1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_level_shift - return the addr shift for each level 138 * 139 * @adev: amdgpu_device pointer 140 * @level: VMPT level 141 * 142 * Returns: 143 * The number of bits the pfn needs to be right shifted for a level. 144 */ 145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 146 unsigned level) 147 { 148 unsigned shift = 0xff; 149 150 switch (level) { 151 case AMDGPU_VM_PDB2: 152 case AMDGPU_VM_PDB1: 153 case AMDGPU_VM_PDB0: 154 shift = 9 * (AMDGPU_VM_PDB0 - level) + 155 adev->vm_manager.block_size; 156 break; 157 case AMDGPU_VM_PTB: 158 shift = 0; 159 break; 160 default: 161 dev_err(adev->dev, "the level%d isn't supported.\n", level); 162 } 163 164 return shift; 165 } 166 167 /** 168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 169 * 170 * @adev: amdgpu_device pointer 171 * @level: VMPT level 172 * 173 * Returns: 174 * The number of entries in a page directory or page table. 175 */ 176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 177 unsigned level) 178 { 179 unsigned shift = amdgpu_vm_level_shift(adev, 180 adev->vm_manager.root_level); 181 182 if (level == adev->vm_manager.root_level) 183 /* For the root directory */ 184 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 185 else if (level != AMDGPU_VM_PTB) 186 /* Everything in between */ 187 return 512; 188 else 189 /* For the page tables on the leaves */ 190 return AMDGPU_VM_PTE_COUNT(adev); 191 } 192 193 /** 194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 195 * 196 * @adev: amdgpu_device pointer 197 * @level: VMPT level 198 * 199 * Returns: 200 * The mask to extract the entry number of a PD/PT from an address. 201 */ 202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 203 unsigned int level) 204 { 205 if (level <= adev->vm_manager.root_level) 206 return 0xffffffff; 207 else if (level != AMDGPU_VM_PTB) 208 return 0x1ff; 209 else 210 return AMDGPU_VM_PTE_COUNT(adev) - 1; 211 } 212 213 /** 214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 215 * 216 * @adev: amdgpu_device pointer 217 * @level: VMPT level 218 * 219 * Returns: 220 * The size of the BO for a page directory or page table in bytes. 221 */ 222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 223 { 224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 225 } 226 227 /** 228 * amdgpu_vm_bo_evicted - vm_bo is evicted 229 * 230 * @vm_bo: vm_bo which is evicted 231 * 232 * State for PDs/PTs and per VM BOs which are not at the location they should 233 * be. 234 */ 235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 236 { 237 struct amdgpu_vm *vm = vm_bo->vm; 238 struct amdgpu_bo *bo = vm_bo->bo; 239 240 vm_bo->moved = true; 241 if (bo->tbo.type == ttm_bo_type_kernel) 242 list_move(&vm_bo->vm_status, &vm->evicted); 243 else 244 list_move_tail(&vm_bo->vm_status, &vm->evicted); 245 } 246 247 /** 248 * amdgpu_vm_bo_relocated - vm_bo is reloacted 249 * 250 * @vm_bo: vm_bo which is relocated 251 * 252 * State for PDs/PTs which needs to update their parent PD. 253 */ 254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 255 { 256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 257 } 258 259 /** 260 * amdgpu_vm_bo_moved - vm_bo is moved 261 * 262 * @vm_bo: vm_bo which is moved 263 * 264 * State for per VM BOs which are moved, but that change is not yet reflected 265 * in the page tables. 266 */ 267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 270 } 271 272 /** 273 * amdgpu_vm_bo_idle - vm_bo is idle 274 * 275 * @vm_bo: vm_bo which is now idle 276 * 277 * State for PDs/PTs and per VM BOs which have gone through the state machine 278 * and are now idle. 279 */ 280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 283 vm_bo->moved = false; 284 } 285 286 /** 287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 288 * 289 * @vm_bo: vm_bo which is now invalidated 290 * 291 * State for normal BOs which are invalidated and that change not yet reflected 292 * in the PTs. 293 */ 294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 295 { 296 spin_lock(&vm_bo->vm->invalidated_lock); 297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 298 spin_unlock(&vm_bo->vm->invalidated_lock); 299 } 300 301 /** 302 * amdgpu_vm_bo_done - vm_bo is done 303 * 304 * @vm_bo: vm_bo which is now done 305 * 306 * State for normal BOs which are invalidated and that change has been updated 307 * in the PTs. 308 */ 309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 spin_lock(&vm_bo->vm->invalidated_lock); 312 list_del_init(&vm_bo->vm_status); 313 spin_unlock(&vm_bo->vm->invalidated_lock); 314 } 315 316 /** 317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 318 * 319 * @base: base structure for tracking BO usage in a VM 320 * @vm: vm to which bo is to be added 321 * @bo: amdgpu buffer object 322 * 323 * Initialize a bo_va_base structure and add it to the appropriate lists 324 * 325 */ 326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 327 struct amdgpu_vm *vm, 328 struct amdgpu_bo *bo) 329 { 330 base->vm = vm; 331 base->bo = bo; 332 base->next = NULL; 333 INIT_LIST_HEAD(&base->vm_status); 334 335 if (!bo) 336 return; 337 base->next = bo->vm_bo; 338 bo->vm_bo = base; 339 340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 341 return; 342 343 vm->bulk_moveable = false; 344 if (bo->tbo.type == ttm_bo_type_kernel) 345 amdgpu_vm_bo_relocated(base); 346 else 347 amdgpu_vm_bo_idle(base); 348 349 if (bo->preferred_domains & 350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 351 return; 352 353 /* 354 * we checked all the prerequisites, but it looks like this per vm bo 355 * is currently evicted. add the bo to the evicted list to make sure it 356 * is validated on next vm use to avoid fault. 357 * */ 358 amdgpu_vm_bo_evicted(base); 359 } 360 361 /** 362 * amdgpu_vm_pt_parent - get the parent page directory 363 * 364 * @pt: child page table 365 * 366 * Helper to get the parent entry for the child page table. NULL if we are at 367 * the root page directory. 368 */ 369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 370 { 371 struct amdgpu_bo *parent = pt->base.bo->parent; 372 373 if (!parent) 374 return NULL; 375 376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 377 } 378 379 /** 380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 381 */ 382 struct amdgpu_vm_pt_cursor { 383 uint64_t pfn; 384 struct amdgpu_vm_pt *parent; 385 struct amdgpu_vm_pt *entry; 386 unsigned level; 387 }; 388 389 /** 390 * amdgpu_vm_pt_start - start PD/PT walk 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: amdgpu_vm structure 394 * @start: start address of the walk 395 * @cursor: state to initialize 396 * 397 * Initialize a amdgpu_vm_pt_cursor to start a walk. 398 */ 399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, uint64_t start, 401 struct amdgpu_vm_pt_cursor *cursor) 402 { 403 cursor->pfn = start; 404 cursor->parent = NULL; 405 cursor->entry = &vm->root; 406 cursor->level = adev->vm_manager.root_level; 407 } 408 409 /** 410 * amdgpu_vm_pt_descendant - go to child node 411 * 412 * @adev: amdgpu_device pointer 413 * @cursor: current state 414 * 415 * Walk to the child node of the current node. 416 * Returns: 417 * True if the walk was possible, false otherwise. 418 */ 419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 420 struct amdgpu_vm_pt_cursor *cursor) 421 { 422 unsigned mask, shift, idx; 423 424 if (!cursor->entry->entries) 425 return false; 426 427 BUG_ON(!cursor->entry->base.bo); 428 mask = amdgpu_vm_entries_mask(adev, cursor->level); 429 shift = amdgpu_vm_level_shift(adev, cursor->level); 430 431 ++cursor->level; 432 idx = (cursor->pfn >> shift) & mask; 433 cursor->parent = cursor->entry; 434 cursor->entry = &cursor->entry->entries[idx]; 435 return true; 436 } 437 438 /** 439 * amdgpu_vm_pt_sibling - go to sibling node 440 * 441 * @adev: amdgpu_device pointer 442 * @cursor: current state 443 * 444 * Walk to the sibling node of the current node. 445 * Returns: 446 * True if the walk was possible, false otherwise. 447 */ 448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 449 struct amdgpu_vm_pt_cursor *cursor) 450 { 451 unsigned shift, num_entries; 452 453 /* Root doesn't have a sibling */ 454 if (!cursor->parent) 455 return false; 456 457 /* Go to our parents and see if we got a sibling */ 458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 460 461 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 462 return false; 463 464 cursor->pfn += 1ULL << shift; 465 cursor->pfn &= ~((1ULL << shift) - 1); 466 ++cursor->entry; 467 return true; 468 } 469 470 /** 471 * amdgpu_vm_pt_ancestor - go to parent node 472 * 473 * @cursor: current state 474 * 475 * Walk to the parent node of the current node. 476 * Returns: 477 * True if the walk was possible, false otherwise. 478 */ 479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 480 { 481 if (!cursor->parent) 482 return false; 483 484 --cursor->level; 485 cursor->entry = cursor->parent; 486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 487 return true; 488 } 489 490 /** 491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 492 * 493 * @adev: amdgpu_device pointer 494 * @cursor: current state 495 * 496 * Walk the PD/PT tree to the next node. 497 */ 498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 499 struct amdgpu_vm_pt_cursor *cursor) 500 { 501 /* First try a newborn child */ 502 if (amdgpu_vm_pt_descendant(adev, cursor)) 503 return; 504 505 /* If that didn't worked try to find a sibling */ 506 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 507 /* No sibling, go to our parents and grandparents */ 508 if (!amdgpu_vm_pt_ancestor(cursor)) { 509 cursor->pfn = ~0ll; 510 return; 511 } 512 } 513 } 514 515 /** 516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 517 * 518 * @adev: amdgpu_device pointer 519 * @vm: amdgpu_vm structure 520 * @start: start addr of the walk 521 * @cursor: state to initialize 522 * 523 * Start a walk and go directly to the leaf node. 524 */ 525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 526 struct amdgpu_vm *vm, uint64_t start, 527 struct amdgpu_vm_pt_cursor *cursor) 528 { 529 amdgpu_vm_pt_start(adev, vm, start, cursor); 530 while (amdgpu_vm_pt_descendant(adev, cursor)); 531 } 532 533 /** 534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 535 * 536 * @adev: amdgpu_device pointer 537 * @cursor: current state 538 * 539 * Walk the PD/PT tree to the next leaf node. 540 */ 541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 542 struct amdgpu_vm_pt_cursor *cursor) 543 { 544 amdgpu_vm_pt_next(adev, cursor); 545 if (cursor->pfn != ~0ll) 546 while (amdgpu_vm_pt_descendant(adev, cursor)); 547 } 548 549 /** 550 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 551 */ 552 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 553 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 554 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 555 556 /** 557 * amdgpu_vm_pt_first_dfs - start a deep first search 558 * 559 * @adev: amdgpu_device structure 560 * @vm: amdgpu_vm structure 561 * @cursor: state to initialize 562 * 563 * Starts a deep first traversal of the PD/PT tree. 564 */ 565 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 566 struct amdgpu_vm *vm, 567 struct amdgpu_vm_pt_cursor *cursor) 568 { 569 amdgpu_vm_pt_start(adev, vm, 0, cursor); 570 while (amdgpu_vm_pt_descendant(adev, cursor)); 571 } 572 573 /** 574 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 575 * 576 * @adev: amdgpu_device structure 577 * @cursor: current state 578 * 579 * Move the cursor to the next node in a deep first search. 580 */ 581 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 582 struct amdgpu_vm_pt_cursor *cursor) 583 { 584 if (!cursor->entry) 585 return; 586 587 if (!cursor->parent) 588 cursor->entry = NULL; 589 else if (amdgpu_vm_pt_sibling(adev, cursor)) 590 while (amdgpu_vm_pt_descendant(adev, cursor)); 591 else 592 amdgpu_vm_pt_ancestor(cursor); 593 } 594 595 /** 596 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 597 */ 598 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 599 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 600 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 601 (entry); (entry) = (cursor).entry, \ 602 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 603 604 /** 605 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 606 * 607 * @vm: vm providing the BOs 608 * @validated: head of validation list 609 * @entry: entry to add 610 * 611 * Add the page directory to the list of BOs to 612 * validate for command submission. 613 */ 614 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 615 struct list_head *validated, 616 struct amdgpu_bo_list_entry *entry) 617 { 618 entry->priority = 0; 619 entry->tv.bo = &vm->root.base.bo->tbo; 620 /* One for the VM updates, one for TTM and one for the CS job */ 621 entry->tv.num_shared = 3; 622 entry->user_pages = NULL; 623 list_add(&entry->tv.head, validated); 624 } 625 626 /** 627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 628 * 629 * @adev: amdgpu device pointer 630 * @vm: vm providing the BOs 631 * 632 * Move all BOs to the end of LRU and remember their positions to put them 633 * together. 634 */ 635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 636 struct amdgpu_vm *vm) 637 { 638 struct ttm_bo_global *glob = adev->mman.bdev.glob; 639 struct amdgpu_vm_bo_base *bo_base; 640 641 if (vm->bulk_moveable) { 642 spin_lock(&glob->lru_lock); 643 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 644 spin_unlock(&glob->lru_lock); 645 return; 646 } 647 648 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 649 650 spin_lock(&glob->lru_lock); 651 list_for_each_entry(bo_base, &vm->idle, vm_status) { 652 struct amdgpu_bo *bo = bo_base->bo; 653 654 if (!bo->parent) 655 continue; 656 657 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 658 if (bo->shadow) 659 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 660 &vm->lru_bulk_move); 661 } 662 spin_unlock(&glob->lru_lock); 663 664 vm->bulk_moveable = true; 665 } 666 667 /** 668 * amdgpu_vm_validate_pt_bos - validate the page table BOs 669 * 670 * @adev: amdgpu device pointer 671 * @vm: vm providing the BOs 672 * @validate: callback to do the validation 673 * @param: parameter for the validation callback 674 * 675 * Validate the page table BOs on command submission if neccessary. 676 * 677 * Returns: 678 * Validation result. 679 */ 680 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 681 int (*validate)(void *p, struct amdgpu_bo *bo), 682 void *param) 683 { 684 struct amdgpu_vm_bo_base *bo_base, *tmp; 685 int r = 0; 686 687 vm->bulk_moveable &= list_empty(&vm->evicted); 688 689 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 690 struct amdgpu_bo *bo = bo_base->bo; 691 692 r = validate(param, bo); 693 if (r) 694 break; 695 696 if (bo->tbo.type != ttm_bo_type_kernel) { 697 amdgpu_vm_bo_moved(bo_base); 698 } else { 699 if (vm->use_cpu_for_update) 700 r = amdgpu_bo_kmap(bo, NULL); 701 else 702 r = amdgpu_ttm_alloc_gart(&bo->tbo); 703 if (r) 704 break; 705 if (bo->shadow) { 706 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 707 if (r) 708 break; 709 } 710 amdgpu_vm_bo_relocated(bo_base); 711 } 712 } 713 714 return r; 715 } 716 717 /** 718 * amdgpu_vm_ready - check VM is ready for updates 719 * 720 * @vm: VM to check 721 * 722 * Check if all VM PDs/PTs are ready for updates 723 * 724 * Returns: 725 * True if eviction list is empty. 726 */ 727 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 728 { 729 return list_empty(&vm->evicted); 730 } 731 732 /** 733 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 734 * 735 * @adev: amdgpu_device pointer 736 * @vm: VM to clear BO from 737 * @bo: BO to clear 738 * @level: level this BO is at 739 * @pte_support_ats: indicate ATS support from PTE 740 * 741 * Root PD needs to be reserved when calling this. 742 * 743 * Returns: 744 * 0 on success, errno otherwise. 745 */ 746 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 747 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 748 unsigned level, bool pte_support_ats) 749 { 750 struct ttm_operation_ctx ctx = { true, false }; 751 struct dma_fence *fence = NULL; 752 unsigned entries, ats_entries; 753 struct amdgpu_ring *ring; 754 struct amdgpu_job *job; 755 uint64_t addr; 756 int r; 757 758 entries = amdgpu_bo_size(bo) / 8; 759 760 if (pte_support_ats) { 761 if (level == adev->vm_manager.root_level) { 762 ats_entries = amdgpu_vm_level_shift(adev, level); 763 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 764 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 765 ats_entries = min(ats_entries, entries); 766 entries -= ats_entries; 767 } else { 768 ats_entries = entries; 769 entries = 0; 770 } 771 } else { 772 ats_entries = 0; 773 } 774 775 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 776 777 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 778 if (r) 779 goto error; 780 781 r = amdgpu_ttm_alloc_gart(&bo->tbo); 782 if (r) 783 return r; 784 785 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 786 if (r) 787 goto error; 788 789 addr = amdgpu_bo_gpu_offset(bo); 790 if (ats_entries) { 791 uint64_t ats_value; 792 793 ats_value = AMDGPU_PTE_DEFAULT_ATC; 794 if (level != AMDGPU_VM_PTB) 795 ats_value |= AMDGPU_PDE_PTE; 796 797 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 798 ats_entries, 0, ats_value); 799 addr += ats_entries * 8; 800 } 801 802 if (entries) 803 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 804 entries, 0, 0); 805 806 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 807 808 WARN_ON(job->ibs[0].length_dw > 64); 809 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 810 AMDGPU_FENCE_OWNER_UNDEFINED, false); 811 if (r) 812 goto error_free; 813 814 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 815 &fence); 816 if (r) 817 goto error_free; 818 819 amdgpu_bo_fence(bo, fence, true); 820 dma_fence_put(fence); 821 822 if (bo->shadow) 823 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 824 level, pte_support_ats); 825 826 return 0; 827 828 error_free: 829 amdgpu_job_free(job); 830 831 error: 832 return r; 833 } 834 835 /** 836 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 837 * 838 * @adev: amdgpu_device pointer 839 * @vm: requesting vm 840 * @bp: resulting BO allocation parameters 841 */ 842 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 843 int level, struct amdgpu_bo_param *bp) 844 { 845 memset(bp, 0, sizeof(*bp)); 846 847 bp->size = amdgpu_vm_bo_size(adev, level); 848 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 849 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 850 if (bp->size <= PAGE_SIZE && adev->asic_type >= CHIP_VEGA10 && 851 adev->flags & AMD_IS_APU) 852 bp->domain |= AMDGPU_GEM_DOMAIN_GTT; 853 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 854 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 855 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 856 if (vm->use_cpu_for_update) 857 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 858 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 859 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 860 bp->type = ttm_bo_type_kernel; 861 if (vm->root.base.bo) 862 bp->resv = vm->root.base.bo->tbo.resv; 863 } 864 865 /** 866 * amdgpu_vm_alloc_pts - Allocate page tables. 867 * 868 * @adev: amdgpu_device pointer 869 * @vm: VM to allocate page tables for 870 * @saddr: Start address which needs to be allocated 871 * @size: Size from start address we need. 872 * 873 * Make sure the page directories and page tables are allocated 874 * 875 * Returns: 876 * 0 on success, errno otherwise. 877 */ 878 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 879 struct amdgpu_vm *vm, 880 uint64_t saddr, uint64_t size) 881 { 882 struct amdgpu_vm_pt_cursor cursor; 883 struct amdgpu_bo *pt; 884 bool ats = false; 885 uint64_t eaddr; 886 int r; 887 888 /* validate the parameters */ 889 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 890 return -EINVAL; 891 892 eaddr = saddr + size - 1; 893 894 if (vm->pte_support_ats) 895 ats = saddr < AMDGPU_GMC_HOLE_START; 896 897 saddr /= AMDGPU_GPU_PAGE_SIZE; 898 eaddr /= AMDGPU_GPU_PAGE_SIZE; 899 900 if (eaddr >= adev->vm_manager.max_pfn) { 901 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 902 eaddr, adev->vm_manager.max_pfn); 903 return -EINVAL; 904 } 905 906 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 907 struct amdgpu_vm_pt *entry = cursor.entry; 908 struct amdgpu_bo_param bp; 909 910 if (cursor.level < AMDGPU_VM_PTB) { 911 unsigned num_entries; 912 913 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 914 entry->entries = kvmalloc_array(num_entries, 915 sizeof(*entry->entries), 916 GFP_KERNEL | 917 __GFP_ZERO); 918 if (!entry->entries) 919 return -ENOMEM; 920 } 921 922 923 if (entry->base.bo) 924 continue; 925 926 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 927 928 r = amdgpu_bo_create(adev, &bp, &pt); 929 if (r) 930 return r; 931 932 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 933 if (r) 934 goto error_free_pt; 935 936 if (vm->use_cpu_for_update) { 937 r = amdgpu_bo_kmap(pt, NULL); 938 if (r) 939 goto error_free_pt; 940 } 941 942 /* Keep a reference to the root directory to avoid 943 * freeing them up in the wrong order. 944 */ 945 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 946 947 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 948 } 949 950 return 0; 951 952 error_free_pt: 953 amdgpu_bo_unref(&pt->shadow); 954 amdgpu_bo_unref(&pt); 955 return r; 956 } 957 958 /** 959 * amdgpu_vm_free_pts - free PD/PT levels 960 * 961 * @adev: amdgpu device structure 962 * @vm: amdgpu vm structure 963 * 964 * Free the page directory or page table level and all sub levels. 965 */ 966 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 967 struct amdgpu_vm *vm) 968 { 969 struct amdgpu_vm_pt_cursor cursor; 970 struct amdgpu_vm_pt *entry; 971 972 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 973 974 if (entry->base.bo) { 975 entry->base.bo->vm_bo = NULL; 976 list_del(&entry->base.vm_status); 977 amdgpu_bo_unref(&entry->base.bo->shadow); 978 amdgpu_bo_unref(&entry->base.bo); 979 } 980 kvfree(entry->entries); 981 } 982 983 BUG_ON(vm->root.base.bo); 984 } 985 986 /** 987 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 988 * 989 * @adev: amdgpu_device pointer 990 */ 991 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 992 { 993 const struct amdgpu_ip_block *ip_block; 994 bool has_compute_vm_bug; 995 struct amdgpu_ring *ring; 996 int i; 997 998 has_compute_vm_bug = false; 999 1000 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1001 if (ip_block) { 1002 /* Compute has a VM bug for GFX version < 7. 1003 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1004 if (ip_block->version->major <= 7) 1005 has_compute_vm_bug = true; 1006 else if (ip_block->version->major == 8) 1007 if (adev->gfx.mec_fw_version < 673) 1008 has_compute_vm_bug = true; 1009 } 1010 1011 for (i = 0; i < adev->num_rings; i++) { 1012 ring = adev->rings[i]; 1013 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1014 /* only compute rings */ 1015 ring->has_compute_vm_bug = has_compute_vm_bug; 1016 else 1017 ring->has_compute_vm_bug = false; 1018 } 1019 } 1020 1021 /** 1022 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1023 * 1024 * @ring: ring on which the job will be submitted 1025 * @job: job to submit 1026 * 1027 * Returns: 1028 * True if sync is needed. 1029 */ 1030 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1031 struct amdgpu_job *job) 1032 { 1033 struct amdgpu_device *adev = ring->adev; 1034 unsigned vmhub = ring->funcs->vmhub; 1035 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1036 struct amdgpu_vmid *id; 1037 bool gds_switch_needed; 1038 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1039 1040 if (job->vmid == 0) 1041 return false; 1042 id = &id_mgr->ids[job->vmid]; 1043 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1044 id->gds_base != job->gds_base || 1045 id->gds_size != job->gds_size || 1046 id->gws_base != job->gws_base || 1047 id->gws_size != job->gws_size || 1048 id->oa_base != job->oa_base || 1049 id->oa_size != job->oa_size); 1050 1051 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1052 return true; 1053 1054 return vm_flush_needed || gds_switch_needed; 1055 } 1056 1057 /** 1058 * amdgpu_vm_flush - hardware flush the vm 1059 * 1060 * @ring: ring to use for flush 1061 * @job: related job 1062 * @need_pipe_sync: is pipe sync needed 1063 * 1064 * Emit a VM flush when it is necessary. 1065 * 1066 * Returns: 1067 * 0 on success, errno otherwise. 1068 */ 1069 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1070 { 1071 struct amdgpu_device *adev = ring->adev; 1072 unsigned vmhub = ring->funcs->vmhub; 1073 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1074 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1075 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1076 id->gds_base != job->gds_base || 1077 id->gds_size != job->gds_size || 1078 id->gws_base != job->gws_base || 1079 id->gws_size != job->gws_size || 1080 id->oa_base != job->oa_base || 1081 id->oa_size != job->oa_size); 1082 bool vm_flush_needed = job->vm_needs_flush; 1083 bool pasid_mapping_needed = id->pasid != job->pasid || 1084 !id->pasid_mapping || 1085 !dma_fence_is_signaled(id->pasid_mapping); 1086 struct dma_fence *fence = NULL; 1087 unsigned patch_offset = 0; 1088 int r; 1089 1090 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1091 gds_switch_needed = true; 1092 vm_flush_needed = true; 1093 pasid_mapping_needed = true; 1094 } 1095 1096 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1097 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1098 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1099 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1100 ring->funcs->emit_wreg; 1101 1102 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1103 return 0; 1104 1105 if (ring->funcs->init_cond_exec) 1106 patch_offset = amdgpu_ring_init_cond_exec(ring); 1107 1108 if (need_pipe_sync) 1109 amdgpu_ring_emit_pipeline_sync(ring); 1110 1111 if (vm_flush_needed) { 1112 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1113 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1114 } 1115 1116 if (pasid_mapping_needed) 1117 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1118 1119 if (vm_flush_needed || pasid_mapping_needed) { 1120 r = amdgpu_fence_emit(ring, &fence, 0); 1121 if (r) 1122 return r; 1123 } 1124 1125 if (vm_flush_needed) { 1126 mutex_lock(&id_mgr->lock); 1127 dma_fence_put(id->last_flush); 1128 id->last_flush = dma_fence_get(fence); 1129 id->current_gpu_reset_count = 1130 atomic_read(&adev->gpu_reset_counter); 1131 mutex_unlock(&id_mgr->lock); 1132 } 1133 1134 if (pasid_mapping_needed) { 1135 id->pasid = job->pasid; 1136 dma_fence_put(id->pasid_mapping); 1137 id->pasid_mapping = dma_fence_get(fence); 1138 } 1139 dma_fence_put(fence); 1140 1141 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1142 id->gds_base = job->gds_base; 1143 id->gds_size = job->gds_size; 1144 id->gws_base = job->gws_base; 1145 id->gws_size = job->gws_size; 1146 id->oa_base = job->oa_base; 1147 id->oa_size = job->oa_size; 1148 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1149 job->gds_size, job->gws_base, 1150 job->gws_size, job->oa_base, 1151 job->oa_size); 1152 } 1153 1154 if (ring->funcs->patch_cond_exec) 1155 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1156 1157 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1158 if (ring->funcs->emit_switch_buffer) { 1159 amdgpu_ring_emit_switch_buffer(ring); 1160 amdgpu_ring_emit_switch_buffer(ring); 1161 } 1162 return 0; 1163 } 1164 1165 /** 1166 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1167 * 1168 * @vm: requested vm 1169 * @bo: requested buffer object 1170 * 1171 * Find @bo inside the requested vm. 1172 * Search inside the @bos vm list for the requested vm 1173 * Returns the found bo_va or NULL if none is found 1174 * 1175 * Object has to be reserved! 1176 * 1177 * Returns: 1178 * Found bo_va or NULL. 1179 */ 1180 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1181 struct amdgpu_bo *bo) 1182 { 1183 struct amdgpu_vm_bo_base *base; 1184 1185 for (base = bo->vm_bo; base; base = base->next) { 1186 if (base->vm != vm) 1187 continue; 1188 1189 return container_of(base, struct amdgpu_bo_va, base); 1190 } 1191 return NULL; 1192 } 1193 1194 /** 1195 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1196 * 1197 * @params: see amdgpu_pte_update_params definition 1198 * @bo: PD/PT to update 1199 * @pe: addr of the page entry 1200 * @addr: dst addr to write into pe 1201 * @count: number of page entries to update 1202 * @incr: increase next addr by incr bytes 1203 * @flags: hw access flags 1204 * 1205 * Traces the parameters and calls the right asic functions 1206 * to setup the page table using the DMA. 1207 */ 1208 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1209 struct amdgpu_bo *bo, 1210 uint64_t pe, uint64_t addr, 1211 unsigned count, uint32_t incr, 1212 uint64_t flags) 1213 { 1214 pe += amdgpu_bo_gpu_offset(bo); 1215 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1216 1217 if (count < 3) { 1218 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1219 addr | flags, count, incr); 1220 1221 } else { 1222 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1223 count, incr, flags); 1224 } 1225 } 1226 1227 /** 1228 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1229 * 1230 * @params: see amdgpu_pte_update_params definition 1231 * @bo: PD/PT to update 1232 * @pe: addr of the page entry 1233 * @addr: dst addr to write into pe 1234 * @count: number of page entries to update 1235 * @incr: increase next addr by incr bytes 1236 * @flags: hw access flags 1237 * 1238 * Traces the parameters and calls the DMA function to copy the PTEs. 1239 */ 1240 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1241 struct amdgpu_bo *bo, 1242 uint64_t pe, uint64_t addr, 1243 unsigned count, uint32_t incr, 1244 uint64_t flags) 1245 { 1246 uint64_t src = (params->src + (addr >> 12) * 8); 1247 1248 pe += amdgpu_bo_gpu_offset(bo); 1249 trace_amdgpu_vm_copy_ptes(pe, src, count); 1250 1251 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1252 } 1253 1254 /** 1255 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1256 * 1257 * @pages_addr: optional DMA address to use for lookup 1258 * @addr: the unmapped addr 1259 * 1260 * Look up the physical address of the page that the pte resolves 1261 * to. 1262 * 1263 * Returns: 1264 * The pointer for the page table entry. 1265 */ 1266 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1267 { 1268 uint64_t result; 1269 1270 /* page table offset */ 1271 result = pages_addr[addr >> PAGE_SHIFT]; 1272 1273 /* in case cpu page size != gpu page size*/ 1274 result |= addr & (~PAGE_MASK); 1275 1276 result &= 0xFFFFFFFFFFFFF000ULL; 1277 1278 return result; 1279 } 1280 1281 /** 1282 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1283 * 1284 * @params: see amdgpu_pte_update_params definition 1285 * @bo: PD/PT to update 1286 * @pe: kmap addr of the page entry 1287 * @addr: dst addr to write into pe 1288 * @count: number of page entries to update 1289 * @incr: increase next addr by incr bytes 1290 * @flags: hw access flags 1291 * 1292 * Write count number of PT/PD entries directly. 1293 */ 1294 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1295 struct amdgpu_bo *bo, 1296 uint64_t pe, uint64_t addr, 1297 unsigned count, uint32_t incr, 1298 uint64_t flags) 1299 { 1300 unsigned int i; 1301 uint64_t value; 1302 1303 pe += (unsigned long)amdgpu_bo_kptr(bo); 1304 1305 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1306 1307 for (i = 0; i < count; i++) { 1308 value = params->pages_addr ? 1309 amdgpu_vm_map_gart(params->pages_addr, addr) : 1310 addr; 1311 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1312 i, value, flags); 1313 addr += incr; 1314 } 1315 } 1316 1317 1318 /** 1319 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1320 * 1321 * @adev: amdgpu_device pointer 1322 * @vm: related vm 1323 * @owner: fence owner 1324 * 1325 * Returns: 1326 * 0 on success, errno otherwise. 1327 */ 1328 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1329 void *owner) 1330 { 1331 struct amdgpu_sync sync; 1332 int r; 1333 1334 amdgpu_sync_create(&sync); 1335 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1336 r = amdgpu_sync_wait(&sync, true); 1337 amdgpu_sync_free(&sync); 1338 1339 return r; 1340 } 1341 1342 /** 1343 * amdgpu_vm_update_func - helper to call update function 1344 * 1345 * Calls the update function for both the given BO as well as its shadow. 1346 */ 1347 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1348 struct amdgpu_bo *bo, 1349 uint64_t pe, uint64_t addr, 1350 unsigned count, uint32_t incr, 1351 uint64_t flags) 1352 { 1353 if (bo->shadow) 1354 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1355 params->func(params, bo, pe, addr, count, incr, flags); 1356 } 1357 1358 /* 1359 * amdgpu_vm_update_pde - update a single level in the hierarchy 1360 * 1361 * @param: parameters for the update 1362 * @vm: requested vm 1363 * @parent: parent directory 1364 * @entry: entry to update 1365 * 1366 * Makes sure the requested entry in parent is up to date. 1367 */ 1368 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1369 struct amdgpu_vm *vm, 1370 struct amdgpu_vm_pt *parent, 1371 struct amdgpu_vm_pt *entry) 1372 { 1373 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1374 uint64_t pde, pt, flags; 1375 unsigned level; 1376 1377 /* Don't update huge pages here */ 1378 if (entry->huge) 1379 return; 1380 1381 for (level = 0, pbo = bo->parent; pbo; ++level) 1382 pbo = pbo->parent; 1383 1384 level += params->adev->vm_manager.root_level; 1385 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1386 pde = (entry - parent->entries) * 8; 1387 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1388 } 1389 1390 /* 1391 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1392 * 1393 * @adev: amdgpu_device pointer 1394 * @vm: related vm 1395 * 1396 * Mark all PD level as invalid after an error. 1397 */ 1398 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1399 struct amdgpu_vm *vm) 1400 { 1401 struct amdgpu_vm_pt_cursor cursor; 1402 struct amdgpu_vm_pt *entry; 1403 1404 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1405 if (entry->base.bo && !entry->base.moved) 1406 amdgpu_vm_bo_relocated(&entry->base); 1407 } 1408 1409 /* 1410 * amdgpu_vm_update_directories - make sure that all directories are valid 1411 * 1412 * @adev: amdgpu_device pointer 1413 * @vm: requested vm 1414 * 1415 * Makes sure all directories are up to date. 1416 * 1417 * Returns: 1418 * 0 for success, error for failure. 1419 */ 1420 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1421 struct amdgpu_vm *vm) 1422 { 1423 struct amdgpu_pte_update_params params; 1424 struct amdgpu_job *job; 1425 unsigned ndw = 0; 1426 int r = 0; 1427 1428 if (list_empty(&vm->relocated)) 1429 return 0; 1430 1431 restart: 1432 memset(¶ms, 0, sizeof(params)); 1433 params.adev = adev; 1434 1435 if (vm->use_cpu_for_update) { 1436 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1437 if (unlikely(r)) 1438 return r; 1439 1440 params.func = amdgpu_vm_cpu_set_ptes; 1441 } else { 1442 ndw = 512 * 8; 1443 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1444 if (r) 1445 return r; 1446 1447 params.ib = &job->ibs[0]; 1448 params.func = amdgpu_vm_do_set_ptes; 1449 } 1450 1451 while (!list_empty(&vm->relocated)) { 1452 struct amdgpu_vm_pt *pt, *entry; 1453 1454 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1455 base.vm_status); 1456 amdgpu_vm_bo_idle(&entry->base); 1457 1458 pt = amdgpu_vm_pt_parent(entry); 1459 if (!pt) 1460 continue; 1461 1462 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1463 1464 if (!vm->use_cpu_for_update && 1465 (ndw - params.ib->length_dw) < 32) 1466 break; 1467 } 1468 1469 if (vm->use_cpu_for_update) { 1470 /* Flush HDP */ 1471 mb(); 1472 amdgpu_asic_flush_hdp(adev, NULL); 1473 } else if (params.ib->length_dw == 0) { 1474 amdgpu_job_free(job); 1475 } else { 1476 struct amdgpu_bo *root = vm->root.base.bo; 1477 struct amdgpu_ring *ring; 1478 struct dma_fence *fence; 1479 1480 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1481 sched); 1482 1483 amdgpu_ring_pad_ib(ring, params.ib); 1484 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1485 AMDGPU_FENCE_OWNER_VM, false); 1486 WARN_ON(params.ib->length_dw > ndw); 1487 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1488 &fence); 1489 if (r) 1490 goto error; 1491 1492 amdgpu_bo_fence(root, fence, true); 1493 dma_fence_put(vm->last_update); 1494 vm->last_update = fence; 1495 } 1496 1497 if (!list_empty(&vm->relocated)) 1498 goto restart; 1499 1500 return 0; 1501 1502 error: 1503 amdgpu_vm_invalidate_pds(adev, vm); 1504 amdgpu_job_free(job); 1505 return r; 1506 } 1507 1508 /** 1509 * amdgpu_vm_update_huge - figure out parameters for PTE updates 1510 * 1511 * Make sure to set the right flags for the PTEs at the desired level. 1512 */ 1513 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params, 1514 struct amdgpu_bo *bo, unsigned level, 1515 uint64_t pe, uint64_t addr, 1516 unsigned count, uint32_t incr, 1517 uint64_t flags) 1518 1519 { 1520 if (level != AMDGPU_VM_PTB) { 1521 flags |= AMDGPU_PDE_PTE; 1522 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1523 } 1524 1525 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1526 } 1527 1528 /** 1529 * amdgpu_vm_fragment - get fragment for PTEs 1530 * 1531 * @params: see amdgpu_pte_update_params definition 1532 * @start: first PTE to handle 1533 * @end: last PTE to handle 1534 * @flags: hw mapping flags 1535 * @frag: resulting fragment size 1536 * @frag_end: end of this fragment 1537 * 1538 * Returns the first possible fragment for the start and end address. 1539 */ 1540 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1541 uint64_t start, uint64_t end, uint64_t flags, 1542 unsigned int *frag, uint64_t *frag_end) 1543 { 1544 /** 1545 * The MC L1 TLB supports variable sized pages, based on a fragment 1546 * field in the PTE. When this field is set to a non-zero value, page 1547 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1548 * flags are considered valid for all PTEs within the fragment range 1549 * and corresponding mappings are assumed to be physically contiguous. 1550 * 1551 * The L1 TLB can store a single PTE for the whole fragment, 1552 * significantly increasing the space available for translation 1553 * caching. This leads to large improvements in throughput when the 1554 * TLB is under pressure. 1555 * 1556 * The L2 TLB distributes small and large fragments into two 1557 * asymmetric partitions. The large fragment cache is significantly 1558 * larger. Thus, we try to use large fragments wherever possible. 1559 * Userspace can support this by aligning virtual base address and 1560 * allocation size to the fragment size. 1561 * 1562 * Starting with Vega10 the fragment size only controls the L1. The L2 1563 * is now directly feed with small/huge/giant pages from the walker. 1564 */ 1565 unsigned max_frag; 1566 1567 if (params->adev->asic_type < CHIP_VEGA10) 1568 max_frag = params->adev->vm_manager.fragment_size; 1569 else 1570 max_frag = 31; 1571 1572 /* system pages are non continuously */ 1573 if (params->src) { 1574 *frag = 0; 1575 *frag_end = end; 1576 return; 1577 } 1578 1579 /* This intentionally wraps around if no bit is set */ 1580 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1581 if (*frag >= max_frag) { 1582 *frag = max_frag; 1583 *frag_end = end & ~((1ULL << max_frag) - 1); 1584 } else { 1585 *frag_end = start + (1 << *frag); 1586 } 1587 } 1588 1589 /** 1590 * amdgpu_vm_update_ptes - make sure that page tables are valid 1591 * 1592 * @params: see amdgpu_pte_update_params definition 1593 * @start: start of GPU address range 1594 * @end: end of GPU address range 1595 * @dst: destination address to map to, the next dst inside the function 1596 * @flags: mapping flags 1597 * 1598 * Update the page tables in the range @start - @end. 1599 * 1600 * Returns: 1601 * 0 for success, -EINVAL for failure. 1602 */ 1603 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1604 uint64_t start, uint64_t end, 1605 uint64_t dst, uint64_t flags) 1606 { 1607 struct amdgpu_device *adev = params->adev; 1608 struct amdgpu_vm_pt_cursor cursor; 1609 uint64_t frag_start = start, frag_end; 1610 unsigned int frag; 1611 1612 /* figure out the initial fragment */ 1613 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1614 1615 /* walk over the address space and update the PTs */ 1616 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1617 while (cursor.pfn < end) { 1618 struct amdgpu_bo *pt = cursor.entry->base.bo; 1619 unsigned shift, parent_shift, mask; 1620 uint64_t incr, entry_end, pe_start; 1621 1622 if (!pt) 1623 return -ENOENT; 1624 1625 /* The root level can't be a huge page */ 1626 if (cursor.level == adev->vm_manager.root_level) { 1627 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1628 return -ENOENT; 1629 continue; 1630 } 1631 1632 /* If it isn't already handled it can't be a huge page */ 1633 if (cursor.entry->huge) { 1634 /* Add the entry to the relocated list to update it. */ 1635 cursor.entry->huge = false; 1636 amdgpu_vm_bo_relocated(&cursor.entry->base); 1637 } 1638 1639 shift = amdgpu_vm_level_shift(adev, cursor.level); 1640 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1641 if (adev->asic_type < CHIP_VEGA10) { 1642 /* No huge page support before GMC v9 */ 1643 if (cursor.level != AMDGPU_VM_PTB) { 1644 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1645 return -ENOENT; 1646 continue; 1647 } 1648 } else if (frag < shift) { 1649 /* We can't use this level when the fragment size is 1650 * smaller than the address shift. Go to the next 1651 * child entry and try again. 1652 */ 1653 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1654 return -ENOENT; 1655 continue; 1656 } else if (frag >= parent_shift && 1657 cursor.level - 1 != adev->vm_manager.root_level) { 1658 /* If the fragment size is even larger than the parent 1659 * shift we should go up one level and check it again 1660 * unless one level up is the root level. 1661 */ 1662 if (!amdgpu_vm_pt_ancestor(&cursor)) 1663 return -ENOENT; 1664 continue; 1665 } 1666 1667 /* Looks good so far, calculate parameters for the update */ 1668 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1669 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1670 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1671 entry_end = (uint64_t)(mask + 1) << shift; 1672 entry_end += cursor.pfn & ~(entry_end - 1); 1673 entry_end = min(entry_end, end); 1674 1675 do { 1676 uint64_t upd_end = min(entry_end, frag_end); 1677 unsigned nptes = (upd_end - frag_start) >> shift; 1678 1679 amdgpu_vm_update_huge(params, pt, cursor.level, 1680 pe_start, dst, nptes, incr, 1681 flags | AMDGPU_PTE_FRAG(frag)); 1682 1683 pe_start += nptes * 8; 1684 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1685 1686 frag_start = upd_end; 1687 if (frag_start >= frag_end) { 1688 /* figure out the next fragment */ 1689 amdgpu_vm_fragment(params, frag_start, end, 1690 flags, &frag, &frag_end); 1691 if (frag < shift) 1692 break; 1693 } 1694 } while (frag_start < entry_end); 1695 1696 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1697 /* Mark all child entries as huge */ 1698 while (cursor.pfn < frag_start) { 1699 cursor.entry->huge = true; 1700 amdgpu_vm_pt_next(adev, &cursor); 1701 } 1702 1703 } else if (frag >= shift) { 1704 /* or just move on to the next on the same level. */ 1705 amdgpu_vm_pt_next(adev, &cursor); 1706 } 1707 } 1708 1709 return 0; 1710 } 1711 1712 /** 1713 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1714 * 1715 * @adev: amdgpu_device pointer 1716 * @exclusive: fence we need to sync to 1717 * @pages_addr: DMA addresses to use for mapping 1718 * @vm: requested vm 1719 * @start: start of mapped range 1720 * @last: last mapped entry 1721 * @flags: flags for the entries 1722 * @addr: addr to set the area to 1723 * @fence: optional resulting fence 1724 * 1725 * Fill in the page table entries between @start and @last. 1726 * 1727 * Returns: 1728 * 0 for success, -EINVAL for failure. 1729 */ 1730 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1731 struct dma_fence *exclusive, 1732 dma_addr_t *pages_addr, 1733 struct amdgpu_vm *vm, 1734 uint64_t start, uint64_t last, 1735 uint64_t flags, uint64_t addr, 1736 struct dma_fence **fence) 1737 { 1738 struct amdgpu_ring *ring; 1739 void *owner = AMDGPU_FENCE_OWNER_VM; 1740 unsigned nptes, ncmds, ndw; 1741 struct amdgpu_job *job; 1742 struct amdgpu_pte_update_params params; 1743 struct dma_fence *f = NULL; 1744 int r; 1745 1746 memset(¶ms, 0, sizeof(params)); 1747 params.adev = adev; 1748 params.vm = vm; 1749 1750 /* sync to everything on unmapping */ 1751 if (!(flags & AMDGPU_PTE_VALID)) 1752 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1753 1754 if (vm->use_cpu_for_update) { 1755 /* params.src is used as flag to indicate system Memory */ 1756 if (pages_addr) 1757 params.src = ~0; 1758 1759 /* Wait for PT BOs to be free. PTs share the same resv. object 1760 * as the root PD BO 1761 */ 1762 r = amdgpu_vm_wait_pd(adev, vm, owner); 1763 if (unlikely(r)) 1764 return r; 1765 1766 params.func = amdgpu_vm_cpu_set_ptes; 1767 params.pages_addr = pages_addr; 1768 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1769 addr, flags); 1770 } 1771 1772 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1773 1774 nptes = last - start + 1; 1775 1776 /* 1777 * reserve space for two commands every (1 << BLOCK_SIZE) 1778 * entries or 2k dwords (whatever is smaller) 1779 * 1780 * The second command is for the shadow pagetables. 1781 */ 1782 if (vm->root.base.bo->shadow) 1783 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1784 else 1785 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1786 1787 /* padding, etc. */ 1788 ndw = 64; 1789 1790 if (pages_addr) { 1791 /* copy commands needed */ 1792 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1793 1794 /* and also PTEs */ 1795 ndw += nptes * 2; 1796 1797 params.func = amdgpu_vm_do_copy_ptes; 1798 1799 } else { 1800 /* set page commands needed */ 1801 ndw += ncmds * 10; 1802 1803 /* extra commands for begin/end fragments */ 1804 if (vm->root.base.bo->shadow) 1805 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1806 else 1807 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1808 1809 params.func = amdgpu_vm_do_set_ptes; 1810 } 1811 1812 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1813 if (r) 1814 return r; 1815 1816 params.ib = &job->ibs[0]; 1817 1818 if (pages_addr) { 1819 uint64_t *pte; 1820 unsigned i; 1821 1822 /* Put the PTEs at the end of the IB. */ 1823 i = ndw - nptes * 2; 1824 pte= (uint64_t *)&(job->ibs->ptr[i]); 1825 params.src = job->ibs->gpu_addr + i * 4; 1826 1827 for (i = 0; i < nptes; ++i) { 1828 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1829 AMDGPU_GPU_PAGE_SIZE); 1830 pte[i] |= flags; 1831 } 1832 addr = 0; 1833 } 1834 1835 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1836 if (r) 1837 goto error_free; 1838 1839 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1840 owner, false); 1841 if (r) 1842 goto error_free; 1843 1844 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1845 if (r) 1846 goto error_free; 1847 1848 amdgpu_ring_pad_ib(ring, params.ib); 1849 WARN_ON(params.ib->length_dw > ndw); 1850 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1851 if (r) 1852 goto error_free; 1853 1854 amdgpu_bo_fence(vm->root.base.bo, f, true); 1855 dma_fence_put(*fence); 1856 *fence = f; 1857 return 0; 1858 1859 error_free: 1860 amdgpu_job_free(job); 1861 return r; 1862 } 1863 1864 /** 1865 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1866 * 1867 * @adev: amdgpu_device pointer 1868 * @exclusive: fence we need to sync to 1869 * @pages_addr: DMA addresses to use for mapping 1870 * @vm: requested vm 1871 * @mapping: mapped range and flags to use for the update 1872 * @flags: HW flags for the mapping 1873 * @nodes: array of drm_mm_nodes with the MC addresses 1874 * @fence: optional resulting fence 1875 * 1876 * Split the mapping into smaller chunks so that each update fits 1877 * into a SDMA IB. 1878 * 1879 * Returns: 1880 * 0 for success, -EINVAL for failure. 1881 */ 1882 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1883 struct dma_fence *exclusive, 1884 dma_addr_t *pages_addr, 1885 struct amdgpu_vm *vm, 1886 struct amdgpu_bo_va_mapping *mapping, 1887 uint64_t flags, 1888 struct drm_mm_node *nodes, 1889 struct dma_fence **fence) 1890 { 1891 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1892 uint64_t pfn, start = mapping->start; 1893 int r; 1894 1895 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1896 * but in case of something, we filter the flags in first place 1897 */ 1898 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1899 flags &= ~AMDGPU_PTE_READABLE; 1900 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1901 flags &= ~AMDGPU_PTE_WRITEABLE; 1902 1903 flags &= ~AMDGPU_PTE_EXECUTABLE; 1904 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1905 1906 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1907 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1908 1909 if ((mapping->flags & AMDGPU_PTE_PRT) && 1910 (adev->asic_type >= CHIP_VEGA10)) { 1911 flags |= AMDGPU_PTE_PRT; 1912 flags &= ~AMDGPU_PTE_VALID; 1913 } 1914 1915 trace_amdgpu_vm_bo_update(mapping); 1916 1917 pfn = mapping->offset >> PAGE_SHIFT; 1918 if (nodes) { 1919 while (pfn >= nodes->size) { 1920 pfn -= nodes->size; 1921 ++nodes; 1922 } 1923 } 1924 1925 do { 1926 dma_addr_t *dma_addr = NULL; 1927 uint64_t max_entries; 1928 uint64_t addr, last; 1929 1930 if (nodes) { 1931 addr = nodes->start << PAGE_SHIFT; 1932 max_entries = (nodes->size - pfn) * 1933 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1934 } else { 1935 addr = 0; 1936 max_entries = S64_MAX; 1937 } 1938 1939 if (pages_addr) { 1940 uint64_t count; 1941 1942 max_entries = min(max_entries, 16ull * 1024ull); 1943 for (count = 1; 1944 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1945 ++count) { 1946 uint64_t idx = pfn + count; 1947 1948 if (pages_addr[idx] != 1949 (pages_addr[idx - 1] + PAGE_SIZE)) 1950 break; 1951 } 1952 1953 if (count < min_linear_pages) { 1954 addr = pfn << PAGE_SHIFT; 1955 dma_addr = pages_addr; 1956 } else { 1957 addr = pages_addr[pfn]; 1958 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1959 } 1960 1961 } else if (flags & AMDGPU_PTE_VALID) { 1962 addr += adev->vm_manager.vram_base_offset; 1963 addr += pfn << PAGE_SHIFT; 1964 } 1965 1966 last = min((uint64_t)mapping->last, start + max_entries - 1); 1967 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1968 start, last, flags, addr, 1969 fence); 1970 if (r) 1971 return r; 1972 1973 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1974 if (nodes && nodes->size == pfn) { 1975 pfn = 0; 1976 ++nodes; 1977 } 1978 start = last + 1; 1979 1980 } while (unlikely(start != mapping->last + 1)); 1981 1982 return 0; 1983 } 1984 1985 /** 1986 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1987 * 1988 * @adev: amdgpu_device pointer 1989 * @bo_va: requested BO and VM object 1990 * @clear: if true clear the entries 1991 * 1992 * Fill in the page table entries for @bo_va. 1993 * 1994 * Returns: 1995 * 0 for success, -EINVAL for failure. 1996 */ 1997 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1998 struct amdgpu_bo_va *bo_va, 1999 bool clear) 2000 { 2001 struct amdgpu_bo *bo = bo_va->base.bo; 2002 struct amdgpu_vm *vm = bo_va->base.vm; 2003 struct amdgpu_bo_va_mapping *mapping; 2004 dma_addr_t *pages_addr = NULL; 2005 struct ttm_mem_reg *mem; 2006 struct drm_mm_node *nodes; 2007 struct dma_fence *exclusive, **last_update; 2008 uint64_t flags; 2009 int r; 2010 2011 if (clear || !bo) { 2012 mem = NULL; 2013 nodes = NULL; 2014 exclusive = NULL; 2015 } else { 2016 struct ttm_dma_tt *ttm; 2017 2018 mem = &bo->tbo.mem; 2019 nodes = mem->mm_node; 2020 if (mem->mem_type == TTM_PL_TT) { 2021 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2022 pages_addr = ttm->dma_address; 2023 } 2024 exclusive = reservation_object_get_excl(bo->tbo.resv); 2025 } 2026 2027 if (bo) 2028 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2029 else 2030 flags = 0x0; 2031 2032 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2033 last_update = &vm->last_update; 2034 else 2035 last_update = &bo_va->last_pt_update; 2036 2037 if (!clear && bo_va->base.moved) { 2038 bo_va->base.moved = false; 2039 list_splice_init(&bo_va->valids, &bo_va->invalids); 2040 2041 } else if (bo_va->cleared != clear) { 2042 list_splice_init(&bo_va->valids, &bo_va->invalids); 2043 } 2044 2045 list_for_each_entry(mapping, &bo_va->invalids, list) { 2046 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2047 mapping, flags, nodes, 2048 last_update); 2049 if (r) 2050 return r; 2051 } 2052 2053 if (vm->use_cpu_for_update) { 2054 /* Flush HDP */ 2055 mb(); 2056 amdgpu_asic_flush_hdp(adev, NULL); 2057 } 2058 2059 /* If the BO is not in its preferred location add it back to 2060 * the evicted list so that it gets validated again on the 2061 * next command submission. 2062 */ 2063 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2064 uint32_t mem_type = bo->tbo.mem.mem_type; 2065 2066 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2067 amdgpu_vm_bo_evicted(&bo_va->base); 2068 else 2069 amdgpu_vm_bo_idle(&bo_va->base); 2070 } else { 2071 amdgpu_vm_bo_done(&bo_va->base); 2072 } 2073 2074 list_splice_init(&bo_va->invalids, &bo_va->valids); 2075 bo_va->cleared = clear; 2076 2077 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2078 list_for_each_entry(mapping, &bo_va->valids, list) 2079 trace_amdgpu_vm_bo_mapping(mapping); 2080 } 2081 2082 return 0; 2083 } 2084 2085 /** 2086 * amdgpu_vm_update_prt_state - update the global PRT state 2087 * 2088 * @adev: amdgpu_device pointer 2089 */ 2090 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2091 { 2092 unsigned long flags; 2093 bool enable; 2094 2095 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2096 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2097 adev->gmc.gmc_funcs->set_prt(adev, enable); 2098 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2099 } 2100 2101 /** 2102 * amdgpu_vm_prt_get - add a PRT user 2103 * 2104 * @adev: amdgpu_device pointer 2105 */ 2106 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2107 { 2108 if (!adev->gmc.gmc_funcs->set_prt) 2109 return; 2110 2111 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2112 amdgpu_vm_update_prt_state(adev); 2113 } 2114 2115 /** 2116 * amdgpu_vm_prt_put - drop a PRT user 2117 * 2118 * @adev: amdgpu_device pointer 2119 */ 2120 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2121 { 2122 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2123 amdgpu_vm_update_prt_state(adev); 2124 } 2125 2126 /** 2127 * amdgpu_vm_prt_cb - callback for updating the PRT status 2128 * 2129 * @fence: fence for the callback 2130 * @_cb: the callback function 2131 */ 2132 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2133 { 2134 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2135 2136 amdgpu_vm_prt_put(cb->adev); 2137 kfree(cb); 2138 } 2139 2140 /** 2141 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2142 * 2143 * @adev: amdgpu_device pointer 2144 * @fence: fence for the callback 2145 */ 2146 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2147 struct dma_fence *fence) 2148 { 2149 struct amdgpu_prt_cb *cb; 2150 2151 if (!adev->gmc.gmc_funcs->set_prt) 2152 return; 2153 2154 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2155 if (!cb) { 2156 /* Last resort when we are OOM */ 2157 if (fence) 2158 dma_fence_wait(fence, false); 2159 2160 amdgpu_vm_prt_put(adev); 2161 } else { 2162 cb->adev = adev; 2163 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2164 amdgpu_vm_prt_cb)) 2165 amdgpu_vm_prt_cb(fence, &cb->cb); 2166 } 2167 } 2168 2169 /** 2170 * amdgpu_vm_free_mapping - free a mapping 2171 * 2172 * @adev: amdgpu_device pointer 2173 * @vm: requested vm 2174 * @mapping: mapping to be freed 2175 * @fence: fence of the unmap operation 2176 * 2177 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2178 */ 2179 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2180 struct amdgpu_vm *vm, 2181 struct amdgpu_bo_va_mapping *mapping, 2182 struct dma_fence *fence) 2183 { 2184 if (mapping->flags & AMDGPU_PTE_PRT) 2185 amdgpu_vm_add_prt_cb(adev, fence); 2186 kfree(mapping); 2187 } 2188 2189 /** 2190 * amdgpu_vm_prt_fini - finish all prt mappings 2191 * 2192 * @adev: amdgpu_device pointer 2193 * @vm: requested vm 2194 * 2195 * Register a cleanup callback to disable PRT support after VM dies. 2196 */ 2197 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2198 { 2199 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2200 struct dma_fence *excl, **shared; 2201 unsigned i, shared_count; 2202 int r; 2203 2204 r = reservation_object_get_fences_rcu(resv, &excl, 2205 &shared_count, &shared); 2206 if (r) { 2207 /* Not enough memory to grab the fence list, as last resort 2208 * block for all the fences to complete. 2209 */ 2210 reservation_object_wait_timeout_rcu(resv, true, false, 2211 MAX_SCHEDULE_TIMEOUT); 2212 return; 2213 } 2214 2215 /* Add a callback for each fence in the reservation object */ 2216 amdgpu_vm_prt_get(adev); 2217 amdgpu_vm_add_prt_cb(adev, excl); 2218 2219 for (i = 0; i < shared_count; ++i) { 2220 amdgpu_vm_prt_get(adev); 2221 amdgpu_vm_add_prt_cb(adev, shared[i]); 2222 } 2223 2224 kfree(shared); 2225 } 2226 2227 /** 2228 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2229 * 2230 * @adev: amdgpu_device pointer 2231 * @vm: requested vm 2232 * @fence: optional resulting fence (unchanged if no work needed to be done 2233 * or if an error occurred) 2234 * 2235 * Make sure all freed BOs are cleared in the PT. 2236 * PTs have to be reserved and mutex must be locked! 2237 * 2238 * Returns: 2239 * 0 for success. 2240 * 2241 */ 2242 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2243 struct amdgpu_vm *vm, 2244 struct dma_fence **fence) 2245 { 2246 struct amdgpu_bo_va_mapping *mapping; 2247 uint64_t init_pte_value = 0; 2248 struct dma_fence *f = NULL; 2249 int r; 2250 2251 while (!list_empty(&vm->freed)) { 2252 mapping = list_first_entry(&vm->freed, 2253 struct amdgpu_bo_va_mapping, list); 2254 list_del(&mapping->list); 2255 2256 if (vm->pte_support_ats && 2257 mapping->start < AMDGPU_GMC_HOLE_START) 2258 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2259 2260 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2261 mapping->start, mapping->last, 2262 init_pte_value, 0, &f); 2263 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2264 if (r) { 2265 dma_fence_put(f); 2266 return r; 2267 } 2268 } 2269 2270 if (fence && f) { 2271 dma_fence_put(*fence); 2272 *fence = f; 2273 } else { 2274 dma_fence_put(f); 2275 } 2276 2277 return 0; 2278 2279 } 2280 2281 /** 2282 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2283 * 2284 * @adev: amdgpu_device pointer 2285 * @vm: requested vm 2286 * 2287 * Make sure all BOs which are moved are updated in the PTs. 2288 * 2289 * Returns: 2290 * 0 for success. 2291 * 2292 * PTs have to be reserved! 2293 */ 2294 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2295 struct amdgpu_vm *vm) 2296 { 2297 struct amdgpu_bo_va *bo_va, *tmp; 2298 struct reservation_object *resv; 2299 bool clear; 2300 int r; 2301 2302 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2303 /* Per VM BOs never need to bo cleared in the page tables */ 2304 r = amdgpu_vm_bo_update(adev, bo_va, false); 2305 if (r) 2306 return r; 2307 } 2308 2309 spin_lock(&vm->invalidated_lock); 2310 while (!list_empty(&vm->invalidated)) { 2311 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2312 base.vm_status); 2313 resv = bo_va->base.bo->tbo.resv; 2314 spin_unlock(&vm->invalidated_lock); 2315 2316 /* Try to reserve the BO to avoid clearing its ptes */ 2317 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2318 clear = false; 2319 /* Somebody else is using the BO right now */ 2320 else 2321 clear = true; 2322 2323 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2324 if (r) 2325 return r; 2326 2327 if (!clear) 2328 reservation_object_unlock(resv); 2329 spin_lock(&vm->invalidated_lock); 2330 } 2331 spin_unlock(&vm->invalidated_lock); 2332 2333 return 0; 2334 } 2335 2336 /** 2337 * amdgpu_vm_bo_add - add a bo to a specific vm 2338 * 2339 * @adev: amdgpu_device pointer 2340 * @vm: requested vm 2341 * @bo: amdgpu buffer object 2342 * 2343 * Add @bo into the requested vm. 2344 * Add @bo to the list of bos associated with the vm 2345 * 2346 * Returns: 2347 * Newly added bo_va or NULL for failure 2348 * 2349 * Object has to be reserved! 2350 */ 2351 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2352 struct amdgpu_vm *vm, 2353 struct amdgpu_bo *bo) 2354 { 2355 struct amdgpu_bo_va *bo_va; 2356 2357 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2358 if (bo_va == NULL) { 2359 return NULL; 2360 } 2361 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2362 2363 bo_va->ref_count = 1; 2364 INIT_LIST_HEAD(&bo_va->valids); 2365 INIT_LIST_HEAD(&bo_va->invalids); 2366 2367 return bo_va; 2368 } 2369 2370 2371 /** 2372 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2373 * 2374 * @adev: amdgpu_device pointer 2375 * @bo_va: bo_va to store the address 2376 * @mapping: the mapping to insert 2377 * 2378 * Insert a new mapping into all structures. 2379 */ 2380 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2381 struct amdgpu_bo_va *bo_va, 2382 struct amdgpu_bo_va_mapping *mapping) 2383 { 2384 struct amdgpu_vm *vm = bo_va->base.vm; 2385 struct amdgpu_bo *bo = bo_va->base.bo; 2386 2387 mapping->bo_va = bo_va; 2388 list_add(&mapping->list, &bo_va->invalids); 2389 amdgpu_vm_it_insert(mapping, &vm->va); 2390 2391 if (mapping->flags & AMDGPU_PTE_PRT) 2392 amdgpu_vm_prt_get(adev); 2393 2394 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2395 !bo_va->base.moved) { 2396 list_move(&bo_va->base.vm_status, &vm->moved); 2397 } 2398 trace_amdgpu_vm_bo_map(bo_va, mapping); 2399 } 2400 2401 /** 2402 * amdgpu_vm_bo_map - map bo inside a vm 2403 * 2404 * @adev: amdgpu_device pointer 2405 * @bo_va: bo_va to store the address 2406 * @saddr: where to map the BO 2407 * @offset: requested offset in the BO 2408 * @size: BO size in bytes 2409 * @flags: attributes of pages (read/write/valid/etc.) 2410 * 2411 * Add a mapping of the BO at the specefied addr into the VM. 2412 * 2413 * Returns: 2414 * 0 for success, error for failure. 2415 * 2416 * Object has to be reserved and unreserved outside! 2417 */ 2418 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2419 struct amdgpu_bo_va *bo_va, 2420 uint64_t saddr, uint64_t offset, 2421 uint64_t size, uint64_t flags) 2422 { 2423 struct amdgpu_bo_va_mapping *mapping, *tmp; 2424 struct amdgpu_bo *bo = bo_va->base.bo; 2425 struct amdgpu_vm *vm = bo_va->base.vm; 2426 uint64_t eaddr; 2427 2428 /* validate the parameters */ 2429 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2430 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2431 return -EINVAL; 2432 2433 /* make sure object fit at this offset */ 2434 eaddr = saddr + size - 1; 2435 if (saddr >= eaddr || 2436 (bo && offset + size > amdgpu_bo_size(bo))) 2437 return -EINVAL; 2438 2439 saddr /= AMDGPU_GPU_PAGE_SIZE; 2440 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2441 2442 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2443 if (tmp) { 2444 /* bo and tmp overlap, invalid addr */ 2445 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2446 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2447 tmp->start, tmp->last + 1); 2448 return -EINVAL; 2449 } 2450 2451 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2452 if (!mapping) 2453 return -ENOMEM; 2454 2455 mapping->start = saddr; 2456 mapping->last = eaddr; 2457 mapping->offset = offset; 2458 mapping->flags = flags; 2459 2460 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2461 2462 return 0; 2463 } 2464 2465 /** 2466 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2467 * 2468 * @adev: amdgpu_device pointer 2469 * @bo_va: bo_va to store the address 2470 * @saddr: where to map the BO 2471 * @offset: requested offset in the BO 2472 * @size: BO size in bytes 2473 * @flags: attributes of pages (read/write/valid/etc.) 2474 * 2475 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2476 * mappings as we do so. 2477 * 2478 * Returns: 2479 * 0 for success, error for failure. 2480 * 2481 * Object has to be reserved and unreserved outside! 2482 */ 2483 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2484 struct amdgpu_bo_va *bo_va, 2485 uint64_t saddr, uint64_t offset, 2486 uint64_t size, uint64_t flags) 2487 { 2488 struct amdgpu_bo_va_mapping *mapping; 2489 struct amdgpu_bo *bo = bo_va->base.bo; 2490 uint64_t eaddr; 2491 int r; 2492 2493 /* validate the parameters */ 2494 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2495 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2496 return -EINVAL; 2497 2498 /* make sure object fit at this offset */ 2499 eaddr = saddr + size - 1; 2500 if (saddr >= eaddr || 2501 (bo && offset + size > amdgpu_bo_size(bo))) 2502 return -EINVAL; 2503 2504 /* Allocate all the needed memory */ 2505 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2506 if (!mapping) 2507 return -ENOMEM; 2508 2509 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2510 if (r) { 2511 kfree(mapping); 2512 return r; 2513 } 2514 2515 saddr /= AMDGPU_GPU_PAGE_SIZE; 2516 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2517 2518 mapping->start = saddr; 2519 mapping->last = eaddr; 2520 mapping->offset = offset; 2521 mapping->flags = flags; 2522 2523 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2524 2525 return 0; 2526 } 2527 2528 /** 2529 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2530 * 2531 * @adev: amdgpu_device pointer 2532 * @bo_va: bo_va to remove the address from 2533 * @saddr: where to the BO is mapped 2534 * 2535 * Remove a mapping of the BO at the specefied addr from the VM. 2536 * 2537 * Returns: 2538 * 0 for success, error for failure. 2539 * 2540 * Object has to be reserved and unreserved outside! 2541 */ 2542 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2543 struct amdgpu_bo_va *bo_va, 2544 uint64_t saddr) 2545 { 2546 struct amdgpu_bo_va_mapping *mapping; 2547 struct amdgpu_vm *vm = bo_va->base.vm; 2548 bool valid = true; 2549 2550 saddr /= AMDGPU_GPU_PAGE_SIZE; 2551 2552 list_for_each_entry(mapping, &bo_va->valids, list) { 2553 if (mapping->start == saddr) 2554 break; 2555 } 2556 2557 if (&mapping->list == &bo_va->valids) { 2558 valid = false; 2559 2560 list_for_each_entry(mapping, &bo_va->invalids, list) { 2561 if (mapping->start == saddr) 2562 break; 2563 } 2564 2565 if (&mapping->list == &bo_va->invalids) 2566 return -ENOENT; 2567 } 2568 2569 list_del(&mapping->list); 2570 amdgpu_vm_it_remove(mapping, &vm->va); 2571 mapping->bo_va = NULL; 2572 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2573 2574 if (valid) 2575 list_add(&mapping->list, &vm->freed); 2576 else 2577 amdgpu_vm_free_mapping(adev, vm, mapping, 2578 bo_va->last_pt_update); 2579 2580 return 0; 2581 } 2582 2583 /** 2584 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2585 * 2586 * @adev: amdgpu_device pointer 2587 * @vm: VM structure to use 2588 * @saddr: start of the range 2589 * @size: size of the range 2590 * 2591 * Remove all mappings in a range, split them as appropriate. 2592 * 2593 * Returns: 2594 * 0 for success, error for failure. 2595 */ 2596 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2597 struct amdgpu_vm *vm, 2598 uint64_t saddr, uint64_t size) 2599 { 2600 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2601 LIST_HEAD(removed); 2602 uint64_t eaddr; 2603 2604 eaddr = saddr + size - 1; 2605 saddr /= AMDGPU_GPU_PAGE_SIZE; 2606 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2607 2608 /* Allocate all the needed memory */ 2609 before = kzalloc(sizeof(*before), GFP_KERNEL); 2610 if (!before) 2611 return -ENOMEM; 2612 INIT_LIST_HEAD(&before->list); 2613 2614 after = kzalloc(sizeof(*after), GFP_KERNEL); 2615 if (!after) { 2616 kfree(before); 2617 return -ENOMEM; 2618 } 2619 INIT_LIST_HEAD(&after->list); 2620 2621 /* Now gather all removed mappings */ 2622 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2623 while (tmp) { 2624 /* Remember mapping split at the start */ 2625 if (tmp->start < saddr) { 2626 before->start = tmp->start; 2627 before->last = saddr - 1; 2628 before->offset = tmp->offset; 2629 before->flags = tmp->flags; 2630 before->bo_va = tmp->bo_va; 2631 list_add(&before->list, &tmp->bo_va->invalids); 2632 } 2633 2634 /* Remember mapping split at the end */ 2635 if (tmp->last > eaddr) { 2636 after->start = eaddr + 1; 2637 after->last = tmp->last; 2638 after->offset = tmp->offset; 2639 after->offset += after->start - tmp->start; 2640 after->flags = tmp->flags; 2641 after->bo_va = tmp->bo_va; 2642 list_add(&after->list, &tmp->bo_va->invalids); 2643 } 2644 2645 list_del(&tmp->list); 2646 list_add(&tmp->list, &removed); 2647 2648 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2649 } 2650 2651 /* And free them up */ 2652 list_for_each_entry_safe(tmp, next, &removed, list) { 2653 amdgpu_vm_it_remove(tmp, &vm->va); 2654 list_del(&tmp->list); 2655 2656 if (tmp->start < saddr) 2657 tmp->start = saddr; 2658 if (tmp->last > eaddr) 2659 tmp->last = eaddr; 2660 2661 tmp->bo_va = NULL; 2662 list_add(&tmp->list, &vm->freed); 2663 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2664 } 2665 2666 /* Insert partial mapping before the range */ 2667 if (!list_empty(&before->list)) { 2668 amdgpu_vm_it_insert(before, &vm->va); 2669 if (before->flags & AMDGPU_PTE_PRT) 2670 amdgpu_vm_prt_get(adev); 2671 } else { 2672 kfree(before); 2673 } 2674 2675 /* Insert partial mapping after the range */ 2676 if (!list_empty(&after->list)) { 2677 amdgpu_vm_it_insert(after, &vm->va); 2678 if (after->flags & AMDGPU_PTE_PRT) 2679 amdgpu_vm_prt_get(adev); 2680 } else { 2681 kfree(after); 2682 } 2683 2684 return 0; 2685 } 2686 2687 /** 2688 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2689 * 2690 * @vm: the requested VM 2691 * @addr: the address 2692 * 2693 * Find a mapping by it's address. 2694 * 2695 * Returns: 2696 * The amdgpu_bo_va_mapping matching for addr or NULL 2697 * 2698 */ 2699 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2700 uint64_t addr) 2701 { 2702 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2703 } 2704 2705 /** 2706 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2707 * 2708 * @vm: the requested vm 2709 * @ticket: CS ticket 2710 * 2711 * Trace all mappings of BOs reserved during a command submission. 2712 */ 2713 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2714 { 2715 struct amdgpu_bo_va_mapping *mapping; 2716 2717 if (!trace_amdgpu_vm_bo_cs_enabled()) 2718 return; 2719 2720 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2721 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2722 if (mapping->bo_va && mapping->bo_va->base.bo) { 2723 struct amdgpu_bo *bo; 2724 2725 bo = mapping->bo_va->base.bo; 2726 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2727 continue; 2728 } 2729 2730 trace_amdgpu_vm_bo_cs(mapping); 2731 } 2732 } 2733 2734 /** 2735 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2736 * 2737 * @adev: amdgpu_device pointer 2738 * @bo_va: requested bo_va 2739 * 2740 * Remove @bo_va->bo from the requested vm. 2741 * 2742 * Object have to be reserved! 2743 */ 2744 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2745 struct amdgpu_bo_va *bo_va) 2746 { 2747 struct amdgpu_bo_va_mapping *mapping, *next; 2748 struct amdgpu_bo *bo = bo_va->base.bo; 2749 struct amdgpu_vm *vm = bo_va->base.vm; 2750 struct amdgpu_vm_bo_base **base; 2751 2752 if (bo) { 2753 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2754 vm->bulk_moveable = false; 2755 2756 for (base = &bo_va->base.bo->vm_bo; *base; 2757 base = &(*base)->next) { 2758 if (*base != &bo_va->base) 2759 continue; 2760 2761 *base = bo_va->base.next; 2762 break; 2763 } 2764 } 2765 2766 spin_lock(&vm->invalidated_lock); 2767 list_del(&bo_va->base.vm_status); 2768 spin_unlock(&vm->invalidated_lock); 2769 2770 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2771 list_del(&mapping->list); 2772 amdgpu_vm_it_remove(mapping, &vm->va); 2773 mapping->bo_va = NULL; 2774 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2775 list_add(&mapping->list, &vm->freed); 2776 } 2777 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2778 list_del(&mapping->list); 2779 amdgpu_vm_it_remove(mapping, &vm->va); 2780 amdgpu_vm_free_mapping(adev, vm, mapping, 2781 bo_va->last_pt_update); 2782 } 2783 2784 dma_fence_put(bo_va->last_pt_update); 2785 kfree(bo_va); 2786 } 2787 2788 /** 2789 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2790 * 2791 * @adev: amdgpu_device pointer 2792 * @bo: amdgpu buffer object 2793 * @evicted: is the BO evicted 2794 * 2795 * Mark @bo as invalid. 2796 */ 2797 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2798 struct amdgpu_bo *bo, bool evicted) 2799 { 2800 struct amdgpu_vm_bo_base *bo_base; 2801 2802 /* shadow bo doesn't have bo base, its validation needs its parent */ 2803 if (bo->parent && bo->parent->shadow == bo) 2804 bo = bo->parent; 2805 2806 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2807 struct amdgpu_vm *vm = bo_base->vm; 2808 2809 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2810 amdgpu_vm_bo_evicted(bo_base); 2811 continue; 2812 } 2813 2814 if (bo_base->moved) 2815 continue; 2816 bo_base->moved = true; 2817 2818 if (bo->tbo.type == ttm_bo_type_kernel) 2819 amdgpu_vm_bo_relocated(bo_base); 2820 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2821 amdgpu_vm_bo_moved(bo_base); 2822 else 2823 amdgpu_vm_bo_invalidated(bo_base); 2824 } 2825 } 2826 2827 /** 2828 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2829 * 2830 * @vm_size: VM size 2831 * 2832 * Returns: 2833 * VM page table as power of two 2834 */ 2835 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2836 { 2837 /* Total bits covered by PD + PTs */ 2838 unsigned bits = ilog2(vm_size) + 18; 2839 2840 /* Make sure the PD is 4K in size up to 8GB address space. 2841 Above that split equal between PD and PTs */ 2842 if (vm_size <= 8) 2843 return (bits - 9); 2844 else 2845 return ((bits + 3) / 2); 2846 } 2847 2848 /** 2849 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2850 * 2851 * @adev: amdgpu_device pointer 2852 * @min_vm_size: the minimum vm size in GB if it's set auto 2853 * @fragment_size_default: Default PTE fragment size 2854 * @max_level: max VMPT level 2855 * @max_bits: max address space size in bits 2856 * 2857 */ 2858 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2859 uint32_t fragment_size_default, unsigned max_level, 2860 unsigned max_bits) 2861 { 2862 unsigned int max_size = 1 << (max_bits - 30); 2863 unsigned int vm_size; 2864 uint64_t tmp; 2865 2866 /* adjust vm size first */ 2867 if (amdgpu_vm_size != -1) { 2868 vm_size = amdgpu_vm_size; 2869 if (vm_size > max_size) { 2870 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2871 amdgpu_vm_size, max_size); 2872 vm_size = max_size; 2873 } 2874 } else { 2875 struct sysinfo si; 2876 unsigned int phys_ram_gb; 2877 2878 /* Optimal VM size depends on the amount of physical 2879 * RAM available. Underlying requirements and 2880 * assumptions: 2881 * 2882 * - Need to map system memory and VRAM from all GPUs 2883 * - VRAM from other GPUs not known here 2884 * - Assume VRAM <= system memory 2885 * - On GFX8 and older, VM space can be segmented for 2886 * different MTYPEs 2887 * - Need to allow room for fragmentation, guard pages etc. 2888 * 2889 * This adds up to a rough guess of system memory x3. 2890 * Round up to power of two to maximize the available 2891 * VM size with the given page table size. 2892 */ 2893 si_meminfo(&si); 2894 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2895 (1 << 30) - 1) >> 30; 2896 vm_size = roundup_pow_of_two( 2897 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2898 } 2899 2900 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2901 2902 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2903 if (amdgpu_vm_block_size != -1) 2904 tmp >>= amdgpu_vm_block_size - 9; 2905 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2906 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2907 switch (adev->vm_manager.num_level) { 2908 case 3: 2909 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2910 break; 2911 case 2: 2912 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2913 break; 2914 case 1: 2915 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2916 break; 2917 default: 2918 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2919 } 2920 /* block size depends on vm size and hw setup*/ 2921 if (amdgpu_vm_block_size != -1) 2922 adev->vm_manager.block_size = 2923 min((unsigned)amdgpu_vm_block_size, max_bits 2924 - AMDGPU_GPU_PAGE_SHIFT 2925 - 9 * adev->vm_manager.num_level); 2926 else if (adev->vm_manager.num_level > 1) 2927 adev->vm_manager.block_size = 9; 2928 else 2929 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2930 2931 if (amdgpu_vm_fragment_size == -1) 2932 adev->vm_manager.fragment_size = fragment_size_default; 2933 else 2934 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2935 2936 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2937 vm_size, adev->vm_manager.num_level + 1, 2938 adev->vm_manager.block_size, 2939 adev->vm_manager.fragment_size); 2940 } 2941 2942 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2943 { 2944 struct amdgpu_retryfault_hashtable *fault_hash; 2945 2946 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2947 if (!fault_hash) 2948 return fault_hash; 2949 2950 INIT_CHASH_TABLE(fault_hash->hash, 2951 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2952 spin_lock_init(&fault_hash->lock); 2953 fault_hash->count = 0; 2954 2955 return fault_hash; 2956 } 2957 2958 /** 2959 * amdgpu_vm_init - initialize a vm instance 2960 * 2961 * @adev: amdgpu_device pointer 2962 * @vm: requested vm 2963 * @vm_context: Indicates if it GFX or Compute context 2964 * @pasid: Process address space identifier 2965 * 2966 * Init @vm fields. 2967 * 2968 * Returns: 2969 * 0 for success, error for failure. 2970 */ 2971 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2972 int vm_context, unsigned int pasid) 2973 { 2974 struct amdgpu_bo_param bp; 2975 struct amdgpu_bo *root; 2976 int r, i; 2977 2978 vm->va = RB_ROOT_CACHED; 2979 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2980 vm->reserved_vmid[i] = NULL; 2981 INIT_LIST_HEAD(&vm->evicted); 2982 INIT_LIST_HEAD(&vm->relocated); 2983 INIT_LIST_HEAD(&vm->moved); 2984 INIT_LIST_HEAD(&vm->idle); 2985 INIT_LIST_HEAD(&vm->invalidated); 2986 spin_lock_init(&vm->invalidated_lock); 2987 INIT_LIST_HEAD(&vm->freed); 2988 2989 /* create scheduler entity for page table updates */ 2990 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2991 adev->vm_manager.vm_pte_num_rqs, NULL); 2992 if (r) 2993 return r; 2994 2995 vm->pte_support_ats = false; 2996 2997 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2998 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2999 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3000 3001 if (adev->asic_type == CHIP_RAVEN) 3002 vm->pte_support_ats = true; 3003 } else { 3004 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3005 AMDGPU_VM_USE_CPU_FOR_GFX); 3006 } 3007 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3008 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3009 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3010 "CPU update of VM recommended only for large BAR system\n"); 3011 vm->last_update = NULL; 3012 3013 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3014 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3015 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3016 r = amdgpu_bo_create(adev, &bp, &root); 3017 if (r) 3018 goto error_free_sched_entity; 3019 3020 r = amdgpu_bo_reserve(root, true); 3021 if (r) 3022 goto error_free_root; 3023 3024 r = reservation_object_reserve_shared(root->tbo.resv, 1); 3025 if (r) 3026 goto error_unreserve; 3027 3028 r = amdgpu_vm_clear_bo(adev, vm, root, 3029 adev->vm_manager.root_level, 3030 vm->pte_support_ats); 3031 if (r) 3032 goto error_unreserve; 3033 3034 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3035 amdgpu_bo_unreserve(vm->root.base.bo); 3036 3037 if (pasid) { 3038 unsigned long flags; 3039 3040 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3041 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3042 GFP_ATOMIC); 3043 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3044 if (r < 0) 3045 goto error_free_root; 3046 3047 vm->pasid = pasid; 3048 } 3049 3050 vm->fault_hash = init_fault_hash(); 3051 if (!vm->fault_hash) { 3052 r = -ENOMEM; 3053 goto error_free_root; 3054 } 3055 3056 INIT_KFIFO(vm->faults); 3057 3058 return 0; 3059 3060 error_unreserve: 3061 amdgpu_bo_unreserve(vm->root.base.bo); 3062 3063 error_free_root: 3064 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3065 amdgpu_bo_unref(&vm->root.base.bo); 3066 vm->root.base.bo = NULL; 3067 3068 error_free_sched_entity: 3069 drm_sched_entity_destroy(&vm->entity); 3070 3071 return r; 3072 } 3073 3074 /** 3075 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3076 * 3077 * @adev: amdgpu_device pointer 3078 * @vm: requested vm 3079 * 3080 * This only works on GFX VMs that don't have any BOs added and no 3081 * page tables allocated yet. 3082 * 3083 * Changes the following VM parameters: 3084 * - use_cpu_for_update 3085 * - pte_supports_ats 3086 * - pasid (old PASID is released, because compute manages its own PASIDs) 3087 * 3088 * Reinitializes the page directory to reflect the changed ATS 3089 * setting. 3090 * 3091 * Returns: 3092 * 0 for success, -errno for errors. 3093 */ 3094 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3095 { 3096 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3097 int r; 3098 3099 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3100 if (r) 3101 return r; 3102 3103 /* Sanity checks */ 3104 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3105 r = -EINVAL; 3106 goto unreserve_bo; 3107 } 3108 3109 if (pasid) { 3110 unsigned long flags; 3111 3112 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3113 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3114 GFP_ATOMIC); 3115 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3116 3117 if (r == -ENOSPC) 3118 goto unreserve_bo; 3119 r = 0; 3120 } 3121 3122 /* Check if PD needs to be reinitialized and do it before 3123 * changing any other state, in case it fails. 3124 */ 3125 if (pte_support_ats != vm->pte_support_ats) { 3126 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3127 adev->vm_manager.root_level, 3128 pte_support_ats); 3129 if (r) 3130 goto free_idr; 3131 } 3132 3133 /* Update VM state */ 3134 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3135 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3136 vm->pte_support_ats = pte_support_ats; 3137 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3138 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3139 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3140 "CPU update of VM recommended only for large BAR system\n"); 3141 3142 if (vm->pasid) { 3143 unsigned long flags; 3144 3145 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3146 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3147 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3148 3149 /* Free the original amdgpu allocated pasid 3150 * Will be replaced with kfd allocated pasid 3151 */ 3152 amdgpu_pasid_free(vm->pasid); 3153 vm->pasid = 0; 3154 } 3155 3156 /* Free the shadow bo for compute VM */ 3157 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3158 3159 if (pasid) 3160 vm->pasid = pasid; 3161 3162 goto unreserve_bo; 3163 3164 free_idr: 3165 if (pasid) { 3166 unsigned long flags; 3167 3168 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3169 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3170 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3171 } 3172 unreserve_bo: 3173 amdgpu_bo_unreserve(vm->root.base.bo); 3174 return r; 3175 } 3176 3177 /** 3178 * amdgpu_vm_release_compute - release a compute vm 3179 * @adev: amdgpu_device pointer 3180 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3181 * 3182 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3183 * pasid from vm. Compute should stop use of vm after this call. 3184 */ 3185 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3186 { 3187 if (vm->pasid) { 3188 unsigned long flags; 3189 3190 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3191 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3192 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3193 } 3194 vm->pasid = 0; 3195 } 3196 3197 /** 3198 * amdgpu_vm_fini - tear down a vm instance 3199 * 3200 * @adev: amdgpu_device pointer 3201 * @vm: requested vm 3202 * 3203 * Tear down @vm. 3204 * Unbind the VM and remove all bos from the vm bo list 3205 */ 3206 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3207 { 3208 struct amdgpu_bo_va_mapping *mapping, *tmp; 3209 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3210 struct amdgpu_bo *root; 3211 u64 fault; 3212 int i, r; 3213 3214 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3215 3216 /* Clear pending page faults from IH when the VM is destroyed */ 3217 while (kfifo_get(&vm->faults, &fault)) 3218 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3219 3220 if (vm->pasid) { 3221 unsigned long flags; 3222 3223 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3224 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3225 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3226 } 3227 3228 kfree(vm->fault_hash); 3229 vm->fault_hash = NULL; 3230 3231 drm_sched_entity_destroy(&vm->entity); 3232 3233 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3234 dev_err(adev->dev, "still active bo inside vm\n"); 3235 } 3236 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3237 &vm->va.rb_root, rb) { 3238 /* Don't remove the mapping here, we don't want to trigger a 3239 * rebalance and the tree is about to be destroyed anyway. 3240 */ 3241 list_del(&mapping->list); 3242 kfree(mapping); 3243 } 3244 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3245 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3246 amdgpu_vm_prt_fini(adev, vm); 3247 prt_fini_needed = false; 3248 } 3249 3250 list_del(&mapping->list); 3251 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3252 } 3253 3254 root = amdgpu_bo_ref(vm->root.base.bo); 3255 r = amdgpu_bo_reserve(root, true); 3256 if (r) { 3257 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3258 } else { 3259 amdgpu_vm_free_pts(adev, vm); 3260 amdgpu_bo_unreserve(root); 3261 } 3262 amdgpu_bo_unref(&root); 3263 dma_fence_put(vm->last_update); 3264 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3265 amdgpu_vmid_free_reserved(adev, vm, i); 3266 } 3267 3268 /** 3269 * amdgpu_vm_manager_init - init the VM manager 3270 * 3271 * @adev: amdgpu_device pointer 3272 * 3273 * Initialize the VM manager structures 3274 */ 3275 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3276 { 3277 unsigned i; 3278 3279 amdgpu_vmid_mgr_init(adev); 3280 3281 adev->vm_manager.fence_context = 3282 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3283 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3284 adev->vm_manager.seqno[i] = 0; 3285 3286 spin_lock_init(&adev->vm_manager.prt_lock); 3287 atomic_set(&adev->vm_manager.num_prt_users, 0); 3288 3289 /* If not overridden by the user, by default, only in large BAR systems 3290 * Compute VM tables will be updated by CPU 3291 */ 3292 #ifdef CONFIG_X86_64 3293 if (amdgpu_vm_update_mode == -1) { 3294 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3295 adev->vm_manager.vm_update_mode = 3296 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3297 else 3298 adev->vm_manager.vm_update_mode = 0; 3299 } else 3300 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3301 #else 3302 adev->vm_manager.vm_update_mode = 0; 3303 #endif 3304 3305 idr_init(&adev->vm_manager.pasid_idr); 3306 spin_lock_init(&adev->vm_manager.pasid_lock); 3307 } 3308 3309 /** 3310 * amdgpu_vm_manager_fini - cleanup VM manager 3311 * 3312 * @adev: amdgpu_device pointer 3313 * 3314 * Cleanup the VM manager and free resources. 3315 */ 3316 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3317 { 3318 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3319 idr_destroy(&adev->vm_manager.pasid_idr); 3320 3321 amdgpu_vmid_mgr_fini(adev); 3322 } 3323 3324 /** 3325 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3326 * 3327 * @dev: drm device pointer 3328 * @data: drm_amdgpu_vm 3329 * @filp: drm file pointer 3330 * 3331 * Returns: 3332 * 0 for success, -errno for errors. 3333 */ 3334 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3335 { 3336 union drm_amdgpu_vm *args = data; 3337 struct amdgpu_device *adev = dev->dev_private; 3338 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3339 int r; 3340 3341 switch (args->in.op) { 3342 case AMDGPU_VM_OP_RESERVE_VMID: 3343 /* current, we only have requirement to reserve vmid from gfxhub */ 3344 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3345 if (r) 3346 return r; 3347 break; 3348 case AMDGPU_VM_OP_UNRESERVE_VMID: 3349 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3350 break; 3351 default: 3352 return -EINVAL; 3353 } 3354 3355 return 0; 3356 } 3357 3358 /** 3359 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3360 * 3361 * @adev: drm device pointer 3362 * @pasid: PASID identifier for VM 3363 * @task_info: task_info to fill. 3364 */ 3365 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3366 struct amdgpu_task_info *task_info) 3367 { 3368 struct amdgpu_vm *vm; 3369 3370 spin_lock(&adev->vm_manager.pasid_lock); 3371 3372 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3373 if (vm) 3374 *task_info = vm->task_info; 3375 3376 spin_unlock(&adev->vm_manager.pasid_lock); 3377 } 3378 3379 /** 3380 * amdgpu_vm_set_task_info - Sets VMs task info. 3381 * 3382 * @vm: vm for which to set the info 3383 */ 3384 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3385 { 3386 if (!vm->task_info.pid) { 3387 vm->task_info.pid = current->pid; 3388 get_task_comm(vm->task_info.task_name, current); 3389 3390 if (current->group_leader->mm == current->mm) { 3391 vm->task_info.tgid = current->group_leader->pid; 3392 get_task_comm(vm->task_info.process_name, current->group_leader); 3393 } 3394 } 3395 } 3396 3397 /** 3398 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3399 * 3400 * @fault_hash: fault hash table 3401 * @key: 64-bit encoding of PASID and address 3402 * 3403 * This should be called when a retry page fault interrupt is 3404 * received. If this is a new page fault, it will be added to a hash 3405 * table. The return value indicates whether this is a new fault, or 3406 * a fault that was already known and is already being handled. 3407 * 3408 * If there are too many pending page faults, this will fail. Retry 3409 * interrupts should be ignored in this case until there is enough 3410 * free space. 3411 * 3412 * Returns 0 if the fault was added, 1 if the fault was already known, 3413 * -ENOSPC if there are too many pending faults. 3414 */ 3415 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3416 { 3417 unsigned long flags; 3418 int r = -ENOSPC; 3419 3420 if (WARN_ON_ONCE(!fault_hash)) 3421 /* Should be allocated in amdgpu_vm_init 3422 */ 3423 return r; 3424 3425 spin_lock_irqsave(&fault_hash->lock, flags); 3426 3427 /* Only let the hash table fill up to 50% for best performance */ 3428 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3429 goto unlock_out; 3430 3431 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3432 if (!r) 3433 fault_hash->count++; 3434 3435 /* chash_table_copy_in should never fail unless we're losing count */ 3436 WARN_ON_ONCE(r < 0); 3437 3438 unlock_out: 3439 spin_unlock_irqrestore(&fault_hash->lock, flags); 3440 return r; 3441 } 3442 3443 /** 3444 * amdgpu_vm_clear_fault - Remove a page fault record 3445 * 3446 * @fault_hash: fault hash table 3447 * @key: 64-bit encoding of PASID and address 3448 * 3449 * This should be called when a page fault has been handled. Any 3450 * future interrupt with this key will be processed as a new 3451 * page fault. 3452 */ 3453 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3454 { 3455 unsigned long flags; 3456 int r; 3457 3458 if (!fault_hash) 3459 return; 3460 3461 spin_lock_irqsave(&fault_hash->lock, flags); 3462 3463 r = chash_table_remove(&fault_hash->hash, key, NULL); 3464 if (!WARN_ON_ONCE(r < 0)) { 3465 fault_hash->count--; 3466 WARN_ON_ONCE(fault_hash->count < 0); 3467 } 3468 3469 spin_unlock_irqrestore(&fault_hash->lock, flags); 3470 } 3471