_pde - update a single level in the hierarchy 1353 * 1354 * @param: parameters for the update 1355 * @vm: requested vm 1356 * @parent: parent directory 1357 * @entry: entry to update 1358 * 1359 * Makes sure the requested entry in parent is up to date. 1360 */ 1361 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1362 struct amdgpu_vm *vm, 1363 struct amdgpu_vm_pt *parent, 1364 struct amdgpu_vm_pt *entry) 1365 { 1366 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1367 uint64_t pde, pt, flags; 1368 unsigned level; 1369 1370 /* Don't update huge pages here */ 1371 if (entry->huge) 1372 return; 1373 1374 for (level = 0, pbo = bo->parent; pbo; ++level) 1375 pbo = pbo->parent; 1376 1377 level += params->adev->vm_manager.root_level; 1378 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1379 pde = (entry - parent->entries) * 8; 1380 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1381 } 1382 1383 /* 1384 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1385 * 1386 * @adev: amdgpu_device pointer 1387 * @vm: related vm 1388 * 1389 * Mark all PD level as invalid after an error. 1390 */ 1391 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1392 struct amdgpu_vm *vm) 1393 { 1394 struct amdgpu_vm_pt_cursor cursor; 1395 struct amdgpu_vm_pt *entry; 1396 1397 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1398 if (entry->base.bo && !entry->base.moved) 1399 amdgpu_vm_bo_relocated(&entry->base); 1400 } 1401 1402 /* 1403 * amdgpu_vm_update_directories - make sure that all directories are valid 1404 * 1405 * @adev: amdgpu_device pointer 1406 * @vm: requested vm 1407 * 1408 * Makes sure all directories are up to date. 1409 * 1410 * Returns: 1411 * 0 for success, error for failure. 1412 */ 1413 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1414 struct amdgpu_vm *vm) 1415 { 1416 struct amdgpu_pte_update_params params; 1417 struct amdgpu_job *job; 1418 unsigned ndw = 0; 1419 int r = 0; 1420 1421 if (list_empty(&vm->relocated)) 1422 return 0; 1423 1424 restart: 1425 memset(¶ms, 0, sizeof(params)); 1426 params.adev = adev; 1427 1428 if (vm->use_cpu_for_update) { 1429 r = amdgpu_bo_sync_wait(vm->root.base.bo, 1430 AMDGPU_FENCE_OWNER_VM, true); 1431 if (unlikely(r)) 1432 return r; 1433 1434 params.func = amdgpu_vm_cpu_set_ptes; 1435 } else { 1436 ndw = 512 * 8; 1437 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1438 if (r) 1439 return r; 1440 1441 params.ib = &job->ibs[0]; 1442 params.func = amdgpu_vm_do_set_ptes; 1443 } 1444 1445 while (!list_empty(&vm->relocated)) { 1446 struct amdgpu_vm_pt *pt, *entry; 1447 1448 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1449 base.vm_status); 1450 amdgpu_vm_bo_idle(&entry->base); 1451 1452 pt = amdgpu_vm_pt_parent(entry); 1453 if (!pt) 1454 continue; 1455 1456 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1457 1458 if (!vm->use_cpu_for_update && 1459 (ndw - params.ib->length_dw) < 32) 1460 break; 1461 } 1462 1463 if (vm->use_cpu_for_update) { 1464 /* Flush HDP */ 1465 mb(); 1466 amdgpu_asic_flush_hdp(adev, NULL); 1467 } else if (params.ib->length_dw == 0) { 1468 amdgpu_job_free(job); 1469 } else { 1470 struct amdgpu_bo *root = vm->root.base.bo; 1471 struct amdgpu_ring *ring; 1472 struct dma_fence *fence; 1473 1474 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1475 sched); 1476 1477 amdgpu_ring_pad_ib(ring, params.ib); 1478 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1479 AMDGPU_FENCE_OWNER_VM, false); 1480 WARN_ON(params.ib->length_dw > ndw); 1481 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1482 &fence); 1483 if (r) 1484 goto error; 1485 1486 amdgpu_bo_fence(root, fence, true); 1487 dma_fence_put(vm->last_update); 1488 vm->last_update = fence; 1489 } 1490 1491 if (!list_empty(&vm->relocated)) 1492 goto restart; 1493 1494 return 0; 1495 1496 error: 1497 amdgpu_vm_invalidate_pds(adev, vm); 1498 amdgpu_job_free(job); 1499 return r; 1500 } 1501 1502 /** 1503 * amdgpu_vm_update_flags - figure out flags for PTE updates 1504 * 1505 * Make sure to set the right flags for the PTEs at the desired level. 1506 */ 1507 static void amdgpu_vm_update_flags(struct amdgpu_pte_update_params *params, 1508 struct amdgpu_bo *bo, unsigned level, 1509 uint64_t pe, uint64_t addr, 1510 unsigned count, uint32_t incr, 1511 uint64_t flags) 1512 1513 { 1514 if (level != AMDGPU_VM_PTB) { 1515 flags |= AMDGPU_PDE_PTE; 1516 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1517 1518 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1519 !(flags & AMDGPU_PTE_VALID) && 1520 !(flags & AMDGPU_PTE_PRT)) { 1521 1522 /* Workaround for fault priority problem on GMC9 */ 1523 flags |= AMDGPU_PTE_EXECUTABLE; 1524 } 1525 1526 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1527 } 1528 1529 /** 1530 * amdgpu_vm_fragment - get fragment for PTEs 1531 * 1532 * @params: see amdgpu_pte_update_params definition 1533 * @start: first PTE to handle 1534 * @end: last PTE to handle 1535 * @flags: hw mapping flags 1536 * @frag: resulting fragment size 1537 * @frag_end: end of this fragment 1538 * 1539 * Returns the first possible fragment for the start and end address. 1540 */ 1541 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1542 uint64_t start, uint64_t end, uint64_t flags, 1543 unsigned int *frag, uint64_t *frag_end) 1544 { 1545 /** 1546 * The MC L1 TLB supports variable sized pages, based on a fragment 1547 * field in the PTE. When this field is set to a non-zero value, page 1548 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1549 * flags are considered valid for all PTEs within the fragment range 1550 * and corresponding mappings are assumed to be physically contiguous. 1551 * 1552 * The L1 TLB can store a single PTE for the whole fragment, 1553 * significantly increasing the space available for translation 1554 * caching. This leads to large improvements in throughput when the 1555 * TLB is under pressure. 1556 * 1557 * The L2 TLB distributes small and large fragments into two 1558 * asymmetric partitions. The large fragment cache is significantly 1559 * larger. Thus, we try to use large fragments wherever possible. 1560 * Userspace can support this by aligning virtual base address and 1561 * allocation size to the fragment size. 1562 * 1563 * Starting with Vega10 the fragment size only controls the L1. The L2 1564 * is now directly feed with small/huge/giant pages from the walker. 1565 */ 1566 unsigned max_frag; 1567 1568 if (params->adev->asic_type < CHIP_VEGA10) 1569 max_frag = params->adev->vm_manager.fragment_size; 1570 else 1571 max_frag = 31; 1572 1573 /* system pages are non continuously */ 1574 if (params->src) { 1575 *frag = 0; 1576 *frag_end = end; 1577 return; 1578 } 1579 1580 /* This intentionally wraps around if no bit is set */ 1581 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1582 if (*frag >= max_frag) { 1583 *frag = max_frag; 1584 *frag_end = end & ~((1ULL << max_frag) - 1); 1585 } else { 1586 *frag_end = start + (1 << *frag); 1587 } 1588 } 1589 1590 /** 1591 * amdgpu_vm_update_ptes - make sure that page tables are valid 1592 * 1593 * @params: see amdgpu_pte_update_params definition 1594 * @start: start of GPU address range 1595 * @end: end of GPU address range 1596 * @dst: destination address to map to, the next dst inside the function 1597 * @flags: mapping flags 1598 * 1599 * Update the page tables in the range @start - @end. 1600 * 1601 * Returns: 1602 * 0 for success, -EINVAL for failure. 1603 */ 1604 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1605 uint64_t start, uint64_t end, 1606 uint64_t dst, uint64_t flags) 1607 { 1608 struct amdgpu_device *adev = params->adev; 1609 struct amdgpu_vm_pt_cursor cursor; 1610 uint64_t frag_start = start, frag_end; 1611 unsigned int frag; 1612 1613 /* figure out the initial fragment */ 1614 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1615 1616 /* walk over the address space and update the PTs */ 1617 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1618 while (cursor.pfn < end) { 1619 struct amdgpu_bo *pt = cursor.entry->base.bo; 1620 unsigned shift, parent_shift, mask; 1621 uint64_t incr, entry_end, pe_start; 1622 1623 if (!pt) 1624 return -ENOENT; 1625 1626 /* The root level can't be a huge page */ 1627 if (cursor.level == adev->vm_manager.root_level) { 1628 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1629 return -ENOENT; 1630 continue; 1631 } 1632 1633 /* If it isn't already handled it can't be a huge page */ 1634 if (cursor.entry->huge) { 1635 /* Add the entry to the relocated list to update it. */ 1636 cursor.entry->huge = false; 1637 amdgpu_vm_bo_relocated(&cursor.entry->base); 1638 } 1639 1640 shift = amdgpu_vm_level_shift(adev, cursor.level); 1641 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1642 if (adev->asic_type < CHIP_VEGA10) { 1643 /* No huge page support before GMC v9 */ 1644 if (cursor.level != AMDGPU_VM_PTB) { 1645 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1646 return -ENOENT; 1647 continue; 1648 } 1649 } else if (frag < shift) { 1650 /* We can't use this level when the fragment size is 1651 * smaller than the address shift. Go to the next 1652 * child entry and try again. 1653 */ 1654 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1655 return -ENOENT; 1656 continue; 1657 } else if (frag >= parent_shift && 1658 cursor.level - 1 != adev->vm_manager.root_level) { 1659 /* If the fragment size is even larger than the parent 1660 * shift we should go up one level and check it again 1661 * unless one level up is the root level. 1662 */ 1663 if (!amdgpu_vm_pt_ancestor(&cursor)) 1664 return -ENOENT; 1665 continue; 1666 } 1667 1668 /* Looks good so far, calculate parameters for the update */ 1669 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1670 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1671 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1672 entry_end = (uint64_t)(mask + 1) << shift; 1673 entry_end += cursor.pfn & ~(entry_end - 1); 1674 entry_end = min(entry_end, end); 1675 1676 do { 1677 uint64_t upd_end = min(entry_end, frag_end); 1678 unsigned nptes = (upd_end - frag_start) >> shift; 1679 1680 amdgpu_vm_update_flags(params, pt, cursor.level, 1681 pe_start, dst, nptes, incr, 1682 flags | AMDGPU_PTE_FRAG(frag)); 1683 1684 pe_start += nptes * 8; 1685 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1686 1687 frag_start = upd_end; 1688 if (frag_start >= frag_end) { 1689 /* figure out the next fragment */ 1690 amdgpu_vm_fragment(params, frag_start, end, 1691 flags, &frag, &frag_end); 1692 if (frag < shift) 1693 break; 1694 } 1695 } while (frag_start < entry_end); 1696 1697 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1698 /* Mark all child entries as huge */ 1699 while (cursor.pfn < frag_start) { 1700 cursor.entry->huge = true; 1701 amdgpu_vm_pt_next(adev, &cursor); 1702 } 1703 1704 } else if (frag >= shift) { 1705 /* or just move on to the next on the same level. */ 1706 amdgpu_vm_pt_next(adev, &cursor); 1707 } 1708 } 1709 1710 return 0; 1711 } 1712 1713 /** 1714 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1715 * 1716 * @adev: amdgpu_device pointer 1717 * @exclusive: fence we need to sync to 1718 * @pages_addr: DMA addresses to use for mapping 1719 * @vm: requested vm 1720 * @start: start of mapped range 1721 * @last: last mapped entry 1722 * @flags: flags for the entries 1723 * @addr: addr to set the area to 1724 * @fence: optional resulting fence 1725 * 1726 * Fill in the page table entries between @start and @last. 1727 * 1728 * Returns: 1729 * 0 for success, -EINVAL for failure. 1730 */ 1731 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1732 struct dma_fence *exclusive, 1733 dma_addr_t *pages_addr, 1734 struct amdgpu_vm *vm, 1735 uint64_t start, uint64_t last, 1736 uint64_t flags, uint64_t addr, 1737 struct dma_fence **fence) 1738 { 1739 struct amdgpu_ring *ring; 1740 void *owner = AMDGPU_FENCE_OWNER_VM; 1741 unsigned nptes, ncmds, ndw; 1742 struct amdgpu_job *job; 1743 struct amdgpu_pte_update_params params; 1744 struct dma_fence *f = NULL; 1745 int r; 1746 1747 memset(¶ms, 0, sizeof(params)); 1748 params.adev = adev; 1749 params.vm = vm; 1750 1751 /* sync to everything except eviction fences on unmapping */ 1752 if (!(flags & AMDGPU_PTE_VALID)) 1753 owner = AMDGPU_FENCE_OWNER_KFD; 1754 1755 if (vm->use_cpu_for_update) { 1756 /* params.src is used as flag to indicate system Memory */ 1757 if (pages_addr) 1758 params.src = ~0; 1759 1760 /* Wait for PT BOs to be idle. PTs share the same resv. object 1761 * as the root PD BO 1762 */ 1763 r = amdgpu_bo_sync_wait(vm->root.base.bo, owner, true); 1764 if (unlikely(r)) 1765 return r; 1766 1767 /* Wait for any BO move to be completed */ 1768 if (exclusive) { 1769 r = dma_fence_wait(exclusive, true); 1770 if (unlikely(r)) 1771 return r; 1772 } 1773 1774 params.func = amdgpu_vm_cpu_set_ptes; 1775 params.pages_addr = pages_addr; 1776 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1777 addr, flags); 1778 } 1779 1780 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1781 1782 nptes = last - start + 1; 1783 1784 /* 1785 * reserve space for two commands every (1 << BLOCK_SIZE) 1786 * entries or 2k dwords (whatever is smaller) 1787 */ 1788 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1789 1790 /* The second command is for the shadow pagetables. */ 1791 if (vm->root.base.bo->shadow) 1792 ncmds *= 2; 1793 1794 /* padding, etc. */ 1795 ndw = 64; 1796 1797 if (pages_addr) { 1798 /* copy commands needed */ 1799 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1800 1801 /* and also PTEs */ 1802 ndw += nptes * 2; 1803 1804 params.func = amdgpu_vm_do_copy_ptes; 1805 1806 } else { 1807 /* set page commands needed */ 1808 ndw += ncmds * 10; 1809 1810 /* extra commands for begin/end fragments */ 1811 ncmds = 2 * adev->vm_manager.fragment_size; 1812 if (vm->root.base.bo->shadow) 1813 ncmds *= 2; 1814 1815 ndw += 10 * ncmds; 1816 1817 params.func = amdgpu_vm_do_set_ptes; 1818 } 1819 1820 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1821 if (r) 1822 return r; 1823 1824 params.ib = &job->ibs[0]; 1825 1826 if (pages_addr) { 1827 uint64_t *pte; 1828 unsigned i; 1829 1830 /* Put the PTEs at the end of the IB. */ 1831 i = ndw - nptes * 2; 1832 pte= (uint64_t *)&(job->ibs->ptr[i]); 1833 params.src = job->ibs->gpu_addr + i * 4; 1834 1835 for (i = 0; i < nptes; ++i) { 1836 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1837 AMDGPU_GPU_PAGE_SIZE); 1838 pte[i] |= flags; 1839 } 1840 addr = 0; 1841 } 1842 1843 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1844 if (r) 1845 goto error_free; 1846 1847 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1848 owner, false); 1849 if (r) 1850 goto error_free; 1851 1852 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1853 if (r) 1854 goto error_free; 1855 1856 amdgpu_ring_pad_ib(ring, params.ib); 1857 WARN_ON(params.ib->length_dw > ndw); 1858 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1859 if (r) 1860 goto error_free; 1861 1862 amdgpu_bo_fence(vm->root.base.bo, f, true); 1863 dma_fence_put(*fence); 1864 *fence = f; 1865 return 0; 1866 1867 error_free: 1868 amdgpu_job_free(job); 1869 return r; 1870 } 1871 1872 /** 1873 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1874 * 1875 * @adev: amdgpu_device pointer 1876 * @exclusive: fence we need to sync to 1877 * @pages_addr: DMA addresses to use for mapping 1878 * @vm: requested vm 1879 * @mapping: mapped range and flags to use for the update 1880 * @flags: HW flags for the mapping 1881 * @nodes: array of drm_mm_nodes with the MC addresses 1882 * @fence: optional resulting fence 1883 * 1884 * Split the mapping into smaller chunks so that each update fits 1885 * into a SDMA IB. 1886 * 1887 * Returns: 1888 * 0 for success, -EINVAL for failure. 1889 */ 1890 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1891 struct dma_fence *exclusive, 1892 dma_addr_t *pages_addr, 1893 struct amdgpu_vm *vm, 1894 struct amdgpu_bo_va_mapping *mapping, 1895 uint64_t flags, 1896 struct drm_mm_node *nodes, 1897 struct dma_fence **fence) 1898 { 1899 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1900 uint64_t pfn, start = mapping->start; 1901 int r; 1902 1903 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1904 * but in case of something, we filter the flags in first place 1905 */ 1906 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1907 flags &= ~AMDGPU_PTE_READABLE; 1908 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1909 flags &= ~AMDGPU_PTE_WRITEABLE; 1910 1911 flags &= ~AMDGPU_PTE_EXECUTABLE; 1912 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1913 1914 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1915 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1916 1917 if ((mapping->flags & AMDGPU_PTE_PRT) && 1918 (adev->asic_type >= CHIP_VEGA10)) { 1919 flags |= AMDGPU_PTE_PRT; 1920 flags &= ~AMDGPU_PTE_VALID; 1921 } 1922 1923 trace_amdgpu_vm_bo_update(mapping); 1924 1925 pfn = mapping->offset >> PAGE_SHIFT; 1926 if (nodes) { 1927 while (pfn >= nodes->size) { 1928 pfn -= nodes->size; 1929 ++nodes; 1930 } 1931 } 1932 1933 do { 1934 dma_addr_t *dma_addr = NULL; 1935 uint64_t max_entries; 1936 uint64_t addr, last; 1937 1938 if (nodes) { 1939 addr = nodes->start << PAGE_SHIFT; 1940 max_entries = (nodes->size - pfn) * 1941 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1942 } else { 1943 addr = 0; 1944 max_entries = S64_MAX; 1945 } 1946 1947 if (pages_addr) { 1948 uint64_t count; 1949 1950 max_entries = min(max_entries, 16ull * 1024ull); 1951 for (count = 1; 1952 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1953 ++count) { 1954 uint64_t idx = pfn + count; 1955 1956 if (pages_addr[idx] != 1957 (pages_addr[idx - 1] + PAGE_SIZE)) 1958 break; 1959 } 1960 1961 if (count < min_linear_pages) { 1962 addr = pfn << PAGE_SHIFT; 1963 dma_addr = pages_addr; 1964 } else { 1965 addr = pages_addr[pfn]; 1966 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1967 } 1968 1969 } else if (flags & AMDGPU_PTE_VALID) { 1970 addr += adev->vm_manager.vram_base_offset; 1971 addr += pfn << PAGE_SHIFT; 1972 } 1973 1974 last = min((uint64_t)mapping->last, start + max_entries - 1); 1975 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1976 start, last, flags, addr, 1977 fence); 1978 if (r) 1979 return r; 1980 1981 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1982 if (nodes && nodes->size == pfn) { 1983 pfn = 0; 1984 ++nodes; 1985 } 1986 start = last + 1; 1987 1988 } while (unlikely(start != mapping->last + 1)); 1989 1990 return 0; 1991 } 1992 1993 /** 1994 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1995 * 1996 * @adev: amdgpu_device pointer 1997 * @bo_va: requested BO and VM object 1998 * @clear: if true clear the entries 1999 * 2000 * Fill in the page table entries for @bo_va. 2001 * 2002 * Returns: 2003 * 0 for success, -EINVAL for failure. 2004 */ 2005 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 2006 struct amdgpu_bo_va *bo_va, 2007 bool clear) 2008 { 2009 struct amdgpu_bo *bo = bo_va->base.bo; 2010 struct amdgpu_vm *vm = bo_va->base.vm; 2011 struct amdgpu_bo_va_mapping *mapping; 2012 dma_addr_t *pages_addr = NULL; 2013 struct ttm_mem_reg *mem; 2014 struct drm_mm_node *nodes; 2015 struct dma_fence *exclusive, **last_update; 2016 uint64_t flags; 2017 int r; 2018 2019 if (clear || !bo) { 2020 mem = NULL; 2021 nodes = NULL; 2022 exclusive = NULL; 2023 } else { 2024 struct ttm_dma_tt *ttm; 2025 2026 mem = &bo->tbo.mem; 2027 nodes = mem->mm_node; 2028 if (mem->mem_type == TTM_PL_TT) { 2029 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2030 pages_addr = ttm->dma_address; 2031 } 2032 exclusive = reservation_object_get_excl(bo->tbo.resv); 2033 } 2034 2035 if (bo) 2036 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2037 else 2038 flags = 0x0; 2039 2040 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2041 last_update = &vm->last_update; 2042 else 2043 last_update = &bo_va->last_pt_update; 2044 2045 if (!clear && bo_va->base.moved) { 2046 bo_va->base.moved = false; 2047 list_splice_init(&bo_va->valids, &bo_va->invalids); 2048 2049 } else if (bo_va->cleared != clear) { 2050 list_splice_init(&bo_va->valids, &bo_va->invalids); 2051 } 2052 2053 list_for_each_entry(mapping, &bo_va->invalids, list) { 2054 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2055 mapping, flags, nodes, 2056 last_update); 2057 if (r) 2058 return r; 2059 } 2060 2061 if (vm->use_cpu_for_update) { 2062 /* Flush HDP */ 2063 mb(); 2064 amdgpu_asic_flush_hdp(adev, NULL); 2065 } 2066 2067 /* If the BO is not in its preferred location add it back to 2068 * the evicted list so that it gets validated again on the 2069 * next command submission. 2070 */ 2071 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2072 uint32_t mem_type = bo->tbo.mem.mem_type; 2073 2074 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2075 amdgpu_vm_bo_evicted(&bo_va->base); 2076 else 2077 amdgpu_vm_bo_idle(&bo_va->base); 2078 } else { 2079 amdgpu_vm_bo_done(&bo_va->base); 2080 } 2081 2082 list_splice_init(&bo_va->invalids, &bo_va->valids); 2083 bo_va->cleared = clear; 2084 2085 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2086 list_for_each_entry(mapping, &bo_va->valids, list) 2087 trace_amdgpu_vm_bo_mapping(mapping); 2088 } 2089 2090 return 0; 2091 } 2092 2093 /** 2094 * amdgpu_vm_update_prt_state - update the global PRT state 2095 * 2096 * @adev: amdgpu_device pointer 2097 */ 2098 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2099 { 2100 unsigned long flags; 2101 bool enable; 2102 2103 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2104 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2105 adev->gmc.gmc_funcs->set_prt(adev, enable); 2106 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2107 } 2108 2109 /** 2110 * amdgpu_vm_prt_get - add a PRT user 2111 * 2112 * @adev: amdgpu_device pointer 2113 */ 2114 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2115 { 2116 if (!adev->gmc.gmc_funcs->set_prt) 2117 return; 2118 2119 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2120 amdgpu_vm_update_prt_state(adev); 2121 } 2122 2123 /** 2124 * amdgpu_vm_prt_put - drop a PRT user 2125 * 2126 * @adev: amdgpu_device pointer 2127 */ 2128 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2129 { 2130 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2131 amdgpu_vm_update_prt_state(adev); 2132 } 2133 2134 /** 2135 * amdgpu_vm_prt_cb - callback for updating the PRT status 2136 * 2137 * @fence: fence for the callback 2138 * @_cb: the callback function 2139 */ 2140 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2141 { 2142 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2143 2144 amdgpu_vm_prt_put(cb->adev); 2145 kfree(cb); 2146 } 2147 2148 /** 2149 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2150 * 2151 * @adev: amdgpu_device pointer 2152 * @fence: fence for the callback 2153 */ 2154 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2155 struct dma_fence *fence) 2156 { 2157 struct amdgpu_prt_cb *cb; 2158 2159 if (!adev->gmc.gmc_funcs->set_prt) 2160 return; 2161 2162 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2163 if (!cb) { 2164 /* Last resort when we are OOM */ 2165 if (fence) 2166 dma_fence_wait(fence, false); 2167 2168 amdgpu_vm_prt_put(adev); 2169 } else { 2170 cb->adev = adev; 2171 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2172 amdgpu_vm_prt_cb)) 2173 amdgpu_vm_prt_cb(fence, &cb->cb); 2174 } 2175 } 2176 2177 /** 2178 * amdgpu_vm_free_mapping - free a mapping 2179 * 2180 * @adev: amdgpu_device pointer 2181 * @vm: requested vm 2182 * @mapping: mapping to be freed 2183 * @fence: fence of the unmap operation 2184 * 2185 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2186 */ 2187 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2188 struct amdgpu_vm *vm, 2189 struct amdgpu_bo_va_mapping *mapping, 2190 struct dma_fence *fence) 2191 { 2192 if (mapping->flags & AMDGPU_PTE_PRT) 2193 amdgpu_vm_add_prt_cb(adev, fence); 2194 kfree(mapping); 2195 } 2196 2197 /** 2198 * amdgpu_vm_prt_fini - finish all prt mappings 2199 * 2200 * @adev: amdgpu_device pointer 2201 * @vm: requested vm 2202 * 2203 * Register a cleanup callback to disable PRT support after VM dies. 2204 */ 2205 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2206 { 2207 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2208 struct dma_fence *excl, **shared; 2209 unsigned i, shared_count; 2210 int r; 2211 2212 r = reservation_object_get_fences_rcu(resv, &excl, 2213 &shared_count, &shared); 2214 if (r) { 2215 /* Not enough memory to grab the fence list, as last resort 2216 * block for all the fences to complete. 2217 */ 2218 reservation_object_wait_timeout_rcu(resv, true, false, 2219 MAX_SCHEDULE_TIMEOUT); 2220 return; 2221 } 2222 2223 /* Add a callback for each fence in the reservation object */ 2224 amdgpu_vm_prt_get(adev); 2225 amdgpu_vm_add_prt_cb(adev, excl); 2226 2227 for (i = 0; i < shared_count; ++i) { 2228 amdgpu_vm_prt_get(adev); 2229 amdgpu_vm_add_prt_cb(adev, shared[i]); 2230 } 2231 2232 kfree(shared); 2233 } 2234 2235 /** 2236 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2237 * 2238 * @adev: amdgpu_device pointer 2239 * @vm: requested vm 2240 * @fence: optional resulting fence (unchanged if no work needed to be done 2241 * or if an error occurred) 2242 * 2243 * Make sure all freed BOs are cleared in the PT. 2244 * PTs have to be reserved and mutex must be locked! 2245 * 2246 * Returns: 2247 * 0 for success. 2248 * 2249 */ 2250 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2251 struct amdgpu_vm *vm, 2252 struct dma_fence **fence) 2253 { 2254 struct amdgpu_bo_va_mapping *mapping; 2255 uint64_t init_pte_value = 0; 2256 struct dma_fence *f = NULL; 2257 int r; 2258 2259 while (!list_empty(&vm->freed)) { 2260 mapping = list_first_entry(&vm->freed, 2261 struct amdgpu_bo_va_mapping, list); 2262 list_del(&mapping->list); 2263 2264 if (vm->pte_support_ats && 2265 mapping->start < AMDGPU_GMC_HOLE_START) 2266 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2267 2268 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2269 mapping->start, mapping->last, 2270 init_pte_value, 0, &f); 2271 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2272 if (r) { 2273 dma_fence_put(f); 2274 return r; 2275 } 2276 } 2277 2278 if (fence && f) { 2279 dma_fence_put(*fence); 2280 *fence = f; 2281 } else { 2282 dma_fence_put(f); 2283 } 2284 2285 return 0; 2286 2287 } 2288 2289 /** 2290 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2291 * 2292 * @adev: amdgpu_device pointer 2293 * @vm: requested vm 2294 * 2295 * Make sure all BOs which are moved are updated in the PTs. 2296 * 2297 * Returns: 2298 * 0 for success. 2299 * 2300 * PTs have to be reserved! 2301 */ 2302 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2303 struct amdgpu_vm *vm) 2304 { 2305 struct amdgpu_bo_va *bo_va, *tmp; 2306 struct reservation_object *resv; 2307 bool clear; 2308 int r; 2309 2310 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2311 /* Per VM BOs never need to bo cleared in the page tables */ 2312 r = amdgpu_vm_bo_update(adev, bo_va, false); 2313 if (r) 2314 return r; 2315 } 2316 2317 spin_lock(&vm->invalidated_lock); 2318 while (!list_empty(&vm->invalidated)) { 2319 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2320 base.vm_status); 2321 resv = bo_va->base.bo->tbo.resv; 2322 spin_unlock(&vm->invalidated_lock); 2323 2324 /* Try to reserve the BO to avoid clearing its ptes */ 2325 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2326 clear = false; 2327 /* Somebody else is using the BO right now */ 2328 else 2329 clear = true; 2330 2331 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2332 if (r) 2333 return r; 2334 2335 if (!clear) 2336 reservation_object_unlock(resv); 2337 spin_lock(&vm->invalidated_lock); 2338 } 2339 spin_unlock(&vm->invalidated_lock); 2340 2341 return 0; 2342 } 2343 2344 /** 2345 * amdgpu_vm_bo_add - add a bo to a specific vm 2346 * 2347 * @adev: amdgpu_device pointer 2348 * @vm: requested vm 2349 * @bo: amdgpu buffer object 2350 * 2351 * Add @bo into the requested vm. 2352 * Add @bo to the list of bos associated with the vm 2353 * 2354 * Returns: 2355 * Newly added bo_va or NULL for failure 2356 * 2357 * Object has to be reserved! 2358 */ 2359 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2360 struct amdgpu_vm *vm, 2361 struct amdgpu_bo *bo) 2362 { 2363 struct amdgpu_bo_va *bo_va; 2364 2365 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2366 if (bo_va == NULL) { 2367 return NULL; 2368 } 2369 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2370 2371 bo_va->ref_count = 1; 2372 INIT_LIST_HEAD(&bo_va->valids); 2373 INIT_LIST_HEAD(&bo_va->invalids); 2374 2375 return bo_va; 2376 } 2377 2378 2379 /** 2380 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2381 * 2382 * @adev: amdgpu_device pointer 2383 * @bo_va: bo_va to store the address 2384 * @mapping: the mapping to insert 2385 * 2386 * Insert a new mapping into all structures. 2387 */ 2388 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2389 struct amdgpu_bo_va *bo_va, 2390 struct amdgpu_bo_va_mapping *mapping) 2391 { 2392 struct amdgpu_vm *vm = bo_va->base.vm; 2393 struct amdgpu_bo *bo = bo_va->base.bo; 2394 2395 mapping->bo_va = bo_va; 2396 list_add(&mapping->list, &bo_va->invalids); 2397 amdgpu_vm_it_insert(mapping, &vm->va); 2398 2399 if (mapping->flags & AMDGPU_PTE_PRT) 2400 amdgpu_vm_prt_get(adev); 2401 2402 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2403 !bo_va->base.moved) { 2404 list_move(&bo_va->base.vm_status, &vm->moved); 2405 } 2406 trace_amdgpu_vm_bo_map(bo_va, mapping); 2407 } 2408 2409 /** 2410 * amdgpu_vm_bo_map - map bo inside a vm 2411 * 2412 * @adev: amdgpu_device pointer 2413 * @bo_va: bo_va to store the address 2414 * @saddr: where to map the BO 2415 * @offset: requested offset in the BO 2416 * @size: BO size in bytes 2417 * @flags: attributes of pages (read/write/valid/etc.) 2418 * 2419 * Add a mapping of the BO at the specefied addr into the VM. 2420 * 2421 * Returns: 2422 * 0 for success, error for failure. 2423 * 2424 * Object has to be reserved and unreserved outside! 2425 */ 2426 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2427 struct amdgpu_bo_va *bo_va, 2428 uint64_t saddr, uint64_t offset, 2429 uint64_t size, uint64_t flags) 2430 { 2431 struct amdgpu_bo_va_mapping *mapping, *tmp; 2432 struct amdgpu_bo *bo = bo_va->base.bo; 2433 struct amdgpu_vm *vm = bo_va->base.vm; 2434 uint64_t eaddr; 2435 2436 /* validate the parameters */ 2437 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2438 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2439 return -EINVAL; 2440 2441 /* make sure object fit at this offset */ 2442 eaddr = saddr + size - 1; 2443 if (saddr >= eaddr || 2444 (bo && offset + size > amdgpu_bo_size(bo))) 2445 return -EINVAL; 2446 2447 saddr /= AMDGPU_GPU_PAGE_SIZE; 2448 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2449 2450 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2451 if (tmp) { 2452 /* bo and tmp overlap, invalid addr */ 2453 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2454 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2455 tmp->start, tmp->last + 1); 2456 return -EINVAL; 2457 } 2458 2459 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2460 if (!mapping) 2461 return -ENOMEM; 2462 2463 mapping->start = saddr; 2464 mapping->last = eaddr; 2465 mapping->offset = offset; 2466 mapping->flags = flags; 2467 2468 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2469 2470 return 0; 2471 } 2472 2473 /** 2474 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2475 * 2476 * @adev: amdgpu_device pointer 2477 * @bo_va: bo_va to store the address 2478 * @saddr: where to map the BO 2479 * @offset: requested offset in the BO 2480 * @size: BO size in bytes 2481 * @flags: attributes of pages (read/write/valid/etc.) 2482 * 2483 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2484 * mappings as we do so. 2485 * 2486 * Returns: 2487 * 0 for success, error for failure. 2488 * 2489 * Object has to be reserved and unreserved outside! 2490 */ 2491 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2492 struct amdgpu_bo_va *bo_va, 2493 uint64_t saddr, uint64_t offset, 2494 uint64_t size, uint64_t flags) 2495 { 2496 struct amdgpu_bo_va_mapping *mapping; 2497 struct amdgpu_bo *bo = bo_va->base.bo; 2498 uint64_t eaddr; 2499 int r; 2500 2501 /* validate the parameters */ 2502 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2503 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2504 return -EINVAL; 2505 2506 /* make sure object fit at this offset */ 2507 eaddr = saddr + size - 1; 2508 if (saddr >= eaddr || 2509 (bo && offset + size > amdgpu_bo_size(bo))) 2510 return -EINVAL; 2511 2512 /* Allocate all the needed memory */ 2513 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2514 if (!mapping) 2515 return -ENOMEM; 2516 2517 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2518 if (r) { 2519 kfree(mapping); 2520 return r; 2521 } 2522 2523 saddr /= AMDGPU_GPU_PAGE_SIZE; 2524 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2525 2526 mapping->start = saddr; 2527 mapping->last = eaddr; 2528 mapping->offset = offset; 2529 mapping->flags = flags; 2530 2531 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2532 2533 return 0; 2534 } 2535 2536 /** 2537 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2538 * 2539 * @adev: amdgpu_device pointer 2540 * @bo_va: bo_va to remove the address from 2541 * @saddr: where to the BO is mapped 2542 * 2543 * Remove a mapping of the BO at the specefied addr from the VM. 2544 * 2545 * Returns: 2546 * 0 for success, error for failure. 2547 * 2548 * Object has to be reserved and unreserved outside! 2549 */ 2550 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2551 struct amdgpu_bo_va *bo_va, 2552 uint64_t saddr) 2553 { 2554 struct amdgpu_bo_va_mapping *mapping; 2555 struct amdgpu_vm *vm = bo_va->base.vm; 2556 bool valid = true; 2557 2558 saddr /= AMDGPU_GPU_PAGE_SIZE; 2559 2560 list_for_each_entry(mapping, &bo_va->valids, list) { 2561 if (mapping->start == saddr) 2562 break; 2563 } 2564 2565 if (&mapping->list == &bo_va->valids) { 2566 valid = false; 2567 2568 list_for_each_entry(mapping, &bo_va->invalids, list) { 2569 if (mapping->start == saddr) 2570 break; 2571 } 2572 2573 if (&mapping->list == &bo_va->invalids) 2574 return -ENOENT; 2575 } 2576 2577 list_del(&mapping->list); 2578 amdgpu_vm_it_remove(mapping, &vm->va); 2579 mapping->bo_va = NULL; 2580 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2581 2582 if (valid) 2583 list_add(&mapping->list, &vm->freed); 2584 else 2585 amdgpu_vm_free_mapping(adev, vm, mapping, 2586 bo_va->last_pt_update); 2587 2588 return 0; 2589 } 2590 2591 /** 2592 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2593 * 2594 * @adev: amdgpu_device pointer 2595 * @vm: VM structure to use 2596 * @saddr: start of the range 2597 * @size: size of the range 2598 * 2599 * Remove all mappings in a range, split them as appropriate. 2600 * 2601 * Returns: 2602 * 0 for success, error for failure. 2603 */ 2604 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2605 struct amdgpu_vm *vm, 2606 uint64_t saddr, uint64_t size) 2607 { 2608 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2609 LIST_HEAD(removed); 2610 uint64_t eaddr; 2611 2612 eaddr = saddr + size - 1; 2613 saddr /= AMDGPU_GPU_PAGE_SIZE; 2614 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2615 2616 /* Allocate all the needed memory */ 2617 before = kzalloc(sizeof(*before), GFP_KERNEL); 2618 if (!before) 2619 return -ENOMEM; 2620 INIT_LIST_HEAD(&before->list); 2621 2622 after = kzalloc(sizeof(*after), GFP_KERNEL); 2623 if (!after) { 2624 kfree(before); 2625 return -ENOMEM; 2626 } 2627 INIT_LIST_HEAD(&after->list); 2628 2629 /* Now gather all removed mappings */ 2630 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2631 while (tmp) { 2632 /* Remember mapping split at the start */ 2633 if (tmp->start < saddr) { 2634 before->start = tmp->start; 2635 before->last = saddr - 1; 2636 before->offset = tmp->offset; 2637 before->flags = tmp->flags; 2638 before->bo_va = tmp->bo_va; 2639 list_add(&before->list, &tmp->bo_va->invalids); 2640 } 2641 2642 /* Remember mapping split at the end */ 2643 if (tmp->last > eaddr) { 2644 after->start = eaddr + 1; 2645 after->last = tmp->last; 2646 after->offset = tmp->offset; 2647 after->offset += after->start - tmp->start; 2648 after->flags = tmp->flags; 2649 after->bo_va = tmp->bo_va; 2650 list_add(&after->list, &tmp->bo_va->invalids); 2651 } 2652 2653 list_del(&tmp->list); 2654 list_add(&tmp->list, &removed); 2655 2656 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2657 } 2658 2659 /* And free them up */ 2660 list_for_each_entry_safe(tmp, next, &removed, list) { 2661 amdgpu_vm_it_remove(tmp, &vm->va); 2662 list_del(&tmp->list); 2663 2664 if (tmp->start < saddr) 2665 tmp->start = saddr; 2666 if (tmp->last > eaddr) 2667 tmp->last = eaddr; 2668 2669 tmp->bo_va = NULL; 2670 list_add(&tmp->list, &vm->freed); 2671 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2672 } 2673 2674 /* Insert partial mapping before the range */ 2675 if (!list_empty(&before->list)) { 2676 amdgpu_vm_it_insert(before, &vm->va); 2677 if (before->flags & AMDGPU_PTE_PRT) 2678 amdgpu_vm_prt_get(adev); 2679 } else { 2680 kfree(before); 2681 } 2682 2683 /* Insert partial mapping after the range */ 2684 if (!list_empty(&after->list)) { 2685 amdgpu_vm_it_insert(after, &vm->va); 2686 if (after->flags & AMDGPU_PTE_PRT) 2687 amdgpu_vm_prt_get(adev); 2688 } else { 2689 kfree(after); 2690 } 2691 2692 return 0; 2693 } 2694 2695 /** 2696 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2697 * 2698 * @vm: the requested VM 2699 * @addr: the address 2700 * 2701 * Find a mapping by it's address. 2702 * 2703 * Returns: 2704 * The amdgpu_bo_va_mapping matching for addr or NULL 2705 * 2706 */ 2707 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2708 uint64_t addr) 2709 { 2710 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2711 } 2712 2713 /** 2714 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2715 * 2716 * @vm: the requested vm 2717 * @ticket: CS ticket 2718 * 2719 * Trace all mappings of BOs reserved during a command submission. 2720 */ 2721 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2722 { 2723 struct amdgpu_bo_va_mapping *mapping; 2724 2725 if (!trace_amdgpu_vm_bo_cs_enabled()) 2726 return; 2727 2728 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2729 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2730 if (mapping->bo_va && mapping->bo_va->base.bo) { 2731 struct amdgpu_bo *bo; 2732 2733 bo = mapping->bo_va->base.bo; 2734 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2735 continue; 2736 } 2737 2738 trace_amdgpu_vm_bo_cs(mapping); 2739 } 2740 } 2741 2742 /** 2743 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2744 * 2745 * @adev: amdgpu_device pointer 2746 * @bo_va: requested bo_va 2747 * 2748 * Remove @bo_va->bo from the requested vm. 2749 * 2750 * Object have to be reserved! 2751 */ 2752 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2753 struct amdgpu_bo_va *bo_va) 2754 { 2755 struct amdgpu_bo_va_mapping *mapping, *next; 2756 struct amdgpu_bo *bo = bo_va->base.bo; 2757 struct amdgpu_vm *vm = bo_va->base.vm; 2758 struct amdgpu_vm_bo_base **base; 2759 2760 if (bo) { 2761 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2762 vm->bulk_moveable = false; 2763 2764 for (base = &bo_va->base.bo->vm_bo; *base; 2765 base = &(*base)->next) { 2766 if (*base != &bo_va->base) 2767 continue; 2768 2769 *base = bo_va->base.next; 2770 break; 2771 } 2772 } 2773 2774 spin_lock(&vm->invalidated_lock); 2775 list_del(&bo_va->base.vm_status); 2776 spin_unlock(&vm->invalidated_lock); 2777 2778 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2779 list_del(&mapping->list); 2780 amdgpu_vm_it_remove(mapping, &vm->va); 2781 mapping->bo_va = NULL; 2782 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2783 list_add(&mapping->list, &vm->freed); 2784 } 2785 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2786 list_del(&mapping->list); 2787 amdgpu_vm_it_remove(mapping, &vm->va); 2788 amdgpu_vm_free_mapping(adev, vm, mapping, 2789 bo_va->last_pt_update); 2790 } 2791 2792 dma_fence_put(bo_va->last_pt_update); 2793 kfree(bo_va); 2794 } 2795 2796 /** 2797 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2798 * 2799 * @adev: amdgpu_device pointer 2800 * @bo: amdgpu buffer object 2801 * @evicted: is the BO evicted 2802 * 2803 * Mark @bo as invalid. 2804 */ 2805 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2806 struct amdgpu_bo *bo, bool evicted) 2807 { 2808 struct amdgpu_vm_bo_base *bo_base; 2809 2810 /* shadow bo doesn't have bo base, its validation needs its parent */ 2811 if (bo->parent && bo->parent->shadow == bo) 2812 bo = bo->parent; 2813 2814 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2815 struct amdgpu_vm *vm = bo_base->vm; 2816 2817 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2818 amdgpu_vm_bo_evicted(bo_base); 2819 continue; 2820 } 2821 2822 if (bo_base->moved) 2823 continue; 2824 bo_base->moved = true; 2825 2826 if (bo->tbo.type == ttm_bo_type_kernel) 2827 amdgpu_vm_bo_relocated(bo_base); 2828 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2829 amdgpu_vm_bo_moved(bo_base); 2830 else 2831 amdgpu_vm_bo_invalidated(bo_base); 2832 } 2833 } 2834 2835 /** 2836 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2837 * 2838 * @vm_size: VM size 2839 * 2840 * Returns: 2841 * VM page table as power of two 2842 */ 2843 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2844 { 2845 /* Total bits covered by PD + PTs */ 2846 unsigned bits = ilog2(vm_size) + 18; 2847 2848 /* Make sure the PD is 4K in size up to 8GB address space. 2849 Above that split equal between PD and PTs */ 2850 if (vm_size <= 8) 2851 return (bits - 9); 2852 else 2853 return ((bits + 3) / 2); 2854 } 2855 2856 /** 2857 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2858 * 2859 * @adev: amdgpu_device pointer 2860 * @min_vm_size: the minimum vm size in GB if it's set auto 2861 * @fragment_size_default: Default PTE fragment size 2862 * @max_level: max VMPT level 2863 * @max_bits: max address space size in bits 2864 * 2865 */ 2866 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2867 uint32_t fragment_size_default, unsigned max_level, 2868 unsigned max_bits) 2869 { 2870 unsigned int max_size = 1 << (max_bits - 30); 2871 unsigned int vm_size; 2872 uint64_t tmp; 2873 2874 /* adjust vm size first */ 2875 if (amdgpu_vm_size != -1) { 2876 vm_size = amdgpu_vm_size; 2877 if (vm_size > max_size) { 2878 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2879 amdgpu_vm_size, max_size); 2880 vm_size = max_size; 2881 } 2882 } else { 2883 struct sysinfo si; 2884 unsigned int phys_ram_gb; 2885 2886 /* Optimal VM size depends on the amount of physical 2887 * RAM available. Underlying requirements and 2888 * assumptions: 2889 * 2890 * - Need to map system memory and VRAM from all GPUs 2891 * - VRAM from other GPUs not known here 2892 * - Assume VRAM <= system memory 2893 * - On GFX8 and older, VM space can be segmented for 2894 * different MTYPEs 2895 * - Need to allow room for fragmentation, guard pages etc. 2896 * 2897 * This adds up to a rough guess of system memory x3. 2898 * Round up to power of two to maximize the available 2899 * VM size with the given page table size. 2900 */ 2901 si_meminfo(&si); 2902 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2903 (1 << 30) - 1) >> 30; 2904 vm_size = roundup_pow_of_two( 2905 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2906 } 2907 2908 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2909 2910 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2911 if (amdgpu_vm_block_size != -1) 2912 tmp >>= amdgpu_vm_block_size - 9; 2913 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2914 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2915 switch (adev->vm_manager.num_level) { 2916 case 3: 2917 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2918 break; 2919 case 2: 2920 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2921 break; 2922 case 1: 2923 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2924 break; 2925 default: 2926 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2927 } 2928 /* block size depends on vm size and hw setup*/ 2929 if (amdgpu_vm_block_size != -1) 2930 adev->vm_manager.block_size = 2931 min((unsigned)amdgpu_vm_block_size, max_bits 2932 - AMDGPU_GPU_PAGE_SHIFT 2933 - 9 * adev->vm_manager.num_level); 2934 else if (adev->vm_manager.num_level > 1) 2935 adev->vm_manager.block_size = 9; 2936 else 2937 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2938 2939 if (amdgpu_vm_fragment_size == -1) 2940 adev->vm_manager.fragment_size = fragment_size_default; 2941 else 2942 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2943 2944 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2945 vm_size, adev->vm_manager.num_level + 1, 2946 adev->vm_manager.block_size, 2947 adev->vm_manager.fragment_size); 2948 } 2949 2950 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2951 { 2952 struct amdgpu_retryfault_hashtable *fault_hash; 2953 2954 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2955 if (!fault_hash) 2956 return fault_hash; 2957 2958 INIT_CHASH_TABLE(fault_hash->hash, 2959 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2960 spin_lock_init(&fault_hash->lock); 2961 fault_hash->count = 0; 2962 2963 return fault_hash; 2964 } 2965 2966 /** 2967 * amdgpu_vm_init - initialize a vm instance 2968 * 2969 * @adev: amdgpu_device pointer 2970 * @vm: requested vm 2971 * @vm_context: Indicates if it GFX or Compute context 2972 * @pasid: Process address space identifier 2973 * 2974 * Init @vm fields. 2975 * 2976 * Returns: 2977 * 0 for success, error for failure. 2978 */ 2979 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2980 int vm_context, unsigned int pasid) 2981 { 2982 struct amdgpu_bo_param bp; 2983 struct amdgpu_bo *root; 2984 int r, i; 2985 2986 vm->va = RB_ROOT_CACHED; 2987 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2988 vm->reserved_vmid[i] = NULL; 2989 INIT_LIST_HEAD(&vm->evicted); 2990 INIT_LIST_HEAD(&vm->relocated); 2991 INIT_LIST_HEAD(&vm->moved); 2992 INIT_LIST_HEAD(&vm->idle); 2993 INIT_LIST_HEAD(&vm->invalidated); 2994 spin_lock_init(&vm->invalidated_lock); 2995 INIT_LIST_HEAD(&vm->freed); 2996 2997 /* create scheduler entity for page table updates */ 2998 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2999 adev->vm_manager.vm_pte_num_rqs, NULL); 3000 if (r) 3001 return r; 3002 3003 vm->pte_support_ats = false; 3004 3005 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 3006 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3007 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3008 3009 if (adev->asic_type == CHIP_RAVEN) 3010 vm->pte_support_ats = true; 3011 } else { 3012 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3013 AMDGPU_VM_USE_CPU_FOR_GFX); 3014 } 3015 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3016 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3017 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3018 "CPU update of VM recommended only for large BAR system\n"); 3019 vm->last_update = NULL; 3020 3021 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3022 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3023 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3024 r = amdgpu_bo_create(adev, &bp, &root); 3025 if (r) 3026 goto error_free_sched_entity; 3027 3028 r = amdgpu_bo_reserve(root, true); 3029 if (r) 3030 goto error_free_root; 3031 3032 r = reservation_object_reserve_shared(root->tbo.resv, 1); 3033 if (r) 3034 goto error_unreserve; 3035 3036 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3037 3038 r = amdgpu_vm_clear_bo(adev, vm, root, 3039 adev->vm_manager.root_level, 3040 vm->pte_support_ats); 3041 if (r) 3042 goto error_unreserve; 3043 3044 amdgpu_bo_unreserve(vm->root.base.bo); 3045 3046 if (pasid) { 3047 unsigned long flags; 3048 3049 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3050 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3051 GFP_ATOMIC); 3052 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3053 if (r < 0) 3054 goto error_free_root; 3055 3056 vm->pasid = pasid; 3057 } 3058 3059 vm->fault_hash = init_fault_hash(); 3060 if (!vm->fault_hash) { 3061 r = -ENOMEM; 3062 goto error_free_root; 3063 } 3064 3065 INIT_KFIFO(vm->faults); 3066 3067 return 0; 3068 3069 error_unreserve: 3070 amdgpu_bo_unreserve(vm->root.base.bo); 3071 3072 error_free_root: 3073 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3074 amdgpu_bo_unref(&vm->root.base.bo); 3075 vm->root.base.bo = NULL; 3076 3077 error_free_sched_entity: 3078 drm_sched_entity_destroy(&vm->entity); 3079 3080 return r; 3081 } 3082 3083 /** 3084 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3085 * 3086 * @adev: amdgpu_device pointer 3087 * @vm: requested vm 3088 * 3089 * This only works on GFX VMs that don't have any BOs added and no 3090 * page tables allocated yet. 3091 * 3092 * Changes the following VM parameters: 3093 * - use_cpu_for_update 3094 * - pte_supports_ats 3095 * - pasid (old PASID is released, because compute manages its own PASIDs) 3096 * 3097 * Reinitializes the page directory to reflect the changed ATS 3098 * setting. 3099 * 3100 * Returns: 3101 * 0 for success, -errno for errors. 3102 */ 3103 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3104 { 3105 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3106 int r; 3107 3108 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3109 if (r) 3110 return r; 3111 3112 /* Sanity checks */ 3113 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3114 r = -EINVAL; 3115 goto unreserve_bo; 3116 } 3117 3118 if (pasid) { 3119 unsigned long flags; 3120 3121 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3122 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3123 GFP_ATOMIC); 3124 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3125 3126 if (r == -ENOSPC) 3127 goto unreserve_bo; 3128 r = 0; 3129 } 3130 3131 /* Check if PD needs to be reinitialized and do it before 3132 * changing any other state, in case it fails. 3133 */ 3134 if (pte_support_ats != vm->pte_support_ats) { 3135 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3136 adev->vm_manager.root_level, 3137 pte_support_ats); 3138 if (r) 3139 goto free_idr; 3140 } 3141 3142 /* Update VM state */ 3143 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3144 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3145 vm->pte_support_ats = pte_support_ats; 3146 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3147 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3148 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3149 "CPU update of VM recommended only for large BAR system\n"); 3150 3151 if (vm->pasid) { 3152 unsigned long flags; 3153 3154 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3155 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3156 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3157 3158 /* Free the original amdgpu allocated pasid 3159 * Will be replaced with kfd allocated pasid 3160 */ 3161 amdgpu_pasid_free(vm->pasid); 3162 vm->pasid = 0; 3163 } 3164 3165 /* Free the shadow bo for compute VM */ 3166 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3167 3168 if (pasid) 3169 vm->pasid = pasid; 3170 3171 goto unreserve_bo; 3172 3173 free_idr: 3174 if (pasid) { 3175 unsigned long flags; 3176 3177 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3178 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3179 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3180 } 3181 unreserve_bo: 3182 amdgpu_bo_unreserve(vm->root.base.bo); 3183 return r; 3184 } 3185 3186 /** 3187 * amdgpu_vm_release_compute - release a compute vm 3188 * @adev: amdgpu_device pointer 3189 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3190 * 3191 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3192 * pasid from vm. Compute should stop use of vm after this call. 3193 */ 3194 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3195 { 3196 if (vm->pasid) { 3197 unsigned long flags; 3198 3199 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3200 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3201 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3202 } 3203 vm->pasid = 0; 3204 } 3205 3206 /** 3207 * amdgpu_vm_fini - tear down a vm instance 3208 * 3209 * @adev: amdgpu_device pointer 3210 * @vm: requested vm 3211 * 3212 * Tear down @vm. 3213 * Unbind the VM and remove all bos from the vm bo list 3214 */ 3215 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3216 { 3217 struct amdgpu_bo_va_mapping *mapping, *tmp; 3218 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3219 struct amdgpu_bo *root; 3220 u64 fault; 3221 int i, r; 3222 3223 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3224 3225 /* Clear pending page faults from IH when the VM is destroyed */ 3226 while (kfifo_get(&vm->faults, &fault)) 3227 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3228 3229 if (vm->pasid) { 3230 unsigned long flags; 3231 3232 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3233 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3234 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3235 } 3236 3237 kfree(vm->fault_hash); 3238 vm->fault_hash = NULL; 3239 3240 drm_sched_entity_destroy(&vm->entity); 3241 3242 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3243 dev_err(adev->dev, "still active bo inside vm\n"); 3244 } 3245 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3246 &vm->va.rb_root, rb) { 3247 /* Don't remove the mapping here, we don't want to trigger a 3248 * rebalance and the tree is about to be destroyed anyway. 3249 */ 3250 list_del(&mapping->list); 3251 kfree(mapping); 3252 } 3253 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3254 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3255 amdgpu_vm_prt_fini(adev, vm); 3256 prt_fini_needed = false; 3257 } 3258 3259 list_del(&mapping->list); 3260 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3261 } 3262 3263 root = amdgpu_bo_ref(vm->root.base.bo); 3264 r = amdgpu_bo_reserve(root, true); 3265 if (r) { 3266 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3267 } else { 3268 amdgpu_vm_free_pts(adev, vm); 3269 amdgpu_bo_unreserve(root); 3270 } 3271 amdgpu_bo_unref(&root); 3272 dma_fence_put(vm->last_update); 3273 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3274 amdgpu_vmid_free_reserved(adev, vm, i); 3275 } 3276 3277 /** 3278 * amdgpu_vm_manager_init - init the VM manager 3279 * 3280 * @adev: amdgpu_device pointer 3281 * 3282 * Initialize the VM manager structures 3283 */ 3284 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3285 { 3286 unsigned i; 3287 3288 amdgpu_vmid_mgr_init(adev); 3289 3290 adev->vm_manager.fence_context = 3291 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3292 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3293 adev->vm_manager.seqno[i] = 0; 3294 3295 spin_lock_init(&adev->vm_manager.prt_lock); 3296 atomic_set(&adev->vm_manager.num_prt_users, 0); 3297 3298 /* If not overridden by the user, by default, only in large BAR systems 3299 * Compute VM tables will be updated by CPU 3300 */ 3301 #ifdef CONFIG_X86_64 3302 if (amdgpu_vm_update_mode == -1) { 3303 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3304 adev->vm_manager.vm_update_mode = 3305 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3306 else 3307 adev->vm_manager.vm_update_mode = 0; 3308 } else 3309 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3310 #else 3311 adev->vm_manager.vm_update_mode = 0; 3312 #endif 3313 3314 idr_init(&adev->vm_manager.pasid_idr); 3315 spin_lock_init(&adev->vm_manager.pasid_lock); 3316 } 3317 3318 /** 3319 * amdgpu_vm_manager_fini - cleanup VM manager 3320 * 3321 * @adev: amdgpu_device pointer 3322 * 3323 * Cleanup the VM manager and free resources. 3324 */ 3325 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3326 { 3327 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3328 idr_destroy(&adev->vm_manager.pasid_idr); 3329 3330 amdgpu_vmid_mgr_fini(adev); 3331 } 3332 3333 /** 3334 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3335 * 3336 * @dev: drm device pointer 3337 * @data: drm_amdgpu_vm 3338 * @filp: drm file pointer 3339 * 3340 * Returns: 3341 * 0 for success, -errno for errors. 3342 */ 3343 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3344 { 3345 union drm_amdgpu_vm *args = data; 3346 struct amdgpu_device *adev = dev->dev_private; 3347 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3348 int r; 3349 3350 switch (args->in.op) { 3351 case AMDGPU_VM_OP_RESERVE_VMID: 3352 /* current, we only have requirement to reserve vmid from gfxhub */ 3353 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3354 if (r) 3355 return r; 3356 break; 3357 case AMDGPU_VM_OP_UNRESERVE_VMID: 3358 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3359 break; 3360 default: 3361 return -EINVAL; 3362 } 3363 3364 return 0; 3365 } 3366 3367 /** 3368 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3369 * 3370 * @adev: drm device pointer 3371 * @pasid: PASID identifier for VM 3372 * @task_info: task_info to fill. 3373 */ 3374 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3375 struct amdgpu_task_info *task_info) 3376 { 3377 struct amdgpu_vm *vm; 3378 unsigned long flags; 3379 3380 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3381 3382 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3383 if (vm) 3384 *task_info = vm->task_info; 3385 3386 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3387 } 3388 3389 /** 3390 * amdgpu_vm_set_task_info - Sets VMs task info. 3391 * 3392 * @vm: vm for which to set the info 3393 */ 3394 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3395 { 3396 if (!vm->task_info.pid) { 3397 vm->task_info.pid = current->pid; 3398 get_task_comm(vm->task_info.task_name, current); 3399 3400 if (current->group_leader->mm == current->mm) { 3401 vm->task_info.tgid = current->group_leader->pid; 3402 get_task_comm(vm->task_info.process_name, current->group_leader); 3403 } 3404 } 3405 } 3406 3407 /** 3408 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3409 * 3410 * @fault_hash: fault hash table 3411 * @key: 64-bit encoding of PASID and address 3412 * 3413 * This should be called when a retry page fault interrupt is 3414 * received. If this is a new page fault, it will be added to a hash 3415 * table. The return value indicates whether this is a new fault, or 3416 * a fault that was already known and is already being handled. 3417 * 3418 * If there are too many pending page faults, this will fail. Retry 3419 * interrupts should be ignored in this case until there is enough 3420 * free space. 3421 * 3422 * Returns 0 if the fault was added, 1 if the fault was already known, 3423 * -ENOSPC if there are too many pending faults. 3424 */ 3425 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3426 { 3427 unsigned long flags; 3428 int r = -ENOSPC; 3429 3430 if (WARN_ON_ONCE(!fault_hash)) 3431 /* Should be allocated in amdgpu_vm_init 3432 */ 3433 return r; 3434 3435 spin_lock_irqsave(&fault_hash->lock, flags); 3436 3437 /* Only let the hash table fill up to 50% for best performance */ 3438 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3439 goto unlock_out; 3440 3441 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3442 if (!r) 3443 fault_hash->count++; 3444 3445 /* chash_table_copy_in should never fail unless we're losing count */ 3446 WARN_ON_ONCE(r < 0); 3447 3448 unlock_out: 3449 spin_unlock_irqrestore(&fault_hash->lock, flags); 3450 return r; 3451 } 3452 3453 /** 3454 * amdgpu_vm_clear_fault - Remove a page fault record 3455 * 3456 * @fault_hash: fault hash table 3457 * @key: 64-bit encoding of PASID and address 3458 * 3459 * This should be called when a page fault has been handled. Any 3460 * future interrupt with this key will be processed as a new 3461 * page fault. 3462 */ 3463 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3464 { 3465 unsigned long flags; 3466 int r; 3467 3468 if (!fault_hash) 3469 return; 3470 3471 spin_lock_irqsave(&fault_hash->lock, flags); 3472 3473 r = chash_table_remove(&fault_hash->hash, key, NULL); 3474 if (!WARN_ON_ONCE(r < 0)) { 3475 fault_hash->count--; 3476 WARN_ON_ONCE(fault_hash->count < 0); 3477 } 3478 3479 spin_unlock_irqrestore(&fault_hash->lock, flags); 3480 } 3481