1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 
38 /**
39  * DOC: GPUVM
40  *
41  * GPUVM is similar to the legacy gart on older asics, however
42  * rather than there being a single global gart table
43  * for the entire GPU, there are multiple VM page tables active
44  * at any given time.  The VM page tables can contain a mix
45  * vram pages and system memory pages and system memory pages
46  * can be mapped as snooped (cached system pages) or unsnooped
47  * (uncached system pages).
48  * Each VM has an ID associated with it and there is a page table
49  * associated with each VMID.  When execting a command buffer,
50  * the kernel tells the the ring what VMID to use for that command
51  * buffer.  VMIDs are allocated dynamically as commands are submitted.
52  * The userspace drivers maintain their own address space and the kernel
53  * sets up their pages tables accordingly when they submit their
54  * command buffers and a VMID is assigned.
55  * Cayman/Trinity support up to 8 active VMs at any given time;
56  * SI supports 16.
57  */
58 
59 #define START(node) ((node)->start)
60 #define LAST(node) ((node)->last)
61 
62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
63 		     START, LAST, static, amdgpu_vm_it)
64 
65 #undef START
66 #undef LAST
67 
68 /**
69  * struct amdgpu_pte_update_params - Local structure
70  *
71  * Encapsulate some VM table update parameters to reduce
72  * the number of function parameters
73  *
74  */
75 struct amdgpu_pte_update_params {
76 
77 	/**
78 	 * @adev: amdgpu device we do this update for
79 	 */
80 	struct amdgpu_device *adev;
81 
82 	/**
83 	 * @vm: optional amdgpu_vm we do this update for
84 	 */
85 	struct amdgpu_vm *vm;
86 
87 	/**
88 	 * @src: address where to copy page table entries from
89 	 */
90 	uint64_t src;
91 
92 	/**
93 	 * @ib: indirect buffer to fill with commands
94 	 */
95 	struct amdgpu_ib *ib;
96 
97 	/**
98 	 * @func: Function which actually does the update
99 	 */
100 	void (*func)(struct amdgpu_pte_update_params *params,
101 		     struct amdgpu_bo *bo, uint64_t pe,
102 		     uint64_t addr, unsigned count, uint32_t incr,
103 		     uint64_t flags);
104 	/**
105 	 * @pages_addr:
106 	 *
107 	 * DMA addresses to use for mapping, used during VM update by CPU
108 	 */
109 	dma_addr_t *pages_addr;
110 };
111 
112 /**
113  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
114  */
115 struct amdgpu_prt_cb {
116 
117 	/**
118 	 * @adev: amdgpu device
119 	 */
120 	struct amdgpu_device *adev;
121 
122 	/**
123 	 * @cb: callback
124 	 */
125 	struct dma_fence_cb cb;
126 };
127 
128 /**
129  * amdgpu_vm_level_shift - return the addr shift for each level
130  *
131  * @adev: amdgpu_device pointer
132  * @level: VMPT level
133  *
134  * Returns:
135  * The number of bits the pfn needs to be right shifted for a level.
136  */
137 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
138 				      unsigned level)
139 {
140 	unsigned shift = 0xff;
141 
142 	switch (level) {
143 	case AMDGPU_VM_PDB2:
144 	case AMDGPU_VM_PDB1:
145 	case AMDGPU_VM_PDB0:
146 		shift = 9 * (AMDGPU_VM_PDB0 - level) +
147 			adev->vm_manager.block_size;
148 		break;
149 	case AMDGPU_VM_PTB:
150 		shift = 0;
151 		break;
152 	default:
153 		dev_err(adev->dev, "the level%d isn't supported.\n", level);
154 	}
155 
156 	return shift;
157 }
158 
159 /**
160  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
161  *
162  * @adev: amdgpu_device pointer
163  * @level: VMPT level
164  *
165  * Returns:
166  * The number of entries in a page directory or page table.
167  */
168 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
169 				      unsigned level)
170 {
171 	unsigned shift = amdgpu_vm_level_shift(adev,
172 					       adev->vm_manager.root_level);
173 
174 	if (level == adev->vm_manager.root_level)
175 		/* For the root directory */
176 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
177 	else if (level != AMDGPU_VM_PTB)
178 		/* Everything in between */
179 		return 512;
180 	else
181 		/* For the page tables on the leaves */
182 		return AMDGPU_VM_PTE_COUNT(adev);
183 }
184 
185 /**
186  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
187  *
188  * @adev: amdgpu_device pointer
189  * @level: VMPT level
190  *
191  * Returns:
192  * The mask to extract the entry number of a PD/PT from an address.
193  */
194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
195 				       unsigned int level)
196 {
197 	if (level <= adev->vm_manager.root_level)
198 		return 0xffffffff;
199 	else if (level != AMDGPU_VM_PTB)
200 		return 0x1ff;
201 	else
202 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
203 }
204 
205 /**
206  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
207  *
208  * @adev: amdgpu_device pointer
209  * @level: VMPT level
210  *
211  * Returns:
212  * The size of the BO for a page directory or page table in bytes.
213  */
214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
215 {
216 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
217 }
218 
219 /**
220  * amdgpu_vm_bo_evicted - vm_bo is evicted
221  *
222  * @vm_bo: vm_bo which is evicted
223  *
224  * State for PDs/PTs and per VM BOs which are not at the location they should
225  * be.
226  */
227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 	struct amdgpu_vm *vm = vm_bo->vm;
230 	struct amdgpu_bo *bo = vm_bo->bo;
231 
232 	vm_bo->moved = true;
233 	if (bo->tbo.type == ttm_bo_type_kernel)
234 		list_move(&vm_bo->vm_status, &vm->evicted);
235 	else
236 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
237 }
238 
239 /**
240  * amdgpu_vm_bo_relocated - vm_bo is reloacted
241  *
242  * @vm_bo: vm_bo which is relocated
243  *
244  * State for PDs/PTs which needs to update their parent PD.
245  */
246 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 	list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
249 }
250 
251 /**
252  * amdgpu_vm_bo_moved - vm_bo is moved
253  *
254  * @vm_bo: vm_bo which is moved
255  *
256  * State for per VM BOs which are moved, but that change is not yet reflected
257  * in the page tables.
258  */
259 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
262 }
263 
264 /**
265  * amdgpu_vm_bo_idle - vm_bo is idle
266  *
267  * @vm_bo: vm_bo which is now idle
268  *
269  * State for PDs/PTs and per VM BOs which have gone through the state machine
270  * and are now idle.
271  */
272 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
273 {
274 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
275 	vm_bo->moved = false;
276 }
277 
278 /**
279  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
280  *
281  * @vm_bo: vm_bo which is now invalidated
282  *
283  * State for normal BOs which are invalidated and that change not yet reflected
284  * in the PTs.
285  */
286 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	spin_lock(&vm_bo->vm->invalidated_lock);
289 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
290 	spin_unlock(&vm_bo->vm->invalidated_lock);
291 }
292 
293 /**
294  * amdgpu_vm_bo_done - vm_bo is done
295  *
296  * @vm_bo: vm_bo which is now done
297  *
298  * State for normal BOs which are invalidated and that change has been updated
299  * in the PTs.
300  */
301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
302 {
303 	spin_lock(&vm_bo->vm->invalidated_lock);
304 	list_del_init(&vm_bo->vm_status);
305 	spin_unlock(&vm_bo->vm->invalidated_lock);
306 }
307 
308 /**
309  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
310  *
311  * @base: base structure for tracking BO usage in a VM
312  * @vm: vm to which bo is to be added
313  * @bo: amdgpu buffer object
314  *
315  * Initialize a bo_va_base structure and add it to the appropriate lists
316  *
317  */
318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
319 				   struct amdgpu_vm *vm,
320 				   struct amdgpu_bo *bo)
321 {
322 	base->vm = vm;
323 	base->bo = bo;
324 	base->next = NULL;
325 	INIT_LIST_HEAD(&base->vm_status);
326 
327 	if (!bo)
328 		return;
329 	base->next = bo->vm_bo;
330 	bo->vm_bo = base;
331 
332 	if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
333 		return;
334 
335 	vm->bulk_moveable = false;
336 	if (bo->tbo.type == ttm_bo_type_kernel)
337 		amdgpu_vm_bo_relocated(base);
338 	else
339 		amdgpu_vm_bo_idle(base);
340 
341 	if (bo->preferred_domains &
342 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
343 		return;
344 
345 	/*
346 	 * we checked all the prerequisites, but it looks like this per vm bo
347 	 * is currently evicted. add the bo to the evicted list to make sure it
348 	 * is validated on next vm use to avoid fault.
349 	 * */
350 	amdgpu_vm_bo_evicted(base);
351 }
352 
353 /**
354  * amdgpu_vm_pt_parent - get the parent page directory
355  *
356  * @pt: child page table
357  *
358  * Helper to get the parent entry for the child page table. NULL if we are at
359  * the root page directory.
360  */
361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
362 {
363 	struct amdgpu_bo *parent = pt->base.bo->parent;
364 
365 	if (!parent)
366 		return NULL;
367 
368 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
369 }
370 
371 /**
372  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
373  */
374 struct amdgpu_vm_pt_cursor {
375 	uint64_t pfn;
376 	struct amdgpu_vm_pt *parent;
377 	struct amdgpu_vm_pt *entry;
378 	unsigned level;
379 };
380 
381 /**
382  * amdgpu_vm_pt_start - start PD/PT walk
383  *
384  * @adev: amdgpu_device pointer
385  * @vm: amdgpu_vm structure
386  * @start: start address of the walk
387  * @cursor: state to initialize
388  *
389  * Initialize a amdgpu_vm_pt_cursor to start a walk.
390  */
391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
392 			       struct amdgpu_vm *vm, uint64_t start,
393 			       struct amdgpu_vm_pt_cursor *cursor)
394 {
395 	cursor->pfn = start;
396 	cursor->parent = NULL;
397 	cursor->entry = &vm->root;
398 	cursor->level = adev->vm_manager.root_level;
399 }
400 
401 /**
402  * amdgpu_vm_pt_descendant - go to child node
403  *
404  * @adev: amdgpu_device pointer
405  * @cursor: current state
406  *
407  * Walk to the child node of the current node.
408  * Returns:
409  * True if the walk was possible, false otherwise.
410  */
411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
412 				    struct amdgpu_vm_pt_cursor *cursor)
413 {
414 	unsigned mask, shift, idx;
415 
416 	if (!cursor->entry->entries)
417 		return false;
418 
419 	BUG_ON(!cursor->entry->base.bo);
420 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
421 	shift = amdgpu_vm_level_shift(adev, cursor->level);
422 
423 	++cursor->level;
424 	idx = (cursor->pfn >> shift) & mask;
425 	cursor->parent = cursor->entry;
426 	cursor->entry = &cursor->entry->entries[idx];
427 	return true;
428 }
429 
430 /**
431  * amdgpu_vm_pt_sibling - go to sibling node
432  *
433  * @adev: amdgpu_device pointer
434  * @cursor: current state
435  *
436  * Walk to the sibling node of the current node.
437  * Returns:
438  * True if the walk was possible, false otherwise.
439  */
440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
441 				 struct amdgpu_vm_pt_cursor *cursor)
442 {
443 	unsigned shift, num_entries;
444 
445 	/* Root doesn't have a sibling */
446 	if (!cursor->parent)
447 		return false;
448 
449 	/* Go to our parents and see if we got a sibling */
450 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
451 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
452 
453 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
454 		return false;
455 
456 	cursor->pfn += 1ULL << shift;
457 	cursor->pfn &= ~((1ULL << shift) - 1);
458 	++cursor->entry;
459 	return true;
460 }
461 
462 /**
463  * amdgpu_vm_pt_ancestor - go to parent node
464  *
465  * @cursor: current state
466  *
467  * Walk to the parent node of the current node.
468  * Returns:
469  * True if the walk was possible, false otherwise.
470  */
471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
472 {
473 	if (!cursor->parent)
474 		return false;
475 
476 	--cursor->level;
477 	cursor->entry = cursor->parent;
478 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
479 	return true;
480 }
481 
482 /**
483  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
484  *
485  * @adev: amdgpu_device pointer
486  * @cursor: current state
487  *
488  * Walk the PD/PT tree to the next node.
489  */
490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
491 			      struct amdgpu_vm_pt_cursor *cursor)
492 {
493 	/* First try a newborn child */
494 	if (amdgpu_vm_pt_descendant(adev, cursor))
495 		return;
496 
497 	/* If that didn't worked try to find a sibling */
498 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
499 		/* No sibling, go to our parents and grandparents */
500 		if (!amdgpu_vm_pt_ancestor(cursor)) {
501 			cursor->pfn = ~0ll;
502 			return;
503 		}
504 	}
505 }
506 
507 /**
508  * amdgpu_vm_pt_first_leaf - get first leaf PD/PT
509  *
510  * @adev: amdgpu_device pointer
511  * @vm: amdgpu_vm structure
512  * @start: start addr of the walk
513  * @cursor: state to initialize
514  *
515  * Start a walk and go directly to the leaf node.
516  */
517 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev,
518 				    struct amdgpu_vm *vm, uint64_t start,
519 				    struct amdgpu_vm_pt_cursor *cursor)
520 {
521 	amdgpu_vm_pt_start(adev, vm, start, cursor);
522 	while (amdgpu_vm_pt_descendant(adev, cursor));
523 }
524 
525 /**
526  * amdgpu_vm_pt_next_leaf - get next leaf PD/PT
527  *
528  * @adev: amdgpu_device pointer
529  * @cursor: current state
530  *
531  * Walk the PD/PT tree to the next leaf node.
532  */
533 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev,
534 				   struct amdgpu_vm_pt_cursor *cursor)
535 {
536 	amdgpu_vm_pt_next(adev, cursor);
537 	if (cursor->pfn != ~0ll)
538 		while (amdgpu_vm_pt_descendant(adev, cursor));
539 }
540 
541 /**
542  * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy
543  */
544 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor)		\
545 	for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor));		\
546 	     (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor)))
547 
548 /**
549  * amdgpu_vm_pt_first_dfs - start a deep first search
550  *
551  * @adev: amdgpu_device structure
552  * @vm: amdgpu_vm structure
553  * @cursor: state to initialize
554  *
555  * Starts a deep first traversal of the PD/PT tree.
556  */
557 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
558 				   struct amdgpu_vm *vm,
559 				   struct amdgpu_vm_pt_cursor *cursor)
560 {
561 	amdgpu_vm_pt_start(adev, vm, 0, cursor);
562 	while (amdgpu_vm_pt_descendant(adev, cursor));
563 }
564 
565 /**
566  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
567  *
568  * @adev: amdgpu_device structure
569  * @cursor: current state
570  *
571  * Move the cursor to the next node in a deep first search.
572  */
573 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
574 				  struct amdgpu_vm_pt_cursor *cursor)
575 {
576 	if (!cursor->entry)
577 		return;
578 
579 	if (!cursor->parent)
580 		cursor->entry = NULL;
581 	else if (amdgpu_vm_pt_sibling(adev, cursor))
582 		while (amdgpu_vm_pt_descendant(adev, cursor));
583 	else
584 		amdgpu_vm_pt_ancestor(cursor);
585 }
586 
587 /**
588  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
589  */
590 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry)			\
591 	for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)),			\
592 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
593 	     (entry); (entry) = (cursor).entry,					\
594 	     amdgpu_vm_pt_next_dfs((adev), &(cursor)))
595 
596 /**
597  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
598  *
599  * @vm: vm providing the BOs
600  * @validated: head of validation list
601  * @entry: entry to add
602  *
603  * Add the page directory to the list of BOs to
604  * validate for command submission.
605  */
606 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
607 			 struct list_head *validated,
608 			 struct amdgpu_bo_list_entry *entry)
609 {
610 	entry->priority = 0;
611 	entry->tv.bo = &vm->root.base.bo->tbo;
612 	/* One for the VM updates, one for TTM and one for the CS job */
613 	entry->tv.num_shared = 3;
614 	entry->user_pages = NULL;
615 	list_add(&entry->tv.head, validated);
616 }
617 
618 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
619 {
620 	struct amdgpu_bo *abo;
621 	struct amdgpu_vm_bo_base *bo_base;
622 
623 	if (!amdgpu_bo_is_amdgpu_bo(bo))
624 		return;
625 
626 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
627 		return;
628 
629 	abo = ttm_to_amdgpu_bo(bo);
630 	if (!abo->parent)
631 		return;
632 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
633 		struct amdgpu_vm *vm = bo_base->vm;
634 
635 		if (abo->tbo.resv == vm->root.base.bo->tbo.resv)
636 			vm->bulk_moveable = false;
637 	}
638 
639 }
640 /**
641  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
642  *
643  * @adev: amdgpu device pointer
644  * @vm: vm providing the BOs
645  *
646  * Move all BOs to the end of LRU and remember their positions to put them
647  * together.
648  */
649 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
650 				struct amdgpu_vm *vm)
651 {
652 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
653 	struct amdgpu_vm_bo_base *bo_base;
654 
655 #if 0
656 	if (vm->bulk_moveable) {
657 		spin_lock(&glob->lru_lock);
658 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
659 		spin_unlock(&glob->lru_lock);
660 		return;
661 	}
662 #endif
663 
664 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
665 
666 	spin_lock(&glob->lru_lock);
667 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
668 		struct amdgpu_bo *bo = bo_base->bo;
669 
670 		if (!bo->parent)
671 			continue;
672 
673 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
674 		if (bo->shadow)
675 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
676 						&vm->lru_bulk_move);
677 	}
678 	spin_unlock(&glob->lru_lock);
679 
680 	vm->bulk_moveable = true;
681 }
682 
683 /**
684  * amdgpu_vm_validate_pt_bos - validate the page table BOs
685  *
686  * @adev: amdgpu device pointer
687  * @vm: vm providing the BOs
688  * @validate: callback to do the validation
689  * @param: parameter for the validation callback
690  *
691  * Validate the page table BOs on command submission if neccessary.
692  *
693  * Returns:
694  * Validation result.
695  */
696 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
697 			      int (*validate)(void *p, struct amdgpu_bo *bo),
698 			      void *param)
699 {
700 	struct amdgpu_vm_bo_base *bo_base, *tmp;
701 	int r = 0;
702 
703 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
704 		struct amdgpu_bo *bo = bo_base->bo;
705 
706 		r = validate(param, bo);
707 		if (r)
708 			break;
709 
710 		if (bo->tbo.type != ttm_bo_type_kernel) {
711 			amdgpu_vm_bo_moved(bo_base);
712 		} else {
713 			if (vm->use_cpu_for_update)
714 				r = amdgpu_bo_kmap(bo, NULL);
715 			else
716 				r = amdgpu_ttm_alloc_gart(&bo->tbo);
717 			if (r)
718 				break;
719 			if (bo->shadow) {
720 				r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo);
721 				if (r)
722 					break;
723 			}
724 			amdgpu_vm_bo_relocated(bo_base);
725 		}
726 	}
727 
728 	return r;
729 }
730 
731 /**
732  * amdgpu_vm_ready - check VM is ready for updates
733  *
734  * @vm: VM to check
735  *
736  * Check if all VM PDs/PTs are ready for updates
737  *
738  * Returns:
739  * True if eviction list is empty.
740  */
741 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
742 {
743 	return list_empty(&vm->evicted);
744 }
745 
746 /**
747  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
748  *
749  * @adev: amdgpu_device pointer
750  * @vm: VM to clear BO from
751  * @bo: BO to clear
752  * @level: level this BO is at
753  * @pte_support_ats: indicate ATS support from PTE
754  *
755  * Root PD needs to be reserved when calling this.
756  *
757  * Returns:
758  * 0 on success, errno otherwise.
759  */
760 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
761 			      struct amdgpu_vm *vm, struct amdgpu_bo *bo,
762 			      unsigned level, bool pte_support_ats)
763 {
764 	struct ttm_operation_ctx ctx = { true, false };
765 	struct dma_fence *fence = NULL;
766 	unsigned entries, ats_entries;
767 	struct amdgpu_ring *ring;
768 	struct amdgpu_job *job;
769 	uint64_t addr;
770 	int r;
771 
772 	entries = amdgpu_bo_size(bo) / 8;
773 
774 	if (pte_support_ats) {
775 		if (level == adev->vm_manager.root_level) {
776 			ats_entries = amdgpu_vm_level_shift(adev, level);
777 			ats_entries += AMDGPU_GPU_PAGE_SHIFT;
778 			ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries;
779 			ats_entries = min(ats_entries, entries);
780 			entries -= ats_entries;
781 		} else {
782 			ats_entries = entries;
783 			entries = 0;
784 		}
785 	} else {
786 		ats_entries = 0;
787 	}
788 
789 	ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
790 
791 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
792 	if (r)
793 		goto error;
794 
795 	r = amdgpu_ttm_alloc_gart(&bo->tbo);
796 	if (r)
797 		return r;
798 
799 	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
800 	if (r)
801 		goto error;
802 
803 	addr = amdgpu_bo_gpu_offset(bo);
804 	if (ats_entries) {
805 		uint64_t ats_value;
806 
807 		ats_value = AMDGPU_PTE_DEFAULT_ATC;
808 		if (level != AMDGPU_VM_PTB)
809 			ats_value |= AMDGPU_PDE_PTE;
810 
811 		amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
812 				      ats_entries, 0, ats_value);
813 		addr += ats_entries * 8;
814 	}
815 
816 	if (entries) {
817 		uint64_t value = 0;
818 
819 		/* Workaround for fault priority problem on GMC9 */
820 		if (level == AMDGPU_VM_PTB && adev->asic_type >= CHIP_VEGA10)
821 			value = AMDGPU_PTE_EXECUTABLE;
822 
823 		amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
824 				      entries, 0, value);
825 	}
826 
827 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
828 
829 	WARN_ON(job->ibs[0].length_dw > 64);
830 	r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv,
831 			     AMDGPU_FENCE_OWNER_KFD, false);
832 	if (r)
833 		goto error_free;
834 
835 	r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED,
836 			      &fence);
837 	if (r)
838 		goto error_free;
839 
840 	amdgpu_bo_fence(bo, fence, true);
841 	dma_fence_put(fence);
842 
843 	if (bo->shadow)
844 		return amdgpu_vm_clear_bo(adev, vm, bo->shadow,
845 					  level, pte_support_ats);
846 
847 	return 0;
848 
849 error_free:
850 	amdgpu_job_free(job);
851 
852 error:
853 	return r;
854 }
855 
856 /**
857  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
858  *
859  * @adev: amdgpu_device pointer
860  * @vm: requesting vm
861  * @bp: resulting BO allocation parameters
862  */
863 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
864 			       int level, struct amdgpu_bo_param *bp)
865 {
866 	memset(bp, 0, sizeof(*bp));
867 
868 	bp->size = amdgpu_vm_bo_size(adev, level);
869 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
870 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
871 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
872 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
873 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
874 	if (vm->use_cpu_for_update)
875 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
876 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
877 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
878 	bp->type = ttm_bo_type_kernel;
879 	if (vm->root.base.bo)
880 		bp->resv = vm->root.base.bo->tbo.resv;
881 }
882 
883 /**
884  * amdgpu_vm_alloc_pts - Allocate page tables.
885  *
886  * @adev: amdgpu_device pointer
887  * @vm: VM to allocate page tables for
888  * @saddr: Start address which needs to be allocated
889  * @size: Size from start address we need.
890  *
891  * Make sure the page directories and page tables are allocated
892  *
893  * Returns:
894  * 0 on success, errno otherwise.
895  */
896 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
897 			struct amdgpu_vm *vm,
898 			uint64_t saddr, uint64_t size)
899 {
900 	struct amdgpu_vm_pt_cursor cursor;
901 	struct amdgpu_bo *pt;
902 	bool ats = false;
903 	uint64_t eaddr;
904 	int r;
905 
906 	/* validate the parameters */
907 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
908 		return -EINVAL;
909 
910 	eaddr = saddr + size - 1;
911 
912 	if (vm->pte_support_ats)
913 		ats = saddr < AMDGPU_GMC_HOLE_START;
914 
915 	saddr /= AMDGPU_GPU_PAGE_SIZE;
916 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
917 
918 	if (eaddr >= adev->vm_manager.max_pfn) {
919 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
920 			eaddr, adev->vm_manager.max_pfn);
921 		return -EINVAL;
922 	}
923 
924 	for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) {
925 		struct amdgpu_vm_pt *entry = cursor.entry;
926 		struct amdgpu_bo_param bp;
927 
928 		if (cursor.level < AMDGPU_VM_PTB) {
929 			unsigned num_entries;
930 
931 			num_entries = amdgpu_vm_num_entries(adev, cursor.level);
932 			entry->entries = kvmalloc_array(num_entries,
933 							sizeof(*entry->entries),
934 							GFP_KERNEL |
935 							__GFP_ZERO);
936 			if (!entry->entries)
937 				return -ENOMEM;
938 		}
939 
940 
941 		if (entry->base.bo)
942 			continue;
943 
944 		amdgpu_vm_bo_param(adev, vm, cursor.level, &bp);
945 
946 		r = amdgpu_bo_create(adev, &bp, &pt);
947 		if (r)
948 			return r;
949 
950 		if (vm->use_cpu_for_update) {
951 			r = amdgpu_bo_kmap(pt, NULL);
952 			if (r)
953 				goto error_free_pt;
954 		}
955 
956 		/* Keep a reference to the root directory to avoid
957 		* freeing them up in the wrong order.
958 		*/
959 		pt->parent = amdgpu_bo_ref(cursor.parent->base.bo);
960 
961 		amdgpu_vm_bo_base_init(&entry->base, vm, pt);
962 
963 		r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats);
964 		if (r)
965 			goto error_free_pt;
966 	}
967 
968 	return 0;
969 
970 error_free_pt:
971 	amdgpu_bo_unref(&pt->shadow);
972 	amdgpu_bo_unref(&pt);
973 	return r;
974 }
975 
976 /**
977  * amdgpu_vm_free_pts - free PD/PT levels
978  *
979  * @adev: amdgpu device structure
980  * @vm: amdgpu vm structure
981  *
982  * Free the page directory or page table level and all sub levels.
983  */
984 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
985 			       struct amdgpu_vm *vm)
986 {
987 	struct amdgpu_vm_pt_cursor cursor;
988 	struct amdgpu_vm_pt *entry;
989 
990 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) {
991 
992 		if (entry->base.bo) {
993 			entry->base.bo->vm_bo = NULL;
994 			list_del(&entry->base.vm_status);
995 			amdgpu_bo_unref(&entry->base.bo->shadow);
996 			amdgpu_bo_unref(&entry->base.bo);
997 		}
998 		kvfree(entry->entries);
999 	}
1000 
1001 	BUG_ON(vm->root.base.bo);
1002 }
1003 
1004 /**
1005  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1006  *
1007  * @adev: amdgpu_device pointer
1008  */
1009 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1010 {
1011 	const struct amdgpu_ip_block *ip_block;
1012 	bool has_compute_vm_bug;
1013 	struct amdgpu_ring *ring;
1014 	int i;
1015 
1016 	has_compute_vm_bug = false;
1017 
1018 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1019 	if (ip_block) {
1020 		/* Compute has a VM bug for GFX version < 7.
1021 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1022 		if (ip_block->version->major <= 7)
1023 			has_compute_vm_bug = true;
1024 		else if (ip_block->version->major == 8)
1025 			if (adev->gfx.mec_fw_version < 673)
1026 				has_compute_vm_bug = true;
1027 	}
1028 
1029 	for (i = 0; i < adev->num_rings; i++) {
1030 		ring = adev->rings[i];
1031 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1032 			/* only compute rings */
1033 			ring->has_compute_vm_bug = has_compute_vm_bug;
1034 		else
1035 			ring->has_compute_vm_bug = false;
1036 	}
1037 }
1038 
1039 /**
1040  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1041  *
1042  * @ring: ring on which the job will be submitted
1043  * @job: job to submit
1044  *
1045  * Returns:
1046  * True if sync is needed.
1047  */
1048 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1049 				  struct amdgpu_job *job)
1050 {
1051 	struct amdgpu_device *adev = ring->adev;
1052 	unsigned vmhub = ring->funcs->vmhub;
1053 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1054 	struct amdgpu_vmid *id;
1055 	bool gds_switch_needed;
1056 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1057 
1058 	if (job->vmid == 0)
1059 		return false;
1060 	id = &id_mgr->ids[job->vmid];
1061 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1062 		id->gds_base != job->gds_base ||
1063 		id->gds_size != job->gds_size ||
1064 		id->gws_base != job->gws_base ||
1065 		id->gws_size != job->gws_size ||
1066 		id->oa_base != job->oa_base ||
1067 		id->oa_size != job->oa_size);
1068 
1069 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1070 		return true;
1071 
1072 	return vm_flush_needed || gds_switch_needed;
1073 }
1074 
1075 /**
1076  * amdgpu_vm_flush - hardware flush the vm
1077  *
1078  * @ring: ring to use for flush
1079  * @job:  related job
1080  * @need_pipe_sync: is pipe sync needed
1081  *
1082  * Emit a VM flush when it is necessary.
1083  *
1084  * Returns:
1085  * 0 on success, errno otherwise.
1086  */
1087 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1088 {
1089 	struct amdgpu_device *adev = ring->adev;
1090 	unsigned vmhub = ring->funcs->vmhub;
1091 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1092 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1093 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1094 		id->gds_base != job->gds_base ||
1095 		id->gds_size != job->gds_size ||
1096 		id->gws_base != job->gws_base ||
1097 		id->gws_size != job->gws_size ||
1098 		id->oa_base != job->oa_base ||
1099 		id->oa_size != job->oa_size);
1100 	bool vm_flush_needed = job->vm_needs_flush;
1101 	bool pasid_mapping_needed = id->pasid != job->pasid ||
1102 		!id->pasid_mapping ||
1103 		!dma_fence_is_signaled(id->pasid_mapping);
1104 	struct dma_fence *fence = NULL;
1105 	unsigned patch_offset = 0;
1106 	int r;
1107 
1108 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1109 		gds_switch_needed = true;
1110 		vm_flush_needed = true;
1111 		pasid_mapping_needed = true;
1112 	}
1113 
1114 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1115 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1116 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1117 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1118 		ring->funcs->emit_wreg;
1119 
1120 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1121 		return 0;
1122 
1123 	if (ring->funcs->init_cond_exec)
1124 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1125 
1126 	if (need_pipe_sync)
1127 		amdgpu_ring_emit_pipeline_sync(ring);
1128 
1129 	if (vm_flush_needed) {
1130 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1131 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1132 	}
1133 
1134 	if (pasid_mapping_needed)
1135 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1136 
1137 	if (vm_flush_needed || pasid_mapping_needed) {
1138 		r = amdgpu_fence_emit(ring, &fence, 0);
1139 		if (r)
1140 			return r;
1141 	}
1142 
1143 	if (vm_flush_needed) {
1144 		mutex_lock(&id_mgr->lock);
1145 		dma_fence_put(id->last_flush);
1146 		id->last_flush = dma_fence_get(fence);
1147 		id->current_gpu_reset_count =
1148 			atomic_read(&adev->gpu_reset_counter);
1149 		mutex_unlock(&id_mgr->lock);
1150 	}
1151 
1152 	if (pasid_mapping_needed) {
1153 		id->pasid = job->pasid;
1154 		dma_fence_put(id->pasid_mapping);
1155 		id->pasid_mapping = dma_fence_get(fence);
1156 	}
1157 	dma_fence_put(fence);
1158 
1159 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1160 		id->gds_base = job->gds_base;
1161 		id->gds_size = job->gds_size;
1162 		id->gws_base = job->gws_base;
1163 		id->gws_size = job->gws_size;
1164 		id->oa_base = job->oa_base;
1165 		id->oa_size = job->oa_size;
1166 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1167 					    job->gds_size, job->gws_base,
1168 					    job->gws_size, job->oa_base,
1169 					    job->oa_size);
1170 	}
1171 
1172 	if (ring->funcs->patch_cond_exec)
1173 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1174 
1175 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1176 	if (ring->funcs->emit_switch_buffer) {
1177 		amdgpu_ring_emit_switch_buffer(ring);
1178 		amdgpu_ring_emit_switch_buffer(ring);
1179 	}
1180 	return 0;
1181 }
1182 
1183 /**
1184  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1185  *
1186  * @vm: requested vm
1187  * @bo: requested buffer object
1188  *
1189  * Find @bo inside the requested vm.
1190  * Search inside the @bos vm list for the requested vm
1191  * Returns the found bo_va or NULL if none is found
1192  *
1193  * Object has to be reserved!
1194  *
1195  * Returns:
1196  * Found bo_va or NULL.
1197  */
1198 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1199 				       struct amdgpu_bo *bo)
1200 {
1201 	struct amdgpu_vm_bo_base *base;
1202 
1203 	for (base = bo->vm_bo; base; base = base->next) {
1204 		if (base->vm != vm)
1205 			continue;
1206 
1207 		return container_of(base, struct amdgpu_bo_va, base);
1208 	}
1209 	return NULL;
1210 }
1211 
1212 /**
1213  * amdgpu_vm_do_set_ptes - helper to call the right asic function
1214  *
1215  * @params: see amdgpu_pte_update_params definition
1216  * @bo: PD/PT to update
1217  * @pe: addr of the page entry
1218  * @addr: dst addr to write into pe
1219  * @count: number of page entries to update
1220  * @incr: increase next addr by incr bytes
1221  * @flags: hw access flags
1222  *
1223  * Traces the parameters and calls the right asic functions
1224  * to setup the page table using the DMA.
1225  */
1226 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
1227 				  struct amdgpu_bo *bo,
1228 				  uint64_t pe, uint64_t addr,
1229 				  unsigned count, uint32_t incr,
1230 				  uint64_t flags)
1231 {
1232 	pe += amdgpu_bo_gpu_offset(bo);
1233 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1234 
1235 	if (count < 3) {
1236 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
1237 				    addr | flags, count, incr);
1238 
1239 	} else {
1240 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
1241 				      count, incr, flags);
1242 	}
1243 }
1244 
1245 /**
1246  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
1247  *
1248  * @params: see amdgpu_pte_update_params definition
1249  * @bo: PD/PT to update
1250  * @pe: addr of the page entry
1251  * @addr: dst addr to write into pe
1252  * @count: number of page entries to update
1253  * @incr: increase next addr by incr bytes
1254  * @flags: hw access flags
1255  *
1256  * Traces the parameters and calls the DMA function to copy the PTEs.
1257  */
1258 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
1259 				   struct amdgpu_bo *bo,
1260 				   uint64_t pe, uint64_t addr,
1261 				   unsigned count, uint32_t incr,
1262 				   uint64_t flags)
1263 {
1264 	uint64_t src = (params->src + (addr >> 12) * 8);
1265 
1266 	pe += amdgpu_bo_gpu_offset(bo);
1267 	trace_amdgpu_vm_copy_ptes(pe, src, count);
1268 
1269 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
1270 }
1271 
1272 /**
1273  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1274  *
1275  * @pages_addr: optional DMA address to use for lookup
1276  * @addr: the unmapped addr
1277  *
1278  * Look up the physical address of the page that the pte resolves
1279  * to.
1280  *
1281  * Returns:
1282  * The pointer for the page table entry.
1283  */
1284 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1285 {
1286 	uint64_t result;
1287 
1288 	/* page table offset */
1289 	result = pages_addr[addr >> PAGE_SHIFT];
1290 
1291 	/* in case cpu page size != gpu page size*/
1292 	result |= addr & (~PAGE_MASK);
1293 
1294 	result &= 0xFFFFFFFFFFFFF000ULL;
1295 
1296 	return result;
1297 }
1298 
1299 /**
1300  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
1301  *
1302  * @params: see amdgpu_pte_update_params definition
1303  * @bo: PD/PT to update
1304  * @pe: kmap addr of the page entry
1305  * @addr: dst addr to write into pe
1306  * @count: number of page entries to update
1307  * @incr: increase next addr by incr bytes
1308  * @flags: hw access flags
1309  *
1310  * Write count number of PT/PD entries directly.
1311  */
1312 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
1313 				   struct amdgpu_bo *bo,
1314 				   uint64_t pe, uint64_t addr,
1315 				   unsigned count, uint32_t incr,
1316 				   uint64_t flags)
1317 {
1318 	unsigned int i;
1319 	uint64_t value;
1320 
1321 	pe += (unsigned long)amdgpu_bo_kptr(bo);
1322 
1323 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1324 
1325 	for (i = 0; i < count; i++) {
1326 		value = params->pages_addr ?
1327 			amdgpu_vm_map_gart(params->pages_addr, addr) :
1328 			addr;
1329 		amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1330 				       i, value, flags);
1331 		addr += incr;
1332 	}
1333 }
1334 
1335 /**
1336  * amdgpu_vm_update_func - helper to call update function
1337  *
1338  * Calls the update function for both the given BO as well as its shadow.
1339  */
1340 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params,
1341 				  struct amdgpu_bo *bo,
1342 				  uint64_t pe, uint64_t addr,
1343 				  unsigned count, uint32_t incr,
1344 				  uint64_t flags)
1345 {
1346 	if (bo->shadow)
1347 		params->func(params, bo->shadow, pe, addr, count, incr, flags);
1348 	params->func(params, bo, pe, addr, count, incr, flags);
1349 }
1350 
1351 /*
1352  * amdgpu_vm_update_pde - update a single level in the hierarchy
1353  *
1354  * @param: parameters for the update
1355  * @vm: requested vm
1356  * @parent: parent directory
1357  * @entry: entry to update
1358  *
1359  * Makes sure the requested entry in parent is up to date.
1360  */
1361 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
1362 				 struct amdgpu_vm *vm,
1363 				 struct amdgpu_vm_pt *parent,
1364 				 struct amdgpu_vm_pt *entry)
1365 {
1366 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1367 	uint64_t pde, pt, flags;
1368 	unsigned level;
1369 
1370 	/* Don't update huge pages here */
1371 	if (entry->huge)
1372 		return;
1373 
1374 	for (level = 0, pbo = bo->parent; pbo; ++level)
1375 		pbo = pbo->parent;
1376 
1377 	level += params->adev->vm_manager.root_level;
1378 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1379 	pde = (entry - parent->entries) * 8;
1380 	amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags);
1381 }
1382 
1383 /*
1384  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1385  *
1386  * @adev: amdgpu_device pointer
1387  * @vm: related vm
1388  *
1389  * Mark all PD level as invalid after an error.
1390  */
1391 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1392 				     struct amdgpu_vm *vm)
1393 {
1394 	struct amdgpu_vm_pt_cursor cursor;
1395 	struct amdgpu_vm_pt *entry;
1396 
1397 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry)
1398 		if (entry->base.bo && !entry->base.moved)
1399 			amdgpu_vm_bo_relocated(&entry->base);
1400 }
1401 
1402 /*
1403  * amdgpu_vm_update_directories - make sure that all directories are valid
1404  *
1405  * @adev: amdgpu_device pointer
1406  * @vm: requested vm
1407  *
1408  * Makes sure all directories are up to date.
1409  *
1410  * Returns:
1411  * 0 for success, error for failure.
1412  */
1413 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1414 				 struct amdgpu_vm *vm)
1415 {
1416 	struct amdgpu_pte_update_params params;
1417 	struct amdgpu_job *job;
1418 	unsigned ndw = 0;
1419 	int r = 0;
1420 
1421 	if (list_empty(&vm->relocated))
1422 		return 0;
1423 
1424 restart:
1425 	memset(&params, 0, sizeof(params));
1426 	params.adev = adev;
1427 
1428 	if (vm->use_cpu_for_update) {
1429 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
1430 					AMDGPU_FENCE_OWNER_VM, true);
1431 		if (unlikely(r))
1432 			return r;
1433 
1434 		params.func = amdgpu_vm_cpu_set_ptes;
1435 	} else {
1436 		ndw = 512 * 8;
1437 		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1438 		if (r)
1439 			return r;
1440 
1441 		params.ib = &job->ibs[0];
1442 		params.func = amdgpu_vm_do_set_ptes;
1443 	}
1444 
1445 	while (!list_empty(&vm->relocated)) {
1446 		struct amdgpu_vm_pt *pt, *entry;
1447 
1448 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1449 					 base.vm_status);
1450 		amdgpu_vm_bo_idle(&entry->base);
1451 
1452 		pt = amdgpu_vm_pt_parent(entry);
1453 		if (!pt)
1454 			continue;
1455 
1456 		amdgpu_vm_update_pde(&params, vm, pt, entry);
1457 
1458 		if (!vm->use_cpu_for_update &&
1459 		    (ndw - params.ib->length_dw) < 32)
1460 			break;
1461 	}
1462 
1463 	if (vm->use_cpu_for_update) {
1464 		/* Flush HDP */
1465 		mb();
1466 		amdgpu_asic_flush_hdp(adev, NULL);
1467 	} else if (params.ib->length_dw == 0) {
1468 		amdgpu_job_free(job);
1469 	} else {
1470 		struct amdgpu_bo *root = vm->root.base.bo;
1471 		struct amdgpu_ring *ring;
1472 		struct dma_fence *fence;
1473 
1474 		ring = container_of(vm->entity.rq->sched, struct amdgpu_ring,
1475 				    sched);
1476 
1477 		amdgpu_ring_pad_ib(ring, params.ib);
1478 		amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
1479 				 AMDGPU_FENCE_OWNER_VM, false);
1480 		WARN_ON(params.ib->length_dw > ndw);
1481 		r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM,
1482 				      &fence);
1483 		if (r)
1484 			goto error;
1485 
1486 		amdgpu_bo_fence(root, fence, true);
1487 		dma_fence_put(vm->last_update);
1488 		vm->last_update = fence;
1489 	}
1490 
1491 	if (!list_empty(&vm->relocated))
1492 		goto restart;
1493 
1494 	return 0;
1495 
1496 error:
1497 	amdgpu_vm_invalidate_pds(adev, vm);
1498 	amdgpu_job_free(job);
1499 	return r;
1500 }
1501 
1502 /**
1503  * amdgpu_vm_update_flags - figure out flags for PTE updates
1504  *
1505  * Make sure to set the right flags for the PTEs at the desired level.
1506  */
1507 static void amdgpu_vm_update_flags(struct amdgpu_pte_update_params *params,
1508 				   struct amdgpu_bo *bo, unsigned level,
1509 				   uint64_t pe, uint64_t addr,
1510 				   unsigned count, uint32_t incr,
1511 				   uint64_t flags)
1512 
1513 {
1514 	if (level != AMDGPU_VM_PTB) {
1515 		flags |= AMDGPU_PDE_PTE;
1516 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1517 
1518 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1519 		   !(flags & AMDGPU_PTE_VALID) &&
1520 		   !(flags & AMDGPU_PTE_PRT)) {
1521 
1522 		/* Workaround for fault priority problem on GMC9 */
1523 		flags |= AMDGPU_PTE_EXECUTABLE;
1524 	}
1525 
1526 	amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags);
1527 }
1528 
1529 /**
1530  * amdgpu_vm_fragment - get fragment for PTEs
1531  *
1532  * @params: see amdgpu_pte_update_params definition
1533  * @start: first PTE to handle
1534  * @end: last PTE to handle
1535  * @flags: hw mapping flags
1536  * @frag: resulting fragment size
1537  * @frag_end: end of this fragment
1538  *
1539  * Returns the first possible fragment for the start and end address.
1540  */
1541 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params,
1542 			       uint64_t start, uint64_t end, uint64_t flags,
1543 			       unsigned int *frag, uint64_t *frag_end)
1544 {
1545 	/**
1546 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1547 	 * field in the PTE. When this field is set to a non-zero value, page
1548 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1549 	 * flags are considered valid for all PTEs within the fragment range
1550 	 * and corresponding mappings are assumed to be physically contiguous.
1551 	 *
1552 	 * The L1 TLB can store a single PTE for the whole fragment,
1553 	 * significantly increasing the space available for translation
1554 	 * caching. This leads to large improvements in throughput when the
1555 	 * TLB is under pressure.
1556 	 *
1557 	 * The L2 TLB distributes small and large fragments into two
1558 	 * asymmetric partitions. The large fragment cache is significantly
1559 	 * larger. Thus, we try to use large fragments wherever possible.
1560 	 * Userspace can support this by aligning virtual base address and
1561 	 * allocation size to the fragment size.
1562 	 *
1563 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1564 	 * is now directly feed with small/huge/giant pages from the walker.
1565 	 */
1566 	unsigned max_frag;
1567 
1568 	if (params->adev->asic_type < CHIP_VEGA10)
1569 		max_frag = params->adev->vm_manager.fragment_size;
1570 	else
1571 		max_frag = 31;
1572 
1573 	/* system pages are non continuously */
1574 	if (params->src) {
1575 		*frag = 0;
1576 		*frag_end = end;
1577 		return;
1578 	}
1579 
1580 	/* This intentionally wraps around if no bit is set */
1581 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1582 	if (*frag >= max_frag) {
1583 		*frag = max_frag;
1584 		*frag_end = end & ~((1ULL << max_frag) - 1);
1585 	} else {
1586 		*frag_end = start + (1 << *frag);
1587 	}
1588 }
1589 
1590 /**
1591  * amdgpu_vm_update_ptes - make sure that page tables are valid
1592  *
1593  * @params: see amdgpu_pte_update_params definition
1594  * @start: start of GPU address range
1595  * @end: end of GPU address range
1596  * @dst: destination address to map to, the next dst inside the function
1597  * @flags: mapping flags
1598  *
1599  * Update the page tables in the range @start - @end.
1600  *
1601  * Returns:
1602  * 0 for success, -EINVAL for failure.
1603  */
1604 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1605 				 uint64_t start, uint64_t end,
1606 				 uint64_t dst, uint64_t flags)
1607 {
1608 	struct amdgpu_device *adev = params->adev;
1609 	struct amdgpu_vm_pt_cursor cursor;
1610 	uint64_t frag_start = start, frag_end;
1611 	unsigned int frag;
1612 
1613 	/* figure out the initial fragment */
1614 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1615 
1616 	/* walk over the address space and update the PTs */
1617 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1618 	while (cursor.pfn < end) {
1619 		struct amdgpu_bo *pt = cursor.entry->base.bo;
1620 		unsigned shift, parent_shift, mask;
1621 		uint64_t incr, entry_end, pe_start;
1622 
1623 		if (!pt)
1624 			return -ENOENT;
1625 
1626 		/* The root level can't be a huge page */
1627 		if (cursor.level == adev->vm_manager.root_level) {
1628 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1629 				return -ENOENT;
1630 			continue;
1631 		}
1632 
1633 		/* If it isn't already handled it can't be a huge page */
1634 		if (cursor.entry->huge) {
1635 			/* Add the entry to the relocated list to update it. */
1636 			cursor.entry->huge = false;
1637 			amdgpu_vm_bo_relocated(&cursor.entry->base);
1638 		}
1639 
1640 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1641 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1642 		if (adev->asic_type < CHIP_VEGA10) {
1643 			/* No huge page support before GMC v9 */
1644 			if (cursor.level != AMDGPU_VM_PTB) {
1645 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1646 					return -ENOENT;
1647 				continue;
1648 			}
1649 		} else if (frag < shift) {
1650 			/* We can't use this level when the fragment size is
1651 			 * smaller than the address shift. Go to the next
1652 			 * child entry and try again.
1653 			 */
1654 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1655 				return -ENOENT;
1656 			continue;
1657 		} else if (frag >= parent_shift &&
1658 			   cursor.level - 1 != adev->vm_manager.root_level) {
1659 			/* If the fragment size is even larger than the parent
1660 			 * shift we should go up one level and check it again
1661 			 * unless one level up is the root level.
1662 			 */
1663 			if (!amdgpu_vm_pt_ancestor(&cursor))
1664 				return -ENOENT;
1665 			continue;
1666 		}
1667 
1668 		/* Looks good so far, calculate parameters for the update */
1669 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1670 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1671 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1672 		entry_end = (uint64_t)(mask + 1) << shift;
1673 		entry_end += cursor.pfn & ~(entry_end - 1);
1674 		entry_end = min(entry_end, end);
1675 
1676 		do {
1677 			uint64_t upd_end = min(entry_end, frag_end);
1678 			unsigned nptes = (upd_end - frag_start) >> shift;
1679 
1680 			amdgpu_vm_update_flags(params, pt, cursor.level,
1681 					       pe_start, dst, nptes, incr,
1682 					       flags | AMDGPU_PTE_FRAG(frag));
1683 
1684 			pe_start += nptes * 8;
1685 			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1686 
1687 			frag_start = upd_end;
1688 			if (frag_start >= frag_end) {
1689 				/* figure out the next fragment */
1690 				amdgpu_vm_fragment(params, frag_start, end,
1691 						   flags, &frag, &frag_end);
1692 				if (frag < shift)
1693 					break;
1694 			}
1695 		} while (frag_start < entry_end);
1696 
1697 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1698 			/* Mark all child entries as huge */
1699 			while (cursor.pfn < frag_start) {
1700 				cursor.entry->huge = true;
1701 				amdgpu_vm_pt_next(adev, &cursor);
1702 			}
1703 
1704 		} else if (frag >= shift) {
1705 			/* or just move on to the next on the same level. */
1706 			amdgpu_vm_pt_next(adev, &cursor);
1707 		}
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1715  *
1716  * @adev: amdgpu_device pointer
1717  * @exclusive: fence we need to sync to
1718  * @pages_addr: DMA addresses to use for mapping
1719  * @vm: requested vm
1720  * @start: start of mapped range
1721  * @last: last mapped entry
1722  * @flags: flags for the entries
1723  * @addr: addr to set the area to
1724  * @fence: optional resulting fence
1725  *
1726  * Fill in the page table entries between @start and @last.
1727  *
1728  * Returns:
1729  * 0 for success, -EINVAL for failure.
1730  */
1731 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1732 				       struct dma_fence *exclusive,
1733 				       dma_addr_t *pages_addr,
1734 				       struct amdgpu_vm *vm,
1735 				       uint64_t start, uint64_t last,
1736 				       uint64_t flags, uint64_t addr,
1737 				       struct dma_fence **fence)
1738 {
1739 	struct amdgpu_ring *ring;
1740 	void *owner = AMDGPU_FENCE_OWNER_VM;
1741 	unsigned nptes, ncmds, ndw;
1742 	struct amdgpu_job *job;
1743 	struct amdgpu_pte_update_params params;
1744 	struct dma_fence *f = NULL;
1745 	int r;
1746 
1747 	memset(&params, 0, sizeof(params));
1748 	params.adev = adev;
1749 	params.vm = vm;
1750 
1751 	/* sync to everything except eviction fences on unmapping */
1752 	if (!(flags & AMDGPU_PTE_VALID))
1753 		owner = AMDGPU_FENCE_OWNER_KFD;
1754 
1755 	if (vm->use_cpu_for_update) {
1756 		/* params.src is used as flag to indicate system Memory */
1757 		if (pages_addr)
1758 			params.src = ~0;
1759 
1760 		/* Wait for PT BOs to be idle. PTs share the same resv. object
1761 		 * as the root PD BO
1762 		 */
1763 		r = amdgpu_bo_sync_wait(vm->root.base.bo, owner, true);
1764 		if (unlikely(r))
1765 			return r;
1766 
1767 		/* Wait for any BO move to be completed */
1768 		if (exclusive) {
1769 			r = dma_fence_wait(exclusive, true);
1770 			if (unlikely(r))
1771 				return r;
1772 		}
1773 
1774 		params.func = amdgpu_vm_cpu_set_ptes;
1775 		params.pages_addr = pages_addr;
1776 		return amdgpu_vm_update_ptes(&params, start, last + 1,
1777 					     addr, flags);
1778 	}
1779 
1780 	ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
1781 
1782 	nptes = last - start + 1;
1783 
1784 	/*
1785 	 * reserve space for two commands every (1 << BLOCK_SIZE)
1786 	 *  entries or 2k dwords (whatever is smaller)
1787 	 */
1788 	ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1789 
1790 	/* The second command is for the shadow pagetables. */
1791 	if (vm->root.base.bo->shadow)
1792 		ncmds *= 2;
1793 
1794 	/* padding, etc. */
1795 	ndw = 64;
1796 
1797 	if (pages_addr) {
1798 		/* copy commands needed */
1799 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1800 
1801 		/* and also PTEs */
1802 		ndw += nptes * 2;
1803 
1804 		params.func = amdgpu_vm_do_copy_ptes;
1805 
1806 	} else {
1807 		/* set page commands needed */
1808 		ndw += ncmds * 10;
1809 
1810 		/* extra commands for begin/end fragments */
1811 		ncmds = 2 * adev->vm_manager.fragment_size;
1812 		if (vm->root.base.bo->shadow)
1813 			ncmds *= 2;
1814 
1815 		ndw += 10 * ncmds;
1816 
1817 		params.func = amdgpu_vm_do_set_ptes;
1818 	}
1819 
1820 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1821 	if (r)
1822 		return r;
1823 
1824 	params.ib = &job->ibs[0];
1825 
1826 	if (pages_addr) {
1827 		uint64_t *pte;
1828 		unsigned i;
1829 
1830 		/* Put the PTEs at the end of the IB. */
1831 		i = ndw - nptes * 2;
1832 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1833 		params.src = job->ibs->gpu_addr + i * 4;
1834 
1835 		for (i = 0; i < nptes; ++i) {
1836 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1837 						    AMDGPU_GPU_PAGE_SIZE);
1838 			pte[i] |= flags;
1839 		}
1840 		addr = 0;
1841 	}
1842 
1843 	r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1844 	if (r)
1845 		goto error_free;
1846 
1847 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1848 			     owner, false);
1849 	if (r)
1850 		goto error_free;
1851 
1852 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1853 	if (r)
1854 		goto error_free;
1855 
1856 	amdgpu_ring_pad_ib(ring, params.ib);
1857 	WARN_ON(params.ib->length_dw > ndw);
1858 	r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f);
1859 	if (r)
1860 		goto error_free;
1861 
1862 	amdgpu_bo_fence(vm->root.base.bo, f, true);
1863 	dma_fence_put(*fence);
1864 	*fence = f;
1865 	return 0;
1866 
1867 error_free:
1868 	amdgpu_job_free(job);
1869 	return r;
1870 }
1871 
1872 /**
1873  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1874  *
1875  * @adev: amdgpu_device pointer
1876  * @exclusive: fence we need to sync to
1877  * @pages_addr: DMA addresses to use for mapping
1878  * @vm: requested vm
1879  * @mapping: mapped range and flags to use for the update
1880  * @flags: HW flags for the mapping
1881  * @nodes: array of drm_mm_nodes with the MC addresses
1882  * @fence: optional resulting fence
1883  *
1884  * Split the mapping into smaller chunks so that each update fits
1885  * into a SDMA IB.
1886  *
1887  * Returns:
1888  * 0 for success, -EINVAL for failure.
1889  */
1890 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1891 				      struct dma_fence *exclusive,
1892 				      dma_addr_t *pages_addr,
1893 				      struct amdgpu_vm *vm,
1894 				      struct amdgpu_bo_va_mapping *mapping,
1895 				      uint64_t flags,
1896 				      struct drm_mm_node *nodes,
1897 				      struct dma_fence **fence)
1898 {
1899 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1900 	uint64_t pfn, start = mapping->start;
1901 	int r;
1902 
1903 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1904 	 * but in case of something, we filter the flags in first place
1905 	 */
1906 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1907 		flags &= ~AMDGPU_PTE_READABLE;
1908 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1909 		flags &= ~AMDGPU_PTE_WRITEABLE;
1910 
1911 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1912 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1913 
1914 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1915 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1916 
1917 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1918 	    (adev->asic_type >= CHIP_VEGA10)) {
1919 		flags |= AMDGPU_PTE_PRT;
1920 		flags &= ~AMDGPU_PTE_VALID;
1921 	}
1922 
1923 	trace_amdgpu_vm_bo_update(mapping);
1924 
1925 	pfn = mapping->offset >> PAGE_SHIFT;
1926 	if (nodes) {
1927 		while (pfn >= nodes->size) {
1928 			pfn -= nodes->size;
1929 			++nodes;
1930 		}
1931 	}
1932 
1933 	do {
1934 		dma_addr_t *dma_addr = NULL;
1935 		uint64_t max_entries;
1936 		uint64_t addr, last;
1937 
1938 		if (nodes) {
1939 			addr = nodes->start << PAGE_SHIFT;
1940 			max_entries = (nodes->size - pfn) *
1941 				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1942 		} else {
1943 			addr = 0;
1944 			max_entries = S64_MAX;
1945 		}
1946 
1947 		if (pages_addr) {
1948 			uint64_t count;
1949 
1950 			max_entries = min(max_entries, 16ull * 1024ull);
1951 			for (count = 1;
1952 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1953 			     ++count) {
1954 				uint64_t idx = pfn + count;
1955 
1956 				if (pages_addr[idx] !=
1957 				    (pages_addr[idx - 1] + PAGE_SIZE))
1958 					break;
1959 			}
1960 
1961 			if (count < min_linear_pages) {
1962 				addr = pfn << PAGE_SHIFT;
1963 				dma_addr = pages_addr;
1964 			} else {
1965 				addr = pages_addr[pfn];
1966 				max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1967 			}
1968 
1969 		} else if (flags & AMDGPU_PTE_VALID) {
1970 			addr += adev->vm_manager.vram_base_offset;
1971 			addr += pfn << PAGE_SHIFT;
1972 		}
1973 
1974 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1975 		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1976 						start, last, flags, addr,
1977 						fence);
1978 		if (r)
1979 			return r;
1980 
1981 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1982 		if (nodes && nodes->size == pfn) {
1983 			pfn = 0;
1984 			++nodes;
1985 		}
1986 		start = last + 1;
1987 
1988 	} while (unlikely(start != mapping->last + 1));
1989 
1990 	return 0;
1991 }
1992 
1993 /**
1994  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1995  *
1996  * @adev: amdgpu_device pointer
1997  * @bo_va: requested BO and VM object
1998  * @clear: if true clear the entries
1999  *
2000  * Fill in the page table entries for @bo_va.
2001  *
2002  * Returns:
2003  * 0 for success, -EINVAL for failure.
2004  */
2005 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
2006 			struct amdgpu_bo_va *bo_va,
2007 			bool clear)
2008 {
2009 	struct amdgpu_bo *bo = bo_va->base.bo;
2010 	struct amdgpu_vm *vm = bo_va->base.vm;
2011 	struct amdgpu_bo_va_mapping *mapping;
2012 	dma_addr_t *pages_addr = NULL;
2013 	struct ttm_mem_reg *mem;
2014 	struct drm_mm_node *nodes;
2015 	struct dma_fence *exclusive, **last_update;
2016 	uint64_t flags;
2017 	int r;
2018 
2019 	if (clear || !bo) {
2020 		mem = NULL;
2021 		nodes = NULL;
2022 		exclusive = NULL;
2023 	} else {
2024 		struct ttm_dma_tt *ttm;
2025 
2026 		mem = &bo->tbo.mem;
2027 		nodes = mem->mm_node;
2028 		if (mem->mem_type == TTM_PL_TT) {
2029 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
2030 			pages_addr = ttm->dma_address;
2031 		}
2032 		exclusive = reservation_object_get_excl(bo->tbo.resv);
2033 	}
2034 
2035 	if (bo)
2036 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
2037 	else
2038 		flags = 0x0;
2039 
2040 	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
2041 		last_update = &vm->last_update;
2042 	else
2043 		last_update = &bo_va->last_pt_update;
2044 
2045 	if (!clear && bo_va->base.moved) {
2046 		bo_va->base.moved = false;
2047 		list_splice_init(&bo_va->valids, &bo_va->invalids);
2048 
2049 	} else if (bo_va->cleared != clear) {
2050 		list_splice_init(&bo_va->valids, &bo_va->invalids);
2051 	}
2052 
2053 	list_for_each_entry(mapping, &bo_va->invalids, list) {
2054 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
2055 					       mapping, flags, nodes,
2056 					       last_update);
2057 		if (r)
2058 			return r;
2059 	}
2060 
2061 	if (vm->use_cpu_for_update) {
2062 		/* Flush HDP */
2063 		mb();
2064 		amdgpu_asic_flush_hdp(adev, NULL);
2065 	}
2066 
2067 	/* If the BO is not in its preferred location add it back to
2068 	 * the evicted list so that it gets validated again on the
2069 	 * next command submission.
2070 	 */
2071 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2072 		uint32_t mem_type = bo->tbo.mem.mem_type;
2073 
2074 		if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
2075 			amdgpu_vm_bo_evicted(&bo_va->base);
2076 		else
2077 			amdgpu_vm_bo_idle(&bo_va->base);
2078 	} else {
2079 		amdgpu_vm_bo_done(&bo_va->base);
2080 	}
2081 
2082 	list_splice_init(&bo_va->invalids, &bo_va->valids);
2083 	bo_va->cleared = clear;
2084 
2085 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
2086 		list_for_each_entry(mapping, &bo_va->valids, list)
2087 			trace_amdgpu_vm_bo_mapping(mapping);
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * amdgpu_vm_update_prt_state - update the global PRT state
2095  *
2096  * @adev: amdgpu_device pointer
2097  */
2098 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
2099 {
2100 	unsigned long flags;
2101 	bool enable;
2102 
2103 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2104 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2105 	adev->gmc.gmc_funcs->set_prt(adev, enable);
2106 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2107 }
2108 
2109 /**
2110  * amdgpu_vm_prt_get - add a PRT user
2111  *
2112  * @adev: amdgpu_device pointer
2113  */
2114 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2115 {
2116 	if (!adev->gmc.gmc_funcs->set_prt)
2117 		return;
2118 
2119 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2120 		amdgpu_vm_update_prt_state(adev);
2121 }
2122 
2123 /**
2124  * amdgpu_vm_prt_put - drop a PRT user
2125  *
2126  * @adev: amdgpu_device pointer
2127  */
2128 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2129 {
2130 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2131 		amdgpu_vm_update_prt_state(adev);
2132 }
2133 
2134 /**
2135  * amdgpu_vm_prt_cb - callback for updating the PRT status
2136  *
2137  * @fence: fence for the callback
2138  * @_cb: the callback function
2139  */
2140 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2141 {
2142 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2143 
2144 	amdgpu_vm_prt_put(cb->adev);
2145 	kfree(cb);
2146 }
2147 
2148 /**
2149  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2150  *
2151  * @adev: amdgpu_device pointer
2152  * @fence: fence for the callback
2153  */
2154 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2155 				 struct dma_fence *fence)
2156 {
2157 	struct amdgpu_prt_cb *cb;
2158 
2159 	if (!adev->gmc.gmc_funcs->set_prt)
2160 		return;
2161 
2162 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2163 	if (!cb) {
2164 		/* Last resort when we are OOM */
2165 		if (fence)
2166 			dma_fence_wait(fence, false);
2167 
2168 		amdgpu_vm_prt_put(adev);
2169 	} else {
2170 		cb->adev = adev;
2171 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2172 						     amdgpu_vm_prt_cb))
2173 			amdgpu_vm_prt_cb(fence, &cb->cb);
2174 	}
2175 }
2176 
2177 /**
2178  * amdgpu_vm_free_mapping - free a mapping
2179  *
2180  * @adev: amdgpu_device pointer
2181  * @vm: requested vm
2182  * @mapping: mapping to be freed
2183  * @fence: fence of the unmap operation
2184  *
2185  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2186  */
2187 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2188 				   struct amdgpu_vm *vm,
2189 				   struct amdgpu_bo_va_mapping *mapping,
2190 				   struct dma_fence *fence)
2191 {
2192 	if (mapping->flags & AMDGPU_PTE_PRT)
2193 		amdgpu_vm_add_prt_cb(adev, fence);
2194 	kfree(mapping);
2195 }
2196 
2197 /**
2198  * amdgpu_vm_prt_fini - finish all prt mappings
2199  *
2200  * @adev: amdgpu_device pointer
2201  * @vm: requested vm
2202  *
2203  * Register a cleanup callback to disable PRT support after VM dies.
2204  */
2205 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2206 {
2207 	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
2208 	struct dma_fence *excl, **shared;
2209 	unsigned i, shared_count;
2210 	int r;
2211 
2212 	r = reservation_object_get_fences_rcu(resv, &excl,
2213 					      &shared_count, &shared);
2214 	if (r) {
2215 		/* Not enough memory to grab the fence list, as last resort
2216 		 * block for all the fences to complete.
2217 		 */
2218 		reservation_object_wait_timeout_rcu(resv, true, false,
2219 						    MAX_SCHEDULE_TIMEOUT);
2220 		return;
2221 	}
2222 
2223 	/* Add a callback for each fence in the reservation object */
2224 	amdgpu_vm_prt_get(adev);
2225 	amdgpu_vm_add_prt_cb(adev, excl);
2226 
2227 	for (i = 0; i < shared_count; ++i) {
2228 		amdgpu_vm_prt_get(adev);
2229 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2230 	}
2231 
2232 	kfree(shared);
2233 }
2234 
2235 /**
2236  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2237  *
2238  * @adev: amdgpu_device pointer
2239  * @vm: requested vm
2240  * @fence: optional resulting fence (unchanged if no work needed to be done
2241  * or if an error occurred)
2242  *
2243  * Make sure all freed BOs are cleared in the PT.
2244  * PTs have to be reserved and mutex must be locked!
2245  *
2246  * Returns:
2247  * 0 for success.
2248  *
2249  */
2250 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2251 			  struct amdgpu_vm *vm,
2252 			  struct dma_fence **fence)
2253 {
2254 	struct amdgpu_bo_va_mapping *mapping;
2255 	uint64_t init_pte_value = 0;
2256 	struct dma_fence *f = NULL;
2257 	int r;
2258 
2259 	while (!list_empty(&vm->freed)) {
2260 		mapping = list_first_entry(&vm->freed,
2261 			struct amdgpu_bo_va_mapping, list);
2262 		list_del(&mapping->list);
2263 
2264 		if (vm->pte_support_ats &&
2265 		    mapping->start < AMDGPU_GMC_HOLE_START)
2266 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2267 
2268 		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
2269 						mapping->start, mapping->last,
2270 						init_pte_value, 0, &f);
2271 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2272 		if (r) {
2273 			dma_fence_put(f);
2274 			return r;
2275 		}
2276 	}
2277 
2278 	if (fence && f) {
2279 		dma_fence_put(*fence);
2280 		*fence = f;
2281 	} else {
2282 		dma_fence_put(f);
2283 	}
2284 
2285 	return 0;
2286 
2287 }
2288 
2289 /**
2290  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2291  *
2292  * @adev: amdgpu_device pointer
2293  * @vm: requested vm
2294  *
2295  * Make sure all BOs which are moved are updated in the PTs.
2296  *
2297  * Returns:
2298  * 0 for success.
2299  *
2300  * PTs have to be reserved!
2301  */
2302 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2303 			   struct amdgpu_vm *vm)
2304 {
2305 	struct amdgpu_bo_va *bo_va, *tmp;
2306 	struct reservation_object *resv;
2307 	bool clear;
2308 	int r;
2309 
2310 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2311 		/* Per VM BOs never need to bo cleared in the page tables */
2312 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2313 		if (r)
2314 			return r;
2315 	}
2316 
2317 	spin_lock(&vm->invalidated_lock);
2318 	while (!list_empty(&vm->invalidated)) {
2319 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2320 					 base.vm_status);
2321 		resv = bo_va->base.bo->tbo.resv;
2322 		spin_unlock(&vm->invalidated_lock);
2323 
2324 		/* Try to reserve the BO to avoid clearing its ptes */
2325 		if (!amdgpu_vm_debug && reservation_object_trylock(resv))
2326 			clear = false;
2327 		/* Somebody else is using the BO right now */
2328 		else
2329 			clear = true;
2330 
2331 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2332 		if (r)
2333 			return r;
2334 
2335 		if (!clear)
2336 			reservation_object_unlock(resv);
2337 		spin_lock(&vm->invalidated_lock);
2338 	}
2339 	spin_unlock(&vm->invalidated_lock);
2340 
2341 	return 0;
2342 }
2343 
2344 /**
2345  * amdgpu_vm_bo_add - add a bo to a specific vm
2346  *
2347  * @adev: amdgpu_device pointer
2348  * @vm: requested vm
2349  * @bo: amdgpu buffer object
2350  *
2351  * Add @bo into the requested vm.
2352  * Add @bo to the list of bos associated with the vm
2353  *
2354  * Returns:
2355  * Newly added bo_va or NULL for failure
2356  *
2357  * Object has to be reserved!
2358  */
2359 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2360 				      struct amdgpu_vm *vm,
2361 				      struct amdgpu_bo *bo)
2362 {
2363 	struct amdgpu_bo_va *bo_va;
2364 
2365 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2366 	if (bo_va == NULL) {
2367 		return NULL;
2368 	}
2369 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2370 
2371 	bo_va->ref_count = 1;
2372 	INIT_LIST_HEAD(&bo_va->valids);
2373 	INIT_LIST_HEAD(&bo_va->invalids);
2374 
2375 	return bo_va;
2376 }
2377 
2378 
2379 /**
2380  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2381  *
2382  * @adev: amdgpu_device pointer
2383  * @bo_va: bo_va to store the address
2384  * @mapping: the mapping to insert
2385  *
2386  * Insert a new mapping into all structures.
2387  */
2388 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2389 				    struct amdgpu_bo_va *bo_va,
2390 				    struct amdgpu_bo_va_mapping *mapping)
2391 {
2392 	struct amdgpu_vm *vm = bo_va->base.vm;
2393 	struct amdgpu_bo *bo = bo_va->base.bo;
2394 
2395 	mapping->bo_va = bo_va;
2396 	list_add(&mapping->list, &bo_va->invalids);
2397 	amdgpu_vm_it_insert(mapping, &vm->va);
2398 
2399 	if (mapping->flags & AMDGPU_PTE_PRT)
2400 		amdgpu_vm_prt_get(adev);
2401 
2402 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
2403 	    !bo_va->base.moved) {
2404 		list_move(&bo_va->base.vm_status, &vm->moved);
2405 	}
2406 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2407 }
2408 
2409 /**
2410  * amdgpu_vm_bo_map - map bo inside a vm
2411  *
2412  * @adev: amdgpu_device pointer
2413  * @bo_va: bo_va to store the address
2414  * @saddr: where to map the BO
2415  * @offset: requested offset in the BO
2416  * @size: BO size in bytes
2417  * @flags: attributes of pages (read/write/valid/etc.)
2418  *
2419  * Add a mapping of the BO at the specefied addr into the VM.
2420  *
2421  * Returns:
2422  * 0 for success, error for failure.
2423  *
2424  * Object has to be reserved and unreserved outside!
2425  */
2426 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2427 		     struct amdgpu_bo_va *bo_va,
2428 		     uint64_t saddr, uint64_t offset,
2429 		     uint64_t size, uint64_t flags)
2430 {
2431 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2432 	struct amdgpu_bo *bo = bo_va->base.bo;
2433 	struct amdgpu_vm *vm = bo_va->base.vm;
2434 	uint64_t eaddr;
2435 
2436 	/* validate the parameters */
2437 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2438 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2439 		return -EINVAL;
2440 
2441 	/* make sure object fit at this offset */
2442 	eaddr = saddr + size - 1;
2443 	if (saddr >= eaddr ||
2444 	    (bo && offset + size > amdgpu_bo_size(bo)))
2445 		return -EINVAL;
2446 
2447 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2448 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2449 
2450 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2451 	if (tmp) {
2452 		/* bo and tmp overlap, invalid addr */
2453 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2454 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2455 			tmp->start, tmp->last + 1);
2456 		return -EINVAL;
2457 	}
2458 
2459 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2460 	if (!mapping)
2461 		return -ENOMEM;
2462 
2463 	mapping->start = saddr;
2464 	mapping->last = eaddr;
2465 	mapping->offset = offset;
2466 	mapping->flags = flags;
2467 
2468 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2469 
2470 	return 0;
2471 }
2472 
2473 /**
2474  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2475  *
2476  * @adev: amdgpu_device pointer
2477  * @bo_va: bo_va to store the address
2478  * @saddr: where to map the BO
2479  * @offset: requested offset in the BO
2480  * @size: BO size in bytes
2481  * @flags: attributes of pages (read/write/valid/etc.)
2482  *
2483  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2484  * mappings as we do so.
2485  *
2486  * Returns:
2487  * 0 for success, error for failure.
2488  *
2489  * Object has to be reserved and unreserved outside!
2490  */
2491 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2492 			     struct amdgpu_bo_va *bo_va,
2493 			     uint64_t saddr, uint64_t offset,
2494 			     uint64_t size, uint64_t flags)
2495 {
2496 	struct amdgpu_bo_va_mapping *mapping;
2497 	struct amdgpu_bo *bo = bo_va->base.bo;
2498 	uint64_t eaddr;
2499 	int r;
2500 
2501 	/* validate the parameters */
2502 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2503 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2504 		return -EINVAL;
2505 
2506 	/* make sure object fit at this offset */
2507 	eaddr = saddr + size - 1;
2508 	if (saddr >= eaddr ||
2509 	    (bo && offset + size > amdgpu_bo_size(bo)))
2510 		return -EINVAL;
2511 
2512 	/* Allocate all the needed memory */
2513 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2514 	if (!mapping)
2515 		return -ENOMEM;
2516 
2517 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2518 	if (r) {
2519 		kfree(mapping);
2520 		return r;
2521 	}
2522 
2523 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2524 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2525 
2526 	mapping->start = saddr;
2527 	mapping->last = eaddr;
2528 	mapping->offset = offset;
2529 	mapping->flags = flags;
2530 
2531 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2532 
2533 	return 0;
2534 }
2535 
2536 /**
2537  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2538  *
2539  * @adev: amdgpu_device pointer
2540  * @bo_va: bo_va to remove the address from
2541  * @saddr: where to the BO is mapped
2542  *
2543  * Remove a mapping of the BO at the specefied addr from the VM.
2544  *
2545  * Returns:
2546  * 0 for success, error for failure.
2547  *
2548  * Object has to be reserved and unreserved outside!
2549  */
2550 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2551 		       struct amdgpu_bo_va *bo_va,
2552 		       uint64_t saddr)
2553 {
2554 	struct amdgpu_bo_va_mapping *mapping;
2555 	struct amdgpu_vm *vm = bo_va->base.vm;
2556 	bool valid = true;
2557 
2558 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2559 
2560 	list_for_each_entry(mapping, &bo_va->valids, list) {
2561 		if (mapping->start == saddr)
2562 			break;
2563 	}
2564 
2565 	if (&mapping->list == &bo_va->valids) {
2566 		valid = false;
2567 
2568 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2569 			if (mapping->start == saddr)
2570 				break;
2571 		}
2572 
2573 		if (&mapping->list == &bo_va->invalids)
2574 			return -ENOENT;
2575 	}
2576 
2577 	list_del(&mapping->list);
2578 	amdgpu_vm_it_remove(mapping, &vm->va);
2579 	mapping->bo_va = NULL;
2580 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2581 
2582 	if (valid)
2583 		list_add(&mapping->list, &vm->freed);
2584 	else
2585 		amdgpu_vm_free_mapping(adev, vm, mapping,
2586 				       bo_va->last_pt_update);
2587 
2588 	return 0;
2589 }
2590 
2591 /**
2592  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2593  *
2594  * @adev: amdgpu_device pointer
2595  * @vm: VM structure to use
2596  * @saddr: start of the range
2597  * @size: size of the range
2598  *
2599  * Remove all mappings in a range, split them as appropriate.
2600  *
2601  * Returns:
2602  * 0 for success, error for failure.
2603  */
2604 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2605 				struct amdgpu_vm *vm,
2606 				uint64_t saddr, uint64_t size)
2607 {
2608 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2609 	LIST_HEAD(removed);
2610 	uint64_t eaddr;
2611 
2612 	eaddr = saddr + size - 1;
2613 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2614 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2615 
2616 	/* Allocate all the needed memory */
2617 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2618 	if (!before)
2619 		return -ENOMEM;
2620 	INIT_LIST_HEAD(&before->list);
2621 
2622 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2623 	if (!after) {
2624 		kfree(before);
2625 		return -ENOMEM;
2626 	}
2627 	INIT_LIST_HEAD(&after->list);
2628 
2629 	/* Now gather all removed mappings */
2630 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2631 	while (tmp) {
2632 		/* Remember mapping split at the start */
2633 		if (tmp->start < saddr) {
2634 			before->start = tmp->start;
2635 			before->last = saddr - 1;
2636 			before->offset = tmp->offset;
2637 			before->flags = tmp->flags;
2638 			before->bo_va = tmp->bo_va;
2639 			list_add(&before->list, &tmp->bo_va->invalids);
2640 		}
2641 
2642 		/* Remember mapping split at the end */
2643 		if (tmp->last > eaddr) {
2644 			after->start = eaddr + 1;
2645 			after->last = tmp->last;
2646 			after->offset = tmp->offset;
2647 			after->offset += after->start - tmp->start;
2648 			after->flags = tmp->flags;
2649 			after->bo_va = tmp->bo_va;
2650 			list_add(&after->list, &tmp->bo_va->invalids);
2651 		}
2652 
2653 		list_del(&tmp->list);
2654 		list_add(&tmp->list, &removed);
2655 
2656 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2657 	}
2658 
2659 	/* And free them up */
2660 	list_for_each_entry_safe(tmp, next, &removed, list) {
2661 		amdgpu_vm_it_remove(tmp, &vm->va);
2662 		list_del(&tmp->list);
2663 
2664 		if (tmp->start < saddr)
2665 		    tmp->start = saddr;
2666 		if (tmp->last > eaddr)
2667 		    tmp->last = eaddr;
2668 
2669 		tmp->bo_va = NULL;
2670 		list_add(&tmp->list, &vm->freed);
2671 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2672 	}
2673 
2674 	/* Insert partial mapping before the range */
2675 	if (!list_empty(&before->list)) {
2676 		amdgpu_vm_it_insert(before, &vm->va);
2677 		if (before->flags & AMDGPU_PTE_PRT)
2678 			amdgpu_vm_prt_get(adev);
2679 	} else {
2680 		kfree(before);
2681 	}
2682 
2683 	/* Insert partial mapping after the range */
2684 	if (!list_empty(&after->list)) {
2685 		amdgpu_vm_it_insert(after, &vm->va);
2686 		if (after->flags & AMDGPU_PTE_PRT)
2687 			amdgpu_vm_prt_get(adev);
2688 	} else {
2689 		kfree(after);
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 /**
2696  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2697  *
2698  * @vm: the requested VM
2699  * @addr: the address
2700  *
2701  * Find a mapping by it's address.
2702  *
2703  * Returns:
2704  * The amdgpu_bo_va_mapping matching for addr or NULL
2705  *
2706  */
2707 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2708 							 uint64_t addr)
2709 {
2710 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2711 }
2712 
2713 /**
2714  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2715  *
2716  * @vm: the requested vm
2717  * @ticket: CS ticket
2718  *
2719  * Trace all mappings of BOs reserved during a command submission.
2720  */
2721 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2722 {
2723 	struct amdgpu_bo_va_mapping *mapping;
2724 
2725 	if (!trace_amdgpu_vm_bo_cs_enabled())
2726 		return;
2727 
2728 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2729 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2730 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2731 			struct amdgpu_bo *bo;
2732 
2733 			bo = mapping->bo_va->base.bo;
2734 			if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
2735 				continue;
2736 		}
2737 
2738 		trace_amdgpu_vm_bo_cs(mapping);
2739 	}
2740 }
2741 
2742 /**
2743  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2744  *
2745  * @adev: amdgpu_device pointer
2746  * @bo_va: requested bo_va
2747  *
2748  * Remove @bo_va->bo from the requested vm.
2749  *
2750  * Object have to be reserved!
2751  */
2752 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2753 		      struct amdgpu_bo_va *bo_va)
2754 {
2755 	struct amdgpu_bo_va_mapping *mapping, *next;
2756 	struct amdgpu_bo *bo = bo_va->base.bo;
2757 	struct amdgpu_vm *vm = bo_va->base.vm;
2758 	struct amdgpu_vm_bo_base **base;
2759 
2760 	if (bo) {
2761 		if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2762 			vm->bulk_moveable = false;
2763 
2764 		for (base = &bo_va->base.bo->vm_bo; *base;
2765 		     base = &(*base)->next) {
2766 			if (*base != &bo_va->base)
2767 				continue;
2768 
2769 			*base = bo_va->base.next;
2770 			break;
2771 		}
2772 	}
2773 
2774 	spin_lock(&vm->invalidated_lock);
2775 	list_del(&bo_va->base.vm_status);
2776 	spin_unlock(&vm->invalidated_lock);
2777 
2778 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2779 		list_del(&mapping->list);
2780 		amdgpu_vm_it_remove(mapping, &vm->va);
2781 		mapping->bo_va = NULL;
2782 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2783 		list_add(&mapping->list, &vm->freed);
2784 	}
2785 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2786 		list_del(&mapping->list);
2787 		amdgpu_vm_it_remove(mapping, &vm->va);
2788 		amdgpu_vm_free_mapping(adev, vm, mapping,
2789 				       bo_va->last_pt_update);
2790 	}
2791 
2792 	dma_fence_put(bo_va->last_pt_update);
2793 	kfree(bo_va);
2794 }
2795 
2796 /**
2797  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2798  *
2799  * @adev: amdgpu_device pointer
2800  * @bo: amdgpu buffer object
2801  * @evicted: is the BO evicted
2802  *
2803  * Mark @bo as invalid.
2804  */
2805 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2806 			     struct amdgpu_bo *bo, bool evicted)
2807 {
2808 	struct amdgpu_vm_bo_base *bo_base;
2809 
2810 	/* shadow bo doesn't have bo base, its validation needs its parent */
2811 	if (bo->parent && bo->parent->shadow == bo)
2812 		bo = bo->parent;
2813 
2814 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2815 		struct amdgpu_vm *vm = bo_base->vm;
2816 
2817 		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2818 			amdgpu_vm_bo_evicted(bo_base);
2819 			continue;
2820 		}
2821 
2822 		if (bo_base->moved)
2823 			continue;
2824 		bo_base->moved = true;
2825 
2826 		if (bo->tbo.type == ttm_bo_type_kernel)
2827 			amdgpu_vm_bo_relocated(bo_base);
2828 		else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2829 			amdgpu_vm_bo_moved(bo_base);
2830 		else
2831 			amdgpu_vm_bo_invalidated(bo_base);
2832 	}
2833 }
2834 
2835 /**
2836  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2837  *
2838  * @vm_size: VM size
2839  *
2840  * Returns:
2841  * VM page table as power of two
2842  */
2843 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2844 {
2845 	/* Total bits covered by PD + PTs */
2846 	unsigned bits = ilog2(vm_size) + 18;
2847 
2848 	/* Make sure the PD is 4K in size up to 8GB address space.
2849 	   Above that split equal between PD and PTs */
2850 	if (vm_size <= 8)
2851 		return (bits - 9);
2852 	else
2853 		return ((bits + 3) / 2);
2854 }
2855 
2856 /**
2857  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2858  *
2859  * @adev: amdgpu_device pointer
2860  * @min_vm_size: the minimum vm size in GB if it's set auto
2861  * @fragment_size_default: Default PTE fragment size
2862  * @max_level: max VMPT level
2863  * @max_bits: max address space size in bits
2864  *
2865  */
2866 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2867 			   uint32_t fragment_size_default, unsigned max_level,
2868 			   unsigned max_bits)
2869 {
2870 	unsigned int max_size = 1 << (max_bits - 30);
2871 	unsigned int vm_size;
2872 	uint64_t tmp;
2873 
2874 	/* adjust vm size first */
2875 	if (amdgpu_vm_size != -1) {
2876 		vm_size = amdgpu_vm_size;
2877 		if (vm_size > max_size) {
2878 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2879 				 amdgpu_vm_size, max_size);
2880 			vm_size = max_size;
2881 		}
2882 	} else {
2883 		struct sysinfo si;
2884 		unsigned int phys_ram_gb;
2885 
2886 		/* Optimal VM size depends on the amount of physical
2887 		 * RAM available. Underlying requirements and
2888 		 * assumptions:
2889 		 *
2890 		 *  - Need to map system memory and VRAM from all GPUs
2891 		 *     - VRAM from other GPUs not known here
2892 		 *     - Assume VRAM <= system memory
2893 		 *  - On GFX8 and older, VM space can be segmented for
2894 		 *    different MTYPEs
2895 		 *  - Need to allow room for fragmentation, guard pages etc.
2896 		 *
2897 		 * This adds up to a rough guess of system memory x3.
2898 		 * Round up to power of two to maximize the available
2899 		 * VM size with the given page table size.
2900 		 */
2901 		si_meminfo(&si);
2902 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2903 			       (1 << 30) - 1) >> 30;
2904 		vm_size = roundup_pow_of_two(
2905 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2906 	}
2907 
2908 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2909 
2910 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2911 	if (amdgpu_vm_block_size != -1)
2912 		tmp >>= amdgpu_vm_block_size - 9;
2913 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2914 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2915 	switch (adev->vm_manager.num_level) {
2916 	case 3:
2917 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2918 		break;
2919 	case 2:
2920 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2921 		break;
2922 	case 1:
2923 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2924 		break;
2925 	default:
2926 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2927 	}
2928 	/* block size depends on vm size and hw setup*/
2929 	if (amdgpu_vm_block_size != -1)
2930 		adev->vm_manager.block_size =
2931 			min((unsigned)amdgpu_vm_block_size, max_bits
2932 			    - AMDGPU_GPU_PAGE_SHIFT
2933 			    - 9 * adev->vm_manager.num_level);
2934 	else if (adev->vm_manager.num_level > 1)
2935 		adev->vm_manager.block_size = 9;
2936 	else
2937 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2938 
2939 	if (amdgpu_vm_fragment_size == -1)
2940 		adev->vm_manager.fragment_size = fragment_size_default;
2941 	else
2942 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2943 
2944 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2945 		 vm_size, adev->vm_manager.num_level + 1,
2946 		 adev->vm_manager.block_size,
2947 		 adev->vm_manager.fragment_size);
2948 }
2949 
2950 static struct amdgpu_retryfault_hashtable *init_fault_hash(void)
2951 {
2952 	struct amdgpu_retryfault_hashtable *fault_hash;
2953 
2954 	fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL);
2955 	if (!fault_hash)
2956 		return fault_hash;
2957 
2958 	INIT_CHASH_TABLE(fault_hash->hash,
2959 			AMDGPU_PAGEFAULT_HASH_BITS, 8, 0);
2960 	spin_lock_init(&fault_hash->lock);
2961 	fault_hash->count = 0;
2962 
2963 	return fault_hash;
2964 }
2965 
2966 /**
2967  * amdgpu_vm_init - initialize a vm instance
2968  *
2969  * @adev: amdgpu_device pointer
2970  * @vm: requested vm
2971  * @vm_context: Indicates if it GFX or Compute context
2972  * @pasid: Process address space identifier
2973  *
2974  * Init @vm fields.
2975  *
2976  * Returns:
2977  * 0 for success, error for failure.
2978  */
2979 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2980 		   int vm_context, unsigned int pasid)
2981 {
2982 	struct amdgpu_bo_param bp;
2983 	struct amdgpu_bo *root;
2984 	int r, i;
2985 
2986 	vm->va = RB_ROOT_CACHED;
2987 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2988 		vm->reserved_vmid[i] = NULL;
2989 	INIT_LIST_HEAD(&vm->evicted);
2990 	INIT_LIST_HEAD(&vm->relocated);
2991 	INIT_LIST_HEAD(&vm->moved);
2992 	INIT_LIST_HEAD(&vm->idle);
2993 	INIT_LIST_HEAD(&vm->invalidated);
2994 	spin_lock_init(&vm->invalidated_lock);
2995 	INIT_LIST_HEAD(&vm->freed);
2996 
2997 	/* create scheduler entity for page table updates */
2998 	r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2999 				  adev->vm_manager.vm_pte_num_rqs, NULL);
3000 	if (r)
3001 		return r;
3002 
3003 	vm->pte_support_ats = false;
3004 
3005 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
3006 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3007 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3008 
3009 		if (adev->asic_type == CHIP_RAVEN)
3010 			vm->pte_support_ats = true;
3011 	} else {
3012 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3013 						AMDGPU_VM_USE_CPU_FOR_GFX);
3014 	}
3015 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3016 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3017 	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3018 		  "CPU update of VM recommended only for large BAR system\n");
3019 	vm->last_update = NULL;
3020 
3021 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
3022 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
3023 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
3024 	r = amdgpu_bo_create(adev, &bp, &root);
3025 	if (r)
3026 		goto error_free_sched_entity;
3027 
3028 	r = amdgpu_bo_reserve(root, true);
3029 	if (r)
3030 		goto error_free_root;
3031 
3032 	r = reservation_object_reserve_shared(root->tbo.resv, 1);
3033 	if (r)
3034 		goto error_unreserve;
3035 
3036 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
3037 
3038 	r = amdgpu_vm_clear_bo(adev, vm, root,
3039 			       adev->vm_manager.root_level,
3040 			       vm->pte_support_ats);
3041 	if (r)
3042 		goto error_unreserve;
3043 
3044 	amdgpu_bo_unreserve(vm->root.base.bo);
3045 
3046 	if (pasid) {
3047 		unsigned long flags;
3048 
3049 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3050 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3051 			      GFP_ATOMIC);
3052 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3053 		if (r < 0)
3054 			goto error_free_root;
3055 
3056 		vm->pasid = pasid;
3057 	}
3058 
3059 	vm->fault_hash = init_fault_hash();
3060 	if (!vm->fault_hash) {
3061 		r = -ENOMEM;
3062 		goto error_free_root;
3063 	}
3064 
3065 	INIT_KFIFO(vm->faults);
3066 
3067 	return 0;
3068 
3069 error_unreserve:
3070 	amdgpu_bo_unreserve(vm->root.base.bo);
3071 
3072 error_free_root:
3073 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3074 	amdgpu_bo_unref(&vm->root.base.bo);
3075 	vm->root.base.bo = NULL;
3076 
3077 error_free_sched_entity:
3078 	drm_sched_entity_destroy(&vm->entity);
3079 
3080 	return r;
3081 }
3082 
3083 /**
3084  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3085  *
3086  * @adev: amdgpu_device pointer
3087  * @vm: requested vm
3088  *
3089  * This only works on GFX VMs that don't have any BOs added and no
3090  * page tables allocated yet.
3091  *
3092  * Changes the following VM parameters:
3093  * - use_cpu_for_update
3094  * - pte_supports_ats
3095  * - pasid (old PASID is released, because compute manages its own PASIDs)
3096  *
3097  * Reinitializes the page directory to reflect the changed ATS
3098  * setting.
3099  *
3100  * Returns:
3101  * 0 for success, -errno for errors.
3102  */
3103 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
3104 {
3105 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3106 	int r;
3107 
3108 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
3109 	if (r)
3110 		return r;
3111 
3112 	/* Sanity checks */
3113 	if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
3114 		r = -EINVAL;
3115 		goto unreserve_bo;
3116 	}
3117 
3118 	if (pasid) {
3119 		unsigned long flags;
3120 
3121 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3122 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3123 			      GFP_ATOMIC);
3124 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3125 
3126 		if (r == -ENOSPC)
3127 			goto unreserve_bo;
3128 		r = 0;
3129 	}
3130 
3131 	/* Check if PD needs to be reinitialized and do it before
3132 	 * changing any other state, in case it fails.
3133 	 */
3134 	if (pte_support_ats != vm->pte_support_ats) {
3135 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
3136 			       adev->vm_manager.root_level,
3137 			       pte_support_ats);
3138 		if (r)
3139 			goto free_idr;
3140 	}
3141 
3142 	/* Update VM state */
3143 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3144 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3145 	vm->pte_support_ats = pte_support_ats;
3146 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3147 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3148 	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3149 		  "CPU update of VM recommended only for large BAR system\n");
3150 
3151 	if (vm->pasid) {
3152 		unsigned long flags;
3153 
3154 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3155 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3156 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3157 
3158 		/* Free the original amdgpu allocated pasid
3159 		 * Will be replaced with kfd allocated pasid
3160 		 */
3161 		amdgpu_pasid_free(vm->pasid);
3162 		vm->pasid = 0;
3163 	}
3164 
3165 	/* Free the shadow bo for compute VM */
3166 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3167 
3168 	if (pasid)
3169 		vm->pasid = pasid;
3170 
3171 	goto unreserve_bo;
3172 
3173 free_idr:
3174 	if (pasid) {
3175 		unsigned long flags;
3176 
3177 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3178 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3179 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3180 	}
3181 unreserve_bo:
3182 	amdgpu_bo_unreserve(vm->root.base.bo);
3183 	return r;
3184 }
3185 
3186 /**
3187  * amdgpu_vm_release_compute - release a compute vm
3188  * @adev: amdgpu_device pointer
3189  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3190  *
3191  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3192  * pasid from vm. Compute should stop use of vm after this call.
3193  */
3194 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3195 {
3196 	if (vm->pasid) {
3197 		unsigned long flags;
3198 
3199 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3200 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3201 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3202 	}
3203 	vm->pasid = 0;
3204 }
3205 
3206 /**
3207  * amdgpu_vm_fini - tear down a vm instance
3208  *
3209  * @adev: amdgpu_device pointer
3210  * @vm: requested vm
3211  *
3212  * Tear down @vm.
3213  * Unbind the VM and remove all bos from the vm bo list
3214  */
3215 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3216 {
3217 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3218 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3219 	struct amdgpu_bo *root;
3220 	u64 fault;
3221 	int i, r;
3222 
3223 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3224 
3225 	/* Clear pending page faults from IH when the VM is destroyed */
3226 	while (kfifo_get(&vm->faults, &fault))
3227 		amdgpu_vm_clear_fault(vm->fault_hash, fault);
3228 
3229 	if (vm->pasid) {
3230 		unsigned long flags;
3231 
3232 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3233 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3234 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3235 	}
3236 
3237 	kfree(vm->fault_hash);
3238 	vm->fault_hash = NULL;
3239 
3240 	drm_sched_entity_destroy(&vm->entity);
3241 
3242 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3243 		dev_err(adev->dev, "still active bo inside vm\n");
3244 	}
3245 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3246 					     &vm->va.rb_root, rb) {
3247 		/* Don't remove the mapping here, we don't want to trigger a
3248 		 * rebalance and the tree is about to be destroyed anyway.
3249 		 */
3250 		list_del(&mapping->list);
3251 		kfree(mapping);
3252 	}
3253 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3254 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3255 			amdgpu_vm_prt_fini(adev, vm);
3256 			prt_fini_needed = false;
3257 		}
3258 
3259 		list_del(&mapping->list);
3260 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3261 	}
3262 
3263 	root = amdgpu_bo_ref(vm->root.base.bo);
3264 	r = amdgpu_bo_reserve(root, true);
3265 	if (r) {
3266 		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
3267 	} else {
3268 		amdgpu_vm_free_pts(adev, vm);
3269 		amdgpu_bo_unreserve(root);
3270 	}
3271 	amdgpu_bo_unref(&root);
3272 	dma_fence_put(vm->last_update);
3273 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3274 		amdgpu_vmid_free_reserved(adev, vm, i);
3275 }
3276 
3277 /**
3278  * amdgpu_vm_manager_init - init the VM manager
3279  *
3280  * @adev: amdgpu_device pointer
3281  *
3282  * Initialize the VM manager structures
3283  */
3284 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3285 {
3286 	unsigned i;
3287 
3288 	amdgpu_vmid_mgr_init(adev);
3289 
3290 	adev->vm_manager.fence_context =
3291 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3292 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3293 		adev->vm_manager.seqno[i] = 0;
3294 
3295 	spin_lock_init(&adev->vm_manager.prt_lock);
3296 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3297 
3298 	/* If not overridden by the user, by default, only in large BAR systems
3299 	 * Compute VM tables will be updated by CPU
3300 	 */
3301 #ifdef CONFIG_X86_64
3302 	if (amdgpu_vm_update_mode == -1) {
3303 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3304 			adev->vm_manager.vm_update_mode =
3305 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3306 		else
3307 			adev->vm_manager.vm_update_mode = 0;
3308 	} else
3309 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3310 #else
3311 	adev->vm_manager.vm_update_mode = 0;
3312 #endif
3313 
3314 	idr_init(&adev->vm_manager.pasid_idr);
3315 	spin_lock_init(&adev->vm_manager.pasid_lock);
3316 }
3317 
3318 /**
3319  * amdgpu_vm_manager_fini - cleanup VM manager
3320  *
3321  * @adev: amdgpu_device pointer
3322  *
3323  * Cleanup the VM manager and free resources.
3324  */
3325 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3326 {
3327 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3328 	idr_destroy(&adev->vm_manager.pasid_idr);
3329 
3330 	amdgpu_vmid_mgr_fini(adev);
3331 }
3332 
3333 /**
3334  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3335  *
3336  * @dev: drm device pointer
3337  * @data: drm_amdgpu_vm
3338  * @filp: drm file pointer
3339  *
3340  * Returns:
3341  * 0 for success, -errno for errors.
3342  */
3343 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3344 {
3345 	union drm_amdgpu_vm *args = data;
3346 	struct amdgpu_device *adev = dev->dev_private;
3347 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3348 	int r;
3349 
3350 	switch (args->in.op) {
3351 	case AMDGPU_VM_OP_RESERVE_VMID:
3352 		/* current, we only have requirement to reserve vmid from gfxhub */
3353 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3354 		if (r)
3355 			return r;
3356 		break;
3357 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3358 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3359 		break;
3360 	default:
3361 		return -EINVAL;
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 /**
3368  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3369  *
3370  * @adev: drm device pointer
3371  * @pasid: PASID identifier for VM
3372  * @task_info: task_info to fill.
3373  */
3374 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3375 			 struct amdgpu_task_info *task_info)
3376 {
3377 	struct amdgpu_vm *vm;
3378 	unsigned long flags;
3379 
3380 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3381 
3382 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3383 	if (vm)
3384 		*task_info = vm->task_info;
3385 
3386 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3387 }
3388 
3389 /**
3390  * amdgpu_vm_set_task_info - Sets VMs task info.
3391  *
3392  * @vm: vm for which to set the info
3393  */
3394 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3395 {
3396 	if (!vm->task_info.pid) {
3397 		vm->task_info.pid = current->pid;
3398 		get_task_comm(vm->task_info.task_name, current);
3399 
3400 		if (current->group_leader->mm == current->mm) {
3401 			vm->task_info.tgid = current->group_leader->pid;
3402 			get_task_comm(vm->task_info.process_name, current->group_leader);
3403 		}
3404 	}
3405 }
3406 
3407 /**
3408  * amdgpu_vm_add_fault - Add a page fault record to fault hash table
3409  *
3410  * @fault_hash: fault hash table
3411  * @key: 64-bit encoding of PASID and address
3412  *
3413  * This should be called when a retry page fault interrupt is
3414  * received. If this is a new page fault, it will be added to a hash
3415  * table. The return value indicates whether this is a new fault, or
3416  * a fault that was already known and is already being handled.
3417  *
3418  * If there are too many pending page faults, this will fail. Retry
3419  * interrupts should be ignored in this case until there is enough
3420  * free space.
3421  *
3422  * Returns 0 if the fault was added, 1 if the fault was already known,
3423  * -ENOSPC if there are too many pending faults.
3424  */
3425 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3426 {
3427 	unsigned long flags;
3428 	int r = -ENOSPC;
3429 
3430 	if (WARN_ON_ONCE(!fault_hash))
3431 		/* Should be allocated in amdgpu_vm_init
3432 		 */
3433 		return r;
3434 
3435 	spin_lock_irqsave(&fault_hash->lock, flags);
3436 
3437 	/* Only let the hash table fill up to 50% for best performance */
3438 	if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1)))
3439 		goto unlock_out;
3440 
3441 	r = chash_table_copy_in(&fault_hash->hash, key, NULL);
3442 	if (!r)
3443 		fault_hash->count++;
3444 
3445 	/* chash_table_copy_in should never fail unless we're losing count */
3446 	WARN_ON_ONCE(r < 0);
3447 
3448 unlock_out:
3449 	spin_unlock_irqrestore(&fault_hash->lock, flags);
3450 	return r;
3451 }
3452 
3453 /**
3454  * amdgpu_vm_clear_fault - Remove a page fault record
3455  *
3456  * @fault_hash: fault hash table
3457  * @key: 64-bit encoding of PASID and address
3458  *
3459  * This should be called when a page fault has been handled. Any
3460  * future interrupt with this key will be processed as a new
3461  * page fault.
3462  */
3463 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3464 {
3465 	unsigned long flags;
3466 	int r;
3467 
3468 	if (!fault_hash)
3469 		return;
3470 
3471 	spin_lock_irqsave(&fault_hash->lock, flags);
3472 
3473 	r = chash_table_remove(&fault_hash->hash, key, NULL);
3474 	if (!WARN_ON_ONCE(r < 0)) {
3475 		fault_hash->count--;
3476 		WARN_ON_ONCE(fault_hash->count < 0);
3477 	}
3478 
3479 	spin_unlock_irqrestore(&fault_hash->lock, flags);
3480 }
3481